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Abstract—Efficient data aggregation and compression in sen- Moreover the computational power needed to process and to
sor networks is becoming fundamental with the increase of store networked data is too demanding for a single node in

the number of nodes in the network. Although several data jce g single aggregation point is used inside the network.

aggregation and compression techniques have been proposetlﬁ_ L
in the literature only few of them can perform in-network or these reasons the global communication and energy cost

compression and can extend lifetime without prior knowledg of ~reduction is obtained through in-network decentralizeth<o
the sensed data or without a central coordination. In this p@er pression to increase the energy efficiency of data gathering
we consider a scenario where a wireless sensor network (WSN)techniques preserving the accuracy of data in the recanstru
exploits ZigBee protocols for smart building application. We tion phase[15]. One of the most explored strategies in this

study a classical gathering scheme and a distributed compssive . - .
sampling approach. We discuss limitations and we propose a field is to take advantage of the correlation among sensar dat

new distributed mixed algorithm for in-network compression. t0 build distributed compression techniques, such as pytro
With this algorithm each node takes a decision about which coding, to reduce traffic[16]. Unfortunately this approash
scheme to adopt aiming at the reducing the number of packets not useful in WSN applications where a priori knowledge of
to transmit. We are interested in scalability of this new mehod 6 j5int distribution quantifying the sensor correlatismot
and lifetime of the system with respect to the increase of netork h T . .
dimension. Simulations are performed using real data setsral avf';ulable. Moreover these d'St”bUted_ coding technlqlpesm_at .
results show that the use of this algorithm permits to obtain Suitable for small resource constrained sensors with dithit
longer network lifetime with small computational complexity. computational power.
The performances of the algorithm are also investigated wire Compressive sampling (CS) is a novel data compression
some sensor parameters are modified and sporadic readingsse  achnjique that can overcome some of the limitations of the
in the network. . . . . .
classical compression schemes[12]. CS is universal in the

sense that it does neither require any priori informatioouab
data correlation nor a central controller for encoding ueing

This paper addresses the issue of data gathering indecentralized in-network compression. The novelty of CS is
large-scale wireless sensor network. Sensor networkirag is brought by the use of a quasi-random compression matrix
emerging technology that promises the ability to monitarsed to compress original dafé into a shorter versiort’
and manage buildings using wireless sensor node spread imtiose length depends on the sparseness of the sifnal
environment. These nodes are usually small and inexpensiree compression can be performed jointly with routing and
devices with severe energy constrains. According to thd figkansmission, while decoding affects only the sink.
of use, the number of these deployed sensor nodes couldHmvever, while CS is a very powerful tool because it shifts
on the order of hundreds or thousands. This huge numbercoimpression and computations from single nodes to theeentir
devices, communicating sensor data to a central sink througetwork (and sink), there are up to now significant limitatio
multi-hop routing from individual sensors, arises the peaib to the large scale adoption of CS in WSN because of increased
to gather data in an efficient way[14]. power consumption and packets transmission when real wire-
Successful deployment of such kind of networks is strictlgss sensor networks are taken into account.
connected to the lifetime of the network that becomes &cetiti In this paper our goal is to investigate the performance dfi bo
parameter[13] because of the high energy consumption af d&iS and a classical data gathering techniques with incrgasin
transmission. In this scenario data gathering techniques aumber of network nodes. We consider a real case ZigBee
developed to ensure data collection at a minimum energy l0¥¢SN for temperature monitoring. Our main contribution is
The problem to transmit and store information from one poitlie design of a new adaptive mixed algorithm for data trans-
to another inside a large scale distributed network of datsission, designed to minimize the power consumption and
sources is well known, but the real challenge is to efficientpackets transmission according to network status. In imedit
perform aggregation and gathering inside the network. The study how the relay of incompressible additional data can
huge number of nodes introduces, in fact, several problemsaffect the performance of this technique.
manage the big amount of data within the deployed networkhe paper is structured as follows. In Section Il we present

