
SUFFICIENCY AND INFLUENCE1By Robert WeissUniversity of California, Los AngelesConsider two competing models M1 and M2 for the same dataanalysis. Assume that the conclusions from both models are posteri-ors p1(�jY ) and p2(�jY ) of some inferential target � given the data Y .The unknowns � may be parameters with identical interpretations inboth models. Under mild conditions, the di�erence between the twoconclusions is reducible to a one dimensional summary h(�) for anytwo models. The result has implications for Bayesian diagnostics andsensitivity analysis. The role of Bayesian and classical robustness isdiscussed. Applications of in
uence su�ciency to case and prior in
u-ence are illustrated, with emphasis on the in
uence of di�erent priorsand calculation of Bayes factors.1. Introduction. I'd like to start with a brief discussion of in
uentialand outlying observations, in
uential and outlying assumptions, and classicaland Bayesian robustness.An observation is in
uential if the conclusion changes in an importantmanner when the observation's likelihood contribution changes. Outliers areobservations whose responses di�er from what is predicted by the model.Outliers need not be in
uential (consider either a model with t errors orregression through the origin) and in
uential observations need not be out-liers; consider an observation in linear regression with leverage hi � 1. Asthe number of observations increases, with all other aspects of the modelheld �xed, we can usually expect the in
uence of individual observations tobecome small.Observations are not the only things in an analysis that can be in
uential.Assumptions such as linearity, normality, constant variance or smoothnesscontribute strongly to the likelihood. An assumption is in
uential if the con-clusion changes when the assumption is relaxed. An assumption is outlyingif the data support a relaxation of the assumption.Classically, robustness has meant that within a range around a partic-ular model, the derivatives of an inference (usually narrowly de�ned as apoint estimate) with respect to various inputs are `small'. Usually only theresponse variables are considered as inputs. Consider for example a modelwhere real valued observations yi are independent and identically distributed(iid) with density f(yi��) given a location parameter �. A global change tothe inputs yi such as adding a constant c to all observations usually changes1Research supported by NIH grant GM50011-01.Key Words and Phrases: Bayesian Data Analysis, Bayes Factors, Case Deletion, Diag-nostics, L1 norm, Prior Sensitivity. 1



the �nal point estimate ~� by c. The fact that the derivatives g(yi) = @~�=@yiare small, implies that with enough small changes, the model `breaks', thatis, with enough cumulative changes to the inputs, the derivatives g(yi) willbe highly non-linear, and can be arbitrarily large.Consider a thought experiment where all observations yi are increasedsmoothly by an amount c one observation at a time in turn, starting with thelargest observation and ending with the smallest observation. All changes arecumulative. Depending on the chosen estimator ~� the derivatives g(yi) willvary from slightly negative values to 1. The problem with robust estimatorsof � is that for some data sets, small perturbations can have g(yi) = 1,g(yi) < 0, or even g(yi) > 1. Examples of negative g(yi) occur in thelocation model with t errors; g(yi) = 1 occurs when ~� is the median, and thenumber of observations is odd; g(yi) > 1 occurs in nonlinear normal models(St. Laurent and Cook 1992). The normal model yi � N(�; �2) with ~� = �̂is often criticized because g(yi) = n�1 for all data sets and observations. Isuspect that when using a 
