
Analysis of Multithreaded ProgramsMartin RinardLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139rinard@lcs.mit.edu,WWW home page: http//:www.cag.lcs.mit.edu/�rinardAbstract. The �eld of program analysis has focused primarily on se-quential programming languages. But multithreading is becoming in-creasingly important, both as a program structuring mechanism and tosupport e�cient parallel computations. This paper surveys research inanalysis for multithreaded programs, focusing on ways to improve the ef-�ciency of analyzing interactions between threads, to detect data races,and to ameliorate the impact of weak memory consistency models. Weidentify two distinct classes of multithreaded programs, activity manage-ment programs and parallel computing programs, and discuss how thestructure of these kinds of programs leads to di�erent solutions to theseproblems. Speci�cally, we conclude that augmented type systems are themost promising approach for activity management programs, while tar-geted program analyses are the most promising approach for parallelcomputing programs.1 IntroductionMultithreading is a widely used structuring technique for modern software. Pro-grammers use multiple threads of control for a variety of reasons: to build respon-sive servers that interact with multiple clients, to run computations in parallelon a multiprocessor for performance, and as a structuring mechanism for imple-menting rich user interfaces. In general, threads are useful whenever the softwareneeds to manage a set of tasks with varying interaction latencies, exploit multiplephysical resources, or execute largely independent tasks in response to multipleexternal events.Developing analyses for multithreaded programs can be a challenging activ-ity. The primary complication is characterizing the e�ect of the interactions be-tween threads. The obvious approach of analyzing all interleavings of statementsfrom parallel threads fails because of the resulting exponential analysis times. Acentral challenge is therefore developing e�cient abstractions and analyses thatcapture the e�ect of each thread's actions on other parallel threads.Researchers have identi�ed several ways to use the results of analyzing mul-tithreaded programs. Multithreading enables several new kinds of programmingerrors; the potential severity of these errors and di�culty of exposing them via



2testing has inspired the development of analyses that detect these errors stat-ically. Most of the research in this area has focused on detecting data races(which occur when two threads access the same data without synchronizationand one of the accesses is a write) and deadlocks (which occur when threadsare permanently blocked waiting for resources). Researchers have also developedoptimizations for multithreaded programs; some of these optimizations gener-alize existing optimizations for sequential programs while others are speci�c tomultithreaded programs.After surveying research in the analysis and optimization of multithreadedprograms, we discuss the issues associated with detecting data races in moredepth. We �rst identify two distinct classes of multithreaded programs, activ-ity management programs, which use threads to manage a set of conceptuallyconcurrent activities, and parallel computing programs, which use threads to ex-ecute computations in parallel for performance on a multiprocessor. For activitymanagement programs, we conclude that the appropriate mechanism is an aug-mented type system that guarantees that the program is free of data races.Because such a type system would provide information about the potential in-teractions between parallel threads, it could also serve as a foundation for new,very precise analyses. For parallel computing programs, we conclude that the ap-propriate mechanism is a set of specialized analyses, each tailored for a speci�cconcurrency and data usage pattern.The remainder of the paper is structured as follows. Section 2 surveys usesof the analysis information while Section 3 discusses the analyses researchershave developed for multithreaded programs, focusing on ways to improve thee�ciency of analyzing interactions between parallel threads. Sections 4 and 5discuss data race detection for activity management programs and parallel com-puting programs, respectively. Section 6 presents several issues associated withthe use of weak memory consistency models. We conclude in Section 7.2 Analysis UsesResearchers have proposed several uses for analysis information extracted frommultithreaded programs. The �rst use is to enable optimizations, both gener-alizations of traditional compiler optimizations to multithreaded programs andoptimizations that make sense only for multithreaded programs. The second useis to detect anomalies in the parallel execution such as data races or deadlock.2.1 Optimization UsesA problem with directly applying traditional compiler optimizations to multi-threaded programs is that the optimizations may reorder accesses to shared datain ways that may be observed by threads running concurrently with the trans-formed thread [72]. One approach is to generalize standard program representa-tions, analyses, and transformations to safely optimize multithreaded programseven in the presence of accesses to shared data [91, 87, 57, 62, 56, 64]. The presence