I. INTRODUCTION
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related works on CS applied to WSN and in Section Il a brigbrmer work a centralized routing algorithm has been devel-
description of the mathematical background on CS is given. bped to better choose nodes in the path toward the collector,
Section IV scenario and network model are described whileiim the latter real and synthetic signal are reconstructatieat
Section V data aggregation and compression schemes usesiril, evaluating the quality of the reconstruction. Resshow

the simulation are presented. In Section VI our new algorithhow the use of sparse random matrix with real signals does
is introduced and in Section VIl results are presented. hot outperform classical compression schemes. Moreowar bo
Section VIII the conclusions. works do not take into account, real technological factoid a
there is no indication on scalability of the proposed teghas

on networks of different size.

The problem to perform data gathering and compressién brief comparison between CS and classical gathering
inside a WSN is an interesting and challenging probleracheme is proposed in [7]. Authors adopt a gathering scheme
widely investigated in the literature. A very well-knowrcke based on CS to perform delay and capacity analysis in a large
nigue for in-network compression is distributed sourceimgd network using NS-2 simulator. A new technique for identi-
based on Slepian-Wolf coding[10] theory. Since sensorh®f tfication and compression of sporadic readings is presented,
network presumably observe the same phenomenon, it is vesgether with a mathematical formalism able to incorporate
likely that acquired data have high inter-signal correlati signal recovery with these abnormal readings. Their agroa
This correlation property is used by distributed sourceiregpd to compression is similar to ours, but they do not investigat
techniques to save on communication costs, allowing eagbw compression strategies mixing classical gatheringraeh
node to encode each own signal as it was jointly encodadd CS. Moreover the focus of simulations is on output-
and then reducing the number of bits needed for signal repmeput interval without stressing energy consumption arakpt
sentation. DISCUSJ1] is a constructive algorithmic franoekv traffic inside the network.
for collaborative networked signal processing able to eahi In our work we address the compression problem in a large-
compression without inter-node communication. Howevisr thscale WSN first analyzing performance of a classical gatlgeri
framework, and distributed source coding in general, regui scheme and CS in a real network subject to limitations brough
that decoder is aware of global correlation structure kgbtie by communication protocol. Then we propose a mixed algo-
network, that is a difficult task to achieve in large-scaleNVS rithm able to reduce the overall packet transmission enguri
An other slightly different approach is in [2] where the joindata compression. This is a fully distributed algorithm imieh
entropy is empirically obtained as function of the distanaeach node has enough information to take a proper decision
between nodes. In this case entropy is taken as measuratiout data compression, extending the lifetime of the netwo
compare distributed source coding with two other schemé&®e only require that each node is aware of some parameters
routing driven compression in which data is sent along the decide between CS or a simpler gathering scheme. The goal
shortest path toward sink, and compression driven routinfithe work is to extend the lifetime of the overall networldan
where routing is performed to achieve maximum aggregatido. reconstruct the original signal with good quality, limg
Even though a mixed version of this two methods has bethre number of packets circulating inside the network. To the
proved by author to be more energy-aware than classitadst of our knowledge this is the first paper addressing such
distributed source coding, it requires a special routirtgeste a mixed algorithm. We do not focus on reconstruction loss of
inside the network and in addition the algorithm needs aalotefficient compressed sampling approximations, but ouréste
coordination among nodes to promote cluster-heads. is on lifetime of the network when CS is used to compress
As previously stated, CS is becoming a valid tool and framdata toward a central sink. For this reason the analysis is
work for data compression in large-scale network. In [3jot performed on a network with fixed dimension, but we
authors establish a parallel between CS and the Slepiah-Waliestigate the scalability of this approach in networks of
theorem creating a new theory for distributed compressettreasing size. Finally, we also analyze the performarice o
sensing able to exploit both intra- and inter-signal caieh. the algorithm when sporadic incompressible data is sentiyoi
This approach is different from ours because they mainlygocwith compressed payload.
on measurements rate needed to encode signal creating a new
joint sparsity model. A very interesting application of CS i
presented in [6] where sparse random projections are use€Compressive sensing (CS) is a technique used to compress
to drastically reduce the communication cost. Authors usedata to obtain a representation for signal that is smaller (i
sparse random matrix to compress data and they investigstiens of samples) than the original one. The mathematical
conditions needed to recover an approximation of the aaigirtheory behind CS guarantees that, under certain condjtions
signal with minimum error. The aim is to obtain a signalve can recover the original signal with high probability
reconstruction querying an arbitrary number of sensor)ep through the resolution of an optimization problem[11]. $he
do not explore typical network configuration with a centratonditions claim that if a signal is sparse in one basis,ntloa
gateway acting as a data collector. This common network carcovered from a small number of projections onto a second
figuration is examined in [4] and [5] where the sparse randdnasis that is incoherent with the first.
matrix is built during the routing toward the sink. While imet Specifically a generic signat € RY indexed asr(n),n €

