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Artificial Parameter Homotopy Methods for the DC 
Operating Point Problem 

Robert C. Melville, Ljiljana TrajkoviC, Member, IEEE, San-Chin Fang, Member, IEEE, 
and Layne T .  Watson, Senior Member, IEEE 

Abstract-Efficient and robust computation of one or more of 
the operating points of a nonlinear circuit is a necessary first 
step in a circuit simulator. This paper discusses the application 
of so-called globally convergent probability-one homotopy 
methods to various systems of nonlinear equations that arise in 
circuit simulation. The so-called “coercivity conditions” re- 
quired for such methods are established using concepts from 
circuit theory. The theoretical claims of global convergence for 
such methods are substantiated by experiments with a collec- 
tion of examples that have proved difficult for commercial sim- 
ulation packages that do not use homotopy methods. Moreover, 
by careful design of the homotopy equations, the performance 
of the homotopy methods can be made quite reasonable. An 
extension to the steady-state problem in the time domain is also 
discussed. 

I. INTRODUCTION 
OBUST computation of the direct current (dc) oper- R ating point(s) of a VLSI circuit is a theoretically and 

practically difficult problem [ 11, [ 181, [25], [32], [34], 
[35], [39], [58]. For certain circuits-primarily analog 
designs-engineers [33], [36] spend large amounts of time 
“fighting” a simulator to obtain an operating point of their 
circuit. In some cases, the difficulty of obtaining an op- 
erating point signals that something is wrong with the cir- 
cuit, and indicates that a redesign is needed. However, in 
other cases, the difficulty is simply an artifact of the sim- 
ulator’s algorithm used to find an operating point. In such 
cases, the designer’s time spent finding an operating point 
has contributed nothing to the design process. 

In this paper we discuss homotopy methods [9], [lo], 
1131, [141, [19], [381, [491, [ W ,  1591, [641-[671, [@I 
for the operating point problem. The homotopy approach 
involves forming a simplified version of the circuit whose 
operating point is needed, finding an operating point of 
this easier circuit, then ‘‘sweeping” some quantity to 
generate a trajectory of solutions. The terminus of the 
sweep is the operating point of the original circuit. Once 
the operating point problem has been formulated as the 
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solution of a system of nonlinear equations, the intuitive 
idea of sweeping can be made mathematically precise, and 
numerical algorithms have been developed to follow the 
solution trajectories. Homotopy methods, also known as 
continuation methods, are not new in circuit simulation 
[9], [38], [40], [59], [64]-[67]. For example, one ap- 
proach to the operating point problem is to compute a tra- 
jectory of node voltages as the power supply voltage is 
swept from zero to its final value. Sweeping the supply 
voltage is a good example of a so-called natural param- 
eter homotopy , because the sweeping parameter has an 
obvious physical interpretation. This paper concentrates 
on the application of so-called ‘‘globally convergent 
probability-one homotopy methods” to circuit problems. 
As the name implies, numerical implementations of glob- 
ally convergent homotopy methods exhibit an exception- 
ally wide domain of convergence. However, these meth- 
ods are not applicable to arbitrary systems of nonlinear 
equations. Certain “coercivity” conditions are needed to 
argue that solutions to the homotopy equations cannot be- 
come unbounded. In Section l .  l ,  we draw a distinction 
between “qualitative” and “quantitative” failure modes 
of a nonlinear solver, and state in what sense our proposed 
methods are globally convergent. In Section 11, we dem- 
onstrate that the required coercivity conditions are, in fact, 
quite natural for equations that arise in circuit simulation. 
In Section 111, we describe various homotopies for solving 
systems of nonlinear equations, and develop a homotopy 
specific to bipolar designs that performs surprisingly well, 
In Section IV, we extent these methods to a two-point 
boundary value problem that formulates the steady-state 
equations for a circuit. In Section V, we describe the prac- 
tical implementation of a variety of homotopies for find- 
ing the direct current bias and the steady-state solutions 
of electronic circuits. Finally, in Section VI, we cite some 
related work. 

The following are the main contributions of this paper: 

Demonstrate the use of globally convergent proba- 
bility-one homotopy methods (also called “artificial 
parameter” methods) to avoid singularities in the 
curve being followed by an arc length continuation 
procedure (Sections I1 and 111) 
Import concepts from circuit theory to show that the 
zero curve of various homotopies cannot diverge to 
infinity (Section 11) 
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Give an electronic interpretation of a popular homo- 
topy and explain, based on this interpretation, why 
it performs poorly (Section 3.1)  
Develop alternative homotopies with superior per- 
formance (Section 3.2). At least for bipolar designs, 
our methods come within a speed factor of two to 
five of faster, but less widely convergent methods 
Extend the methods developed for finding operating 
points to give a globally convergent procedure for a 
certain class of two-point boundary value problems 
(Section IV) 
Present convergence and timing results on a suite of 
difficult benchmark circuits (Section V) 

1.1. Qualitative versus Quantitative Failures 
The operating point problem for a dc network is for- 

mulated as a system of (nonlinear) equations to be solved: 

F ( x )  = 0 ( 1 )  

in which x is an n-vector of unknowns. The operating 
point equations are typically solved by an iterative nu- 
merical method that often involves computation of the Ja- 
cobian matrix (derivative) of F.  Most approaches to the 
operating point problem fall into one of the following cat- 
egories: 

Plain Newton’s method 
Norm reducing variations of Newton’s method (so- 
called “damped” Newton) that adjust the Newton 
correction step to assure monotonic decrease of )IF )I 
PI, WI 
Continuation methods [9], [ lo] ,  [13], [14], [38], 
[49], [50], [59], [HI-[67], [69] in which ( 1 )  is aug- 
mented with a circuit parameter p :  

H ( x ,  CL). 

Here, p is chosen so that the solution of H ( x , O )  = 0 
is easy, and H ( x ,  1) = F ( x )  identically in x .  For 
example, the value of all independent voltage sources 
could be multiplied by p.  At p = 0, the circuit has 
an obvious operating point at which each node volt- 
age is zero. Starting from this point, small incre- 
ments in p are taken, at each point finding an appro- 
priate x to satisfy H ( x ,  p )  = 0, until p = 1. (A more 
sophisticated implementation will parameterize the 
solution path by arc length, which allows the curve 
to turn backward at an intermediate value of p . )  
Transient methods [ l ] ,  [58] that attempt to simulate 
the actual time domain response of the circuit while 
“powering up.” In some cases, additional reactive 
elements (either capacitors or inductors) are added to 
the circuit as an aid to convergence. The time do- 
main response of the circuit is simulated until the 
currents through the added capacitors, or the volt- 
ages across the added inductors, become zero. 

Why might a numerical method fail to find a zero of 
the operating point equations? Here are some possible 
failure modes: 

An error tolerance cannot be met 
A matrix, such as the Jacobian matrix for F,  be- 
comes numerically singular 
Numerical noise or inexact computation of deriva- 
tives causes nonconvergence 
A user stops the computation in frustration because 
of excessive computer time 

We classify such failures as quantitative. All of the pre- 
ceding could, at least in principle, be avoided with more 
accurate arithmetic, more careful device modeling, or al- 
location of more computer time. 

In contrast, consider the following failure modes: 

Plain Newton’s method cycles, diverges to infinity, 
or requests the inversion of a genuinely singular ma- 
trix 
Damped Newton’s method reduces the norm of F to 
a local minimum that is not zero, and is unable to 
progress beyond this point 
A continuation method encounters a singularity at a 
critical value of p, and is unable to continue past this 
value of p ,  or oscillates in some neighborhood of the 
critical value. Alternatively, the path being tracked 
by the continuation process may diverge to infinity 
as p approaches one 
A transient method oscillates so that the currents 
through the added capacitors, or the voltages across 
the added inductors, never converge to zero 
One of the first three preceding methods finds a phys- 
ically unstable operating point. Such a solution is a 
perfectly good zero of the operating point equations, 
but would never be observed in practice 

We argue that this class of failures is rather different 
than the first class. More computer time or better arith- 
metic would not help! The same qualitative behavior 
would be observed (perhaps with more accuracy). 

