SUFFICIENCY AND INFLUENCE!
By RoBeERrT WEISS
University of California, Los Angeles

Consider two competing models M; and My for the same data
analysis. Assume that the conclusions from both models are posteri-
ors p1(0|Y) and p2(A]Y) of some inferential target @ given the data Y.
The unknowns 6 may be parameters with identical interpretations in
both models. Under mild conditions, the difference between the two
conclusions is reducible to a one dimensional summary h(#) for any
two models. The result has implications for Bayesian diagnostics and
sensitivity analysis. The role of Bayesian and classical robustness is
discussed. Applications of influence sufficiency to case and prior influ-
ence are illustrated, with emphasis on the influence of different priors
and calculation of Bayes factors.

1. Introduction. I'd like to start with a brief discussion of influential
and outlying observations, influential and outlying assumptions, and classical
and Bayesian robustness.

An observation is influential if the conclusion changes in an important
manner when the observation’s likelihood contribution changes. Outliers are
observations whose responses differ from what is predicted by the model.
Outliers need not be influential (consider either a model with ¢ errors or
regression through the origin) and influential observations need not be out-
liers; consider an observation in linear regression with leverage h; &= 1. As
the number of observations increases, with all other aspects of the model
held fixed, we can usually expect the influence of individual observations to
become small.

Observations are not the only things in an analysis that can be influential.
Assumptions such as linearity, normality, constant variance or smoothness
contribute strongly to the likelihood. An assumption is influential if the con-
clusion changes when the assumption is relaxed. An assumption is outlying
if the data support a relaxation of the assumption.

Classically, robustness has meant that within a range around a partic-
ular model, the derivatives of an inference (usually narrowly defined as a
point estimate) with respect to various inputs are ‘small’. Usually only the
response variables are considered as inputs. Consider for example a model
where real valued observations y; are independent and identically distributed
(iid) with density f(y; —p) given a location parameter . A global change to
the inputs y; such as adding a constant ¢ to all observations usually changes
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the final point estimate i by c¢. The fact that the derivatives g(y;) = 0ji/dy;
are small, implies that with enough small changes, the model ‘breaks’, that
is, with enough cumulative changes to the inputs, the derivatives g(y;) will
be highly non-linear, and can be arbitrarily large.

Consider a thought experiment where all observations y; are increased
smoothly by an amount ¢ one observation at a time in turn, starting with the
largest observation and ending with the smallest observation. All changes are
cumulative. Depending on the chosen estimator g the derivatives g(yi) will
vary from slightly negative values to 1. The problem with robust estimators
of p is that for some data sets, small perturbations can have g(y;) = 1,
g(yi) < 0, or even g(y;) > 1. Examples of negative ¢(y;) occur in the
location model with ¢ errors; g(y;) = 1 occurs when i is the median, and the
number of observations is odd; ¢(y;) > 1 occurs in nonlinear normal models
(St. Laurent and Cook 1992). The normal model y; ~ N (u, 02) with 6 = 8
is often criticized because ¢(y;) = n~! for all data sets and observations. I
suspect that when using a flat prior, the normal model gives the smallest
possible maximum value of g(y;) = n71.

From a Bayesian perspective, the classical definition of robustness can
be encorporated into an analysis thru choice of robust likelihoods. See for
example, Ramsay and Novick (1980). This is done through a priori beliefs
and a posteriori data selection amongst models for the sampling density and
not a blind requirement that models should be robust in the classical sense.

Bayesian robustness has historically studied the sensitivity to the prior
of a point estimate, Bayes factor or posterior. We take sets of priors and
investigate the possible ranges of the posterior or point estimate. This is
beginning to change, as researchers (for example Lavine 1991a, 1991b) re-
alize that the prior is often not the main source of information in a model,
rather, the likelihood contributes substantially more to conclusions. Another
problem with Bayesian robustness is that the perturbation sets are not nec-
essarily chosen for their a priori plausibility and support by the data. If the
most influential priors are not plausible a posteriori and usually they are not,
then it is unclear if we should be interested in their influence a posteriori.
Further, in regression and other complex models with available substantive
information, prior influence has not been extensively studied. Two examples
are Carlin, Kass, Lerch and Huguenard (1992) and Greenhouse and Wasser-
man (1995). The example in this paper illustrates aspects of prior influence
in a linear regression setup.