II. RELATED WORK

Ill. CS: MATHEMATICAL BACKGROUND
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Fig. 1: Temperature field from EPFL SensorScope. Black doksg. 2: Example of the considered WSN withx 9 sensors.
are station locations in the real deployment.

optimization, searching for the resolution of:
{1,2,..., N} can easily be seen as the networked data vector
created by the sensor readings of a network witmodes. In
case of 2D signals a generalization can be easily obtaingd, hjs problem, known as basis pursuit, can be successfully
for the sake of simplicity from now on we address only 1[3olved with classical linear programming techniques ofly i

a =arg minlal|; s.t. y=0a 4)

signals. we haveM > ¢K measurements, whergis an oversampling

We assume that this signalcan be sparsely represented in gactor. Obviously the reconstruction error depends on the

certain basisl = [i1, ¥2,..., ¥w]; that is: number of measurements and in general it decreases for
= Wa (1) increasing values oM (for M = N the problem is solvable

through matrix inversion). Data can be reconstructed wiigih h
whereq is a K -sparse representation efsuch that|all, = &  Probability from M = 3K ~ 4K random measurements.
column vectorsV x 1 chosen from¥ are enough to represent In CS, compression and decompression are two totally
the original signalr. Matrix ¥ is called sparse basis matrixdifferent and separated phases: the former in a WSN is
and it can be constructed from various bases: wavelets, D@fcomplished in the network through aggregation duringstra

Gabor bases, curvelets, etc... mission toward the sink, while the latter is only performed b
The compression of: is performed through a further mea-Sink through resolution of the problemin (4). Itis worth imot
surement matrix@ = [¢1, ¢z, ..., x| Of size M x N, with that the sparse matri¥ is used only at the decoder and it is
M < N. If y is the compressed version ofwe can write: ~ Not needed for compression in which just the knowledg® of
is enough.
y =%z )

IV. SCENARIO AND NETWORK MODEL
wherey is an M x 1 column vector. That is we encode and
measurel/ projectionsy of the signal: onto a second set of
basis functiong ¢, }.

If these two matrix® and ¥ are incoherent (elements of th
matrix ¥ are not sparsely represented in the bdsis}) and
M is large enough, CS theory assures that we can recov
(and then indirectlyz) from measurements. Interestingly,
independent and identically distributed (i.i.d.) Gaussiar
Bernoull/Rademacher vectors provide a universal basi
is incoherent with any give®@ with high probability[12].
Then putting together (1) and (2) we have:

In this Section we describe the scenario and the moti-
vations behind our choices. Advances in sensor technology
and the miniaturization trend are pushing development of
Chew technologies in WSN that are becoming a very useful
tool for environmental monitoring, smart building manager
€nd in general for acquisition of data from a large set of
sensor spread into the environment. Moreover in resource-
constrained node the more power hungry activity is data
ﬂfransmission, S0 many low-power transmission protocole ha
been developed to increase lifetime of the network. For all
these reasons in this paper we deal with a real case WSN

y = dWa = Oa ©) deployment for r_‘nonitoring over a large area through ZigBee
sensor nodes. ZigBee appears to be up to now one of the best
where® is known as the holographic basis. communication protocols among power-aware protocol® suit