This distinction is not meant to imply that dealing with 
quantitative failures is ‘‘easy ”-indeed, in a large prac- 
tical simulator, quantitative issues may be the dominant 
concern. However, the distinction forms a basis for dis- 
cussion. 

In the sequel, we claim a procedure for finding a dc 
operating point of a circuit that avoids the above-men- 
tioned qualitative failures (with probability one). Simpli- 
cial methods [64]-[67] can make similar claims but are 
difficult to apply to circuits with several hundred transis- 
tors, especially when using complex and highly accurate 
mathematical transistor models. The assumptions that our 
techniques place on the transistor models (smoothness and 
passivity) are natural from a standpoint of transistor phys- 
ics. 

11. COERCIVITY CONDITIONS FOR CIRCUIT EQUATIONS 
A number of elegant mathematical results concern so- 

lutions to systems of equations that satisfy certain 
“boundedness” conditions [42], [51]. Perhaps the best 
example is the Brouwer fixed point theorem [8], which 
states that a continuous map f from a convex compact set 
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into itself must have a fixed point; i .e.,  for some x* in the 
set, f ( x * )  = x * .  Why might one think that the Brouwer 
fixed point theorem would be applicable to the dc oper- 
ating point problem? The intuition that such is the case is 
based on the following fact about nonlinear resistive cir- 
cuits (at least, those that arise in practical integrated cir- 
cuit designs). At the dc operating point of such a circuit, 
each node voltage is bounded in absolute value by the sum 
of the absolute values of the voltage sources in the circuit 
[61]. A circuit with this property is called no-gain. In 
other words, if the circuit has n nodes, and we imagine 
the sum of the absolute values of the voltage sources nor- 
malized to the range [0, 13, then the operating point is an 
element of the unit n-cube. This fact is no surprise to de- 
signers of electronic circuits, although a rigorous proof of 
this assertion is not trivial [6 11. 

The no-gain property is intrinsic to real transistors, but 
may or may not be preserved in a circuit simulator, de- 
pending on transistor models. As an example, consider 
the circuit of Fig. 1 ,  which shows a typical bias configu- 
ration for a single transistor amplifier stage. 

Fig. 2(a) shows the circuit of Fig. 1 redrawn with an 
overly simple model of a transistor that does not capture 
the saturation behavior of a real transistor. Correct bias 
voltage results from the use of a more accurate model 
shown in Fig. 2(b). 

This kind of boundedness property extends to the time 
domain behavior of electronic circuits. Consider the out- 
put waveform of Fig. 3 ,  as the amplifier goes into satu- 
ration (Vin = 200 mV). Although the output clips, its 
peak-to-peak amplitude remains bounded by the supply 
voltage. 

Despite the historical appeal of the Brouwer fixed point 
theorem, and the body of knowledge about the no-gain 
property, we have found the following theorem [29] eas- 
ier to apply to circuit equations. 

Theorem 1 :  Let F be a continuous mapping from R" 
into R". Suppose that x TF(x )  I 0 for all x E R" such that 
llxll = r ,  where r is a fixed positive real number. Then F 
has a zero x* such that IIx*I) 5 r .  

A proof of this theorem for the one-dimensional case is 
obvious, since it simply states that F is zero at an endpoint 
of the interval [ - r ,  +r]  or has a sign change on the in- 
terval. A proof in higher dimensions may be obtained by 
reduction to the Brouwer fixed point theorem [29]. 

The nodal formulation of circuit equations [27] speci- 
fies a sum of currents for each node. The result is a system 

Fl (XI 9 . * 7 x,) = 0 

F 2 @ , .  * * * 9 x,) = 0 

F"(X1, * * , x,) = 0 

where the dimension of xi  is voltage and the dimension of 
F, is current. Thus, the dimension of the inner product 
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Fig. I .  One transistor bias circuit. 

vcc=10 U - 

A cos< 

:ii'T ........................ 

i .1' 
..................... 

1 2 . 1  

- - 

OMEGR T 

U I N  

-L 
(b) 

Fig. 2 .  Two models of a transistor. 

I I 

V i n  = 5 mV c ? T z I l m  
Fig. 3 .  Amplifier circuit 

A circuit element is passive if it does not generate power 
[24], [60], [63]. This can be stated in mathematical terms 
by considering the voltage uk across each element and the 
current ik flowing into the element. If the sum Cikvk over 
all elements is always nonnegative, then the device is pas- 
sive. Passivity is a less restrictive condition than the no- 
gain property introduced earlier. - - -  

x T ~ ( x )  is power. Among the electronic devices introduced so far, linear 
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(positive) resistors, diodes, and transistors are passive. 
The current amplifier is not passive; however, the partic- 
ular arrangement of diodes and current amplifiers in the 
Ebers-Moll transistor model is passive [21]. Any inter- 
connection of passive components is passive. This lets us 
evaluate the inner product condition for the nodal equa- 
tions of a nonlinear resistive circuit. The particular values 
of circuit parameters establish a radius of a ball in R" such 
that for any vector of node voltages x on this ball, the 
inner product x T F ( x )  is a sum of powers that is nonne- 
gative. If we appeal to passivity rather than the no-gain 
property, then, in general, the radius of this ball will be 
larger than the sum of the absolute values of the inde- 
pendent voltage sources, and might be difficult to calcu- 
late. However, applications of Theorem 1 do not require 
the knowledge of the radius, only its existence. A detailed 
exposition of this argument appears in [45]. 

Therefore, a passivity argument can be made for an 
electronic circuit consisting of independent voltage 
sources, resistors, diodes, and transistors. This covers all 
practical cases. Occasionally, designers use voltage am- 
plifiers to model operational amplifiers. A voltage ampli- 
fier delivers an output voltage pu,,, where p is a constant 
and U , ,  is a voltage drop across some branch in the circuit. 
The graph of the input/output relationship of such a de- 
vice would be a straight line of slope p extending to in- 
finity in either direction. Suppose p is large, say 1000. 
Then an input voltage of 1 V generates an output voltage 
of 1000 V.  Again, common sense about electronic circuits 
says that an operational amplifier built using transistors 
and operated from + 12 V and - 12 V supplies cannot 
generate an output voltage of 1000 V. Any practical op- 
erational amplifier exhibits limiting behavior at its output. 
That is, the output is indeed equal to pu,, over some range 
of U , , ,  but beyond that range, the output voltage is 
bounded by the positive and negative power supply val- 
ues. When a voltage amplifier is modified to model this 
limiting behavior (providing a more accurate model of an 
operational amplifier), the inner product condition of 
Theorem 1 can be satisfied at a certain radius r that may 
depend on the limits set for the voltage amplifiers. 

So far, our discussion of passivity has been limited to 
the case of nonlinear resistive circuits, i .e.,  circuits with 
no notion of time. In a later section, we discuss passivity 
for the time domain response of a circuit. 

111. HOMOTOPIES FOR THE DC OPERATING POINT 
PROBLEM 

The general homotopy paradigm involves embedding 
the equations to be solved, F ( x )  = 0, in a system of equa- 
tions of one higher dimension, H ( x ,  A) = 0, with the in- 
troduction of one more variable X, called the homotopy 
parameter or continuation parameter. Typically, X is re- 
stricted to the range [0, 11, and the embedding is done so 
that the augmented system H ( x ,  0) = 0 is easy to solve 
and reduces to the original system when X = 1 ,  i .e.,  
H ( x ,  1) = F ( x ) .  

Starting from the solution to H ( x ,  0) = 0, one follows 
a connected set of points (x, X) such that H ( x ,  A) = 0 
until X = 1. In traditional continuation methods [31], 
sometimes called monotonic continuation, a functional 
relationship is assumed between x and A,  so that there is 
a unique value x ( A )  such that H ( x  ( A ) ,  A) = 0 for h E 
[0, 13. An important extension of the continuation para- 
digm is the arc length continuation [28], in which both x 
and X are thought of as functions of arc length s along a 
connected set of points such that H ( x ( s ) ,  h(s ) )  = 0. Now, 
s is advanced to a value s* such that X (s*) = 1. 