at prior, the normal model gives the smallestpossible maximum value of g(yi) = n�1.From a Bayesian perspective, the classical de�nition of robustness canbe encorporated into an analysis thru choice of robust likelihoods. See forexample, Ramsay and Novick (1980). This is done through a priori beliefsand a posteriori data selection amongst models for the sampling density andnot a blind requirement that models should be robust in the classical sense.Bayesian robustness has historically studied the sensitivity to the priorof a point estimate, Bayes factor or posterior. We take sets of priors andinvestigate the possible ranges of the posterior or point estimate. This isbeginning to change, as researchers (for example Lavine 1991a, 1991b) re-alize that the prior is often not the main source of information in a model,rather, the likelihood contributes substantially more to conclusions. Anotherproblem with Bayesian robustness is that the perturbation sets are not nec-essarily chosen for their a priori plausibility and support by the data. If themost in
uential priors are not plausible a posteriori and usually they are not,then it is unclear if we should be interested in their in
uence a posteriori.Further, in regression and other complex models with available substantiveinformation, prior in
uence has not been extensively studied. Two examplesare Carlin, Kass, Lerch and Huguenard (1992) and Greenhouse and Wasser-man (1995). The example in this paper illustrates aspects of prior in
uencein a linear regression setup.A Bayesian jointly models data Y and unknown parameters � by modelM1 where p1(�; Y ) = p1(�)f1(Y j�) = p1(�jY )f1(Y ). Alternatively, a com-peting model M2 is proposed with p2(�; Y ) and corresponding prior p2(�),sampling f2(Y j�), posterior p(�jY ) and prior predictive f2(Y ) distributions.The parameter � must have the same interpretation under both models. Here2



I assume that M1 is the current model under consideration, while model M2is a modi�ed version of M1, the result of a change in assumptions. Whichmodel should be preferred? Model M1 will be used for inference if the sensi-tivity analysis identi�es no problems with the current model. Several meansof choosing between the two models are possible. In
uence analysis adviseson whether the conclusion of our analysis changes when the assumptionschange. Model M2 must be considered only if it leads to di�erent conclu-sions from M1, and if the data support M2 over M1 (Weiss 1995).The next section describes an idea in in
uence analysis which is bothpretty and powerful. The value of the idea is its use in developing proce-dures for assessing posterior in
uence and data support and in providingcomputational algorithms. Calculation results are emphasized, and a newmethod of calculating the Bayes factor and L1 divergence between M1 andM2 is given.2. Su�cient Perturbation Functions. While the base material forthis section is Weiss (1995), di�erent aspects are emphasized, and severalnew methods are presented, especially in section 2.4. Consider the jointpriors p1(�; Y ) and p2(�; Y ), the assumptions of the analysis given modelsM1 and M2 respectively. De�ne��(�; Y ) = p2(�; Y )p1(�; Y )(1)The function �� = ��(�; Y ) is the function that multiplies the assumptionsof M1 to produce the assumptions from M2. It mathematically embodiesthe change of assumptions in going from M1 to M2. Thinking of M2 asa modi�cation or perturbation of M1, then de�ne �� as the perturbationfunction that changes p1(�; Y ) into p2(�; Y ). Kass, Tierney and Kadane(1989) introduced the idea of perturbation functions and Weiss (1995) hasexpanded on the idea.A posteriori we have�(�; Y ) = ��(�; Y )E1[��(�; Y )jY ] = p2(�jY )p1(�jY )(2)where Ej [g(�)jY ] = R g(�)pj(�jY )d�, for j = 1; 2, andE1[��(�; Y )jY ] = B21 = f2(Y )f1(Y )(3)is the Bayes factor in favor ofM2 andM1, assuming that it is well de�ned. If� = (�1; �2), pj(�) = pj(�1)pj(�2), and pj(�1) are both proper, then if pj(�2)are the same, even if improper, the Bayes factor is well de�ned as the Bayes3