3of multithreading may also inspire optimizations with no obvious counterpart inthe optimization of sequential programs. Examples include communication op-timizations [59, 100], optimizing mutual exclusion synchronization [30, 31, 79, 3,98, 11, 13, 21, 82], and optimizing barrier synchronization [96]. A more conserva-tive approach is to ensure that the optimizations preserve the semantics of theoriginal program by �rst identifying regions of the program that do not inter-act with other threads, then applying optimizations only within these regions.The analysis problem is determining which statements may interact with otherthreads and which may not. Escape analysis is an obvious analysis to use forthis purpose | it recognizes data that is captured within the current threadand therefore inaccessible to other threads [11, 21, 98, 13, 82]. The programmingmodel may also separate shared and private data [92, 89, 81, 58], in some cases theanalysis may automatically infer when pointers point to private data [65]. Moreelaborate analyses may recognize actions (such as acquiring a mutual exclusionlock or obtaining the only existing reference to an object) that temporarily givethe thread exclusive access to speci�c objects potentially accessed by multiplethreads. A �nal approach is to expect the programmer to correctly synchronizethe program, then enable traditional compiler optimizations within any regionthat does not contain an action (for example, a synchronization action or threadcreation action) that is designed to mediate interactions between threads [78].This approach has the advantage that it eliminates the need to perform a po-tentially expensive interthread analysis as a prerequisite for applying traditionaloptimizations to multithreaded programs. The (serious) disadvantage is thatoptimization may change the result that the program computes.2.2 Data Race DetectionIn an unsafe language like C, there are a number of program actions that arealmost always the result of programmer error, regardless of the context in whichthey occur. Examples include array bounds violations and accessing memoryafter it has been deallocated. If the program engages in these actions, it canproduce behavior that is very di�cult to understand. Several well-known lan-guage design and implementation techniques (garbage collection, array boundschecks) can completely eliminate these kinds of errors. The cost is additional ex-ecution overhead and a loss of programmer control over aspects of the program'sexecution. The result was that, for many years, the dominant programming pro-gramming language (C) provided no protection at all against this class of errors.For programs that use threads, an analogous error is a data race, which occurswhen multiple threads access the same data without an intervening synchroniza-tion operation, and one of the accesses is a write. A data race is almost alwaysthe result of a programming error, with a common outcome being the corruptionof the accessed data structures. The fact that data races may show up only in-termittently due to di�erent timings on di�erent executions adds an extra layerof complexity not present for sequential programs. The most widely used mul-tithreaded languages, Java, C, and C++ (augmented with a threads package),leave the programmer totally responsible for avoiding data races by correctly



4synchronizing the computation. The result is that many systems builders viewthe use of threads as an inherently unsafe programming practice [76].Presented with this problem, researchers have developed a set of analysesfor determining if a program may have a data race. Some analyses allow theprogrammer to declare an association between data and locks, then check thatthe program holds the lock whenever it accesses the corresponding data [94, 28].Other analyses trace the control transfers associated with the use of synchroniza-tion constructs such as the post and wait constructs used in parallel dialects ofFortran [71, 18, 36, 17], the Ada rendezvous constructs [95, 99, 33, 70, 35], or theJava wait and notify constructs [73, 74]. The goal is to determine that the syn-chronization actions temporally separate con
icting accesses to shared data. Insome cases it may be important to recognize that parallel tasks access disjoint re-gions of the same data structure. Researchers have developed many sophisticatedtechniques for extracting or verifying this kind of information. There are twobroad categories: analyses that characterize the accessed regions of dense matri-ces [8, 53, 7, 50, 77, 9, 5, 38, 47, 84], and analyses that extract or verify reachabilityproperties of linked data structures [60, 19, 51, 43, 85]. Although many of theseanalyses were originally developed for the automatic parallelization of sequen-tial programs, the basic approaches should generalize to handle the appropriatekinds of multithreaded programs. Researchers have also developed dynamic racedetection algorithms, which monitor a running program to detect races in thatspeci�c execution [32, 88, 20], but provide no guarantees about other executions.Despite the sophistication of existing static techniques, the diversity andcomplexity of sharing patterns in multithreaded programs means that the staticdata race detection problem is still far from solved. In fact, as we discuss furtherin Section 4, we believe the ultimate solution for most programs will involvean augmented type system that eliminates the possibility of data races at thelanguage level.2.3 Deadlock DetectionResearchers have developed a variety of analyses for detecting potential dead-locks in Ada programs which use rendezvous synchronization [95, 99, 69, 29, 66,34, 24, 16, 12]. A rendezvous takes place between a call statement in one threadand an accept statement in another. The analyses match corresponding calls andaccepts to determine if every call will eventually participate in a rendezvous. Ifnot, the program is considered to deadlock. We note that deadlock tradition-ally arises from circular waiting to acquire resources, and is a classic problemin multithreaded programs. In this context, programs typically use mutual ex-clusion synchronization rather than rendezvous synchronization. We expect thata deadlock detection analysis for programs that use mutual exclusion synchro-nization would obtain a partial order on the acquired resources and check thatthe program always respects this order. The order could be obtained from theprogrammer or extracted automatically from an analysis of the program.



