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Abstract—Efficient data aggregation and compression in sen-
sor networks is becoming fundamental with the increase of
the number of nodes in the network. Although several data
aggregation and compression techniques have been proposed
in the literature only few of them can perform in-network
compression and can extend lifetime without prior knowledge of
the sensed data or without a central coordination. In this paper
we consider a scenario where a wireless sensor network (WSN)
exploits ZigBee protocols for smart building application. We
study a classical gathering scheme and a distributed compressive
sampling approach. We discuss limitations and we propose a
new distributed mixed algorithm for in-network compression.
With this algorithm each node takes a decision about which
scheme to adopt aiming at the reducing the number of packets
to transmit. We are interested in scalability of this new method
and lifetime of the system with respect to the increase of network
dimension. Simulations are performed using real data sets and
results show that the use of this algorithm permits to obtain
longer network lifetime with small computational complexity.
The performances of the algorithm are also investigated when
some sensor parameters are modified and sporadic readings rise
in the network.

I. I NTRODUCTION

This paper addresses the issue of data gathering in a
large-scale wireless sensor network. Sensor networking isan
emerging technology that promises the ability to monitor
and manage buildings using wireless sensor node spread into
environment. These nodes are usually small and inexpensive
devices with severe energy constrains. According to the field
of use, the number of these deployed sensor nodes could be
on the order of hundreds or thousands. This huge number of
devices, communicating sensor data to a central sink through
multi-hop routing from individual sensors, arises the problem
to gather data in an efficient way[14].
Successful deployment of such kind of networks is strictly
connected to the lifetime of the network that becomes a critical
parameter[13] because of the high energy consumption of data
transmission. In this scenario data gathering techniques are
developed to ensure data collection at a minimum energy loss.
The problem to transmit and store information from one point
to another inside a large scale distributed network of data
sources is well known, but the real challenge is to efficiently
perform aggregation and gathering inside the network. The
huge number of nodes introduces, in fact, several problems to
manage the big amount of data within the deployed network.

Moreover the computational power needed to process and to
store networked data is too demanding for a single node in
case a single aggregation point is used inside the network.
For these reasons the global communication and energy cost
reduction is obtained through in-network decentralized com-
pression to increase the energy efficiency of data gathering
techniques preserving the accuracy of data in the reconstruc-
tion phase[15]. One of the most explored strategies in this
field is to take advantage of the correlation among sensor data
to build distributed compression techniques, such as entropy
coding, to reduce traffic[16]. Unfortunately this approachis
not useful in WSN applications where a priori knowledge of
the joint distribution quantifying the sensor correlationis not
available. Moreover these distributed coding techniques are not
suitable for small resource constrained sensors with limited
computational power.
Compressive sampling (CS) is a novel data compression
technique that can overcome some of the limitations of the
classical compression schemes[12]. CS is universal in the
sense that it does neither require any priori information about
data correlation nor a central controller for encoding, ensuring
decentralized in-network compression. The novelty of CS is
brought by the use of a quasi-random compression matrix
used to compress original dataX into a shorter versionY
whose length depends on the sparseness of the signalX .
The compression can be performed jointly with routing and
transmission, while decoding affects only the sink.
However, while CS is a very powerful tool because it shifts
compression and computations from single nodes to the entire
network (and sink), there are up to now significant limitations
to the large scale adoption of CS in WSN because of increased
power consumption and packets transmission when real wire-
less sensor networks are taken into account.
In this paper our goal is to investigate the performance of both
CS and a classical data gathering techniques with increasing
number of network nodes. We consider a real case ZigBee
WSN for temperature monitoring. Our main contribution is
the design of a new adaptive mixed algorithm for data trans-
mission, designed to minimize the power consumption and
packets transmission according to network status. In addition
we study how the relay of incompressible additional data can
affect the performance of this technique.
The paper is structured as follows. In Section II we present
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related works on CS applied to WSN and in Section III a brief
description of the mathematical background on CS is given. In
Section IV scenario and network model are described while in
Section V data aggregation and compression schemes used in
the simulation are presented. In Section VI our new algorithm
is introduced and in Section VII results are presented. In
Section VIII the conclusions.