factor where pj(�2) are equal and proper but vague in the sense that theposteriors pj(�jY ) do not change.2.1. Examples of perturbation functions.2.1.1. Case deletion. What happens when we delete case i from thesample? The perturbation function is �1i / f2i(yi) � [f(yij�; xi)]�1 is propor-tional to the inverse sampling distribution of yi given the parameters � andcovariates xi and where f2i(yi) is a new sampling density for yi which doesnot depend on �.2.1.2. Prior Perturbation. Changing the prior from p1(�) to p2(�) gives��p / p2(�)=p1(�).2.1.3. Likelihood perturbation. Changing the sampling density fromf1(Y j�) to f2(Y j�) gives ��L / f2(Y j�)=f1(Y j�).2.1.4. Covariate and response perturbation. We can also perturb re-sponses yi to yi + �i or perturb covariates xi or sets of responses or covari-ates. Changing yi is useful when the observations are uncertain in ways notaccounted for by the sampling density. This happens with rounding, if im-puted values are substituted for actual observed values or if censoring timesare substituted for unobserved responses. The presence of errors in variablescan suggest that the xi's should be perturbed.2.1.5. Combinations. If a set of individual perturbations are of interest,it is probable that combinations of the perturbations are also of interest.Virtually no work has occurred in this area. It appears to be an area wherethe tools of experimental design could usefully be applied; as with multiplecase in
uence, combinatorial explosion problems can occur.2.2. Su�ciency. If M1 and M2 both provide joint distributions for dataY and parameters �, then model M2 can be arrived at as a perturbation ofM1, provided only that the ratio ��(�; Y ) is �nite everywhere. That is, thejoint prior of M2 should have a density relative to the joint prior of M1.The perturbation � or �� contains in a real sense all of the in
uence of thechange from M1 to M2. In particular, given � , there is no further in
uenceon � due to switching from M1 to M2. To see this, change variables from� to �; � where � is chosen to make the change of variables one-to-one andmeasurable. Then (Weiss 1995)p1(�j�; Y ) = p2(�j�; Y )(4)The posterior of � given � is the same under both models M1 and M2. The4



proof is � = p2(�jY )p1(�jY ) = p2(� jY )p2(�j�; Y )p1(� jY )p1(�j�; Y ) :(5)Now in (5) multiply leftmost and rightmost formulae by p1(�j�; Y ) and in-tegrate with respect to �. This gives� = p2(� jY )p1(� jY ) :(6)Dividing (5) by equation (6) gives (4).The updating of p1(� jY ) to p2(� jY ) is simple, since by (6), the ratiois proportional to � . Thus, given a histogram of samples from p1(� jY ), ora plot of the density, we have a substantial amount of information aboutthe e�ects of the perturbation. The beauty of the perturbation function isthat � is a univariate function of �: by investigating a univariate marginalp1(� jY ) of p1(�jY ), many of the consequences of perturbing M1 toM2 can beexplored; in particular we need not explore the high dimensional posteriorsp1(�jY ) and p2(�jY ), since all conditionals pj(�j�; Y ) are equal.The function � = �(�; Y ), generally a function of the data and the pa-rameters, can be called a su�cient perturbation function due to the resultsabove. Conditional on � , there is no further in
uence due to changing fromM1 to M2. Unconditionally, further in
uence of the perturbation on a func-tion � = �(�) of interest is due to the in
uence on p1(� jY ) and any posteriorassociation between � and �. If � is a function of �, then � is also a su�cientperturbation function for the perturbation from M1 to M2. We distinguish� from � by calling � , or any 1-1 measureable function of � a minimallysu�cient perturbation.2.3. Summarizing In
uence. Two di�erent approachs for summarizingin
uence are numerical and graphical. The numerical approach summarizesthe di�erences between p1(�jY ) and p2(�Y ) by a numerical summary of thedi�erences. Discussions of these summaries are often couched in the form ofwhich summary is best, but a scalar summary is not required, and multiplesummaries should be considered. On the other hand, most analysts don'twant to wade through tons of in
uence statistics.One approach is to summarize the in