53 Analysis AlgorithmsWe next discuss some of the issues that arise when applying standard approachesto analyze multithreaded programs. We focus on ways to improve the e�ciencyof analyzing interactions between di�erent threads.3.1 Data
ow Analysis For Multithreaded ProgramsData
ow analysis performs an abstract interpretation of the program to dis-cover program invariants at each program point [55, 54, 26]. Conceptually, onecan view these analyses as propagating information along control-
ow paths, anapproach that works reasonably well for sequential programs in part becauseeach statement typically has few direct control-
ow successors. The straightfor-ward generalization of this approach to multithreaded programs would propagateinformation between statements of parallel threads [27, 22]. The issue is that thedirect control-
ow successors of a statement in one thread typically include mostif not all of the statements in all parallel threads. Propagating information alongall of these potential control-
ow edges leads to an algorithm with intractableexecution times. The driving question is how to reduce the number of paths thatthe analysis must explicitly consider.Control-Flow Analysis One approach is to analyze the program's use of syn-chronization constructs to discover regions of tasks that may not execute con-currently, then remove edges between these regions. The characteristics of theanalysis depend on the speci�c synchronization constructs. Researchers have de-veloped algorithms for programs that use the post and wait constructs used inparallel dialects of Fortran [18, 36, 17], for the Ada rendezvous constructs [95, 33,70, 35], and for the Java wait and notify constructs [73, 74]. The basic idea be-hind these algorithms is to match each blocking action (such as a wait or accept)with its potential corresponding trigger actions (such as post or notify) fromother threads. The analysis uses the information to determine that the state-ments before the trigger action must execute before the statements after theblocking action.In general, the algorithms for post and wait constructs are designed to workwithin parallel loops that access dense matrices. These programs use the postand wait constructs to ensure that a write to an array element in one parallelloop iteration precedes reads to that same element in other iterations. The tech-niques therefore focus on correlating the array accesses with the correspondingpost and wait constructs that order them. The algorithms for the Ada ren-dezvous and Java wait and notify constructs tend to be most e�ective forprograms in which the threads execute di�erent code, enabling the analysis todistinguish between threads at the level of the code that each thread executes.We expect the algorithms to be less e�ective for server programs in which manythreads execute the same code [61].



6Coarsening The Analysis Granularity Another way to reduce the analy-sis time is to collect adjacent instructions from threads into larger groups, thentreat each group as a unit in the interthread analysis [97, 45, 23, 75]. The typi-cal approach is to collect together instructions that do not interact with otherthreads; in this case the resulting coarsening of the analysis granularity does nota�ect the precision of the �nal analysis result. Because the relevant interactionsusually take place at instructions from di�erent threads that access the samedata, the presence of references may signi�cantly complicate the determinationof which instructions may interact with other threads. One approach is to inter-leave a pointer analysis with the analysis that determines the instructions thatmay interact with other threads [23, 25], another approach would use the resultsof a previous e�cient pointer analysis to �nd these instructions (candidate anal-yses include 
ow-insensitive analyses [93, 4] and analyses that do not analyzeinterleavings of instructions from di�erent threads [83]).Interference-Based Analyses Interference-based analyses maximally coarsenthe analysis granularity| they analyze each thread as a unit to compute a resultthat characterizes all potential interactions with other threads. The extractedanalysis information then 
ows from the end of each thread to the beginning ofall other parallel threads. For standard bitvector analyses such as live variablesand reaching de�nitions, this approach somewhat surprisingly delivers an e�-cient algorithm with the same precision as an algorithm that explicitly analyzesall possible interleavings [57]. For more complicated analyses such as pointeranalysis, existing algorithms based on this approach overestimate the e�ect ofpotential interactions between threads and lose precision [83, 86]. Finally, if thelanguage semantics rules out the possibility of interactions between tasks, ana-lyzing each task as a unit seems obviously the correct way to proceed [46].3.2 Flow-Insensitive AnalysesUnlike data
ow analyses, 
ow-insensitive analyses produce the same result re-gardless of the order in which the statements appear in the program or thenumber of times that they are executed [93, 4, 37]. They therefore trivially ex-tend to handle multithreaded programs. The analysis results can be used directlyor as a foundation to enhance the e�ectiveness of more detailed 
ow-sensitiveanalyses.3.3 ChallengesThe primary challenge for analyzing multithreaded programs remains develop-ing abstractions and analyses that precisely characterize interactions betweenthreads. For explicit interactions that take place at synchronization constructs,the primary goal is to match interacting pairs of constructs. For implicit inter-actions that take place at memory locations accessed by multiple threads, theprimary goal is to �nd instructions that access the same memory locations, then



