

RGB Intensity Based Variable-Bits Image Steganography

Mohammad Tanvir Parvez and Adnan Abdul-Aziz Gutub
College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
{tparvez, gutub}@kfupm.edu.sa

Abstract

In this paper, we present a new algorithm for RGB
image based steganography. Our algorithm
introduces the concept of storing variable number of
bits in each channel (R, G or B) of pixel based on the
actual color values of that pixel: lower color
component stores higher number of bits. Our
algorithm offers very high capacity for cover media
compared to other existing algorithms. We present
experimental results showing the superiority of our
algorithm. We also present comparative results with
other similar algorithms in image based
steganography.

Keywords: Steganography, RGB image,
cryptography, information hiding.

1. Introduction

Steganography deals with embedding

information in a given media (called cover media)
without making any visible changes to it [1]. The
goal is to hide an embedded file within the cover
media such that the embedded file’s existence is
concealed. Image based steganography uses images
as the cover media. Several methods have been
proposed for image based steganography, LSB being
the simplest one. Techniques involving bitmap
images (RGB images) as cover media use single or
multi-channel hiding, RNG or color cycle methods
[2] etc. Gutub et al [3] describes the pixel indicator
technique where one channel is used to locate the
channel to store data.

In this paper, we propose a new technique for
RGB image steganography, where color intensity
(values of R-G-B) is used to decide the no of bits to
store in each pixel. Channels containing lower color
values can store higher no of data bits. The sequence
of channels is selected randomly based on a shared
key. Our technique ensures a minimum capacity (as

opposed to [3]) and can accommodate to store large
amount of data. Experimental results show that our
algorithm performs much better compared to the
existing algorithms. Our algorithm can also be used
to store fixed no of bits per channel, but can still offer
very high capacity for cover media.

The rest of the paper is organized as follows.
Section 2 deals with a brief discussion of the
algorithm in [3]. Section 3 discusses our new
algorithm. Section 4 presents the detailed
experimental results and comparisons. Finally,
section 5 is the conclusion.

2. Review

In this section, we review the pixel indicator

technique in [3]. The pixel indicator technique uses
the least two significant bits of one of the channels
from Red, Green or Blue as an indicator for existence
of data in the other two channels. The indicator
channels are chosen in sequence, with R being the
first. Table 1 shows the relation between the indicator
bits and the amount of hidden data stored in the other
channels.

Table 1: Relation between the indicator bits

and the amount of hidden data.

Indicator
bits

Channel 1 Channel 2

00 No hidden data No hidden data
01 No hidden data 2 bits of

hidden data
10 2 bits of hidden

data
No hidden data

11 2 bits of hidden
data

2 bits of
hidden data

 The disadvantage of the algorithm in [3] is that
the capacity depends of the indicator bits and based
on the cover image, the capacity can be very low.
Also, the algorithm in [3] uses fixed no of bits per

channel (2 bits) to store data and the image may get
distorted if more bits are used per channel.
 The algorithm we propose in this paper, does not
suffer from these problems. Our algorithm guarantees
a minimum capacity for every cover image and the

number of bits stored in each channel varies
depending on the intensity. This can give very high
capacity for some of the cover images. In section 4,
we present experimental results supporting our claim.

3. The algorithm

In this section, we briefly outline our proposed
algorithm for RGB image based steganography. The
idea behind our algorithm is that, for ‘insignificant’
colors, significantly more bits can be changed per
channel of an RGB image. Figure 1 shows one
example. In (a) the color is WHITE (R=255, G=255,
B=255). In (b), we only change the last 4 bits of R to
zeros, resulting in a color where distortion can be
noticed. In (c), the color component is same as (a),
except that R = 55. In (c), we again set the least 4 bits
of R to zeros, resulting in a color which seems to be
same as (c).

Our idea is that, lower color-value of a channel
has less effect on the overall color of the pixel than
the higher value. Therefore, more bits can be changed
in a channel having ‘low’ value than a channel with a
‘high’ value.

Therefore, we propose the following algorithm.
• Use one of the three channels as the

indicator. The indicator sequence can be
made random, based on a shared key
between sender and receiver.