II. RELATED WORK

The problem to perform data gathering and compression
inside a WSN is an interesting and challenging problem,
widely investigated in the literature. A very well-known tech-
nique for in-network compression is distributed source coding,
based on Slepian-Wolf coding[10] theory. Since sensors of the
network presumably observe the same phenomenon, it is very
likely that acquired data have high inter-signal correlation.
This correlation property is used by distributed source coding
techniques to save on communication costs, allowing each
node to encode each own signal as it was jointly encoded
and then reducing the number of bits needed for signal repre-
sentation. DISCUS[1] is a constructive algorithmic framework
for collaborative networked signal processing able to achieve
compression without inter-node communication. However this
framework, and distributed source coding in general, requires
that decoder is aware of global correlation structure behind the
network, that is a difficult task to achieve in large-scale WSN.
An other slightly different approach is in [2] where the joint
entropy is empirically obtained as function of the distance
between nodes. In this case entropy is taken as measure to
compare distributed source coding with two other schemes:
routing driven compression in which data is sent along the
shortest path toward sink, and compression driven routing
where routing is performed to achieve maximum aggregation.
Even though a mixed version of this two methods has been
proved by author to be more energy-aware than classical
distributed source coding, it requires a special routing scheme
inside the network and in addition the algorithm needs a global
coordination among nodes to promote cluster-heads.
As previously stated, CS is becoming a valid tool and frame-
work for data compression in large-scale network. In [3]
authors establish a parallel between CS and the Slepian-Wolf
theorem creating a new theory for distributed compressed
sensing able to exploit both intra- and inter-signal correlation.
This approach is different from ours because they mainly focus
on measurements rate needed to encode signal creating a new
joint sparsity model. A very interesting application of CS is
presented in [6] where sparse random projections are used
to drastically reduce the communication cost. Authors use a
sparse random matrix to compress data and they investigate
conditions needed to recover an approximation of the original
signal with minimum error. The aim is to obtain a signal
reconstruction querying an arbitrary number of sensors, sothey
do not explore typical network configuration with a central
gateway acting as a data collector. This common network con-
figuration is examined in [4] and [5] where the sparse random
matrix is built during the routing toward the sink. While in the

former work a centralized routing algorithm has been devel-
oped to better choose nodes in the path toward the collector,
in the latter real and synthetic signal are reconstructed atthe
sink, evaluating the quality of the reconstruction. Results show
how the use of sparse random matrix with real signals does
not outperform classical compression schemes. Moreover both
works do not take into account, real technological factors and
there is no indication on scalability of the proposed techniques
on networks of different size.
A brief comparison between CS and classical gathering
scheme is proposed in [7]. Authors adopt a gathering scheme
based on CS to perform delay and capacity analysis in a large
network using NS-2 simulator. A new technique for identi-
fication and compression of sporadic readings is presented,
together with a mathematical formalism able to incorporate
signal recovery with these abnormal readings. Their approach
to compression is similar to ours, but they do not investigate
new compression strategies mixing classical gathering scheme
and CS. Moreover the focus of simulations is on output-
input interval without stressing energy consumption and packet
traffic inside the network.
In our work we address the compression problem in a large-
scale WSN first analyzing performance of a classical gathering
scheme and CS in a real network subject to limitations brought
by communication protocol. Then we propose a mixed algo-
rithm able to reduce the overall packet transmission ensuring
data compression. This is a fully distributed algorithm in which
each node has enough information to take a proper decision
about data compression, extending the lifetime of the network.
We only require that each node is aware of some parameters
to decide between CS or a simpler gathering scheme. The goal
of the work is to extend the lifetime of the overall network and
to reconstruct the original signal with good quality, limiting
the number of packets circulating inside the network. To the
best of our knowledge this is the first paper addressing such
a mixed algorithm. We do not focus on reconstruction loss of
efficient compressed sampling approximations, but our interest
is on lifetime of the network when CS is used to compress
data toward a central sink. For this reason the analysis is
not performed on a network with fixed dimension, but we
investigate the scalability of this approach in networks of
increasing size. Finally, we also analyze the performance of
the algorithm when sporadic incompressible data is sent jointly
with compressed payload.