7characterize the combined e�ect of the instructions. The use of dynamic memoryallocation, object references, and arrays signi�cantly complicates the analysis ofthese implicit interactions because they force the analysis to disambiguate theaccesses to avoid analyzing interactions that never occur when the programruns. The problem is especially acute for programs that use references becauseinteractions between instructions that access references may, in turn, a�ect thelocations that other instructions access. One of the main challenges is thereforeto develop e�cient disambiguation analyses for multithreaded programs. Wesee several potential foundations for these analyses: an augmented type system(see Section 4), e�cient interference-based or 
ow-insensitive pointer analyses,or exploiting structured control constructs such as parallel loops to con�ne theconcurrency to a small part of the program and enable the use of very precise,detailed analyses.Many existing analyses assume a very simple model of multithreaded exe-cution characterized by the absence of one or more of dynamic object creation,dynamic thread creation, references to objects (including thread objects), andprocedure or method calls. Given the pervasive use of these constructs in manymultithreaded programs, an important challenge is to develop algorithms thatcan successfully analyze programs that use these constructs.4 Data Race Freedom in Activity Management ProgramsGiven the problems associated with data races and the current inability of au-tomated techniques to verify that a range of programs are free of data races,techniques that guarantee data race freedom are of interest. The primary issuethat shapes the �eld is the reason for using multiple threads and the resultingdata usage patterns of the program. In this section we focus on activity manage-ment programs, or programs that use threads to manage a set of conceptuallyparallel activities such as interacting with a remote client [10, 49]. Because ofthe loose connection between the computations of the threads, these programstypically use an unstructured form of concurrency in which each thread executesindependently of its parent thread. These programs typically manipulate severaldi�erent kinds of data with di�erent synchronization requirements. To success-fully verify data race freedom for these programs, the implementation must takethese di�erences into account and use algorithms tailored for the properties thatare relevant for each kind of data.{ Private Data: Data accessed by only a single thread.{ Inherited Data: Data created or initialized by a parent thread, then passedas a parameter to a child thread. Once the child threads starts its execution,the parent thread no longer accesses the data.{ Migrating Data: Data that is passed between parallel threads, often aspart of producer/consumer relationships. Although multiple threads accessmigrating data, at each point in time there is a single thread that has con-ceptual ownership of the data and no other threads access the data untilownership changes.



8{ Published Data: Data that is initialized by a single thread, then distributedto multiple reader threads for read-only access.{ Mutex Data: Data that is potentially accessed and updated by multipleparallel threads, with the updates kept consistent with mutual exclusionsynchronization.{ Reader/Writer Data: An extension of mutex data to support concurrentaccess by readers and exclusive access by writers.Program actions temporally separate accesses from di�erent threads and en-sure data race freedom. For inherited data, the thread creation action separatesthe parent accesses from the child accesses. For mutex and reader/writer data,the lock acquire and release actions separate accesses from di�erent threads. Forpublished data, the action that makes a reference to the data accessible to mul-tiple reader threads separates the writes of the initializing thread from the readsof the reader threads. For migrating data, the actions that transfer ownership ofthe data from one thread to the next separate the accesses. Mutex, published,and migrating data often work together to implement common communicationpatterns in multithreaded programs. For example, a shared queue usually con-tains mutex data (the queue header) and migrating data (the elements of thequeue).Given the diversity of the di�erent kinds of data and the complexity of theiraccess patterns, we believe it will be extremely di�cult for any analysis to au-tomatically reconstruct enough information to verify data race freedom in thefull range of activity management programs. We therefore focus on languagemechanisms that enable the programmer and the analysis to work together toestablish that the program is free of data races.4.1 Augmented Type Systems for Race-Free ProgramsMany of the �rst researchers to write multithreaded programs were acutely awareof the possibility of data races, and developed languages that prevented theprogrammer from writing programs that contained them. The basic idea was toforce each thread to acquire exclusive ownership of data before writing it, eitherby acquiring a lock on the data or by ensuring that the data is inaccessibleto other threads. Concurrent Pascal, for example, carefully limits the use ofreferences to ensure that the sharing between threads takes place only via datacopied into and out of mutex data encapsulated in monitors [15]. In e�ect, thelanguage uses copy operations to convert migrating, inherited, and publisheddata into private data. Because these copy operations take place in the contextof a synchronized update to mutex data, they execute atomically with respect tothe threads sharing the data. It is possible to generalize this approach to handlea wider range of data structures, including linked data structures containingreferences [6].Another approach is to provide an augmented type system that enables theprogrammer to explicitly identify shared data accessible to multiple threads [40,41, 14]. Each piece of shared data is associated with a mutual exclusion lock and