The problem to recoves from y as in (3) is ill-posed as that can guarantee energy saving on such a large-scale WSN.
the number of equation8/ is smaller than the number of Moreover performances of CS are strictly related to the
variablesN. Thus the recovery can be only achieved usingharacteristics of the original signal and in particulariti
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8 ‘ ‘ ‘ ‘ Lifetime and energy saving are not the only goals we are in-
o | terested in, we want to be also sure about signal reconstnuct
at decoder. As we said in Section Il the reconstructionigual
is function of the number of measurements. In particular, fo
5071 ] a constantk’, the error depends on the oversampling factor
aof ] c. CS theory states that{S) = O(log(1/5)) whereS is the
sparsity rate such thdt = SN if the sparsity scales linearly
with N. Fortunately in literature[3] we can find more practical
characterizations foe such asc(S) ~ log,(1 + S~1). Then

60f

30(

20

1oy 1 considering that for random measurements has td/be cK
0 ;M_ we have:

-10 ‘ : : ‘ M(N)ZlOgQ(l—i—S_l)-S-N (5)
0 20 40 60 80 100

Equation (5) specifies that the number of random measure-
Fig. 3: Top 100 DCT largest coefficients for temperature field€nts needed to recover the signal is function of the length
of the signalN and sparsity rat& (considered as a constant).
With regard toN this means that the bigger our network, the
larger the number of measurements we need. On the contrary
S is an inner property of the signal and it defines how many
nonzero coefficients we have in the transform coding defined

sparsity. Furthermore in literature it is well known as karg
differences exists between synthetic and real signal§id]in

this paper we work with temperature monitoring that is wkelby sparse basis matri¥ with respect toN. Obviously S

to be of interest and suitable for large-scale WSN. . PR
ctly depends on the signal to encode, and it is different

In our tests the sets of measurements are taken from LUC . . : .

ording to the signal field of interest.

i
deployment of EPFL SensorScope WSN, reporting ambieQ! o : .
temperature recorded by 100 weather station deployed on ﬁwlgce our aim is to monitor ambient temperature,5sbas to

EPFL campus. The temperature field in Fig. 1 is reconstructe%]ObtalIneOI by such a kind of spatial monitoring. To obtaén th

using GPS data and rescaled on square region through ext?/éapye of sparsity raté we can use the temperature field, apply

olation; data is collected at midnight on December 22, 200§. it a DCT transform (or any othgr tran;form codlng) and
. . en evaluate the number of coefficients significantly défife
We considerN nodes to be deployed in a square area. If the :
: . . ; rom zero. The choice of DCT for our purposes comes from
sensors are geographically placed in a uniform fashion the ; : . T
sensor locations can be viewed as sampling locations gread" consideration that the spatial signal in Fig. 1 appears t
piing Yregle smooth and then suitable for DCT analysis.

simpl_ifying caleulations in CS [9]. So the area of interest iFi . 3 shows the coefficients of DCT when original data is
.Sp"‘ into A square cells z_;md we suppose_t_hat in each squar‘tra%caled on &2 x 32 grid. There are only few coefficients
:‘?o?r!agzghasi;lso?; ?;)(li 'Z;;g':gotzg ?/Z?Itlginnlﬂi-lrahretgil#:t rOeve‘léose absolute value is significantly larger tifiahaccounting

S €xp y OfF approximately5.0% of the total coefficients. Although the
present nearby, assimilating the temperature recordedsin Jrest of coefficients are not strictly zero we can confidentty s

one point to that one of every point in the_ square. - S = 0.05 and take this value as a constant for this kind of
In the network each node can communicate with just one

other node within communication randg&. In our simulation signals during our simulations.