A Bayesian jointly models data Y and unknown parameters # by model
My where p1(6,Y) = p1(0) 1(Y]0) = p(0)Y) f1(Y). Alternatively, a com-
peting model Mj is proposed with py(6,Y) and corresponding prior py(6),
sampling f2(Y'|€), posterior p(A|Y') and prior predictive f3(Y') distributions.
The parameter # must have the same interpretation under both models. Here



I assume that M; is the current model under consideration, while model M,
is a modified version of My, the result of a change in assumptions. Which
model should be preferred? Model My will be used for inference if the sensi-
tivity analysis identifies no problems with the current model. Several means
of choosing between the two models are possible. Influence analysis advises
on whether the conclusion of our analysis changes when the assumptions
change. Model M3 must be considered only if it leads to different conclu-
sions from My, and if the data support My over M; (Weiss 1995).

The next section describes an idea in influence analysis which is both
pretty and powerful. The value of the idea is its use in developing proce-
dures for assessing posterior influence and data support and in providing
computational algorithms. Calculation results are emphasized, and a new
method of calculating the Bayes factor and Ly divergence between M; and
M is given.

2. Sufficient Perturbation Functions. While the base material for
this section is Weiss (1995), different aspects are emphasized, and several
new methods are presented, especially in section 2.4. Consider the joint
priors p1(6,Y) and p2(6,Y), the assumptions of the analysis given models
My and M, respectively. Define

* D2 (07 Y)
(1) T(0,Y) i (6.Y)
The function 7 = 7*(#,Y) is the function that multiplies the assumptions
of My to produce the assumptions from M,. It mathematically embodies
the change of assumptions in going from M; to M,. Thinking of M, as
a modification or perturbation of M;, then define 7™ as the perturbation
function that changes p1(6,Y) into p2(8,Y). Kass, Tierney and Kadane
(1989) introduced the idea of perturbation functions and Weiss (1995) has
expanded on the idea.

A posteriori we have

T (8,Y) p2(0]Y)

(2) ") = SV @y

where E;[¢(0)|Y] = [ ¢(0)p;(8]Y)d#, for j = 1,2, and

L)
H(Y)
is the Bayes factor in favor of My and My, assuming that it is well defined. If
6 = (01,62), p;(0) = p;(01)p;(62), and p;(6;) are both proper, then if p;(6s)

are the same, even if improper, the Bayes factor is well defined as the Bayes

(3) Ei[7"(8,Y)|Y] = Bz =



factor where p;(f;) are equal and proper but vague in the sense that the
posteriors p;(#|Y) do not change.

2.1. Fxamples of perturbation functions.

2.1.1. Case deletion. What happens when we delete case ¢ from the
sample? The perturbation function is 71; o< f2;(y;) * [f (vi|6, ;)] 7! is propor-
tional to the inverse sampling distribution of y; given the parameters ¢ and
covariates x; and where f5;(y;) is a new sampling density for y; which does
not depend on 6.

2.1.2. Prior Perturbation. Changing the prior from p;(6) to p2(8) gives
7y o< p2(0)/p1(6).

2.1.3. Likelihood perturbation. Changing the sampling density from
f1(Y]0) to fo(Y]0) gives 75 o fo(Y|0)/f1(Y]0).

2.1.4. Covariate and response perturbation. We can also perturb re-
sponses y; to y; + &; or perturb covariates x; or sets of responses or covari-
ates. Changing y; is useful when the observations are uncertain in ways not
accounted for by the sampling density. This happens with rounding, if im-
puted values are substituted for actual observed values or if censoring times
are substituted for unobserved responses. The presence of errors in variables
can suggest that the x;’s should be perturbed.