9the type system enforces the constraint that the program holds the associatedlock whenever it accesses the corresponding shared data. The type system mayalso support a variety of other kinds of data that can be safely accessed withoutsynchronization; examples include private data accessible to only a single thread,constant data that is never modi�ed once it has been initialized, and value datathat may be copied into and out of shared data. It is also possible to use alinear type system to ensure the existence of at most one reference to a givenpiece of data, with the data owned by the thread that holds its reference [14]. Inthis scenario, the movements of inherited and migrating data between threadscorrespond to acquisitions and releases of the unique reference to the movingdata.In spirit, these type systems extend the basic safe monitor approach devel-oped in the 1970s to work for modern languages with linked data structures.The key challenge is controlling the use of references to eliminate the possibil-ity of inadvertently making unsynchronized data reachable to multiple threadsconcurrently. Note that the most general solution to this problem would be totrack all references to inherited, migrating, or published data and verify thatthreads did not use these references to incorrectly access the data. The di�cultyof solving this general problem inspired the variety of other, more constrained,solutions described above.4.2 Future Directions in Augmented Type SystemsThe next step is to use some combination of language design and program anal-ysis to better understand the referencing behavior of the program and support awider range of thread interaction patterns. We anticipate that the implementa-tion will focus on inherited, migrating, and published data. We view the situationfor mutex and read/write data as comparatively settled | current type systemsor their relatively straightforward generalizations should be adequate for ensur-ing that mutex data is correctly synchronized. The implementation will thereforefocus on extracting or verifying the following kinds of information:{ Reachability: We anticipate that the implementation will use reachabilityinformation to verify the correct use of private, migrating, and inheriteddata. Speci�cally, it will verify that private data is reachable only from thethread that initially created the data and that when an ownership changetakes place for inherited or migrating data, the data is inaccessible to theprevious owner.{ Write Checking: For published data, which is reachable to multiple threads,the implementation must verify that the data is never written once it be-comes accessible to multiple threads. There are two key components: identi-fying the transition from writable to read only, and verifying the absence ofwrites after the transition.For read/write data, we anticipate that programmers will use locking con-structs that enable reads to execute concurrently but serialize writes withrespect to all other accesses. The implementation must verify that all reads



10 are protected by a held read lock and all writes are protected by a held writelock.4.3 Impact on Other AnalysesBecause the augmented type information would enable the analysis to dramat-ically reduce the number of potential interthread interactions that it must con-sider, we expect it to enable researchers to develop quite precise and practicalanalyses that extract or verify detailed properties of the shared data. We antici-pate an approach that divides the program into atomic regions that access onlyshared or private data, then analyzes the program at the granularity of theseregions. The analysis would analyze sequential interactions between regions fromthe same thread and some subset of the interleaved interactions between regionsfrom di�erent threads that access the same data, obtaining a result valid for allinterleavings that might occur when the program runs. In e�ect, the analysiswould view each region as an operation on shared or private data. Potentiallyextracted or veri�ed properties include representation invariants for shared data,monotonicity properties of operations on shared data, and recognition of sets ofcommuting operations on shared data.4.4 Adoption ProspectsFor activity management programs, we anticipate that it will be both technicallyfeasible and valuable to develop an expressive augmented type system that guar-antees data race freedom. The key question is whether such a type system wouldbe accepted in practice. Factors that would in
uence its acceptance include howwidespread multithreaded programming becomes, the ability of programmers todevelop programs without data races in the absences of such a type system,the consequences of the data races programmers leave in the code, how wellthe extended type system supports the full range of thread interaction patterns,and whether programmers perceive the extended information as a burden ora bene�t. One potential approach might separate the extended type informa-tion from the rest of program, enabling programmers to use the standard typesystem for sequential programs and the extended system for multithreaded pro-grams. Another approach might provide standard defaults that work for mostcases, with the programmer adjusting the defaults only when necessary. We notethat over time, sequential languages have moved towards providing more safetyguarantees, which argues for acceptance of increased safety in multithreadedlanguages.5 Data Race Freedom in Parallel Computing ProgramsParallel computing programs use threads to subdivide a single computationaltask into multiple parallel subtasks for execution on a multiprocessor. Unlike