III. CS: MATHEMATICAL BACKGROUND

Compressive sensing (CS) is a technique used to compress
data to obtain a representation for signal that is smaller (in
terms of samples) than the original one. The mathematical
theory behind CS guarantees that, under certain conditions,
we can recover the original signal with high probability
through the resolution of an optimization problem[11]. These
conditions claim that if a signal is sparse in one basis, it can be
recovered from a small number of projections onto a second
basis that is incoherent with the first.
Specifically a generic signalx ∈ R

N indexed asx(n), n ∈

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work

in other works must be obtained from the IEEE.



Fig. 1: Temperature field from EPFL SensorScope. Black dots
are station locations in the real deployment.

{1, 2, . . . , N} can easily be seen as the networked data vector
created by the sensor readings of a network withN nodes. In
case of 2D signals a generalization can be easily obtained, but
for the sake of simplicity from now on we address only 1D
signals.
We assume that this signalx can be sparsely represented in a
certain basisΨ = [ψ1, ψ2, . . . , ψN ]; that is:

x = Ψa (1)

wherea is aK-sparse representation ofx such that‖a‖0 = K
column vectorsN × 1 chosen fromΨ are enough to represent
the original signalx. Matrix Ψ is called sparse basis matrix
and it can be constructed from various bases: wavelets, DCT,
Gabor bases, curvelets, etc...
The compression ofx is performed through a further mea-
surement matrixΦ = [φ1, φ2, . . . , φN ] of sizeM × N , with
M < N . If y is the compressed version ofx we can write:

y = Φx (2)

wherey is anM × 1 column vector. That is we encode and
measureM projectionsy of the signalx onto a second set of
basis functions{φn}.
If these two matrixΦ andΨ are incoherent (elements of the
matrix Ψ are not sparsely represented in the basis{φn}) and
M is large enough, CS theory assures that we can recovera
(and then indirectlyx) from measurementsy. Interestingly,
independent and identically distributed (i.i.d.) Gaussian or
Bernoulli/Rademacher vectors provide a universal basis that
is incoherent with any givenΨ with high probability[12].
Then putting together (1) and (2) we have:

y = ΦΨa = Θa (3)

whereΘ is known as the holographic basis.
The problem to recovera from y as in (3) is ill-posed as
the number of equationsM is smaller than the number of
variablesN . Thus the recovery can be only achieved using

Fig. 2: Example of the considered WSN with9× 9 sensors.

optimization, searching for the resolution of:

â = arg min‖a‖1 s.t. y = Θa (4)

This problem, known as basis pursuit, can be successfully
solved with classical linear programming techniques only if
we haveM ≥ cK measurements, wherec is an oversampling
factor. Obviously the reconstruction error depends on the
number of measurements and in general it decreases for
increasing values ofM (for M = N the problem is solvable
through matrix inversion). Data can be reconstructed with high
probability fromM = 3K ∼ 4K random measurements.

In CS, compression and decompression are two totally
different and separated phases: the former in a WSN is
accomplished in the network through aggregation during trans-
mission toward the sink, while the latter is only performed by
sink through resolution of the problem in (4). It is worth noting
that the sparse matrixΨ is used only at the decoder and it is
not needed for compression in which just the knowledge ofΦ
is enough.