R, is set in such a way to permit communication among V. DATA GATHERING AND AGGREGATION

every nodes. Moreover a geographic routing [4] is adopted tOn section IV we have described the scenario and the
forward data toward the sink which is conventionally placefetwork model, pointing out some characteristics of theaig

at the centre of the network. This geographic routing apiTogin terms of sparsity. In this Section we are going to define
forces the node to forward data to the node withinthat is  the data gathering mechanisms implemented in our network.
closer to the sink than current node. The sink is supposedyjfien a real communication protocol (ZigBee) is used foraadi
be connected for monitoring to a remote station through GS§mmunication. Then in the next Section we introduce a new

connection, this is why in-network compression is a neeid: italgorithm that accounts of these problems come up with a
not opportune to send uncompressed data because of costaneh petter compressive gathering solution.

throughput of connection. The in-network compressionss al

adopted to drastically reduce the amount of packets ciiogla A Pack & Forward (PF)

in the network, extending the lifetime of the system. This is a gathering and aggregation scheme that is a slightly
In Fig. 2 we show a network example built with the rulesnodified version of the classical relay mechanism generally
above on geographical routing. Furthermore temperaturetis present in WSN. In the typical relay scheme, each node that
a signal subject to fast changes, but dynamic is quite slaeceives a packet being in the route path toward the gateway
in time. Thus to save energy, temperature is monitored byrwards it to its parent; this generates a huge waste of
nodes once per minute, spending the rest of time in sleepmmunication power proportional to the number of packets

mode preserving battery power. to relay. To limit the power consumption is mainly needed to
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where PP is the number of the outgoing packets from node

I k, Ny, is the number of nodes in the path tree doing relay
= on nodek, Brp and By, are respectively the required bytes
for ID and data representation amt}i.qq is the number of
bytes admittable by ZigBee payload.
It is clear how the paramete¥,., is strictly related to the
D dide 4 d d network size and it depends also on the distance of the

1%+ 803 node from the central sink. Therefore when the number of
""" nodes inside the network becomes bigger, the number of total
transmission obviously grows up.

do by | B. Distributed Compressed Sampling (DCS)

o . _ ) In Section Il we have introduced the mathematical bases
Fig. 4: Dashed rectangle is the ZigBee packet. (a) PF: d%‘:r‘ CS. These concepts can be easily adapted to perform a

incoming in each node are packed through aggregation. t%\Nerful form of in-network compression, originating the s
DCS:_ the outgoing data size is independent from the numkel; .4 pistributed Compressed Sampling (DCS). As seen in
of children nodes. the introduction, DCS (and CS) is an innovative approach to
encoding and compression because it does not require any
specific prior signal knowledge. Moreover the method isyfull
reduce the number of packets sent out from each node. ldiscentralized since compression is performed during tlag re
well known in fact as the more power-hungry operation in af data toward the sink.
WSN node is the transmission of data over the air. The compression phase consists of a projection of the signal
Pack & Forward (PF) is a more energy-safe strategy in whicly onto a set of basis functiofy,, }. From a practical point of
each node tries to encapsulate data in the smallest possiav the compression phase is the multiplication of a scalar

(b)

number of packets. for a random vector. Equation (2) in Section Ill can be seen
As seen in Section IV, in the network under test we adoptia fact as:
geographic routing. Considering that nodes are fixed inespac o
we can suppose that each node is aware of the number of Yi = 2;@-7% (7)
=

children nodes it has. Therefore instead of sending evest me

sage to the data sink, intermediate nodes delay messagles Mftere y; with « = 1,..., M is the i-th element of the
they have received (all or some) messages from their childreompressed output vectog,; is a random element of the
nodes, compute an aggregated value of all these values, BitRsurements matrix and, is the scalar data sensed from
then forward only a single message with the aggregated valtlte j-th sensor node. In this form DCS is well suited to be
A representation of this mechanism is represented in Fig. 4&€d in a decentralized fashion since each node simply adds
This aggregation scheme allows to save on the total numtiérown contribution to the global sum. Algorithmically the
of network transmissions. compression is performed in two different steps:

The decoder needs two information to reconstruct the signall) Each of theV sensors locally computes tiié¢ elements
when such a kind of aggregation is performed: (i) the sensor  of the random vectow, = {¢;;}, using its own
reading (supposed to be a scalar) and (ii) the identification address (or any other unique number known also by
code (ID) of the sensor node. For the sake of simplicity we  decoder) as seed for the pseudo-random sequence.
assume that the sink knows the placement of nodes in the) The j-th sensor multiplies its sensor reading for the
network and it is able to match an ID with a spatial location. vector¢; just computed obtaining a nei x 1 vector.