2.1.5. Combinations. 1If a set of individual perturbations are of interest,
it is probable that combinations of the perturbations are also of interest.
Virtually no work has occurred in this area. It appears to be an area where
the tools of experimental design could usefully be applied; as with multiple
case influence, combinatorial explosion problems can occur.

2.2. Sufficiency. If My and M5 both provide joint distributions for data
Y and parameters 6, then model M, can be arrived at as a perturbation of
My, provided only that the ratio 7%(8,Y) is finite everywhere. That is, the
joint prior of My should have a density relative to the joint prior of M.

The perturbation 7 or 7* contains in a real sense all of the influence of the
change from M; to M. In particular, given 7, there is no further influence
on 6 due to switching from M; to Ms. To see this, change variables from
# to 7,p where p is chosen to make the change of variables one-to-one and
measurable. Then (Weiss 1995)

(4) pl(p|7—7 Y) = p2(p|7—7 Y)

The posterior of p given 7 is the same under both models My and M;. The



roof is
1;5) S p2(0]Y) _ p2 (7Y ) p2(p|7,Y)
p(0Y)  pi(7|Y)pi(p|T,Y)

Now in (5) multiply leftmost and rightmost formulae by pi(p|7,Y) and in-
tegrate with respect to p. This gives

pa(7]Y)
pi(r[Y)’

Dividing (5) by equation (6) gives (4).

The updating of pi(7]Y) to p2(r]Y) is simple, since by (6), the ratio
is proportional to 7. Thus, given a histogram of samples from p;(7|Y), or
a plot of the density, we have a substantial amount of information about
the effects of the perturbation. The beauty of the perturbation function is
that 7 is a univariate function of #: by investigating a univariate marginal
p1(7]Y) of p1(0]Y), many of the consequences of perturbing M; to My can be

(6) T=

explored; in particular we need not explore the high dimensional posteriors
p1(8]Y) and po(0]Y'), since all conditionals p;(p|7,Y) are equal.

The function 7 = 7(8,Y), generally a function of the data and the pa-
rameters, can be called a sufficient perturbation function due to the results
above. Conditional on 7, there is no further influence due to changing from
My to M. Unconditionally, further influence of the perturbation on a func-
tion 3 = [(0) of interest is due to the influence on p; (7|Y) and any posterior
association between 7 and §. If 7 is a function of 3, then § is also a sufficient
perturbation function for the perturbation from M; to M,;. We distinguish
3 from 7 by calling 7, or any 1-1 measureable function of 7 a minimally
sufficient perturbation.

2.3. Summarizing Influence. Two different approachs for summarizing
influence are numerical and graphical. The numerical approach summarizes
the differences between p;(8|Y) and p3(6y) by a numerical summary of the
differences. Discussions of these summaries are often couched in the form of
which summary is best, but a scalar summary is not required, and multiple
summaries should be considered. On the other hand, most analysts don’t
want to wade through tons of influence statistics.

One approach is to summarize the influence through the change in pos-
terior expectation of some quantity of interest. Another popular approach
for summarizing the difference between pi(5(0)|Y) and p2(5(6)|Y) is a di-
vergence measure

Die)(9) = / g (%) p1(B(0)[Y)do,



where g(a) is convex and ¢g(1) = 0. (See Csiszar 1967, Weiss and Cook 1992,
and Weiss 1995.) By (5) and (6),

(7) Dy(g) = D-(9),

and by convexity of g,
(8) Dg(g) = Dp(g)(g) 2 0

(Weiss 1995). Various measures that have been proposed are the L; norm
with gz (a) = .5la — 1|, the several Kullback divergences, such as K with
gi (@) = —alog(a); functions of Hellinger distance (Geisser 1993) with ¢,(a) =
la'/? — 1|7, p > 1 and the x? divergence with g,2(a) = (a—1)% In my expe-
rience, the choice of divergence does not matter for ranking different pertur-
bations especially in regards to case deletion, however, some divergences are
easier to interpret. From Weiss (1995), x? divergence is the square of the
Kass, Tierney, and Kadane (1989) maximum standardized change (MSC)
and the L; is the maximum difference between M; and M, in posterior
probability content of any interval. Kullback divergence with g (a) is of-
ten recommended because closed form computations are sometimes possible,
and because of the optimality identified by Bernardo (1979; 1985).