IV. SCENARIO AND NETWORK MODEL

In this Section we describe the scenario and the moti-
vations behind our choices. Advances in sensor technology
and the miniaturization trend are pushing development of
new technologies in WSN that are becoming a very useful
tool for environmental monitoring, smart building management
and in general for acquisition of data from a large set of
sensor spread into the environment. Moreover in resource-
constrained node the more power hungry activity is data
transmission, so many low-power transmission protocols have
been developed to increase lifetime of the network. For all
these reasons in this paper we deal with a real case WSN
deployment for monitoring over a large area through ZigBee
sensor nodes. ZigBee appears to be up to now one of the best
communication protocols among power-aware protocols suite
that can guarantee energy saving on such a large-scale WSN.
Moreover performances of CS are strictly related to the
characteristics of the original signal and in particular toits
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Fig. 3: Top 100 DCT largest coefficients for temperature field.

sparsity. Furthermore in literature it is well known as large
differences exists between synthetic and real signals[4].So in
this paper we work with temperature monitoring that is likely
to be of interest and suitable for large-scale WSN.
In our tests the sets of measurements are taken from LUCE[8]
deployment of EPFL SensorScope WSN, reporting ambient
temperature recorded by 100 weather station deployed on the
EPFL campus. The temperature field in Fig. 1 is reconstructed
using GPS data and rescaled on square region through extrap-
olation; data is collected at midnight on December 22, 2006.
We considerN nodes to be deployed in a square area. If the
sensors are geographically placed in a uniform fashion the
sensor locations can be viewed as sampling locations greatly
simplifying calculations in CS [9]. So the area of interest is
split into N square cells and we suppose that in each square
is placed a sensor node in a random position. The value read
from each sensors is expected to be very similar to that one
present nearby, assimilating the temperature recorded in just
one point to that one of every point in the square.
In the network each node can communicate with just one
other node within communication rangeRc. In our simulation
Rc is set in such a way to permit communication among
every nodes. Moreover a geographic routing [4] is adopted to
forward data toward the sink which is conventionally placed
at the centre of the network. This geographic routing approach
forces the node to forward data to the node withinRc that is
closer to the sink than current node. The sink is supposed to
be connected for monitoring to a remote station through GSM
connection, this is why in-network compression is a need: itis
not opportune to send uncompressed data because of cost and
throughput of connection. The in-network compression is also
adopted to drastically reduce the amount of packets circulating
in the network, extending the lifetime of the system.
In Fig. 2 we show a network example built with the rules
above on geographical routing. Furthermore temperature isnot
a signal subject to fast changes, but dynamic is quite slow
in time. Thus to save energy, temperature is monitored by
nodes once per minute, spending the rest of time in sleep
mode preserving battery power.

Lifetime and energy saving are not the only goals we are in-
terested in, we want to be also sure about signal reconstruction
at decoder. As we said in Section III the reconstruction quality
is function of the number of measurements. In particular, for
a constantK, the error depends on the oversampling factor
c. CS theory states thatc(S) = O(log(1/S)) whereS is the
sparsity rate such thatK = SN if the sparsity scales linearly
with N . Fortunately in literature[3] we can find more practical
characterizations forc such asc(S) ≈ log

2
(1 + S−1). Then

considering that for random measurements has to beM ≥ cK
we have:

M(N) ≥ log
2
(1 + S−1) · S ·N (5)

Equation (5) specifies that the number of random measure-
ments needed to recover the signal is function of the length
of the signalN and sparsity rateS (considered as a constant).
With regard toN this means that the bigger our network, the
larger the number of measurements we need. On the contrary
S is an inner property of the signal and it defines how many
nonzero coefficients we have in the transform coding defined
by sparse basis matrixΨ with respect toN . Obviously S
strictly depends on the signal to encode, and it is different
according to the signal field of interest.
Since our aim is to monitor ambient temperature, soS has to
be obtained by such a kind of spatial monitoring. To obtain the
value of sparsity rateS we can use the temperature field, apply
to it a DCT transform (or any other transform coding) and
then evaluate the number of coefficients significantly different
from zero. The choice of DCT for our purposes comes from
the consideration that the spatial signal in Fig. 1 appears to
be smooth and then suitable for DCT analysis.
Fig. 3 shows the coefficients of DCT when original data is
rescaled on a32 × 32 grid. There are only few coefficients
whose absolute value is significantly larger than0.6 accounting
for approximately5.0% of the total coefficients. Although the
rest of coefficients are not strictly zero we can confidently set
S = 0.05 and take this value as a constant for this kind of
signals during our simulations.