Common sizes for these data fields are: at ldabiyte for Then the sensor waits until it receives by each of its
scalar data and bytes for ID. The scalar reading is thought to children nodes the compressed vector. Once received, it
be at least a8 bit value, while EUI64 ¢4 bits) is a reasonable simply sums all the vectors together and sends the newly

choice as ID since it is a uniqgue number easily accessible by computed vector to its own parent.
node itself and hardcoded in network stack, but we have a|AO\/i5ua| exp|anati0n of the process is in F|g 4h. To decom-
performed simulations with different values. ZIgBee paCk®ress data the decoder needs 0n|y the resuyiwctor and
according to the specifications hasl 27 bytes payload. The every¢; vector to be able to reconstruct the whdlematrix
ratio between the number of bytes used for information abayded in the optimization problem, as seen in eq. (4).
data and location, and the maximum payload allowed Wyifferently from PF, the number of packets sent is constant
transfer protocol, defines the saving obtained by PF siyategpr the entire network and depending only on the dimension
According to this method the number of packets sent by eagh of the random vector used for compression. Therefore in
node, without fragmentation, is equal to: this case the number of packets sent by a nbdising DCS
is:
PkPF = R(Ntch +1)-(Brp + Bdata))/BPayload] (6) Pkcs = R]\/f : Bdata)/Bpayload] )
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Fig. 5: Number of transmissions in the network vs networkig. 6: Average number of packets per node vs network size:
size: comparison among PF, DCS and Mixed Algorithm. comparison among PF, DCS and Mixed Algorithm.

where each symbol has the usual meaning. 3) If it is not possible to take a decision, CS is always

It is important to point out thad/, as seen in expression (5) is performed.

a function of the number of nodeé. Differently from the case Step 3 is useful in those situations in which the number of
in subsection V-A the number of outgoing packets is the sarsatgoing packets is the same for both the schemes: in this
for every node in the network and it is function of the networkase the choice of CS is taken to have compressed data
size. The limitation with this approach is that when the ealuo the central gateway.The choice done in step 2, can be
of PES increases, it increases for all the nodes in the netwoskccomplished locally by each node.

causing a huge amount of additional packets in the netwaDonsidering in fact the equation (6) we can rewrite this

and then more power consumption, narrowing lifetime. equation as:
VI. MIXED ALGHORITM H
. . . . . pPF _
The idea behind the aggregation scheme proposed in this P = ZBJ' + (Bip + Bdata) | /Bpayioad ©)
Section is to achieve a tradeoff between the two mechanisms j=1

previously described, trying to overcome their limitagosith  where H is the number of children nodes and the new term
a new distributed alghoritm. B; refers to the number of bytes of payload received by the
As seen in subsection V-A, and specifically in equation (6)th child node. In this way the node has all the informations
the performance of PF scheme, in termng’fF, is strictly it needs to take the proper decisial¥, Bypayload, Brp and
related to parameteN,;.,, that is bigger for nodes proximal B,,,, are parameters we can assume known at the bootstrap,
to the sink. On the contrary, DCS performance is only comvhile H and B; are obtained during operation.

nected with parametey/ that is proportional to network size. Considering equations (9) and (8) it is straightforward for
Therefore it is not possible to identify a mechanism thatidoua node to make a decision aiming to the reduction of the
be considered better with respect to the other one for all thatgoing packets. In formulas we can write:

situations. 0s oS .
The basis of this mixed algorithm is that each node can inde- P, = bo, i PR < By (10)
pendently take a decision about what kind of gathering sehem pPEEif PES > pPF

between the two illustrated to adopt aiming to reduce tr\ﬁherep
ber of transmitted packets. Algorithmically, this cémin h : : o ot .
hum ' ' Even if the mixed algorithm is distributed in the sense that

