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Abstract

In this paper we examine the usefulness of the M/Pareto
process as a model for broadband traffic. We show that
the queueing performance of the M/Pareto process depends
upon the level of aggregation in the process. When the level
of aggregation is high, the M/Pareto converges to a long
range dependent Gaussian process. For lower levels of ag-
gregation, the M/Pareto is capable of modeling the queue-
ing performance of real broadband traffic traces.

1 Introduction

Broadband traffic types, such as VBR video and data
streams, have only appeared relatively recently. As yet,
no consensus has been reached regarding how we should
model these traffic types. It is not reasonable to attempt to
accurately represent all the intricacies of these traffic types
in a single model. What is required is a model that reason-
ably represents real traffic, in some practical sense, that will
be widely acceptable and will provide consistency in per-
formance comparisons of real networks and systems. For a
model which is to be used as this type of tool, ease of use is
more important than complete accuracy. For most engineer-
ing purposes, a matching in terms of queueing performance
is sufficient.

Once a consensus is reached on such a model, it could
be used in a wide variety of network planning, dimension-
ing and management related applications. Depending upon
the complexity of the model, it could be applied to tasks in-
cluding call admission control (CAC), network dimension-
ing, performance evaluation and as an input to business de-
cisions. Such a model would also simplify the evaluation of
new equipment or protocols.

The process of determining the most appropriate model
for broadband traffic is complicated by recent studies of
broadband traffic traces which have shown that broadband
traffic is often long range dependent (LRD) in nature. This
property manifests itself as long bursts of higher than aver-

age activity. Long range dependence has been shown in
both data streams [14, 16] and VBR video streams [10].
This fact tells us that traditional Markovian models can-
not be extended into the broadband domain, as they are
not able to accurately reflect the behaviour of LRD traffic
streams. In response, many new models have been proposed
[5, 12, 13, 18, 20] for LRD traffic.

In this paper we examine the ability of the M/Pareto pro-
cess to meet our needs as a model for broadband traffic
streams. In Section 2 we explain our technique for eval-
uating a traffic model, and define the queueing framework
used throughout this paper. In Section 3 we give a brief
description of the M/Pareto model used. In Section 4 we
describe methods which can be used to generate multiple
M/Pareto processes all with the same mean, variance and
Hurst parameter, but with differing levels of aggregation,
and which yield different queueing results. In Section 5 we
demonstrate that the behaviour of an M/Pareto process con-
verges to that of a fractal Gaussian process for increasing
levels of aggregation. Section 6 presents results showing
that, where the level of aggregation is chosen appropriately,
the M/Pareto model can accurately model realistic broad-
band traffic sources. In Section 7 we show that the cor-
rect level of aggregation required for the M/Pareto model to
match the modeled traffic appears to depend on the service
rate being considered as well as the properties of the traffic
stream being modeled.

2 Modeling approach

There are two broad categories of traffic models. One
alternative is to consider each packet individually. The ran-
dom process used as a traffic model generates values rep-
resenting the arrival times of individual packets (or equiv-
alently the inter-arrival times between successive packets).
The other alternative is to consider the rate at which work
arrives at the buffer. Although there is a healthy body of
work which considers this arrival process within a contin-
uous time framework, (see [19] and references therein) we
focus on the discrete time case. Time is broken into fixed
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length intervals, and we model the number of packets arriv-
ing in each interval.

We choose a discrete time arrival process because it
makes it possible to carry out longer simulations than would
be possible using inter-arrival times. Considering this ar-
rival process does result in a loss of resolution, as it be-
comes impossible for us to identify precisely when a packet
arrived, but provided the interval size is not too large, the
resulting errors are generally small.

The usefulness of a given model is judged based on
its ability to characterise the buffer overflow probability of
measured traffic in a single server queue (SSQ). The over-
flow probability is the probability that the length of the
queue of unfinished work in an infinite buffer SSQ exceeds
a given threshold. In monitoring of network performance
the cell loss ratio (CLR) is more commonly used to measure
queueing performance. CLR is the proportion of the cells
arriving at a finite buffer queue which are discarded due to
the buffer being full. Overflow probability is easier to deal
with analytically, while CLR is simpler to measure in prac-
tical circumstances. Although the two values are not iden-
tical, overflow probability gives a good estimate of CLR in
most cases.

To calculate the overflow probabilities for a given traffic
stream, we consider a FIFO single server queue with an infi-
nite buffer. We consider time to be divided into fixed length
sampling intervals. The model allows arbitrary choice of
interval length.

LetAn be a continuous random variable representing the
amount of work entering the system during thenth sam-
pling interval. We assume that the processfAng is both
stationary and ergodic. We define� to be the constant ser-
vice rate, i.e. it is a fixed number representing the amount of
work which can be processed by the server per sampling in-
terval. We assume for simplicity that the service takes place
at the end of the interval. Let the mean ofAn be denoted by� and its variance by�2.