• Data is stored in one of the two channels
other than the indicator. The channel, whose
color value is lowest among the two
channels other than the indicator, will store
the data in its least significant bits.

• Instead of storing a fixed no of data-bits per
channel, no of bits to be stored will depend
on the color value of the channel. The lower
the value, the higher the data-bits to be
stored. Therefore a partition of the color-

values is needed. Through experimentations,
we show that optimal partition may depend
on the actual cover image used.

• To retrieve the data, we need to know which
channel stores the data-bits. This is done by
looking at the least significant bits of the
two channels other than the indicator:

o If the bits are same, then the
channel following the indicator in
cyclic order stores the data.

o Otherwise, the channel which
precedes the indicator in cyclic
order stores the data.

Here, the cyclic order is assumed to be R-G-B-R-
G-B and so on. The appropriate bits can be set while
the data is stored.

Figure 2 shows the encoding (at sender’s side)
and decoding (at receiver’s side) part of our
algorithm in flow charts. Note that, it is assumed that
a shared key and partition scheme is already agreed
upon by the two parties.

Figure 3 demonstrates one example of storing
data bits in a channel. In step – 1, the indicator
channel (here G) is selected randomly. In step – 2, the
data channel is chosen (R). In step – 3, no of data bits
to store is determined from the current channel value
and partition scheme. Step – 4 stores the data bits and
step – 5 modifies the other channel (B) LSB, which is
used while retrieving the data.

3.1. Partition schemes

In our algorithm, a partition scheme is defined as

a monotonically decreasing sequence [ai], i = 1 to 8.

 (a) (b) (c) (d)
Figure 1: Effect in colors for changes in the ‘Red’ values.

Assume that the color value of a channel is c. Then
that channel with value c stores i no of data bits if c
>= ai and for all j, j < i, c < aj. For correctness of the
algorithm, we only use valid partitions schemes. We
define a valid partition scheme as follows: let [ai] be
a partition scheme where lower i bits of ai is all 0. Let
[bi], i = 1 to 8, be another sequence, where bi is
generated by setting the lower i bits of ai all 1. If ai >
bi+1, i = 1 to 7, then [ai] is a valid partition scheme.
This simple condition ensures that the same no of
data bits are read from a channel in the receiver’s side
as stored in the sender’s side.

Figure 2a: Flow charts of the encoding part

of our algorithm.

Figure 2b: Flow charts of the

decoding part of our algorithm.

82 45 91

R G B

82 45 911

82 45 912

01011101 45 010110114

01011101 45 010110105

01010010 45 010110113

93 45 91

82 45 91

R G B

82 45 9182 45 91

R G BR G B

82 45 911 82 45 9182 45 911

82 45 912 82 45 9182 45 912

01011101 45 010110114 01011101 45 0101101101011101 45 010110114

01011101 45 010110105 01011101 45 0101101001011101 45 010110105

01010010 45 010110113 01010010 45 0101101101010010 45 010110113

93 45 9193 45 91

Figure 3: An example of hiding data bits

inside a channel.

4. Experimentations

We implemented our algorithm in MATLAB

2007 and carried our experimentations with different
cover images and data files exploring different values

for shared keys and partition schemes. Here, we only
present the results obtained using the cover image
and the data file as shown in Figure 4.

Figure 5 shows the stego files for 4 different
partition schemes. The value of the key was 17 and

the indicator sequence was chosen randomly using this shared key.

Image size: 640 X 480, Bit depth: 24

No of pixels = 307200
(a) Cover Image

Image size: 150 X 117, Bit depth: 24

Data length = 150896 bits
(b) Data File (a bitmap)

Figure 4: Cover media and data file used
in the experimentations.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Pixels utilized in cover media: 50939

Partition Scheme: [256, 256, 0, 0, 0, 0, 0, 0]
(a) Constant 3 bits per channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Pixels utilized in cover media: 41061

Partition Scheme: [256, 256, 96, 0, 0, 0, 0, 0]
(b) 3 to 4 bits per channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Pixels utilized in cover media: 38364

Partition Scheme:[256, 256, 256, 0, 0, 0, 0, 0]
(c) Constant 4 bits per channel

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Pixels utilized in cover media: 35791

Partition Scheme: [256, 256, 256, 48, 0, 0, 0, 0]
(d) 4 or 5 bits per channel

Figure 5: Stego files for 4 different
partition schemes.