11activity management programs, parallel computing programs often execute a se-quence of steps, with the concurrency exploited within but not between steps.The structure therefore closely corresponds to the structure one would use fora sequential program that performed the same computation. Because di�erentsteps may use the same piece of data in di�erent ways, it is crucial for the im-plementation to identify the threads in di�erent phases and treat each phaseseparately. The di�culty of identifying parallel phases depends on the speci�cconcurrency generation constructs. If the program uses long-lived threads thatpersist across steps but periodically synchronize at a barrier, reconstructing thestructure is a challenging analysis problem [2]. If the program uses structuredcontrol constructs such as parallel loops or recursively generates parallel com-putations in a divide and conquer fashion [42], the parallel phases are obviousfrom the syntactic structure of the program.Parallel computing programs use many of the same kinds of data as activitymanagement programs. An additional complication is the fact that the paral-lel tasks often access disjoint parts of the same data structure. Over the yearsresearchers have developed many sophisticated techniques for extracting or ver-ifying this kind of information, both for programs that access dense matrices [8,53, 7, 50, 77, 9, 5, 38, 47, 84] and for programs that manipulate linked data struc-tures [60, 19, 51, 43, 85]. Parallel computing programs may also use reductionsand commuting operations, in which case it may be important to generalizealgorithms from the �eld of automatic parallelization to verify that the pro-gram executes deterministically [39, 44, 48, 80]. In general, the programmer canreasonably develop programs with quite sophisticated access patterns and datastructures, with the data race freedom of the program depending on the detailedproperties of the data structures and the algorithms that manipulate them. Ittherefore seems unlikely that a general approach would be able to verify datarace freedom for the full range of parallel computing programs.Because of the close correspondence between the parallel and sequential ver-sions of the program, it is often useful to view the threading constructs in parallelcomputing programs as annotations that express the programmer's expectationsabout the lack of dependences between parts of the program rather than as con-structs that must generate parallel computation to preserve the semantics of theprogram. In this context, the analysis problem would be framed as a sequentialprogram analysis that determines whether the identi�ed parts of the programlack dependences. An advantage of this approach is that it eliminates the needto analyze interactions between parallel threads.In general, we view guaranteed data race freedom as both less feasible andpotentially less important for parallel computing programs than for activitymanagement programs. It is less feasible because it may depend on very de-tailed properties of arbitrarily sophisticated array access patterns or linked datastructures. It is potentially less important because the parallelism tends to becon�ned within single parallel algorithms rather than operating across the entireexecution of the program. While the algorithms in parallel computing programsmay have very complicated internal structure, the fact that the potential inter-



12actions can be localized signi�cantly increases the programmer's ability to avoidinadvertent data races. Somewhat paradoxically, these properties raise the valueof automatic program analysis algorithms that can verify the data race freedomof parallel computing programs. There is room for a suite of targeted analyses,each of which is designed to analyze programs that access a certain kind of datain a certain way. The ability to con�ne the concurrency within a small part ofthe program makes it feasible to use very detailed, precise analyses.6 Weak Memory Consistency ModelsFor a variety of performance reasons, many implementations of multithreadedlanguages have a weak memory consistency model that allows the implementa-tion to change the order in which writes from one thread are observed in parallelthreads [1, 78]. Moreover, standard weak consistency models enable executions inwhich di�erent threads observe di�erent orders for the same sequence of writesfrom a parallel thread. Weak consistency models are often considered to be coun-terintuitive because they break the abstraction of a single memory accessed bysequentially executing threads [52].One might wonder how programmers are expected to successfully developprograms in languages with weak memory consistency models. Conceptually,weak consistency models do not reorder writes across synchronization operations.So the intention is that programmers will write properly synchronized, data-racefree programs and never observe the reorderings. It is worth noting that weakconsistency models are complex enough that researchers are still in the process ofdeveloping a rigorous semantics for them [67, 68]. And the proposed semantics aresigni�cantly more complicated than the standard semantics for multithreadedprograms, which simply interleave the statements from parallel threads.6.1 Short-Term Program Analysis OpportunitiesIn the short term, weak memory consistency models will be a fact of life fordevelopers of multithreaded software. Most modern processors implement weakconsistency models in hardware, and Java speci�es a weak consistency modelfor multithreaded programs, in part because if threads can access shared datawithout synchronization, many standard compiler optimizations may change theorder in which threads perform (and other threads potentially observe) accessesto shared data [78]. In this context, the alternative to a weak consistency modelis to disable these optimizations unless the compiler performs the global analysisrequired to determine that parallel threads do not observe the reordered mem-ory accesses [59, 64]. Requiring the extraction of this kind of global informationas part of the standard compilation process is clearly problematic, primarilybecause it rules out optimized separate compilation.Another approach is to develop analyses and transformations that restore theabstraction of a single consistent shared memory with no reordered writes. Thebasic idea is to analyze the program, discover situations in which the threads