V. DATA GATHERING AND AGGREGATION

In Section IV we have described the scenario and the
network model, pointing out some characteristics of the signal
in terms of sparsity. In this Section we are going to define
the data gathering mechanisms implemented in our network.
when a real communication protocol (ZigBee) is used for radio
communication. Then in the next Section we introduce a new
algorithm that accounts of these problems come up with a
much better compressive gathering solution.

A. Pack & Forward (PF)

This is a gathering and aggregation scheme that is a slightly
modified version of the classical relay mechanism generally
present in WSN. In the typical relay scheme, each node that
receives a packet being in the route path toward the gateway
forwards it to its parent; this generates a huge waste of
communication power proportional to the number of packets
to relay. To limit the power consumption is mainly needed to
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Fig. 4: Dashed rectangle is the ZigBee packet. (a) PF: data
incoming in each node are packed through aggregation. (b)
DCS: the outgoing data size is independent from the number
of children nodes.

reduce the number of packets sent out from each node. It is
well known in fact as the more power-hungry operation in a
WSN node is the transmission of data over the air.
Pack & Forward (PF) is a more energy-safe strategy in which
each node tries to encapsulate data in the smallest possible
number of packets.
As seen in Section IV, in the network under test we adopt a
geographic routing. Considering that nodes are fixed in space,
we can suppose that each node is aware of the number of
children nodes it has. Therefore instead of sending every mes-
sage to the data sink, intermediate nodes delay messages until
they have received (all or some) messages from their children
nodes, compute an aggregated value of all these values, and
then forward only a single message with the aggregated value.
A representation of this mechanism is represented in Fig. 4a.
This aggregation scheme allows to save on the total number
of network transmissions.
The decoder needs two information to reconstruct the signal
when such a kind of aggregation is performed: (i) the sensor
reading (supposed to be a scalar) and (ii) the identification
code (ID) of the sensor node. For the sake of simplicity we
assume that the sink knows the placement of nodes in the
network and it is able to match an ID with a spatial location.
Common sizes for these data fields are: at least1 byte for
scalar data and8 bytes for ID. The scalar reading is thought to
be at least an8 bit value, while EUI64 (64 bits) is a reasonable
choice as ID since it is a unique number easily accessible by
node itself and hardcoded in network stack, but we have also
performed simulations with different values. ZigBee packet
according to the specifications has a127 bytes payload. The
ratio between the number of bytes used for information about
data and location, and the maximum payload allowed by
transfer protocol, defines the saving obtained by PF strategy.
According to this method the number of packets sent by each
node, without fragmentation, is equal to:

PPF
k = ⌈((Ntch + 1) · (BID +Bdata))/Bpayload⌉ (6)

wherePPF
k is the number of the outgoing packets from node

k, Ntch is the number of nodes in the path tree doing relay
on nodek, BID andBdata are respectively the required bytes
for ID and data representation andBpayload is the number of
bytes admittable by ZigBee payload.
It is clear how the parameterNtch is strictly related to the
network size and it depends also on the distance of the
node from the central sink. Therefore when the number of
nodes inside the network becomes bigger, the number of total
transmission obviously grows up.

B. Distributed Compressed Sampling (DCS)

In Section III we have introduced the mathematical bases
for CS. These concepts can be easily adapted to perform a
powerful form of in-network compression, originating the so
called Distributed Compressed Sampling (DCS). As seen in
the introduction, DCS (and CS) is an innovative approach to
encoding and compression because it does not require any
specific prior signal knowledge. Moreover the method is fully
decentralized since compression is performed during the relay
of data toward the sink.
The compression phase consists of a projection of the signal
x onto a set of basis function{φn}. From a practical point of
view the compression phase is the multiplication of a scalar
for a random vector. Equation (2) in Section III can be seen
in fact as:

yi =
N
∑

j=1

φijxj (7)

where yi with i = 1, . . . ,M is the i-th element of the
compressed output vector,φij is a random element of the
measurements matrix andxj is the scalar data sensed from
the j-th sensor node. In this form DCS is well suited to be
used in a decentralized fashion since each node simply adds
its own contribution to the global sum. Algorithmically the
compression is performed in two different steps:

1) Each of theN sensors locally computes theM elements
of the random vectorφj = {φij}

M
i=1

using its own
address (or any other unique number known also by
decoder) as seed for the pseudo-random sequence.