Continuation methods, either monotonic or arc length, 
are well known in circuit simulation, either for finding an 
operating point P I ,  [ 101, [ 131, [ 141, [381, W I ,  [501, [591, 
[64-[67], [69], or for calculating a dc transfer curve [16]. 
For example, one approach to the operating point problem 
is to multiply each voltage source in the circuit by h. 
When X = 0, the circuit has an obvious solution in which 
each node voltage is 0 V.  A continuation process is used 
to advance h to 1, where a point x* such that H ( x * ,  1) = 
0 represents a solution to the circuit with all voltage 
sources at their desired values. 

Continuation of the supply voltage is a good example 
of natural parameter continuation, as discussed in [52], 
because the continuation parameter has an obvious phys- 
ical interpretation. In this section we describe some the- 
oretical work of Chow et al. [12], who have given a class 
of methods that can be proven to have very desirable nu- 
merical properties. The methods presented in [12] are 
called artijcial parameter homotopy (or globally conver- 
gent probability-one homotopy) methods to distinguish 
them from traditional continuation methods, either mono- 
tonic or arc length. This distinction is substantial, as dis- 
cussed at length in [52]. Our work concentrates on the 
artificial parameter approach. 

Consider the scheme for continuation in the values of 
the voltage sources, using continuation in the arc length 
parameter s. This process is described by a system of 
equations 

H"(X ,  (s), . . . > x,(s), h(s))  = 0 

where xI through x,, represent the node voltages. The pa- 
rameter X E [0, l ]  multiplies the value of each indepen- 
dent voltage source. The zero set of H is 

and H ( x ( s ) ,  X(s)) = 01 

which is typically a union of curves in R" + I .  Given a 
starting point in the zero set (certainly available at h = 0) 
one can think of moving along a component of the zero 
set as tracing the trajectory of an initial value problem. 
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Numerical procedures for carrying out this type of curve 
tracking will be described later. 

Unfortunately, this continuation scheme is not always 
robust. For certain circuits, at a critical point on the zero 
set, the solution trajectory will attempt to split (bifurcate). 
If the curve-following procedure is unlucky enough to hit 
the bifurcation point, or a sufficiently small neighborhood 
of it, the Jacobian matrix of H will become rank deficient, 
requiring further analysis. Note that a circuit may have a 
unique operating point at the$nal value of all the sup- 
plies, yet still have multiple operating points at their in- 
termediate values. In such a case, the success or failure 
of source stepping will be sensitive to the relative rate at 
which the various sources are turned on. Such behavior is 
reported in [68]. 

Consider the flip-flop of Fig. 4. This is a circuit with 
three dc operating points. However, if the value of the 
voltage source is set to zero, then the circuit has a unique 
solution, with all voltages equal to zero. Let x = (xcI, 
xb, ,  xc2, xb2)T be the vector of node voltages. The follow- 
ing equations represent the voltage source continuation 
embedding for this circuit: 

H ~ ( x ,  X) = ( X C ~  - X V C C ) / R C I  + (XCI - &)/ 

R B I  + ic, 
H 2 ( x ,  X) = (xb, - x c 2 ) / R B 2  + ib, 

H ~ ( x ,  A) = ( X C ~  - X V C C ) / R C 2  + (XC, - xbl)/  

R 8 2  + ic2 
H ~ ( x ,  A) = ( ~ b 2  - X C , ) / R B I  + ib2 

where H is a mapping from R“” into R“, with n = 4. 
The Jacobian matrix for H has dimension n X (n + 1) 
and can be evaluated for any particular (x, A) E R“ + I .  

Does this matrix have full rank (i.e., rank 4) for all points 
in the zero set of H? The answer is no; the symmetry in 
the circuit generates a bifurcation at a critical point in the 
zero set with X = 0.1135. Then A V  C C = 0.68 V ,  just 
enough to “turn on” the base-emitter junctions of the two 
transistors. The rank of the Jacobian matrix of H was 
monitored by performing a singular value decomposition 
of the Jacobian matrix [43]. At the critical value for X 
mentioned earlier, the smallest singular value drops to ap- 
proximately 2 X 

A rather different approach to the formulation of 
embeddings is taken in [ 121, resulting in artificial param- 
eter homotopies. Under certain conditions, the zero set of 
such homotopies can be shown to contain a smooth curve 
that leads to a solution with bounded arc length. Bifur- 
cations or other types of singularities do not occur. In par- 
ticular, Chow et a l .  [12] consider solving a system of 
equations F ( x )  = 0, where F :  R” -+ R“ satisfies the inner 
product condition of Theorem 1. They impose the addi- 
tional condition that F be C2, and consider the following 
homotopy for finding a zero of F :  

indicating a rank of deficiency. 

p, (x ,  A) = M(x) + (1 - X,(x - a )  (2) 

where a = ( a l ,  * * , a,) is a fixed element of R“. Note 
that a solution to pa@, 0) = 0 is trivial, and a solution to 
p,(x, 1) = 0 is a zero of F .  Following the homotopy par- 
adigm, the easy problem, “solve (x - a> = 0,” is de- 
formed in a continuous manner into the desired problem, 
“solve F ( x )  = 0.” The zero set for (2) is the set Fa = 
{(x, X)(  X E [O, 1) and pa@, X) = 0 ) .  

The theory developed in [12] shows that with the ad- 
ditional assumption that F is C2, then for almost all 
choices of a with llall 5 r ,  Fa contains a smooth path 
emanating from ( a ,  0) and terminating at a point (x*, 1)  
where F ( x * )  = 0. The term “almost all” means that the 
set of starting points that does not generate successful tra- 
jectories has a measure of zero in R“. This property of the 
artificial parameter methods is a consequence of a version 
of Sard’s theorem [41]. Thus, the a vector provides an 
element of random choice in the procedure for finding a 
zero of F. Each different choice for a provides a different 
possible path to a zero of F ;  “most” such paths are suc- 
cessful. The algorithm, then, for finding a zero of F, is to 
pick such an a at random (which fixes a value of xo = 
x (0)), then solve an initial value ordinary differential 
equation (ODE) problem to generate the solution trajec- 
tory emanating from (xo, 0) = ( a ,  0). 

Watson et a l .  [52]-(541 have done careful numerical 
implementation of an algorithm that can follow the solu- 
tion trajectory of (2). Code is available in a package called 
HOMPACK. The implementation in HOMPACK re- 
quires the user to supply a subroutine to evaluate F and 
its Jacobian matrix. Given a starting point a ,  HOMPACK 
tracks the solution trajectory of (2) for X E [0, 11. Because 
the set of bad starting points has a measure of zero, a 
random choice of a has zero probability of hitting one. In 
this sense, the algorithm for finding a zero of F is globally 
convergent. 

Of course, one must be careful when applying concepts 
from real analysis to the computer number system that 
has only a finite approximation to the real numbers. 
Nonetheless, our experiments with probability-one ho- 
motopy algorithms, as implemented in HOMPACK, in- 
dicate exceptionally robust convergence, provided that the 
device models are smooth enough. 

3.1 .  Formulation of the Operating Point Problem 
The nodal formulation presents the operating point 

problem as a system of nonlinear equations F(x)  = 0, 
where x is a vector of node voltages. Let there be n nodes, 
and let xk denote the voltage at node k .  Fk (x,, * * . , x,) 
will be an equation for the sum of currents flowing into 
node k through all the branches connected to that node. 
The system F has been shown to satisfy the inner product 
condition if all the devices (other than the voltage sources) 
are passive [45]. Thus, the homotopy (2) can be used to 
find an operating point for the circuit. 