A graphical approach to influence summarization is a compact way of
displaying many numerical influence statistics. The primary goal of influence
analysis is to understand the difference between p;(6]Y) and p2(0]Y). A
graphical approach plots these two posteriors and inspects them directly.
When 6 is a scalar, this is straightforward. When p;(]Y) is more than 1
or 2 dimensional, this is hard. One way of easing the problem is to inspect
marginal posteriors, but by (8) these often underestimate global influence
and often drastically. Define a posterior influence plot as a plot of p;(8|Y)
and p2(Y) or of the marginals p;(3]Y) of 5. The sufficient perturbation
comes into play here. Consider inspecting a plot of pi(7]Y) and po(7]Y). If
we consider that influence is properly summarized by a divergence measure,
then this plot loses nothing over inspecting p;(0|Y) and p2(6|Y) since the
D-(g) = Dg(g). If g is a non-minimal sufficient perturbation function, we
can also inspect pi(8]Y) and p2(8|Y) without missing any influence. If 3
is easier than 7 to interpret, its posterior influence plot may be preferable
to the posterior influence plot using 7. When a not necessarily suflicient
parameter 3 is of particular interest in an analysis, then one should inspect
p1(BlY) and p2(B|Y) to investigate influence. This also obviates the need
for chosing a summary influence statistic.

2.4. Computations.  For a single sample §0) with [ = 1,..., L from
p1(0]Y’) one can use

(9) By = Ey[r(0,Y)] = L' 7 (61),



by (3) to estimate By (Weiss 1995) and to calculate Dy(g),

L * {
. _ (80 ), Y
(10) Dy(g) =L 129(7(A ))7
=1 B12
by (7) to estimate influence functions of the perturbation from A; to M,

(Weiss 1995). To calculate the change in posterior expectation of 3, one can
use

(11) B2 [BIY] = Ea[8]Y] = Covy [, 7[Y].

In principle, one can produce a posterior influence plot of p;(7|Y) and
po(7|Y) by approximating a sample from po(7|Y) by reweighting () by
7(01). This and the results (9), (10), and (11) are importance sampling-
type calculations. Samples from one density (p1(6]Y)) are used to learn
about a second density (p2(6]Y)). Importance sampling can be used in the-
ory to explore any posterior with the same support as p;(6|Y), provided
that one can integrate arbitrary functions of  given M;. In practice, im-
portance sampling generally only works if the importance density pi(8|Y)
is close to the alternative density, p2(8|Y') and if special conditions are met
by the density ratio 7. Influential perturbations are unlikely to meet these
special conditions and the caveat of integrating arbitrary functions is very
strong and virtually never met in practice.

The above calculations are the direct result of sufficiency. An alter-
nate application of sufficiency uses samples from both p;(6]Y) is to form
estimates p;(7*|Y) using kernel density or other form of semiparametric
estimate. These two posteriors are one dimensional, and the curse of dimen-
sionality should be avoidable. One can then compute influence diagnostics
numerically using one dimensional Riemann integration dr applying (7), As-
suming proper priors one can compute Byy using

pr(T*|Y)T*
pa(T*]Y)

Any value of 7* can be used, provided that both densities are accurately

(12) By =

estimated at that point. The log scale is often easier to work with. Since
the Jacobian cancels, the posterior of any monotone transformation of 7*
could be used in place of p;(7*|Y). The difference in posterior expectations
Eo[3]Y] — E{[B|Y] is estimated by separately estimating the expectations
using the two samples.

Inspection of the densities p;(7*|Y’) can shed light on the accuracy of
these various calculational formulae, as illustrated in the example.