2) The j-th sensor multiplies its sensor reading for the
vectorφj just computed obtaining a newM × 1 vector.
Then the sensor waits until it receives by each of its
children nodes the compressed vector. Once received, it
simply sums all the vectors together and sends the newly
computed vector to its own parent.

A visual explanation of the process is in Fig. 4b. To decom-
press data the decoder needs only the resultingy vector and
everyφj vector to be able to reconstruct the wholeΦ matrix
used in the optimization problem, as seen in eq. (4).
Differently from PF, the number of packets sent is constant
for the entire network and depending only on the dimension
M of the random vector used for compression. Therefore in
this case the number of packets sent by a nodek using DCS
is:

PCS
k = ⌈(M ·Bdata)/Bpayload⌉ (8)
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Fig. 5: Number of transmissions in the network vs network
size: comparison among PF, DCS and Mixed Algorithm.

where each symbol has the usual meaning.
It is important to point out thatM , as seen in expression (5) is
a function of the number of nodesN . Differently from the case
in subsection V-A the number of outgoing packets is the same
for every node in the network and it is function of the network
size. The limitation with this approach is that when the value
of PCS

k increases, it increases for all the nodes in the network,
causing a huge amount of additional packets in the network
and then more power consumption, narrowing lifetime.

VI. M IXED ALGHORITM

The idea behind the aggregation scheme proposed in this
Section is to achieve a tradeoff between the two mechanisms
previously described, trying to overcome their limitations with
a new distributed alghoritm.
As seen in subsection V-A, and specifically in equation (6),
the performance of PF scheme, in terms ofPPF

k , is strictly
related to parameterNtch, that is bigger for nodes proximal
to the sink. On the contrary, DCS performance is only con-
nected with parameterM that is proportional to network size.
Therefore it is not possible to identify a mechanism that could
be considered better with respect to the other one for all the
situations.
The basis of this mixed algorithm is that each node can inde-
pendently take a decision about what kind of gathering scheme
between the two illustrated to adopt aiming to reduce the
number of transmitted packets. Algorithmically, this decision
is taken in three different steps:

1) If the node receives a packet from one of its children
nodes which has been compressed with CS, it is forced
to adopt DCS scheme, and then use CS to compress
data, performing aggregation as described in subsection
V-B.

2) If the node receives all the packets from its children
nodes and none is compressed using CS, it chooses to
adopt PF or DCS aiming to send the lowest number of
packets.
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Fig. 6: Average number of packets per node vs network size:
comparison among PF, DCS and Mixed Algorithm.

3) If it is not possible to take a decision, CS is always
performed.

Step 3 is useful in those situations in which the number of
outgoing packets is the same for both the schemes: in this
case the choice of CS is taken to have compressed data
to the central gateway.The choice done in step 2, can be
accomplished locally by each node.
Considering in fact the equation (6) we can rewrite this
equation as:

PPF
k =













H
∑

j=1

Bj + (BID +Bdata)



 /Bpayload









(9)

whereH is the number of children nodes and the new term
Bj refers to the number of bytes of payload received by the
j-th child node. In this way the node has all the informations
it needs to take the proper decision:M , Bpayload, BID and
Bdata are parameters we can assume known at the bootstrap,
while H andBj are obtained during operation.
Considering equations (9) and (8) it is straightforward for
a node to make a decision aiming to the reduction of the
outgoing packets. In formulas we can write:

Pk =

{

PCS
k , if PCS

k ≤ PPF
k

PPF
k , if PCS

k > PPF
k

(10)

wherePk is the number of packets actually sent by node.
Even if the mixed algorithm is distributed in the sense that
it does not need a global coordinator and every decision
is made locally, the global behavior is influenced also by
other parameters such asBID and Bdata that are chosen
during network and sensor design. During the simulation
we investigate these parameters and in which way they can
influence our algorithm.