In fact, p , ( x ,  A) = 0 has an interesting physical inter- 
pretation. For an arbitrary node k ,  imagine connecting a 
resistor in series with a voltage source to the ground. Let 
the value of the voltage source be ah, and the value of the 
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RCl=RC2=IK 
RHl=R82=28< 

- - - - - - 
Fig. 4. Flip-flop. 

resistor be h/(1 - A). The nodal equation for node k is 
m 

1 - X  c Ij = - (Uk - Xk) 
j =  I X ( 3 )  

where there are m branches connected to node k in the 
original circuit, carrying currents 11, - e , I , .  Recogniz- 
ing that the current summation on the left-hand side of ( 3 )  
is F k ( x )  as previously defined, we see that ( 3 )  is equiva- 
lent to (2). 

Note that the value of the resistor is 0 for X = 0. Hence, 
the node voltage is forced to the value ak at h = 0. Then, 
as h approaches 1, the value of the resistor approaches 
infinity, and the inserted source is decoupled from the cir- 
cuit. 

The physical interpretation of the homotopy also pro- 
vides intuition about why the homotopy should be bifur- 
cation free for almost all choices of an a vector. Consider 
the flip-flop of Fig. 4. The dc equations for this circuit 
have three solutions, corresponding to transistor Q 1  on 
and transistor Q2 off, Q 2  on and Q 1  off, and both tran- 
sistors on. As discussed earlier, the zero curve of the sup- 
ply continuation equations for this circuit must have a bi- 
furcation. Conversely, imagine connecting a resistor and 
voltage source combination to the two collector nodes. 
Let the voltage sources have values al  and u2. Now, sweep 
the value of the resistors from zero to infinity. The only 
choice of (al ,  a2)  that will hit the bifurcation is a ,  = a,; 
any other pair of starting values will steer the circuit to 
one mode or the other. Given a random choice of (al, a2) ,  
the probability of hitting a ,  = a2 is zero. In practice, such 
pathological cases can be circumvented easily. 

Consider again the natural parameter homotopy pro- 
posed for the flip-flop in Section 111. HOMPACK was able 
to follow the zero curve of this homotopy to a solution at 
h = 1, although there is a bifurcation in the zero curve- 
the curve tracking procedure was lucky enough to “hop 
over” the bifurcation point on the zero curve. However, 
what operating point was found by following the zero 
curve of the natural parameter homotopy? Answer: The 
unstable operating point at which both transistors conduct 
equal amounts of current. Although an exact zero of the 
operating point equations, this operating point is unstable 
in the sense that the slightest perturbation will cause the 
circuit to move to one of the two stable states in which 
one transistor is conducting and the other is not. The un- 

stable operating point is of little or no interest to a de- 
signer. Conversely, the introduction of the random vector 
moves the zero curve of the artificial parameter homotopy 
toward one of the two more interesting stable solutions. 

3.2. Alternative Homotopies 
Experiments with the homotopy ( 2 )  show that it con- 

verges robustly, but rather slowly. In some of our exam- 
ples, more than a thousand steps (thousand evaluations of 
the Jacobian matrix) were needed to get to the solution. 
The physical interpretation provides some insight into the 
problem. Suppose node k has a small signal impedance of 
1 MQ at the operating point of the circuit. The homotopy 
(2) implies connecting a resistor and a voltage source be- 
tween this node and the ground. Before the homotopy re- 
sistor is “removed from the circuit” it should have a value 
at least ten times as large as the natural impedance of the 
node to which it is connected. This means close to 10 MQ 
for node k. However X / ( 1  - A) is equal to lo7 only for 
X very close to 1. We experimented briefly with a scheme 
that attempted to scale the homotopy resistors on a per 
node basis, but this became cumbersome and required 
second derivatives of device models. Instead, we propose 
a different approach using the general curve tracking op- 
tion in HOMPACK. This allows a user to construct a cus- 
tomized homotopy. The presentation of [12] and [52] 
treats a homotopy of the following form: 

p :  R“ X R ’  X [0, 1) + R” 
denoted p(a ,  x, A) where a is an m-vector, x is an n-vec- 
tor, and h E [0, 1). The rn-vector a is a random parameter. 
For fixed a ,  define 

p , ( x ,  A) = p ( a ,  x, W .  
Now consider the zero set 

r, = ((x, x > l P a ( &  = 01. 
If certain conditions on p are met, then Fa is a union of 
smooth curves, one component of which connects a zero 
of p , ( x ,  0) with a zero of p a ( x ,  1). 

In Section I1 we gave the homotopy first, then derived 
its circuit interpretation. In this section we work back- 
ward, giving a circuit interpretation first, then deriving 
from it the homotopy equations. The idea is to start with 
all nonlinear devices removed from the circuit, then grad- 
ually bring them in. A solution trajectory is generated as 
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the nonlinear devices sink more and more current. Fig. 5 
shows a Wilson current source [62 ] .  

The operating point equations for this circuit are shown 
subsequently. The notation is a fragment of an executable 
code, and requires a bit of explanation. The transistor 
model Q 1  is stimulated by calling Q 1  . s t i m with the 
node voltages for the collector, base, and the emitter, re- 
spectively. (Note that the ground node is at 0 V by defi- 
nition.) Then, a function call such as Q 1  . i c ( 1 will 
deliver the collector current for the given set of stimuli: 

Q 1  . s t i m ( x C O I  , x [ 1 1  , O . O )  
Q 2 . s t i m ( x C 2 1 , x C 0 1 , x C 1 1 ~  
Q 3 . s t i m ( x C l l , x C 1 1 , 0 . 0 )  
F C O I  = Q2.ib( )+Ql.ic( )+((xCOl 

-(VCC))/RP) 
F C 1 1  = Q 3 . i c (  > + Q 3 . i b (  1 

F C 2 1  = Q 2 . i c (  )+((xC21 
+ Q 2 . i e (  )+Ql.ib( 1 

-(VCC))/RL) 
To transform these equations into a homotopy , imagine 

stimulating the nonlinear devices in the following fash- 
ion: 
Ql.stim(Larnbda*xCOI,Lambda* 

Q 2 . ~ t i m ( l a m b d a * x C 2 1 , l a m b d a *  

Q 3 . s t i m ( l a m b d a * x C l I , L a m b d a *  

x C 1 1 , O . O )  

x C 0 1 ,  L a m b d a * x C I l )  

x C 1 1 , O . O ~  
where l a m b d a  E [0 ,1] .  When l a m b d a  = 0, all non- 
linear devices’ terminal currents are zero. Therefore, they 
are “removed from the circuit.” This provides a starting 
point on a component of r,, as defined earlier, that is 
tracked until X = 1 .  

There is a problem with this construction for X = 0. 
When X = 0, no current flows into transistors, so they 
might as well be disconnected. This leaves node x ,  float- 
ing. In mathematical terms, the Jacobian matrix for the 
equations will be singular at X = 0, so HOMPACK is not 
even able to start tracking the solution trajectory. We cir- 
cumvented this problem by attaching extra circuitry to 
each node. At node k ,  we attached a conductance of value 
G L E  A K in a series with a voltage source of value ak. The 
voltage sources ( U , ,  - , a,) provided the random ele- 
ment needed in the probability-one homotopy construc- 
tion. Finally, (1 - A) G L E A K approaches zero as X ap- 
proaches one. The resulting equations for the Wilson 
current source are as follows: 

For$xed a E R”, pa (x ,  A) = p ( a ,  x, A) has a unique 
solution xo at X = 0: When X = 0, the equations for 
the Wilson current source describe a circuit consist- 
ing of resistors and voltage sources only, hence we 
have a unique solution. Setting all the currents 
through nonlinear devices to zero and rearranging 
yield the following equations for node voltages at 

d o u b l e  L a m b d a - b a r  = 1.0 - l a m b d a  
Q l . s t i m ( L a m b d a * x C 0 I , l a m b d a * x ~ I I , O . O ~  
Q 2 . s t i m ( L a m b d a * x C 2 1 , L a m b d a * x C 0 1 , l a m b d a * x C 1 1 ~  
Q 3 . s t i m ( x C 1 1  , x C l l  , O . O )  
r h o C O 1  = L a m b d a - b a r * G L E A K * ( x C O l - a [ O l ) + Q 2 . i b (  > + Q l . i c (  > + ( ( x C O l - V C C ) /  