Let the sequence of continuous random variablesYn be
the net input process defined asYn = An � �; n � 0
and letm be the mean of the net input, that ism = E(An)� � = �� �:
A necessary and sufficient condition for queueing stability
ism < 0. Since� is constant, the variance of the unfinished
work process is equal to that of the arrival process. That is:�2 = Var(An) = Var(Yn).

Let Vn be the unfinished work at the beginning of thenth sampling interval. Using the above notation, the system
unfinished work process, for the case of an infinite buffer,
satisfies Lindley’s recurrence equation:Vn+1 = (Vn + Yn)+; n � 0; (1)

whereV0 = 0 and whereX+ = max(0; X). The steady
state buffer overflow probability,Pr(Q > t), is simply the
probability that the amount of unfinished work in the queue
exceeds a given thresholdt, i.ePr(Q > t) = Pr(V1 > t).

The correlations in an LRD arrival process are repre-
sented using the Hurst parameter,H . The Hurst parameter
is related to the rate at which the correlations decrease with
increasing lag. The higher the value ofH , the higher the
level of correlation and consequently the worse the queue-
ing performance.H 2 (0:5; 1:0] in positively correlated
LRD traffic streams. H = 0:5 for traffic without LRD
(short range dependent, or SRD traffic). Several methods
for evaluatingH in a given traffic stream are given in [9].

3 The M/Pareto model

It is now widely accepted that LRD traffic forms a sig-
nificant part of the traffic to be carried over broadband net-
works. LRD traffic, regardless of its source, is charac-
terised by significant long bursts (see [19] and references
therein). It is therefore appealing to model LRD traffic with
a model which involves long bursts. The M/Pareto model is
just such a process, generating an arrival process based on
overlapping bursts. The M/Pareto model described below is
closely related to that given in [15], and is one of a family of
such processes which form a sub-group of the more generalM=G=1 models explored in [13, 18].

M/Pareto traffic is composed of a number of overlapping
bursts. Bursts arrive according to a Poisson process with
rate�. The duration of each burst is random, and chosen
from a Pareto distribution. The complementary distribution
function for a Pareto-distributed random variable is given
by Pr fX > xg = ��x� ��
 ; x � �,1; otherwise,1 < 
 < 2, � > 0. The mean ofX is �
(
�1) and the variance
of X is infinite.

The rate of the Poisson process,�, controls the frequency
with which new bursts commence. The superposition of two
independent M/Pareto processes with identical burst length
distributions will itself be an M/Pareto process with Pois-
son arrival rate equal to the sum of the arrival rates of the
two constituent processes. Thus, increasing� can be con-
sidered to represent an increase in the number of sources
which make up an M/Pareto stream.

The cell arrival process for each burst is constant for the
duration of that burst, and has rater. All bursts generate
cells at the same rater. Thus the mean number of cells
within one burst is: r�

�1 . The mean amount of work ar-
riving within an interval of lengtht in the M/Pareto traffic
model is�tr�
(
�1) :
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Although the Pareto process has infinite variance, the
variance of the M/Pareto process is finite. In [19] the term
“Poisson burst process” was used to refer to processes, such
as the M/Pareto process, where i.i.d. bursts of fixed rate start
according to a Poisson process. For a Poisson burst process
the variance function is given by repeatedly integrating the
distribution function, according to�2(t) = 2�r2 Z t0 dt Z u0 du Z 1v dxPr fX > xg

Calculating for Pareto distributed burst durations gives

�2(t) = 8>>>>>>>>>>>><>>>>>>>>>>>>:
2r2�t2 � �2 �1� 11�
�� t6� ; 0 � t � �2r2�n�3 � 13 � 12�2
+ 1(1�
)(2�
)(3�
)�+�2 �12 � 11�
+ 1(1�
)(2�
)� (t� �)� t3�
��
 (1�
)(2�
)(3�
)o ; t > � (2)

This corresponds with the variance function for pro-
cesses of this type given in [2]. It represents a correction
to the variance function quoted in [3, 7, 17].

Examining the expression for the variance, we see that
for large t, the dominant term is2r2� �
t3�
(1�
)(2�
)(3�
) . If

we defineH = 3�
2 then we can observe that for increasingt the growth of this function is proportional tot2H . This
implies that this model isasymptotically self similarwith
Hurst parameterH = 3�
2 .