A. Sporadic Readings

One of the main purposes of the WSN is to monitor sporadic
readings. These events are not periodic or programmed like
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Fig. 7: Black circles are nodes performing DCS. The white
ones PF.

temperature monitoring, but determined by an instantaneous
need concerning one or a small group of specific nodes.
A real case related to our scenario could be the need to capture,
in case of emergency, an image taken by a camera on the
node. This data has to be moved from the node to central sink
together with temperature data. We can think to this amount
of data as incompressible or already locally compressed by
the node.
This additional information has to be sent inside the packet
payload, increasing its dimension for those nodes lying in the
routing path of the original node.
In this case the equations (8) and (9) are slightly modified:

PCS
k = ⌈((M · Bdata) +Bincomp)/Bpayload⌉ (11)

and

PPF
k =













H
∑

j=1

Bj + (Btot)



 /Bpayload









(12)

whereBtot = BID + Bdata + Bincomp andBincomp is the
amount in bytes of the incompressible data.
The mixed algorithm is still perfectly valid as described in
the previous Section paying attention to consider also the
contribution ofBincomp. In the following Section we address
also the problem to study the behavior of our algorithm in
presence of this extra-payload.

VII. S IMULATION RESULTS

All the simulations are performed using a custom frame-
work written in MATLAB. Each node is assumed to have a
temperature sensor and a micro-camera onboard.
To evaluate the performance of the mixed algorithm, parame-
ters are set to standard values:BID = 8 bytes andBdata = 1
byte.
In Fig. 5 the total number of transmissions in the network is
reported when the size of the network varies from9 to 1024
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Fig. 8: Delay created by compression routing on Ember
EM250.

nodes, while in Fig. 6 it is possible to see the average number
of received and sent packets per node.
For PF the number of transmission slowly increases withN ,
while DCS shows a huge increase in traffic for a specific
network dimension when the value ofPCS

k goes from 1
to 2 causing an explosion in the number of transmissions
and doubling the average number of transmitted and received
packets per node. This explosion is due to the doubling in the
number of sent packets for DCS affecting each of the network
nodes; PF does not show this behavior since the number of
packets is not influenced byM factor, as seen in equation (6).
This is obviously undesired, since more packets circulate,
more power consumption we have in the network, narrowing
lifetime. At the opposite, simulations show how the adoption
of the mixed algorithm brings a practical advantage, reducing
the traffic inside the network. This is clearly visible sincethe
line referring to the algorithm is always below the other two.
For small networks since the performance of PF and DCS are
the same (same number of outgoing packet for each node), the
algorithm allows the compression for all the nodes, justifying
the overlap between mixed algorithm and DCS. For a certain
value ofN , called critical and indicated withNcrit, the value
of PCS

k (equation (8)) increases, making the compression with
CS not convenient for nodes distant from sink.
It is interesting to see what happens inside the network when
the mixed algorithm is used andN∗ > Ncrit. Fig. 7 is an
illustration of the network for this fixedN∗. SincePPF

k is
strictly function ofNtch, nodes proximal to the sink (or better
with high Ntch) compress data with DCS, creating an inner
zone round the sink where DCS takes place while the more
distant nodes can perform simple aggregation with PF.
The nodes at the frontier in this region are those ones delegate
to perform compression of data coming from the leaves of the
network. They are the nodes that perform the most intensive
computational work inside the network.
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Fig. 9: Lifetime of the network: comparison between PF and
Mixed Algorithm (BID = 1 byte,Bdata = 8 bytes).