R P )  
r h o [ ? ]  = L a m b d a - b a r * G L E A K * ( x C l l -  

a C I l ) + Q 3 . i c (  )+Q3.ib( )+QZ.ie( > + Q l . i b (  
r h o 1 2 3  = l a m b d a - b a r * G L E A K * ( x C 2 l - a [ 2 l ) + Q 2 . i c (  > + ( ( x [ 2 l - ( V C C > > / R L )  
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h = o :  
x C 0 1  = ( G L E A K * a C O l + V C C / R P ) /  

x C 1 3  = a C 1 1  
x C 2 1  = ( G L E A K * a C 2 1 + V C C / R L ) /  

( G L E A K + I  . O / R P >  

( G L E A K + I  . O / R L )  

p,(x,  1) = F(x) :  This holds because the “leakage” 
circuitry is removed and each nonlinear device is 
stimulated by the nominal voltage. 
The zero set r, is bounded: In other words, the so- 
lution trajectory stays within some fixed distance 
from the origin in R” for all X E [0,1). The equations 
represent operating point equations for a family of 
circuits, one for each value of X E [0,1).  For h E 
(0,l) the circuit will comprise some mixture of par- 
tially stimulated nonlinear devices and the leakage 
circuitry from each node to ground. However, a par- 
tially stimulated nonlinear devices is still a no-gain 
element. This means that the entire circuit is a no- 
gain circuit for intermediate values of A. Hence, the 
node voltages are bounded in absolute value by the 
sum of the absolute values of all the voltage sources 
in the circuit. Note that the values of the voltage 
sources do not change as X sweeps from 0 to 1 ,  so 
that a single fixed bound may be placed on the value 
of any node voltage in the solution trajectory. 

We also make the reasonable engineering assumption 
that the Jacobian matrix of pa has full rank at an operating 
point of the circuit, i.e., at a point (x*, 1) on I’,. This 
simply says that the circuit has one or more well-defined 
solutions that are isolated points in R“. 

The example of the Wilson current source indicates all 
the essential features of a homotopy called the variable 
stimulus homotopy. A nodal equation is written for each 
node that is not connected directly to a voltage source. In 
addition, for each such node, a series combination of a 
conductance and a voltage source is connected to the 
ground. Let the voltage source have fixed value a C k 1 
for the kth node, and let the conductance have the value 
( 1  - X ) G L E A K ,  where G L E A K  is a fixed parameter. 
Then, for each nonlinear device, we constructed a vari- 
able stimulus model with an additional parameter X E [0, 
11. Each terminal voltage is multiplied by this parameter. 
Clearly, when X = 1,  this circuit is equivalent to the cir- 
cuit whose operating point is desired. When h = 0, the 
circuit is linear, with a unique value for each node volt- 
age. Experiments with this homotopy indicate that the so- 
lution trajectories are much smoother than for (2). More- 
over, the action is spread out evenly over all values of A, 
rather than concentrated near the end of the path. There- 
fore, HOMPACK is able to take larger steps along the 
path and use fewer iterations. 

A variation on the homotopy theme is particularly suit- 
able to bipolar circuits which often present the greatest 
challenge to operating point algorithms. Fig. 2(b) shows 
the conventional Ebers-Moll model for a bipolar transis- 

tor, with forward current gain aF and reverse current gain 
aR. Suppose we set the gains of each transistor to aF = 
aR = 0. Each transistor transforms into a three-terminal 
element in which a diode is connected between the base 
and the collector, and the base and the emitter. This ob- 
servation suggests a homotopy in which the current gain 
of each transistor is set to zero at X = 0, then gradually 
increased toward the appropriate value for each transistor. 
“Floating” nodes present no problem, as with the vari- 
able stimulus homotopy; however, we still include the 
“leakage” circuitry to provide the random element needed 
to avoid bifurcations. We call this homotopy the variable 
gain homotopy . 

In summary, the variable gain homotopy for bipolar 
circuits is a two-stage procedure. Set the forward and re- 
verse current gains of each transistor to zero. Attach a 
series combination of a conductance and a voltage source 
from each node to ground. Choose a random value for 
each of these voltage sources. The only nonlinear com- 
ponents in the resulting circuit are diodes. This circuit has 
a unique operating point [ 1 1 1 ,  [47]. For phase 1 ,  use the 
variable stimulus homotopy to find the operating point of 
this circuit. Call this operating point x**. For phase 2, 
define the homotopy pa (x, X) to represent the circuit with 
all transistor current gains multiplied by X and all leakage 
conductances multiplied by ( 1  - A). The point (x**, 0) 
is clearly on a component of the zero set of the homotopy 
for phase 2.  Now track this component as the gains of 
each transistor change from zero to the appropriate final 
value. Simultaneously, let the leakage conductance be- 
come zero. The endpoint of the second phase is a point 
(x*,  l ) ,  such that x* is an operating point. 

As with the variable stimulus homotopy, we must ad- 
dress five criteria required by the probability-one theory : 

p is C 2 :  As in the previous cases, this depends en- 
tirely on the device models. 
The Jacobian matrix Dp(a,  x ,  X) has rank n along 
the zero curve of p :  As in the variable stimulus 
homotopy , the leakage circuitry assures that the Ja- 
cobian matrix has rank n. During the second phase, 
in which the gain elements are brought in, the leak- 
age conductances are allowed to go to zero, but still 
remain nonzero for h < 1 .  Again, Dp contains a 
submatrix of rank n. 
For fixed a E R”, pa(a,  x, A) = p (a ,  x ,  A) has a 
unique solution xo at X = 0: The starting point for 
the second phase is the solution x** to the diode-only 
circuit obtained at the end of the first phase. Is this 
solution unique? Duffin [17] proved that a circuit 
consisting of voltage sources, resistors, and diodes 
has a unique operating point. 
p, (x ,  1) = F(x) :  This is clear from the form of the 
equations, because the “leakage’ ’ circuitry is re- 
moved, and each transistor gain is at its appropriate 
final value. 
The zero set of pa is bounded: The theory presented 
in [61] shows that a bipolar transistor remains no- 
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gain as long as the absolute values of the current 
gains remain less than or equal to one. This means 
that intermediate circuits for h < 1 are no-gain, 
hence all node voltages are limited to a fixed value 
set by the independent sources in the circuit. 

Experimental results with the variable gain homotopy 
are presented in the last section. For the case of bipolar 
circuits, a hybrid approach provides a fast solution 
method. Our experiments with the variable gain homo- 
topy indicate that most of the work is spent in phase 1- 
i.e., in finding the solution to the diode-only circuit. Duf- 
fin [17] proved that a circuit consisting of diodes as the 
only nonlinear components has a unique solution. (We as- 
sume the diode model includes the reverse breakdown. 
All practical diodes display such behavior.) Duffin’s re- 
sult suggests that norm reducing variations of Newton’s 
method (“damped” Newton), such as proposed by Bank 
and Rose [4], will converge robustly for such circuits. 
The hybrid technique, then, is to use the damped Newton 
code to find the operating point of the circuit with all the 
current gains set to zero, then employ homotopy to track 
the solution as the gains are restored to their desired full 
values. This indeed works quite well, and is two to three 
times faster than using homotopy alone. Performance sta- 
tistics are presented in the last section. 

IV. STEADY-STATE COMPUTATION IN THE TIME 
DOMAIN 

Time domain simulations were described briefly in Sec- 
tion I. A system of first-order nonlinear differential equa- 
tions is formulated for a circuit that contains capacitors 
and inductors, then standard numerical methods are em- 
ployed to integrate the equations from the initial state 
computed using a dc operating point algorithm. 