3. Housing Data. This data set was collected to predict the COST
of rehabilitating housing in St. Paul, Minnesota, USA. The prediction is



to be based on the average ratings of external parts of the house, EAVES,
WINDOWS and YARDby three inexpensive sidewalk surveyors. Ratings of
EAVES and WINDOWS are integer valued from 1 to 6, and YARD is rated
either 2 or 5. Lower ratings indicate houses in better condition. The data
is given in table 1. The COST in kilodollars is estimated by an expensive
building contractor who must enter the house. Let COST y; be modeled
yi = i + ¢; with COST y;, x; a 4—vector of covariates, a one followed by
the average FAVES, WINDOWS, and YARD ratings, coefficients 3 = (5;),
j =0,1,2,3 and errors ¢|a? ~ N(0,0%) a priori given o2 independent and
identically distributed (iid).

Three priors are used with this example. All three have p(3,0?%) =
p(B)p(c?) with p(o?) oc o2, The first prior is a version of the hierarchical
model selection prior of George and McCulloch (1993). Consider the prior
p(B;16;) ~ N(0,VoW%), j = 1,2,3, §; ~ Bernoulli(rg). For the housing
data set I selected 7o = .7, Vo = .25, and W = 16. Because of the scaling of
the X’s it was felt that the same prior might reasonably be used for all three
coefficients. The prior for the intercept assumed 3y ~ N (0, VoW). This prior
is called the model selection (MS) prior.

The second prior, the flat (F) prior, used the noninformative prior p(f, o)
co~2. The choice of constant ¢ is important for calculating Bayes’ factors,
and I used the volume of the smallest rectangular region with sides paral-
lel to the coordinate axes that covered all 2000 samples from the posterior,
the side lengths were rounded up slightly. Since all three priors for o2 are
improper, the volume for 0% was not included. The appropriate normalizing
constant was (137024) L.

The third prior was a proper informative (1) prior for 5 based on data
taken 7 years previously. The prior data has sample size 39, where one outlier
was deleted from the earlier analysis. The costs were inflated by a factor so
that the means of the earlier sample (without case deletion) and the current
sample are the same. The necessary statistics are given in table 2. The prior
is the posterior ¢ distribution p(/3|Y,14) based on an uninformative prior with
p(B,0%) o2

All calculations were based on samples of size 2000 from the three pos-
teriors based on the three priors. The posteriors will be named MS, F, and
I posteriors after the priors.

4. Case Influence Analysis. This section discusses case diagnostics
and the influence of the three priors on the case diagnostics. A priori, |
expected that use of a proper prior would reduce case influence, and increase
outlier statistics over a noninformative prior.

The sufficient perturbation for case deletion is independent of the prior.



In normal linear regression it is 7;(8) = 7;(z!3, 0?) = CPO,/ f(y:|0)
(27032 exp (.50_2(% — xfﬁ)z) CPO;

where CPO; = (F[(f(yi|3,0%) 7 |Y])~! is the conditional predictive ordinate
(Geisser 1993, p. 108).

Table 3 gives three case statistics for each of the three priors. Column 1 is
the case number, columns 2-4 give CPO;, columns 5-7 give the L divergence
case statistic .5 [ [p(0]Y) — p(0]Y{;)|df where Y;) denotes the case deleted
sample; and columns 8-10 give the diagnostic P(|¢;| > 20|Y); the posterior
probability that |¢;| is larger than 2 x o, proposed as an outlier statistic by
Chaloner and Brant (CB) (1988). A value of .00 indicates a number less
than .01 after rounding, but not originally equal to 0. The diagnostics based
on the MS posterior are in columns 2, 5, and 8; based on the I posterior in
columns 3, 6 and 9; and based on the I posterior in columns 4, 7, and 10. As
expected, the L; case influence statistics are smaller for the proper priors.
However, the CB outlier statistics are smaller with the M .S and I priors in 9
out of the 10 cases with a non-zero value in the flat prior. The exception is
the most outlying case. The conditional predictive ordinates are comparable
among the three models, except for the noticeable changes for the two most
outlying cases, which are less outlying with the M S and [ posteriors.