's taken in three dlffer_ent steps: _ ~ it does not need a global coordinator and every decision
1) If the node receives a packet from one of its childreg made Iocally, the global behavior is influenced also by
nodes which has been compressed with CS, it is forcggher parameters such d;p and By, that are chosen
to adopt DCS scheme, and then use CS to COMPreRfing network and sensor design. During the simulation
data, performing aggregation as described in subsectigg jnvestigate these parameters and in which way they can

V-B. _ ~influence our algorithm.
2) If the node receives all the packets from its children

nodes and none is compressed using CS, it choosed\toPoradic Readings
adopt PF or DCS aiming to send the lowest number of One of the main purposes of the WSN is to monitor sporadic
packets. readings. These events are not periodic or programmed like

is the number of packets actually sent by node.
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Fig. 7: Black circles are nodes performing DCS. The whiteig. 8: Delay created by compression routing on Ember
ones PF. EM250.

temperature monitoring, but determined by an instantamemodes, while in Fig. 6 it is possible to see the average number

need concerning one or a small group of specific nodes. of received and sent packets per node.

A real case related to our scenario could be the need to eaptior PF the number of transmission slowly increases iith

in case of emergency, an image taken by a camera on thigile DCS shows a huge increase in traffic for a specific

node. This data has to be moved from the node to central simtwork dimension when the value d?¢° goes from1

together with temperature data. We can think to this amouot 2 causing an explosion in the number of transmissions

of data as incompressible or already locally compressed &ayd doubling the average number of transmitted and received

the node. packets per node. This explosion is due to the doubling in the

This additional information has to be sent inside the packetimber of sent packets for DCS affecting each of the network

payload, increasing its dimension for those nodes lyindien tnodes; PF does not show this behavior since the number of

routing path of the original node. packets is not influenced by/ factor, as seen in equation (6).

In this case the equations (8) and (9) are slightly modified:This is obviously undesired, since more packets circulate,

more power consumption we have in the network, narrowing

P = [((M - Baata) + Bincomp)/ Bpaytoad| (11)  ifetime. At the opposite, simulations show how the adaptio

and of the mixed algorithm brings a practical advantage, resyici
P H the traffic inside the network. This is clearly visible sirtbe
PPT = | Y Bj + (Biot) | /Buaytoad (12)  line referring to the algorithm is always below the other two
j=1 For small networks since the performance of PF and DCS are

where Byt = Bip + Baata + Bincomp @nd Bincomyp iS the the same (same number of outgoing packet for each node), the
amount in bytes of the incompressible data. algorithm allows the compression for all the nodes, justify

The mixed algorithm is still perfectly valid as described ihe overlap between mixed algorithm and DCS. For a certain
the previous Section paying attention to consider also tMalue of V, called critical and indicated wittV.,.;;, the value
contribution of Biycomyp- In the following Section we addressof £ 5 (equation (8)) increases, making the compression with
also the problem to study the behavior of our algorithm i&S not convenient for nodes distant from sink.

presence of this extra-payload. It is interesting to see what happens inside the network when
the mixed algorithm is used an¥* > N..;. Fig. 7 is an
VIl. SIMULATION RESULTS illustration of the network for this fixedv*. Since PF¥" is

All the simulations are performed using a custom framestrictly function of Ny, nodes proximal to the sink (or better
work written in MATLAB. Each node is assumed to have aith high N,.,) compress data with DCS, creating an inner
temperature sensor and a micro-camera onboard. zone round the sink where DCS takes place while the more
To evaluate the performance of the mixed algorithm, paramdistant nodes can perform simple aggregation with PF.
ters are set to standard valués:p = 8 bytes andB,,;, =1 The nodes at the frontier in this region are those ones delega
byte. to perform compression of data coming from the leaves of the
In Fig. 5 the total number of transmissions in the network isetwork. They are the nodes that perform the most intensive
reported when the size of the network varies frérto 1024 computational work inside the network.