For an important class of circuits, the solution to the 
system of differential equations approaches a periodic 
steady state asymptotically over time as initial transients 
die out. Unfortunately, the amount of integration steps 
needed to get to the steady state can be prohibitively large. 
Various techniques that result in savings in computer time 
and an improvement in the accuracy of the solution have 
been proposed [ 3 ] ,  [30], [54]-[57] to calculate the steady- 
state response directly. One such approach is to replace 
the nonlinear differential equations with nonlinear differ- 
ence equations, employing a numerical approximation for 
the derivatives [30]. Each solution waveform, assumed to 
be periodic, is represented as a vector of sampled values 
on a fixed partition of time points over one period. Thus, 
if there are n equations in the system of nonlinear differ- 
ential equations, and m samples per period, the discreti- 
zation process results in nm equations in nm unknowns. 
The resulting system can be large, but is very sparse. 

Getting a solution to this system of nonlinear algebraic 
equations presents the same difficulties as finding dc op- 
erating points of a circuit. Can the artificial parameter 
homotopy machinery that we have developed for the op- 
erating point problem be applied to the systems of equa- 

tions that arise from the steady-state problem? In this sec- 
tion, we answer this question affirmatively. The key idea 
is to prove the inner product condition for the equations 
that result from discretizing the differential equations. 

Consider the simple one-transistor amplifier circuit of 
Fig. 3 .  If the time constant established by C i n is large 
compared to the period of the stimulus, finding the time 
domain response of this circuit by treating it as an initial 
value problem is expensive. Suppose, instead, we treat 
this as a two-point boundary value problem. The follow- 
ing system of nonlinear differential equations describes 
the time domain behavior of the circuit. The unknowns 
are periodic functions of time, e.g., xc(t) is the waveform 
of the collector voltage of Q 1 . The notation ic(xc, xB, xE) 
denotes the instantaneous current flowing into the collec- 
tor of Q 1 , given instantaneous voltages (xc, xB, xE) of the 
collector, base, and emitter, respectively. 

(xB - V C C ) / R B I + XB / R B 2 + ie (XC, XB,  XE) 

d 
dt 

+ C i n-(xB - cos(wt)) = 0 

d 
x E / R E  + C E - X E +  dt ~ , ( x C , X B , X E ) = O  

(xC- V C C ) / R C  +ic(xc,xB,xE)=O. 

The following additional conditions enforce periodicity, 
where T i s  the (known) period of the stimulus: 

Given some convenient number of sample points, say m ,  
the preceding system can be discretized on [O,T) using 

* < t , - ,  < t ,  
= T.  The derivative operator & / d t  is replaced by a for- 
ward difference approximation (xk + I - xk) / ( t k  + I - tk ) ,  
where the subscripts are taken modulo m ,  and xk = x(tk). 

The result is a system of 3m equations in 3m unknowns. 
The equations are still nonlinear because of terms such as 
iE(xC(tk) ,  xB( tk ) ,  XE(tk)). We argue that this system of 
nonlinear algebraic equations is simply the dc Operating 
point equations for a passive circuit. Therefore, all the 
global convergence arguments we have developed earlier 
apply. The original circuit can be copied m times, and the 
copies labeled as to, t ,  , etc. Consider a capacitor between 
nodes P and Q in the original circuit. This capacitor can 
be replaced by a resistor and a voltage-controlled current 
source in the t p _  and tk copies, as shown in Fig. 6. 

In the original circuit, the nodal equation for node P is 

the mesh points 0 = to < t l  < t2 < * 

to account for the current flowing into the capacitor. The 
term A depends on other connections to node P .  Writing 
dt as an abbreviation for tk - tk - the nodal equation for 
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Fig. 6 .  Coupled circuits. 

node P in the t k  circuit is 

C C 
+ Z ( u P ( t k )  - vQ(tk)) - Z ( u P ( t k -  I )  - uQ(tk- 1 ) )  

where the voltage-controlled current source introduces 
coupling from the previous time point t k  I .  This equation 
is the discrete approximation to the differential equation 
given earlier. The equation for node Q is similar with a 
sign change for the derivative term. Finally, there is a 
connection from copy to to copy t, - I to enforce period- 
icity. 

The “unrolled” circuit of Fig. 6 is a nonlinear resistive 
circuit, but does it satisfy the inner product condition of 
Theorem 1 on some r ball? A voltage-controlled current 
source is a nonpassive element; therefore, we have to 
prove that the passivity condition is satisfied. 

The circuitry in the center of Fig. 6 may be treated as 
a component with four terminals. In circuit terminology, 
it is a linear two-port. We argue that it is a passive linear 
two-port. This implies that the entire circuit is passive, 
since the other components are resistors, diodes, and tran- 
sistors. Let a current II flow in and out of the terminals 
on the left side of the component, and let there be a volt- 
age drop of I/, across these two terminals. Define I ,  and 
V2 similarly for the right-hand side. The total power dis- 
sipated by the component is II VI + I ,  V,. We show that 
this power is always nonnegative. Using Ohm’s law, and 
the definition of the voltage-controlled current source, we 
may write 

C 
dt 

I ,  v, = - v: 

entia1 equations produces a system of nonlinear algebraic 
equations that satisfies the inner product condition of 
Theorem 1. 

In this section we drew a connection between the dc 
operating point problem and the steady-state time domain 
problem. In fact, passivity considerations apply to the lat- 
ter, allowing us to apply the theory of globally convergent 
homotopy methods to the steady-state analysis. 

V.  EXAMPLES A N D  PRACTICAL RESULTS 
In this section we give some practical results on some 

small, but difficult circuits. All of the examples are bi- 
polar circuits. We used the Ebers-Moll model, without 
modeling the reverse breakdown. Our model should be 
close to the simple model used in the SPICE 2G6 circuit 
simulator [2]. These operating point benchmarks are 
available from netlib with the request “send all from 
benchmark/bipopt. ” 

5.1. Example Circuits 
The first circuit in our benchmark suite is a cascade of 

three Schmitt Trigger circuits [26]. This circuit is not par- 
ticularly useful, but is a tough challenge for operating 
point algorithms. The output voltages of a Schmitt Trig- 
ger will switch abruptly between two extremes for a small 
excursion of the input voltage, called the “trigger.” The 
two complementary outputs of the center circuit are fed 
through buffering resistors to the trigger inputs of copies 
of the same circuit, thus the number of switching possi- 
bilities multiply. If V x  is set below the lower trigger 
point, then one output of the middle circuit goes low to 
about 0.9 V and the complementary output goes high to 
about 12 V.  The voltage on the low output of the center 
circuit is below the lower trip point of the trigger to which 
it is connected, and the voltage on the high output of the 
center circuit is above the upper trip point of the trigger 
to which it is connected. Thus, the circuit has a unique 
operating point. However, for a supply voltage below 
12 V ,  the circuit may have multiple solutions. 

Newton’s method, as implemented in a commercial cir- 
cuit simulator, is unable to get an operating point for this 
circuit. Moreover, continuation in the supply voltage is 
confused by the multiple solutions at intermediate values 
of the supply. Homotopy methods computed an operating 
point for this circuit accurate to approximately A at 

C C each node. 
dt dt An important class of practical circuits that also exhibit 

multiple operating points are bandgap voltage references 
(see, for example, [7]). Our second circuit is a bipolar 
implementation of such a reference. The convergence of 
a proprietary simulator depends on the initial voltage for 
the output node of this circuit. For certain settings, the 
simulator will converge to one of two operating points, at 
which the output is about 1.23 V (the desired value) or 
about 14 V. For other initial settings, the simulator does 
not converge. Homotopy techniques applied to this ex- 
ample, and starting from a variety of widely spaced start- 

z2 v, = - V i  - - VI v, 

which yields 

C C C 
dt dt dt 

C C 
2dt 2dt 

ZI v, + z* v* = - v: + - v; - - v, v2 

= - <v: + vi) + - (VI - v2y. 

The last quantity is clearly nonnegative for all U ,  and v2. 
Thus, the discretization of the original system of differ- 
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ing points, exhibited robust convergence. Of the three dc 
solutions for this circuit, two are stable and one is un- 
stable. In other words, if the actual circuit were to be 
forced into the unstable state, it will immediately move 
to one of the two stable states. Thus, the two stable so- 
lutions are of most interest to a circuit designer. In our 
experiments, the homotopy method converged to one of 
the two stable solutions for any choice of the random vec- 
tor. This is in contrast to Newton’s method, which some- 
times converges to the unstable solution. 