uence through the change in pos-terior expectation of some quantity of interest. Another popular approachfor summarizing the di�erence between p1(�(�)jY ) and p2(�(�)jY ) is a di-vergence measureD�(�)(g) = Z g�p2(�(�)jY )p1(�(�)jY )� p1(�(�)jY )d�;5



where g(a) is convex and g(1) = 0. (See Csisz�ar 1967, Weiss and Cook 1992,and Weiss 1995.) By (5) and (6),D�(g) = D�(g);(7)and by convexity of g, D�(g) � D�(�)(g) � 0(8)(Weiss 1995). Various measures that have been proposed are the L1 normwith gL(a) = :5ja � 1j, the several Kullback divergences, such as K withgK(a) = �a log(a); functions of Hellinger distance (Geisser 1993) with gp(a) =ja1=p� 1jp, p � 1 and the �2 divergence with g�2(a) = (a� 1)2. In my expe-rience, the choice of divergence does not matter for ranking di�erent pertur-bations especially in regards to case deletion, however, some divergences areeasier to interpret. From Weiss (1995), �2 divergence is the square of theKass, Tierney, and Kadane (1989) maximum standardized change (MSC)and the L1 is the maximum di�erence between M1 and M2 in posteriorprobability content of any interval. Kullback divergence with gK(a) is of-ten recommended because closed form computations are sometimes possible,and because of the optimality identi�ed by Bernardo (1979; 1985).A graphical approach to in
uence summarization is a compact way ofdisplaying many numerical in
uence statistics. The primary goal of in
uenceanalysis is to understand the di�erence between p1(�jY ) and p2(�jY ). Agraphical approach plots these two posteriors and inspects them directly.When � is a scalar, this is straightforward. When pj(�jY ) is more than 1or 2 dimensional, this is hard. One way of easing the problem is to inspectmarginal posteriors, but by (8) these often underestimate global in
uenceand often drastically. De�ne a posterior in
uence plot as a plot of p1(�jY )and p2(�jY ) or of the marginals pj(�jY ) of �. The su�cient perturbationcomes into play here. Consider inspecting a plot of p1(� jY ) and p2(� jY ). Ifwe consider that in
uence is properly summarized by a divergence measure,then this plot loses nothing over inspecting p1(�jY ) and p2(�jY ) since theD�(g) = D�(g). If � is a non-minimal su�cient perturbation function, wecan also inspect p1(�jY ) and p2(�jY ) without missing any in
uence. If �is easier than � to interpret, its posterior in
uence plot may be preferableto the posterior in
uence plot using � . When a not necessarily su�cientparameter � is of particular interest in an analysis, then one should inspectp1(�jY ) and p2(�jY ) to investigate in
uence. This also obviates the needfor chosing a summary in
uence statistic.2.4. Computations. For a single sample �(l) with l = 1; : : : ; L fromp1(�jY ) one can useB̂21 = Ê1[��(�; Y )] = L�1X ��(�(l));(9) 6



by (3) to estimate B21 (Weiss 1995) and to calculate D�(g),D̂�(g) = L�1 LXl=1 g ��(�(l); Y )B̂12 ! ;(10)by (7) to estimate in
uence functions of the perturbation from M1 to M2(Weiss 1995). To calculate the change in posterior expectation of �, one canuse E2[�jY ]� E1[�jY ] = Cov1[�; � jY ]:(11)In principle, one can produce a posterior in
uence plot of p1(� jY ) andp2(� jY ) by approximating a sample from p2(� jY ) by reweighting �(l) by�(�(l)). This and the results (9), (10), and (11) are importance sampling-type calculations. Samples from one density (p1(�jY )) are used to learnabout a second density (p2(�jY )). Importance sampling can be used in the-ory to explore any posterior with the same support as p1(�jY ), providedthat one can integrate arbitrary functions of � given M1. In practice, im-portance sampling generally only works if the importance density p1(�jY )is close to the alternative density, p2(�jY ) and if special conditions are metby the density ratio � . In
uential perturbations are unlikely to meet thesespecial conditions and the caveat of integrating arbitrary functions is verystrong and virtually never met in practice.The above calculations are the direct result of su�ciency. An alter-nate application of su�ciency uses samples from both pj(�jY ) is to formestimates p̂j(��jY ) using kernel density or other form of semiparametricestimate. These two posteriors are one dimensional, and the curse of dimen-sionality should be avoidable. One can then compute in