©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Mixed Algorithm
- = =PF

600

600

T T T
MA: Bid = 4 bytes
= = =MA: Bid = 8 bytes
----- MA: Bid = 12 bytes
== MA: Bid = 16 bytes []
—@— PF: Bid = 4 bytes
= B = PF: Bid = 8 bytes
4 PF: Bid = 12 bytes
: =W= PF: Bid = 16 bytes |]

500

400

.
400

300 300 4

Lifetime [days]
Lifetime [days]

200 A ] 200}

~
S s .. ., - - -
100 N*-__ — 100 :l"”'O‘ - a
-------- MR R RS v o Bf
o X0 8 7 ST TY |
. . . . . . . . . . , , , , , , , , |
0 100 200 300 400 500 600 700 800 900 1000 ° 100 200 300 400 500 600 700 800 900 1000

Number of nodes (N) Number of nodes (N)

Fig. 9: Lifetime of the network: comparison between PF arfig. 10: Lifetime of the network: comparison between PF and
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To verify that small nodes can perform compression witho
creating too high delay in communication, we have tested t
compression routine on real small nodes and measured de
The hardware used is an Ember EM250, a ZigBee System- :
Chip that combines a 2.4GHz IEEE 802.15.4 compliant rad 400
transceiver with a 12MHz 16-bit microprocessor equippe
with 128Kb of flash memory and 5Kb of RAM.

The compression routine tested is the C implementation

300

Lifetime [days]

the equation (7) using/ = 100 and N varying from1 to 200 , L T RTH el

20. The results shown in Fig. 8 are encouraging: with simp IR Nmiema S
hardware, the delay increases linearly but it is always km 100 MES 5 T
enough not to affect too much network performance. MRS 5 ~ =4
Using the same hardware we have also measured the po T T TR 7 Ty v S TS
consumption involved in compression. This has been do Number of nodes (N)

using a precision resistor to evaluate the current absadoged o )
EM250. The current absorbed, according to the experiment/i9- 11: Lifetime of the network: comparison between PF and
around9.3mA during compression. This value together witMixed Algorithm (MA) varying Buata.

the electrical characteristics of EM250[17] has been usefu

to define the lifetime of the system. Furthermore we assume

that each node is powered bys80m Ah battery. In Fig. 9 is changed.

presented the lifetime, averaged o26rmeasurements, of the A bit less intuitive is the behavior of the WSN whéeBy,;,
network comparing our algorithm with the classical gathgri is modified. Both PF and DCS depends #),,,. Fig. 11
scheme. The lifetime is calculated as the time until theldeallustrates how the performance of DCS decreases for bigger
of the first node. As seen in the plot, mixed algorithm assurealues of the parameter even if the lifetime continues to be
a very long lifetime with respect to PF scheme. We havenger with respect to the classical gathering scheme.

an abrupt decreasing in lifetime fa¥ = N..; due to the The last parameter we address is the extra-payload, added
additional work of compression. by sporadic readings as described in subsection VI-A. To
As seen in Section VI, the algorithm depends also on somerk with the worst case, in our simulation we assume that
others technical parameters such as size of the scalaredata these sporadic readings start from the leaves of the network
by sensor and dimension in bytes of the sensor ID. more distant from the sink, so that the additional payload is
An increasing in the ID field of the payload does not consi$erwarded along all the routing path traversing as many sode
tently affect the performance of the algorithm since it does as possible. Since in general these packets are not very fre-
depend heavily orB;p as seen in equation (8). The increasguent, their impact on lifetime of the network is very lintdte

of the number of bytes used for ID has the main effect fdevertheless they stress the potency of the algorithm: they
enlarge the central region for DCS since PF performs vecgn change run-time the behavior of the nodes these packets
bad when it has to manage too many bytes per node. In Figaverse. Fig. 12 shows the percentage of the nodes in which
10 it is clear the trend of lifetime when paramet@fp is is convenient perform compression with DCS in two different
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I that the network reacts to this change without need for aakent
No sporadic readings coordinator.
1 v = = = 10% sporadic readings [] ..

There are several promising avenue of research that we can
explore. We have not considered other type of routing algo-
rithm apart from geographical routing or temporal cortielat
and temporal compression that can provide our scheme better
results in terms of in-network traffic.

0.8
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