4 Changing the level of aggregation

We have just seen that the form of the M/Pareto model
we have chosen has four parameters:� the Poisson arrival rate,�, which controls the arrival of

bursts,� the arrival rate within an active burst,r,� the rate of decrease of the Pareto tail,
, and� the starting point of the Pareto tail,�.
If we attempt to create an M/Pareto process which pro-
duces given values for the mean arrival rate,�, variance,�2 and Hurst parameter,H , we will need to choose one of
the four parameters of the M/Pareto arbitrarily. This sug-
gests that there will be infinitely many M/Pareto processes
which produce the same values of�, �2 andH . Each of
these M/Pareto processes will potentially produce different
queueing performance.

Throughout this paper we examine families of M/Pareto
processes with different Poisson arrival rates, but identical

values of�, �2 andH . There are a number of ways we
could achieve this. In this work we limit ourselves to trad-
ing off between the Poisson arrival rate for bursts,�, and the
cell arrival rate contributed by each burst,r. The parameters
controlling the burst duration (� and
) are held fixed. This
method allows us to model a situation where an aggregated
traffic stream has an increasing number of sources (repre-
sented by increasing�) each contributing a smaller propor-
tion of the overall traffic load (represented by decreasingr),
but where the burst durations remain unchanged.

If we restrict ourselves to changing only� and r, the
Hurst parameter,H , will be unaffected by any changes. In
order to maintain a constant value for the variance we utilise
the relationship given in Equation (2), and so if� is multi-
plied by a factorn, then the transmission rate for each burst
is reduced by dividingr by

pn. Making these changes to� andr will increase the mean arrival rate of the M/Pareto
process, unless we permit ourselves to alter the burst length
distribution.

We choose not to alter the burst length distribution, and
look for other ways to deal with this change to the mean.
When we examine queueing performance we can essen-
tially ignore the problem, and simply alter the service rate
so thatm is still matched. The queueing performance will
not be altered, as the overflow probabilities are determined
by the mean of the net arrival ratem = � � � , not by the
mean of the actual arrival process. Alternatively, if the mean
of the M/Pareto process is important, we can introduce a
constant bit rate (CBR) component,�, to maintain a match-
ing between the mean arrival rate of the M/Pareto process
and the mean arrival rate of the modeled stream. The addi-
tion of � cells per interval to every arrival interval will not
affect the values of�2 orH , nor the queueing performance
of the process.

5 A Gaussian future?

If traffic is Gaussian, a number of advantages become
apparent. Most importantly bandwidth usage can be made
more efficient. As [4] shows, significant multiplexing gains
are possible with Gaussian traffic. Another key advantage
is the wide range of analytical results which exist for Gaus-
sian traffic [2, 5, 6, 11]. Appendix A gives analytic expres-
sions for the overflow probabilities for both SRD and LRD
Gaussian processes. Although a Gaussian model is attrac-
tive, previous measurements of network traffic [14, 16] have
shown little to encourage the belief that real network traffic
is Gaussian.

However, we have reason to believe that traffic may be-
come more Gaussian in the future. As was suggested in
[1], according to the central limit theorem, as the number of
independent sources contributing to an aggregate flow in-
creases, the total amount of traffic arriving in a fixed length
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Figure 1. Gaussian convergence for increas-
ing aggregation

interval will tend towards a Gaussian random variable. We
can use the M/Pareto process to demonstrate this effect.

In Section 3 we related the number of independent
sources contributing to an aggregated traffic stream to the
Poisson arrival rate� in the M/Pareto model. The central
limit theorem predicts that as the level of aggregation (i.e.�) increases, the behaviour of the M/Pareto process will ap-
proach that of a Gaussian process.

We showed in [7] that this Gaussian convergence does
occur. Figure 1 shows an example in which we see a fam-
ily of M/Pareto processes, all with the same values ofm, �2
andH , but with differing levels of aggregation. Also shown
is a Gaussian process, with the same values ofm, �2 andH
as the M/Pareto processes. As the value of� increases the
queueing performance improves, until a good approxima-
tion of Gaussian performance is achieved. Along the way
lower values of� produce different queueing performance
results for M/Pareto processes with the same values ofm,�2 andH .

6 Comparison with real traffic

Past attempts to match the mean, variance and Hurst pa-
rameter of a model like Gaussian fractal or M/Pareto [16] to
that of the real traffic, and, using this matched process, at-
tempting to predict the queueing curve (overflow probabil-
ity versus threshold) have had only limited success. How-
ever, the previous section has shown that there are many
M/Pareto processes which have the same mean, variance
and Hurst parameter, but which yield different queueing
curves. At most one of these processes will match the
queueing curve of the real traffic. The differentiating fac-
tor is the value of the Poisson arrival rate,�, which we have
termed the “level of aggregation” in the process. Without
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Figure 2. Matching with an Ethernet trace
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Figure 3. Matching with a VBR video trace

determining the correct value of this parameter, we cannot
expect to achieve a match between the queueing curve of
the M/Pareto process and that of the modeled traffic.