Our third circuit is the input stage of the famous 741 
operational amplifier [22] shown in Fig. 7. The operation 
of the circuit is sensitive to the Early voltage parameter 
V a for transistors Q 5 and Q 6 .  The transistor model used 
in our experiments does not model the Early effect; how- 
ever, we can mimic the effect of a large Early voltage on 
these two transistors by connecting large resistors in par- 
allel between the collector and the emitter. With 
R V A l  = R V A 2 = 1  e l  2 the circuit has a very large dc 
gain. One “figure of merit” for a numerical implemen- 
tation of an operating point algorithm is to see how large 
a value can be used for these resistors while still analyzing 
the operation of the circuit correctly. 

As the input terminals are slightly unbalanced ( V  P 0 S 
# V N E G ) ,  the output voltage switches abruptly from ap- 
proximately 0 V to - 12 V.  In the middle of this switching 
region, the circuit operates as a linear amplifier with very 
high dc gain. The dc gain in the linear region can be es- 
timated by forming a divided difference of two operating 
points in this region. Our simulation gave an estimate of 
5.71 1 X lo9 for the gain, compared to a hand-calculated 
value of 5.713 x lo9 using a linearized model of the tran- 
sistors. The same perturbation analysis using a commer- 
cial simulator produced an estimate of 4.950 x 108-off 
by a factor of ten. The commercial simulator attaches ar- 
tificial conductances from each node to ground as a con- 
vergence aid; the default value of these conductances is 
set large enough so that they should not disturb the op- 
eration of the circuit. However, the gain of this circuit is 
so large that the presence of these artificial conductances 
is significant. 

Fig. 8 shows the HOMPACK convergence rrace for this 
circuit. The computed trajectory is a path in ten-dimen- 
sional space. This figure plots the average of these ten 
paths against A: 

10 

X*VG(N = c Xk. 
k =  1 

This trace can be displayed as the algorithm is working 
toward the solution, and can provide useful visual feed- 
back to the designer. 

Fig. 9 shows a particularly difficult circuit. This is a 
feedback circuit used in an operational amplifier [SI with 
a very good common mode rejection ratio. The indepen- 
dent source V 8  is inserted to exercise the feedback loop. 
For values of V 8  in a small hysteresis range, the circuit 
has three operating points (one is unstable). A homotopy 

method allowed us to determine robustly the two desired 
(i.e.,  stable) solutions in the hysteresis region. In prac- 
tice, this circuit behaves well, but both SPICE 1351 and a 
proprietary simulator failed to analyze the dc behavior of 
this circuit correctly. 

Fig. 10 is of particular interest because our techniques 
helped improve the design of the circuit. The operation of 
this circuit is described in 161. If R 5 and R 6 are given 
slightly different vaiues, the performance of the circuit 
will improve, but the possibility of multiple dc solutions 
arises. This is undesirable in practice, because the circuit 
will function only as required at one of these dc solutions. 
Diode-connected transistor Q 1 0 is included as a so-called 
“start-up” device to force the circuit to have only the 
desired dc solution. Our methods were able to identify 
two stable dc solutions, even with the start-up device, 
when the values of R 5 and R 6 differed by about 5 % . This 
information enabled the designer to estimate the manu- 
facturing tolerances necessary for two resistors to ensure 
that the circuit would behave as anticipated. 

5.2. Performance Data and Comparisons 

following circuits from our benchmark suite: 
Convergence and timing data were generated for the 

Cascade Schmitt Trigger cascade 
DcNine 

Brokaw Brokaw voltage reference circuit 
Hybrid Hybrid voltage reference of Fig. 10 
CmMode(1) Common mode circuit of Fig. 9 at edge 

CmMode(2) Common mode circuit of Fig. 9 in 

Each circuit was analyzed fifty times using values of 
the a parameter vector uniformly distributed between the 
most negative and most positive supply voltages in each 
particular circuit. Numerical parameters were set so that 
at X = 0, the kth node was forced to a value of ak. Thus, 
the circuit was exercised over a large space of starting 
points. Table I shows convergence statistics for the pre- 
ceding examples, using the routine FIXPNS from HOM- 
PACK with a tracking tolerance of 1.0 X 1521. The 
minimum, average, and maximum number of Jacobian 
matrix evaluations is reported for each circuit over the 
fifty trials. Convergence to a valid solution was obtained 
for every circuit from every starting point. For those cir- 
cuits with multiple operating points, the homotopy method 
always converged to one of the two stable solutions. 

The preceding results support the theoretical claims of 
global convergence. In practice, it is possible to set nu- 
merical parameters a bit differently so that convergence is 
achieved more quickly (in case of failure, the circuit is 
reanalyzed with more stringent parameter settings). Table 
I1 shows one sample run for each circuit with parameter 
settings that seem adequate for general use. Timing re- 
sults were obtained on a SUN 4 workstation running 
Berkeley Unix. 

Circuit with nine distinct solutions from 
[481 

of hysteresis region 

hysteresis region 
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Table I11 shows convergence statistics for the variable 
gain homotopy of Section 3 . 2 .  The data are presented in 
the form “phase 1 + phase 2.” In phase 1, the operating 
point of the diode-only circuit is calculated using a 
damped Newton code. In phase 2, the current gains of the 
transistor models are swept from zero to their final values. 
It is interesting that more work is spent in phase 1 than in 
phase 2. Except for the Schmitt Trigger cascade, these 
iteration counts are within a factor of three of the number 
of iterations for a damped Newton code alone. Yet the 
damped Newton method does not always converge, or 
may converge to a zero of the equations that is physically 
unstable. Thus, at least in the case of bipolar transistors, 
we can enjoy the robust convergence of the homotopy 
method with quite reasonable computing cost. Additional 
timing results are reported in [46]. 

The circuits discussed so far are difficult, but small. 
Does the encouraging performance of the variable gain 
homotopy scale up to larger circuits typical of those used 

in full-scale commercial designs? Such circuits will have 
at least 100 unknowns. To answer this question, we pre- 
pared a custom version of HOMPACK, which incorpo- 
rates a direct sparse solver for nonsymmetric matrices. To 
demonstrate that our techniques are really industrial 
strength, we implemented the most detailed bipolar tran- 
sistor model discussed in [20]. Thus, our timing and con- 
vergence results reflect the use of models with the level 
of complexity necessary for detailed designs. Table IV 
shows timing and iteration counts for four circuits; all are 
analog circuits to be incorporated in a bipolar chip. All 
times are for a SUN SPARCstation 1 +.  

Circuits rlil3b and is7 exhibit a turning point in the 
homotopy trajectory. Previous to the application of 
homotopy methods, an operating point for is7 could be 
obtained only by a tedious and time-consuming interac- 
tive procedure in which a designer would estimate initial 
values for crucial node voltages. Moreover, even a small 
change to the second circuit invalidates the previously 
computed set of initial voltages. 

5.3. Example of a Steady-State Computation 
Consider a system of linear first-order ODE’s driven by 

a sinusoidal forcing function. Theory shows that the so- 
lution to such a system must be sinusoidal with the same 
period as the driving function. However, for nonlinear 
ODE’s, the situation is much more interesting. Among 
other possibilities, the solution to the equations may be 
periodic with the frequency equal to a harmonic of the 
driving frequency. This effect is used in electronic circuits 
to generate integer multiples of a reference frequency. 
Fig. 11 shows the input and output from such a frequency 
multiplier circuit [ 151 driven by a sinusoidal input. 
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We applied the discretization technique of Section IV 
with thirty-two sample points per period to produce a sys- 
tem of algebraic equations that describe the steady-state 
solution of this circuit. The input and output waveforms 
are shown annotating the figure. The collector voltage is 
indeed periodic, with the period equal to one-third of the 
input period. 