uence diagnosticsnumerically using one dimensional Riemann integration d� applying (7), As-suming proper priors one can compute B12 usingB̂21 = p̂1(��jY )��p̂2(��jY ) :(12)Any value of �� can be used, provided that both densities are accuratelyestimated at that point. The log scale is often easier to work with. Sincethe Jacobian cancels, the posterior of any monotone transformation of ��could be used in place of pj(��jY ). The di�erence in posterior expectationsE2[�jY ] � E1[�jY ] is estimated by separately estimating the expectationsusing the two samples.Inspection of the densities p̂j(��jY ) can shed light on the accuracy ofthese various calculational formulae, as illustrated in the example.3. Housing Data. This data set was collected to predict the COSTof rehabilitating housing in St. Paul, Minnesota, USA. The prediction is7



to be based on the average ratings of external parts of the house, EAVES,WINDOWS and YARDby three inexpensive sidewalk surveyors. Ratings ofEAVES and WINDOWS are integer valued from 1 to 6, and YARD is ratedeither 2 or 5. Lower ratings indicate houses in better condition. The datais given in table 1. The COST in kilodollars is estimated by an expensivebuilding contractor who must enter the house. Let COST yi be modeledyi = xti� + �i with COST yi, xi a 4�vector of covariates, a one followed bythe average EAVES, WINDOWS, and YARD ratings, coe�cients � = (�j),j = 0; 1; 2; 3 and errors �ij�2 � N(0; �2) a priori given �2 independent andidentically distributed (iid).Three priors are used with this example. All three have p(�; �2) =p(�)p(�2) with p(�2) / ��2. The �rst prior is a version of the hierarchicalmodel selection prior of George and McCulloch (1993). Consider the priorp(�j j�j) � N(0; V0W �j), j = 1; 2; 3, �j � Bernoulli(�0). For the housingdata set I selected �0 = :7, V0 = :25, and W = 16. Because of the scaling ofthe X 's it was felt that the same prior might reasonably be used for all threecoe�cients. The prior for the intercept assumed �0 � N(0; V0W ). This prioris called the model selection (MS) prior.The second prior, the 
at (F) prior, used the noninformative prior p(�; �)/c��2. The choice of constant c is important for calculating Bayes' factors,and I used the volume of the smallest rectangular region with sides paral-lel to the coordinate axes that covered all 2000 samples from the posterior,the side lengths were rounded up slightly. Since all three priors for �2 areimproper, the volume for �2 was not included. The appropriate normalizingconstant was (137024)�1.The third prior was a proper informative (I) prior for � based on datataken 7 years previously. The prior data has sample size 39, where one outlierwas deleted from the earlier analysis. The costs were in
ated by a factor sothat the means of the earlier sample (without case deletion) and the currentsample are the same. The necessary statistics are given in table 2. The prioris the posterior t distribution p(�jYold) based on an uninformative prior withp(�; �2) / ��2.All calculations were based on samples of size 2000 from the three pos-teriors based on the three priors. The posteriors will be named MS, F, andI posteriors after the priors.4. Case In
uence Analysis. This section discusses case diagnosticsand the in
uence of the three priors on the case diagnostics. A priori, Iexpected that use of a proper prior would reduce case in
uence, and increaseoutlier statistics over a noninformative prior.The su�cient perturbation for case deletion is independent of the prior.8