In [3] we showed that the M/Pareto model can accurately
model the performance of an Ethernet trace provided that
the right value for the parameter� is selected. Figure 2
shows an example of this. In Figure 2, the curve designated
asM/Pareto 1represents an M/Pareto process matched to
the three parameters (m, �2 andH) of the real traffic, with
an arbitrary choice of�. The curve designated asM/Pareto
2 represents a process which also produces the same values
of m, �2 andH , but with a more careful choice of�. The
Gaussiancurve in the figure shows that the Ethernet traffic
stream cannot be modeled by a Gaussian process.

In [17] we showed that matching the queueing curves
of VBR video streams is also possible using the M/Pareto
process. Figure 3 shows an example in which we fit an
M/Pareto process to a VBR MPEG sequence generated by
Rose and analysed in [20]. Even though the modeled traf-
fic is not an aggregated stream, the “level of aggregation”
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Figure 4. Altering the service rate

parameter,�, must still be correctly chosen for an accurate
modeling of the stream to be possible.

The M/Pareto modelis capable of predicting the queue-
ing curves of both aggregated data traffic and VBR video
streams. Accurate fitting is achieved only when the level
of aggregation parameter,� is correctly assigned. Merely
matching the mean, variance and Hurst parameter of the
M/Pareto process to that of the original traffic stream is not
sufficient accurately predict the queueing curve.

7 Model limitations

We have seen that choosing the right value for� is vi-
tal in creating an M/Pareto process capable of matching the
queueing curves of real traffic streams. However the choice
of � is complicated by the fact that the correct value of�
differs depending on the service rate� (or equivalently the
value ofm).

In Figure 4, we show the queueing curves produced
when a pair of traffic streams are fed into SSQs with a vari-
ety of services rates. The figure shows four pairs of curves.
In each pair the heavier line represents the queueing per-
formance of the Ethernet trace when fed into an SSQ with
service rate� . The lighter line represents the performance
of an M/Pareto process matched to the properties of the Eth-
ernet trace in an identical SSQ. The M/Pareto process used
has� chosen so as to provide a good fit with the Ethernet
traffic when� = 500. As Figure 4 shows, while a given
value of� may give an acceptable fitting for a range of ser-
vice rates, in general a different value of� must be deter-
mined for each service rate considered.

Choosing the correct value for� is not a trivial exercise.
As yet we have no systematic method for determining the
value of� to be used in modeling a given traffic stream.
Trial and error must be used for each different traffic source,
and for each different service rate. In every case we have

considered so far it has been possible to find a value of�
which is appropriate, but a systematic method would greatly
accelerate this process. Until a heuristic for determining�
is developed, this will limit the practical usefulness of the
M/Pareto process.

8 Conclusions

This paper has presented an examination of the M/Pareto
process. We have shown that, provided we assign the cor-
rect values to all the parameters of the M/Pareto model, we
can use an M/Pareto process to accurately predict the queue-
ing performance of an arbitrary broadband traffic stream.
For most practical purposes, this makes the M/Pareto pro-
cess a good candidate as a model of broadband traffic
streams. The M/Pareto model still has some limitations, but
it has cleared the first and most vital hurdle, and is worthy
of further consideration.

Appendix A: Gaussian Formulae

Consider a FIFO single server queue, with all the as-
sumptions, definitions and notation of the discrete time
queueing model described in Section 2. We now add a fur-
ther condition and suppose that the arrival process,fAng,
is not only stationary and ergodic but also Gaussian. We al-
low for any autocorrelation function for the arrival process.
The process may be either SRD or LRD, but these cases are
handled slightly differently.

A.1 The Short Range Dependent Case

For the SRD case, the tail of the overflow probability (or
the unfinished work distribution) is exponential. By [5], it
can be approximated byPrfV1 > tg � ~ces�t; t > 0; (3)
wheres� = 2mv , ~c = �s� (�m;�)=erf

��m�=(vp2)�;
and  (x; �) = �p2� e� x22�2 � x2erfc

� x�p2� : (4)v is the asymptotic variance rate (AVR), given byv = limk!1 VarnPkn=1 Ynok :
The result obtained for the rate of the tails� is exact while
the result obtained for weight of the tail is an approximation.
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A.2 The Long Range Dependent Case

For an LRD Gaussian processv is not finite and the un-
finished work distribution does not have a dominant expo-
nential tail. Fortunately, as shown in [6] (except that a blun-
der introduced an incorrect factor in that paper) we can ap-
ply the SRD results to the LRD case and obtain the follow-
ing approximation for the overflow probability:PrfV1 > tg � p2��  (�m;�)es�(t)t (5)
in whichs�(t) = � 12�2 j1�H j�2� Hj(1�H)mj��2H t1�2H :

Formula (5) is quite accurate so long as the Hurst param-
eter takes on values larger than0:5.
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