13may observe reordered writes, then augment the program with additional in-structions that prevent the hardware from reordering these writes [90, 63]. Thisresearch holds out the promise of providing the e�ciency of a weak memoryconsistency model in the implementation combined with the abstraction of asingle shared memory for the programmer. Because programs do not observethe e�ect of a weak consistency model unless they access shared data withoutexplicit synchronization, we see these techniques as appropriate primarily forlow-level programs that synthesize their own custom synchronization operationsout of shared memory.6.2 Impact on Existing Analysis AlgorithmsAlmost all existing analyses for multithreaded programs assume an interleav-ing model of concurrency. But weak consistency models generally increase theset of possible program behaviors as compared with the standard interleavingmodel, raising the possibility that existing analyses are unsound in the pres-ence of weak consistency models. Furthermore, the complexity of the semanticsfor programs with weak consistency models increases the di�culty of developingprovably sound analyses for these programs. We suspect that many existing anal-yses are sound for programs with weak consistency models [4, 93, 37, 57, 83], butthis soundness is clearly inadvertent, in some cases a consequence of imprecisionin the analysis, and not necessarily obvious to prove formally.We expect the di�culty of dealing with weak memory consistency modelsto inspire multiphase approaches. The �rst phase will either verify the absenceof data races or transform the program to ensure that it does not observe anyof the possible reorderings. The subsequent phases will then assume the sim-pler interleaving model of concurrency. Another alternative would be to use anaugmented type system that guarantees race-free programs (see Section 4). Theanalysis could use the type information to identify regions within which it couldaggressively reorder accesses to optimize the program without changing the re-sult that the program computes.7 ConclusionMultithreaded programs are signi�cantly more complicated to analyze than se-quential programs. Many analyses have focused on characterizing interactionsbetween threads to detect safety problems such as data races and deadlock or tohide anomalies associated with weak memory consistency models. Future direc-tions include generalizing abstractions and analyses to better handle constructssuch as dynamically allocated memory, dynamic thread creation, procedures andmethods, and threads as �rst-class objects. We also anticipate the further de-velopment of augmented type systems for race-free programs, which will reducethe potential interthread interactions that the analysis must consider and enablethe development and use of more detailed, precise analyses.



14References1. S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.IEEE Computer, 29(12):66{76, Dec. 1996.2. A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th AnnualACM Symposium on the Principles of Programming Languages, Paris, France,Jan. 1998. ACM.3. J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static analyses for eliminat-ing unnecessary synchronization from Java programs. In Proceedings of the 6thInternational Static Analysis Symposium, Sept. 1999.4. L. O. Andersen. Program Analysis and Specialization for the C ProgrammingLanguage. PhD thesis, DIKU, University of Copenhagen, May 1994.5. D. Bacon, S. Graham, and O. Sharp. Compiler transformations for high-performance computing. ACM Computing Surveys, 26(4):345{420, Dec. 1994.6. D. Bacon, R. Strom, and A. Tarafdar. Guava: A dialect of Java without data races.In Proceedings of the 15th Annual Conference on Object-Oriented ProgrammingSystems, Languages and Applications, Portland, OR, Oct. 2000.7. V. Balasundaram and K. Kennedy. A technique for summarizing data access andits use in parallelism enhancing transformations. In Proceedings of the SIGPLAN'89 Conference on Program Language Design and Implementation, Portland, OR,June 1989.8. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-lishers, Boston, MA, 1988.9. U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic programparallelization. Proceedings of the IEEE, 81(2):211{243, Feb. 1993.10. A. Birrell. Systems Programming with Modula-3, chapter An Introduction toProgramming with Threads. Prentice-Hall, Englewood Cli�s, N.J., 1991.11. B. Blanchet. Escape analysis for object oriented languages. application to Java.In Proceedings of the 14th Annual Conference on Object-Oriented ProgrammingSystems, Languages and Applications, Denver, CO, Nov. 1999.12. J. Blieberger, B. Burgstaller, and B. Scholz. Symbolic data
ow analysis for de-tecting deadlocks in Ada tasking programs. In Proceedings of the 5th InternationalConference on Reliable Software Technologies Ada-Europe 2000, June 2000.13. J. Bogda and U. Hoelzle. Removing unnecessary synchronization in Java. InProceedings of the 14th Annual Conference on Object-Oriented Programming Sys-tems, Languages and Applications, Denver, CO, Nov. 1999.14. C. Boyapati and M. Rinard. A parameterized type system for race-free Javaprograms. In Proceedings of the 16th Annual Conference on Object-Oriented Pro-gramming Systems, Languages and Applications, Tampa Bay, FL, Oct. 2001.15. P. Brinch-Hansen. The programming language Concurrent Pascal. IEEE Trans-actions on Software Engineering, SE-1(2):199{207, June 1975.16. E. Bruneton and J. Pradat-Peyre. Automatic veri�cation of concurrent Adaprograms. In Proceedings of the 4th International Conference on Reliable SoftwareTechnologies Ada-Europe 1999, June 2000.17. D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in aparallel programming tool. In Proceedings of the 2nd ACM SIGPLAN Symposiumon Principles and Practice of Parallel Programming, Seattle, WA, Mar. 1990.18. D. Callahan and J. Subhlok. Static analysis of low-level synchronization. InProceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and Dis-tributed Debugging, Madison, WI, May 1988.