5.4.  Implementation Of a Test Platform 
HOMPACK is a general curve tracking package that 

has no specific knowledge of electronic circuit equations. 
For our numerical experiments with circuit equations we 
wrote a driver in the C + + language [44]. The class 
mechanism and operator overloading facility of C + + al- 
lows us to formulate equations in familiar notation. These 
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TABLE I 
PERFORMANCE OF VARIABLE STIMULUS HOMOTOPY 

Variable Stimulus Homotopy Using F I X P N S 

Number of Iterations 

Circuit rnin avg max 

Cascade 35 1 62 1 1299 
DcNine 163 290 463 
Brokaw 299 355 406 
Hybrid 346 435 604 
CmMode( 1) 310 494 787 
CmMode(2) 254 34 1 45 1 

TABLE I1 
PERFORMANCE WITH NORMAL PARAMETER SETTINGS 

Variable Stimulus Homotopy Using F I X P N S 

Circuit Number of Iterations Time(s) 

Cascade 
DcNine 
Brokaw 
Hybrid 
CmMode( 1) 
CmMode(2) 

496 
127 
193 
184 
277 
195 

31.70 
7.60 
8.70 
7.25 

11.80 
7.75 

TABLE I11 
PERFORMANCE OF VARIABLE GAIN HOMOTOPI 

Variable Gain Hornotopy 

Circuit 
Number of Iterations 

(Newton + homotopy) 

Cascade 
DcNine 
Brokaw 
Hybrid 
CmMode( 1) 
CmMode(2) 

12+ 184 

16+27 
23+16 
16+46 
18+24 

9 + 2 3  

expressions do not evaluate to numbers, rather each 
expression generates a tree data structure in  memory. The 
leaf vertices of this tree are constants or variables intro- 
duced by the user, such as unknown node voltages. The 

TABLE IV 
PERFORMANCE ON LARGER INDUSTRIAL CIRCUITS 

Vanable Gain Hornotopy 

Number of Iterations 
Circuit n (Newton + homotopy) Time(s) 

rlil3b 44 22+137 14.23 
upsola 58 10+90 1 .70  

is7 470 45+358 410.00 
bgatt 124 23+36 11 .OO 

homotopy parameter X is a special leaf vertex. Internal 
vertices are labeled with arithmetic operations to be ap- 
plied to the subtrees of a vertex, or labeled with the ad- 
dress of a subroutine that computes an arbitrary function, 
using the values of subtrees as arguments to the function. 
This arrangement allows us to form the Jacobian matrix 
of the homotopy map using automatic diferentiation [23]. 
This is not a difference approximation to the derivative, 
nor is it symbolic differentiation such as would be com- 
puted by a symbolic manipulation program. Instead, the 
chain rule is applied systematically throughout the tree 
to produce a numerical value for partial derivatives at the 
same time a numerical value is being computed for the 
root of each tree. 

Here are the equations for the one-transistor bias circuit 
of Fig. 1 ,  using the variable stimulus homotopy of Sec- 
tion 3.2. This is the complete input required of the user; 
computation of the Jacobian matrix is automatic. 

! l a m b d a * ( x c - a c )  + ql.ic( 1 

+ ( x c - V C C ) / R C  ==  0 

! L a m b d a * ( x b - a b )  + q l . i b (  1 

+ x b / R B Z  + ( x b - V C C ) / R B I  ==  0 

! L a m b d a * ( x e - a e )  + q l . i e (  1 

+ x e / R E  ==  0. 
The operator "!" is defined specially for the homotopy 
parameter (a derived class) so that ! 1 a rn b d  a means 
( 1 - 0  - L a rn b d a 1 . The function q 1 computes the col- 
lector current for an npn transistor, given voltages on the 
collector, base, and emitter. 

Formulating the equations in this manner, let us exper- 
iment quickly with a variety of different homotopies, 
without the tedious and error-prone hand computation of 
expressions for derivatives. Some simple timing studies 
have shown that for each Jacobian matrix evaluated at a 
point of the zero curve, considerably more time is spent 
in HOMPACK performing linear algebra computations on 
the matrix than is spent in our driver constructing the de- 
rivative. Therefore, the automatic computation of deriv- 
atives is not a bottleneck. The need for highly accurate 
Jacobian matrices varies with the problem domain; high 
accuracy has been demonstrated to be essential for some 
fluid mechanics problems [56],  [57], and the same is true 
for circuit analyses here. 
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VI. RELATED WORK 
In addition to the references cited in Section I, we would 

like to mention some other work related to the material 
presented herein. 

Yamamura et al.  [64]-[67] have demonstrated the ap- 
plication of homotopy methods for finding the solutions 
of difficult systems of circuit equations. Their implemen- 
tation concentrates on simplicial methods that are rather 
different than the technique used in HOMPACK. In par- 
ticular, [66] reports impressive timing results. It is diffi- 
cult, however, to make a direct comparison with our 
benchmark timings, because their implementation as- 
sumes that the equations are in the form of a “separable” 
homotopy. The separability assumption is needed to al- 
low for solving a large system of equations (more than 
100 transistors), but is difficult to satisfy for sophisticated 
bipolar models. Our equation formulation does not have 
such an assumption. 

In [45], we prove that the inner product condition holds 
in the case of nodal equations with grounded voltage 
sources. Vandenberghe and Vandewalle [49], [50] pre- 
sented a similar result for a more general class of equa- 
tions. Their implementation results are also based on sim- 
plicial techniques. Therefore, direct timing comparisons 
are difficult. 

An algorithm along the lines of HOMPACK that was 
developed specifically to find the dc operating points of 
difficult nonlinear electronic circuits appears in [ 131 and 
[48]. They use a homotopy similar to (2), but do not in- 
clude the random element. For a certain restricted class 
of circuits, they prove that their method is able to find all 
the dc operating points. 

VII. SUMMARY 
Robust computation of a dc operating point (or points) 

for a nonlinear network is an essential first step for a cir- 
cuit simulator. Design experience shows that this problem 
is most acute for analog circuits using bipolar transistors. 
Even small networks (ten or fewer transistors) can exhibit 
qualitative behavior that makes the operating point prob- 
lem difficult. Such behavior includes 1) multiple solutions 
(among which some are physically stable and some unst- 
able), 2) bifurcations in solution manifolds, and 3) turn- 
ing points in solution manifolds. Larger networks (100- 
1000 transistors) present the same qualitative difficulties 
with additional numerical difficulties due to size. 

The theory of globally convergent homotopy methods 
addresses the qualitative issues in solving operating point 
equations. Assuming sufficiently smooth modeling func- 
tions, and a so-called “coercivity condition,” the theory 
demonstrates the existence of a smooth solution manifold 
leading to at least one solution to the operating point 
equations. We have demonstrated that the required coer- 
civity condition is quite natural for the equations that arise 
in  circuit simulation. 

Various homotopies have been presented, all meeting 
the conditions for global convergence, but differing in 

terms of performance. Using insight gained from studying 
these different homotopies, we have formulated the “vari- 
able gain” homotopy for bipolar networks that has excel- 
lent performance. The time required to solve a system of 
operating point equations with this homotopy is not more 
than two to three times slower than the time required to 
solve the same equations by less widely convergent meth- 
ods, yet the homotopy method works even on examples 
that cause competing methods to fail. Thus at the cost of 
a little extra computer time, on the average, a user is freed 
from the tedious task of “nursing” a simulator into con- 
vergence. In extensive trials on difficult circuits generated 
with AT&T, the homotopy method has solved every cir- 
cuit. The example circuits have ranged in size from ten to 
more than 1800 unknowns. The homotopy code used was 
a version of HOMPACK modified to use automatic dif- 
ferentiation, arbitrary sparse matrix data structures, and 
direct instead of iterative solvers for the sparse linetir 
equations. 

Finally, we have considered the solution of a two-point 
boundary value problem that represents the operation of a 
circuit in the time domain. A finite difference formulation 
of the circuit’s differential equations has been shown to 
be equivalent to an operating point problem on a larger dc 
network. The coercivity condition required in the hypoth- 
esis for global convergence of a homotopy method has 
been established for the equations of this larger network. 
Thus, robust convergence is enjoyed for the time domain 
case as well. 
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