To verify that small nodes can perform compression without
creating too high delay in communication, we have tested the
compression routine on real small nodes and measured delay.
The hardware used is an Ember EM250, a ZigBee System-on-
Chip that combines a 2.4GHz IEEE 802.15.4 compliant radio
transceiver with a 12MHz 16-bit microprocessor equipped
with 128Kb of flash memory and 5Kb of RAM.
The compression routine tested is the C implementation of
the equation (7) usingM = 100 andN varying from 1 to
20. The results shown in Fig. 8 are encouraging: with simple
hardware, the delay increases linearly but it is always small
enough not to affect too much network performance.
Using the same hardware we have also measured the power
consumption involved in compression. This has been done
using a precision resistor to evaluate the current absorbedby
EM250. The current absorbed, according to the experiment, is
around9.3mA during compression. This value together with
the electrical characteristics of EM250[17] has been useful
to define the lifetime of the system. Furthermore we assume
that each node is powered by a500mAh battery. In Fig. 9 is
presented the lifetime, averaged over20 measurements, of the
network comparing our algorithm with the classical gathering
scheme. The lifetime is calculated as the time until the death
of the first node. As seen in the plot, mixed algorithm assures
a very long lifetime with respect to PF scheme. We have
an abrupt decreasing in lifetime forN = Ncrit due to the
additional work of compression.
As seen in Section VI, the algorithm depends also on some
others technical parameters such as size of the scalar data read
by sensor and dimension in bytes of the sensor ID.
An increasing in the ID field of the payload does not consis-
tently affect the performance of the algorithm since it doesnot
depend heavily onBID as seen in equation (8). The increase
of the number of bytes used for ID has the main effect to
enlarge the central region for DCS since PF performs very
bad when it has to manage too many bytes per node. In Fig.
10 it is clear the trend of lifetime when parameterBID is
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Fig. 10: Lifetime of the network: comparison between PF and
Mixed Algorithm (MA) varyingBID.
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MA: Bdata = 1 byte
MA: Bdata = 2 bytes
MA: Bdata = 3 bytes
MA: Bdata = 4 bytes
PF: Bdata = 1 byte
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Fig. 11: Lifetime of the network: comparison between PF and
Mixed Algorithm (MA) varyingBdata.

changed.
A bit less intuitive is the behavior of the WSN whenBdata

is modified. Both PF and DCS depends onBdata. Fig. 11
illustrates how the performance of DCS decreases for bigger
values of the parameter even if the lifetime continues to be
longer with respect to the classical gathering scheme.
The last parameter we address is the extra-payload, added

by sporadic readings as described in subsection VI-A. To
work with the worst case, in our simulation we assume that
these sporadic readings start from the leaves of the network
more distant from the sink, so that the additional payload is
forwarded along all the routing path traversing as many nodes
as possible. Since in general these packets are not very fre-
quent, their impact on lifetime of the network is very limited.
Nevertheless they stress the potency of the algorithm: they
can change run-time the behavior of the nodes these packets
traverse. Fig. 12 shows the percentage of the nodes in which
is convenient perform compression with DCS in two different
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Fig. 12: Fraction of the nodes performing DCS with0% and
10% of the nodes rising sporadic readings.

case: none of the nodes rise sporadic readings and10% of
the nodes perform sporadic reading withBincomp = 60 bytes.
These two cases can be seen as two different moments in
the same network: without a central coordination, the network
self-organizes to reduce the number of packets circulating.
The plot presents an fluctuating trend in function of the
network size. This is due the difference between the size of
incompressible data and the free space inside the payload of
the ZigBee packet before a new packet is needed to incapsulate
the whole data. IfBincomp bytes fit inside the last packet to
send, the extra-payload is sent ”for free” from the point of view
of the number of packets. Otherwise this additional payload
determines the sending of a new packet.

VIII. C ONCLUSIONS

In this paper we have presented a new kind of distributed
algorithm for optimization of CS when ZigBee protocol is used
for communication. This new algorithm has been compared
to a classical gathering scheme namedPack & Forward and
to classical DCS. We have shown how, with this mixed
algorithm, the performances and the lifetime of the system
can be increased in a fully automated and distributed way.
We have also analyzed the behavior of the solution when
some parameters about sensor readings are changed, showing
that our solution keeps to be better. Furthermore we have
addressed the problem of sporadic readings and demonstrated

that the network reacts to this change without need for a central
coordinator.
There are several promising avenue of research that we can
explore. We have not considered other type of routing algo-
rithm apart from geographical routing or temporal correlation
and temporal compression that can provide our scheme better
results in terms of in-network traffic.
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