In normal linear regression it is �i(�) = �i(xti�; �2) = CPOi=f(yij�)(2��2)1=2 exp �:5��2(yi � xti�)2�CPOiwhere CPOi = (E[(f(yij�; �2)�1jY ])�1 is the conditional predictive ordinate(Geisser 1993, p. 108).Table 3 gives three case statistics for each of the three priors. Column 1 isthe case number, columns 2-4 give CPOi, columns 5-7 give the L1 divergencecase statistic :5 R jp(�jY ) � p(�jY(i)jd� where Y(i) denotes the case deletedsample; and columns 8-10 give the diagnostic P (j�ij > 2�jY ); the posteriorprobability that j�ij is larger than 2 � �, proposed as an outlier statistic byChaloner and Brant (CB) (1988). A value of :00 indicates a number lessthan :01 after rounding, but not originally equal to 0. The diagnostics basedon the MS posterior are in columns 2, 5, and 8; based on the F posterior incolumns 3, 6 and 9; and based on the I posterior in columns 4, 7, and 10. Asexpected, the L1 case in
uence statistics are smaller for the proper priors.However, the CB outlier statistics are smaller with the MS and I priors in 9out of the 10 cases with a non-zero value in the 
at prior. The exception isthe most outlying case. The conditional predictive ordinates are comparableamong the three models, except for the noticeable changes for the two mostoutlying cases, which are less outlying with the MS and I posteriors.5. Prior In
uence. There are three priors, so in
uence can beassessed in the context of switching between any two of them. I discussmarginal in
uence followed by the global a�ects of switching between priorsand the data support of the priors.There is less in
uence on individual parameters than on the full poste-rior by (8). The marginals based on the MS prior are particularly deceptive,since the multivariate posterior has lumps of probability close to coordinateaxes. However, individual coe�cients are interpretable, and their posteriorsare one dimensional summaries of p(�; �jY ). Figure 1 shows the marginalsof the intercept, coe�cients of EAVES, WINDOWSand YARD; and �. Thesolid curves are the MS marginals, the dashed curves are I marginals and thedotted curves are the F marginals. As might be expected, the F marginalsare less peaked and have more variance, and the MS marginals have bumpsnear zero. The plot labeled Mean Cost is the posterior estimated cost to re-habilitate an average house with EAVES,WINDOWS and YARDcoe�cientsof 2.47, 2.41, and 2.22 respectively; the average ratings of the 40+22 housesin the prior and current samples. Table 4 summarizes these plots with the L1norm between the various marginals and the posterior means and standarddeviations. Rather surprising is the amount of in
uence on the intercept,which approaches the in
uence on the joint posterior, given in the line la-beled `posterior'. Also surprisingly, plausible values of � decrease slightly9



with the MS and I priors.The global e�ect of switching priors is substantial. For switching betweenany two priors, the L1 between posteriors is approximately :5, as listed intable 4. This was calculated using a 1-d numerical integration of kerneldensity estimates of p1(� jY ) and p2(� jY ). These densities are plotted inFigure 2's left hand column (LHC). The solid, dashed and dotted densitiesare from the MS, I and F posteriors respectively. The choice of kernel densityestimator mattered by .02 in the second digit. The importance samplingequality (9) gives two answers, depending on which sample is used. Of thesesix calculations, two for each pair of priors, four roughly agreed with thetable �gures, and two, both involving the MS prior, di�ered by .2. Fromthe LHC of Figure 2, we see that comparing MS and F posteriors, the Fposterior can be reweighted to give the MS posterior but not vice-versa.The F posterior's reweighted L1 was .49, while the MS posterior's reweightedposterior calculation gave :29, a drastic underestimate. Inspecting the MSand I posteriors suggest that neither should work well for estimating underthe other. The L1 calculations were .72 (MS) and .48 (I). Comparing the Fand I priors gave L1 values of .55 (F) and .49 (I), not too terrible, given thatthe plot suggests that the I posterior should work ok, while the F might not.The data have a strong preference for the model selection prior. TheBayes factor in favor of the MS prior is around 150 over the 