The same set of images were used to evaluate the

algorithm in [3], the pixel indicator technique. Table
2 shows the comparative results of the two
algorithms.

Table 2 clearly shows that, intensity based
variable-bits algorithm clearly performs better than
the pixel indicator algorithm in terms of capacity
utilizations. For comparison purpose, we have
modified the pixel indicator algorithm to store up to 3
or 4 data bits per channel. But this modification leads
to visual distortions to the cover image.

Our algorithm ensures a minimum capacity for
any cover image, whereas for pixel indicator method,
the capacity may sometimes become very low. As an
example, for the cover image and data file of Figure 6,
our algorithm uses only 16.5% of the capacity of the
cover image (for fixed 3 bits data per channel),
whereas pixel indicator method cannot store the data
file due to capacity shortage!

Table 2: Comparison of performance of two steganography algorithms.

Technique No of data bits per
channel (bits)

No of pixels of cover
media utilized (pixels)

No of pixels of cover media
utilized (percentage)

3 50939 16.58%
3 or 4 41061 13.37%

4 38364 12.49%

Intensity
Based

Variable-Bits
4 or 5 35791 11.65%

2 + 2 77578 25.25%
3 + 3 59051 19.22% Pixel Indicator

4 + 4 44687 14.55%

Image size: 640 X 480, Bit depth: 24
No of pixels = 307200

(a) Cover Image

Image size: 150 X 117, Bit depth: 24
Data length = 150896 bits

(b) Data File (a bitmap)
Figure 6: Capacity variations with different cover media.

Figure 7 – 9 show the color histogram plots for

the cover and stego images for all three channels. The
nice thing to note from the histograms is that, our
algorithm preserves the general shapes of the

histograms. This feature of our algorithm makes it
difficult to detect whether any data is hidden or not in
the transmitted image.

-50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

-50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

 (a) Cover image (b) Stego image

Figure 7: Histogram of Red channel.

-50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

-50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

 (a) Cover image (b) Stego image

Figure 8: Histogram of Green channel.

-50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

-50 0 50 100 150 200 250 30
0

1000

2000

3000

4000

5000

6000

 (a) Cover image (b) Stego image

Figure 9: Histogram of Blue channel.

5. Conclusion and future works

In this paper, we introduce a new idea in image

based steganography, where variable no bits can be
stored in each channel. Our algorithm uses actual
color of the channel to decide no of data bits to store.
This approach leads to very high capacity with low
visual distortions. Experimental results demonstrate
that our algorithm performs better than other similar
algorithms.

There are several ways to improve our variable-
bits algorithm:
• Select the partition at run time, based on the

cover media, rather than using the static (fixed)
partition scheme for all cover images.

• Use color information of all three channels to
determine the partition. This will lead to using
different partition schemes for different parts of
the image.

6. Acknowledgement

We would like to thank King Fahd University of
Petroleum & Minerals (KFUPM) for supporting this
work.

7. References

[1] Provos, N., Honeyman, P, Hide and seek: An

introduction to steganography, IEEE Security & Privacy
Magazine 1 (2003) pp. 32-44

[2] Karen Bailey, Kevin Curran, An evaluation of image

based steganography methods using visual inspection
and automated detection techniques, Multimedia Tools
and Applications, Vol 30 , Issue 1 (2006) pp. 55-88

[3] Adnan Gutub, Mahmoud Ankeer, Muhammad Abu-

Ghalioun, Abdulrahman Shaheen, and Aleem Alvi, Pixel
indicator high capacity technique for RGB image based
Steganography, WoSPA 2008 – 5th IEEE International
Workshop on Signal Processing and its Applications,
University of Sharjah, Sharjah, U.A.E. 18 – 20 March
2008.