5. Prior Influence. There are three priors, so influence can be
assessed in the context of switching between any two of them. [ discuss
marginal influence followed by the global affects of switching between priors
and the data support of the priors.

There is less influence on individual parameters than on the full poste-
rior by (8). The marginals based on the MS prior are particularly deceptive,
since the multivariate posterior has lumps of probability close to coordinate
axes. However, individual coefficients are interpretable, and their posteriors
are one dimensional summaries of p(3,0|Y). Figure 1 shows the marginals
of the intercept, coefficients of EAVES, WINDOWSand YARD; and . The
solid curves are the MS marginals, the dashed curves are I marginals and the
dotted curves are the I marginals. As might be expected, the I marginals
are less peaked and have more variance, and the MS marginals have bumps
near zero. The plot labeled Mean Cost is the posterior estimated cost to re-
habilitate an average house with FAVES, WINDOWS and YARDcoefficients
of 2.47, 2.41, and 2.22 respectively; the average ratings of the 404 22 houses
in the prior and current samples. Table 4 summarizes these plots with the Ly
norm between the various marginals and the posterior means and standard
deviations. Rather surprising is the amount of influence on the intercept,
which approaches the influence on the joint posterior, given in the line la-
beled ‘posterior’. Also surprisingly, plausible values of ¢ decrease slightly



with the MS and 1 priors.

The global effect of switching priors is substantial. For switching between
any two priors, the Ly between posteriors is approximately .5, as listed in
table 4. This was calculated using a 1-d numerical integration of kernel
density estimates of pi(7|Y) and p2(7|Y). These densities are plotted in
Figure 2’s left hand column (LHC). The solid, dashed and dotted densities
are from the MS, I and F posteriors respectively. The choice of kernel density
estimator mattered by .02 in the second digit. The importance sampling
equality (9) gives two answers, depending on which sample is used. Of these
six calculations, two for each pair of priors, four roughly agreed with the
table figures, and two, both involving the MS prior, differed by .2. From
the LHC of Figure 2, we see that comparing MS and F posteriors, the F
posterior can be reweighted to give the MS posterior but not vice-versa.
The F posterior’s reweighted L; was .49, while the MS posterior’s reweighted
posterior calculation gave .29, a drastic underestimate. Inspecting the MS
and I posteriors suggest that neither should work well for estimating under
the other. The L; calculations were .72 (MS) and .48 (I). Comparing the F
and I priors gave Ly values of .55 (F) and .49 (I), not too terrible, given that
the plot suggests that the I posterior should work ok, while the F might not.

The data have a strong preference for the model selection prior. The
Bayes factor in favor of the MS prior is around 150 over the flat prior, and
around 170000 over the informative prior. These Bayes factors were calcu-
lated using formula (12). Table 4 gives median calculations using a range of
7* values, plotted in the right hand column of Figure 2. If calculations were
perfect, each of these figures should be a straight line across at the actual
value of the Bayes factor. Clearly numerical problems still abound. The last
three rows of table 4 gives the Bayes factor calculations. The calculations
range by a factor of roughly two. The last row uses the second of the listed
densities, the next to last uses the first of the listed posteriors. It was quite
surprising that the data preferred the MS prior to the I prior, which was
based on real data.

Acknowledgement. 1’d like to thank Charlie Zhang for help with the
plots.
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Point # Cost | Eaves Windows Yards
1 15.783 3.00 2.00 2
2 12.570 1.66 2.33 3
3 19.600 3.33 2.33 2
4 8.206 1.66 1.66 2
5 15.333 2.33 2.33 5
6 14.955 5.00 3.00 2
7 13.710 4.33 3.00 2
8 11.388 2.33 2.33 3
9 4.802 1.33 1.66 2
10 12.547 3.00 2.66 2
11 13.677 3.00 3.33 2
12 9.683 1.33 2.33 2
13 16.798 2.66 3.00 4
14 25.615 3.00 3.33 4
15 15.734 3.00 3.00 2
16 13.510 3.00 3.00 2
17 13.855 3.33 3.00 2
18 3.986 2.33 1.66 2
19 5.997 2.33 2.00 2
20 9.778 2.00 2.66 2
21 18.108 1.00 1.00 2
22 10.152 2.00 3.00 2