at prior, andaround 170000 over the informative prior. These Bayes factors were calcu-lated using formula (12). Table 4 gives median calculations using a range of�� values, plotted in the right hand column of Figure 2. If calculations wereperfect, each of these �gures should be a straight line across at the actualvalue of the Bayes factor. Clearly numerical problems still abound. The lastthree rows of table 4 gives the Bayes factor calculations. The calculationsrange by a factor of roughly two. The last row uses the second of the listeddensities, the next to last uses the �rst of the listed posteriors. It was quitesurprising that the data preferred the MS prior to the I prior, which wasbased on real data.Acknowledgement. I'd like to thank Charlie Zhang for help with theplots. ReferencesBernardo, J. M. (1979). Expected Information as Expected Utility. Ann.Statist 7 686-690.Bernardo, J. M. (1985). Discussion of Pettit and Smith (1985). In BayesianStatistics 2, eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley, andA. F. M. Smith. North Holland, Amsterdam 492-493.10
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Point # Cost Eaves Windows Yards1 15.783 3.00 2.00 22 12.570 1.66 2.33 33 19.600 3.33 2.33 24 8.206 1.66 1.66 25 15.333 2.33 2.33 56 14.955 5.00 3.00 27 13.710 4.33 3.00 28 11.388 2.33 2.33 39 4.802 1.33 1.66 210 12.547 3.00 2.66 211 13.677 3.00 3.33 212 9.683 1.33 2.33 213 16.798 2.66 3.00 414 25.615 3.00 3.33 415 15.734 3.00 3.00 216 13.510 3.00 3.00 217 13.855 3.33 3.00 218 3.986 2.33 1.66 219 5.997 2.33 2.00 220 9.778 2.00 2.66 221 18.108 1.00 1.00 222 10.152 2.00 3.00 2Table 1: Housing data; Eaves; Windows; and Yards; ratings are truncatedat 2 decimal points, but all computations carried 5 digits.intercept eaves windows yards�̂0 -3.3697 0.9522 2.4878 3.5082xtx 39.000 92.8333 93.6666 81.666692.8333 270.9166 255.3888 219.972293.6666 255.3888 255.4444 217.722281.6666 219.9722 217.7222 202.6111Table 2: Prior �̂, row 1, and X tX matrix, rows 2-5, The prior residual sumof squares is 1674.3726. 12



Case # CPO L1 CBModel | MS F I MS F I MS F I1 .056 .055 .054 .10 .14 .11 0 0.00 02 .081 .083 .080 .08 .08 .08 0 0 03 .023 .022 .025 .20 .27 .19 0.09 0.12 0.074 .079 .077 .080 .07 .09 .07 0 0 05 .054 .033 .035 .19 .37 .29 0.01 0.05 0.046 .070 .059 .067 .12 .19 .12 0 0.01 0.007 .074 .070 .071 .10 .12 .09 0 0.00 08 .073 .071 .068 .08 .08 .08 0 0 09 .051 .046 .056 .10 .18 .09 0.00 0.01 0.0010 .083 .084 .082 .08 .09 .07 0 0 011 .080 .080 .080 .08 .09 .08 0 0 012 .081 .080 .081 .08 .09 .07 0 0 013 .079 .076 .071 .09 .10 .10 0 0 014 .014 .0097 .029 .30 .49 .25 0.26 0.25 0.0615 .069 .070 .074 .08 .10 .07 0 0 016 .082 .083 .082 .08 .08 .07 0 0 017 .082 .083 .082 .08 .08 .07 0 0 018 .026 .019 .029 .19 .29 .19 0.07 0.17 0.0519 .044 .040 .046 .09 .15 .09 0.00 0.01 0.0020 .077 .078 .076 .08 .09 .08 0 0 021 .0030 .00061 .0013 .45 .74 .58 0.72 0.69 .7822 .074 .073 .071 .09 .11 .09 0 0 0Table 3: Case diagnostics. CPO, L1 in
uence statistic, and Chaloner andBrant outlier statistic P (j�ij > 2�). Posteriors MS, model selection; F, 
at, and I, informative. A value .00 indicates a value greater than 0 but lessthan .01 after rounding.L1 mean sdmodel(s) MS/F MS/I F/I MS F I MS F Iparameterintercept .48 .50 .35 .85 .19 -2.09 1.784 5.44 2.73eaves .20 .05 .17 1.41 1.65 1.46 1.04 1.60 1.11windows .28 .19 .24 1.31 1.09 1.91 1.34 2.43 1.62yards .17 .26 .20 2.09 2.41 2.83 0.99 1.37 .97sigma .19 .04 .17 4.69 5.16 4.72 .91 1.17 .86mean cost .10 .16 .21 12.1 12.3 12.4 .96 1.18 .75posterior .50 .56 .49BF (2) 150 170000 2500BF-1 (1) 130 220000 2300BF-2 (1) 180 370000 2800Table 4: In
uence on parameter posteriors, estimates, and sd's; joint in
u-ence on the posterior. The last three lines give estimated Bayes factors infavor of the �rst model against the second model using (12) BF (2) and (9)(BF-j (1)). 13
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Figure 2: Comparing MS, F and I Priors. Left column: posterior in
uenceplots; Right: Bayes factors in favor of second prior using (12), as a functionof log ��. Row 1: MS and F; Row 2: MS and I; Row 3: F and I.15