Table 1: Housing data; Faves; Windows; and Yards; ratings are truncated
at 2 decimal points, but all computations carried 5 digits.

intercept eaves windows yards
bo -3.3697 0.9522 2.4878 3.5082
vt 39.000  92.8333  93.6666  81.6666
92.8333 270.9166 255.3888 219.9722
93.6666 255.3888  255.4444 217.7222
81.6666 219.9722 217.7222 202.6111

Table 2: Prior ﬁ, row 1, and X'X matrix, rows 2-5, The prior residual sum
of squares is 1674.3726.
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Case # CPO 1 CB

Model |— MS F I MS F I MS F I
.056 .055 .054 A0 14 11 {0 0.00 0
.081 .083 .080 08 .08 .081(0 0 0
.023 .022 .025 200 .27 .19 0.09 0.12 0.07
079 077 .080 07 09 070 0 0
.054 .033 .035 A9 .37 .29 1 0.01 0.06 0.04
.070 .059 067 A2 19 12 (0 0.01 0.00
.074 .070 071 A0 12 09 (0 0.00 0
073 071 .068 08 .08 .081(0 0 0
.051 .046 .056 10 .18 .09 | 0.00 0.01 0.00
.083 .084 .082 08 09 070 0 0
.080 .080 .080 08 .09 081(0 0 0
.081 .080 .081 08 09 070 0 0
079 .076 071 09 10 10 (0 0 0
.014 .0097  .029 30 .49 25 10.26 0.25 0.06
.069 .070 074 08 10 070 0 0
.082 .083 .082 08 .08 07(0 0 0
.082 .083 .082 08 .08 07(0 0 0
.026 .019 .029 A9 .29 19 1 0.07 0.17 0.05
.044 .040 .046 .09 .15 .09 | 0.00 0.01 0.00
077 078 .076 08 .09 081(0 0 0
.0030 .00061 .0013 | 45 .74 58| 0.72 0.69 .78
.074 073 071 09 11 0910 0 0

NI NI N R S e e T T e T e S = S ey
N SO0 O W — O D000 W

Table 3: Case diagnostics. CPO, L; influence statistic, and Chaloner and
Brant outlier statistic P(]e;| > 20). Posteriors MS, model selection; I, flat
, and I, informative. A value .00 indicates a value greater than 0 but less
than .01 after rounding.

Ly mean sd
model(s) | MS/F MS/T  F/T| MS F I MS F I
parameter
intercept 48 .50 35 .85 19 -2.09 | 1.784 5.44  2.73
eaves .20 .05 A7 1141 165 146 | 1.04 1.60 1.11
windows .28 19 241 1.31 1.09 191 1.34 243 1.62
yards A7 .26 201209 241 283 099 137 .97
sigma 19 .04 A7 1 469 516  4.72 91 1.17 .86
mean cost 10 16 21 (12,1 123 124 96 1.18 .75
posterior .50 .56 49
BF (2) 150 170000 2500
BF-1 (1) 130 220000 2300
BF-2 (1) 180 370000 2800

Table 4: Influence on parameter posteriors, estimates, and sd’s; joint influ-
ence on the posterior. The last three lines give estimated Bayes factors in
favor of the first model against the second model using (12) BF (2) and (9)

(BF-j (1)).
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Figure 1: Marginal Posteriors. Solid: MS prior; Dashed: 1 prior; Dotted: F
prior.
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Figure 2: Comparing MS, F and I Priors. Left column: posterior influence
plots; Right: Bayes factors in favor of second prior using (12), as a function
of log 7*. Row 1: MS and F; Row 2: MS and [; Row 3: F and 1.
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