1519. D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures. InProceedings of the SIGPLAN '90 Conference on Program Language Design andImplementation, pages 296{310, White Plains, NY, June 1990. ACM, New York.20. G. Cheng, M. Feng, C. Leiserson, K. Randall, and A. Stark. Detecting dataraces in Cilk programs that use locks. In Proceedings of the 10th Annual ACMSymposium on Parallel Algorithms and Architectures, June 1998.21. J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midki�. Escape analysis forJava. In Proceedings of the 14th Annual Conference on Object-Oriented Program-ming Systems, Languages and Applications, Denver, CO, Nov. 1999.22. J. Chow and W. Harrison III. Compile time analysis of programs that sharememory. In Proceedings of the 19th Annual ACM Symposium on the Principlesof Programming Languages, Albuquerque, NM, Jan. 1992. ACM, New York.23. J. Chow and W. Harrison III. State space reduction in abstract interpretation ofparallel programs. In Proceedings of the 1994 IEEE International Conference onComputer Language, May 1994.24. J. Corbett. Evaluating deadlock detection methods for concurrent software. IEEETransactions on Software Engineering, 22(3), Mar. 1996.25. J. Corbett. Using shape analysis to reduce �nite-state models of concurrent Javaprograms. In Proceedings of the International Symposium on Software Testingand Analysis, Mar. 1998.26. P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Modelfor Static Analysis of Programs by Construction or Approximation of Fixpoints.In Conference Record of the 4th Annual ACM Symposium on the Principles ofProgramming Languages, Los Angeles, CA, 1977.27. P. Cousot and R. Cousot. Automatic Program Construction Techniques, chap-ter Invariance Proof Methods and Analysis Techniques for Parallel Programs.Macmillan Publishing Company, New York, NY, 1984.28. D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. Extended static checking. Tech-nical Report 159, Compaq Systems Research Center, 1998.29. L. Dillon. Using symbolic execution for veri�cation of Ada tasking programs.ACM Transactions on Programming Languages and Systems, 12(4), 1990.30. P. Diniz and M. Rinard. Synchronization transformations for parallel comput-ing. In Proceedings of the 24th Annual ACM Symposium on the Principles ofProgramming Languages, pages 187{200, Paris, France, Jan. 1997. ACM, NewYork.31. P. Diniz and M. Rinard. Lock coarsening: Eliminating lock overhead in auto-matically parallelized object-based programs. Journal of Parallel and DistributedComputing, 49(2):2218{244, Mar. 1998.32. A. Dinning and E. Schonberg. Detecting access anomalies in programs withcritical sections. In Proceedings of the ACM/ONR Workshop on Parallel andDistributed Debugging, Santa Cruz, CA, May 1991.33. E. Duesterwald and M. So�a. Concurrency analysis in the presence of proceduresusing a data-
ow analysis framework. In Proceedings of the ACM Symposium onAnalysis, Veri�cation, and Testing, Victoria, B.C., Oct. 1991.34. S. Duri, U. Buy, R. Devarapalli, and S. Shatz. Application and experimentalevaluation of state space reduction methods for deadlock analysis in Ada. ACMTransactions on Software Engineering and Methodology, 3(4), Oct. 1994.35. M. Dwyer and L. Clarke. Data-
ow analysis for verifying properties of concur-rent programs. In Proceedings of the 2nd ACM SIGSOFT Symposium on theFoundations of Software Engineering, New Orleans, LA, Dec. 1994.



1636. P. Emrath, S. Ghosh, and D. Padua. Event synchronization analysis for debuggingparallel programs. In Proceedings of Supercomputing '89, Reno, NV, Nov. 1989.IEEE Computer Society Press, Los Alamitos, Calif.37. M. Fahndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle elimination ininclusion constraint graphs. In Proceedings of the SIGPLAN '98 Conference onProgram Language Design and Implementation, Montreal, Canada, June 1998.38. P. Feautrier. Compiling for massively parallel architectures: A perspective. Mi-croprogramming and Microprocessors, 1995.39. A. Fisher and A. Ghuloum. Parallelizing complex scans and reductions. In Pro-ceedings of the SIGPLAN '94 Conference on Program Language Design and Im-plementation, pages 135{144, Orlando, FL, June 1994. ACM, New York.40. C. Flanagan and M. Abadi. Types for safe locking. In Proceedings of the 8thEuropean Symposium on Programming, Amsterdam, The Netherlands, Mar. 2000.41. C. Flanagan and S. Freund. Type-based race detection for Java. In Proceedings ofthe SIGPLAN '00 Conference on Program Language Design and Implementation,Vancouver, Canada, June 2000.42. M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 multi-threaded language. In Proceedings of the SIGPLAN '98 Conference on ProgramLanguage Design and Implementation, Montreal, Canada, June 1998.43. R. Ghiya and L. Hendren. Is it a tree, a DAG or a cyclic graph? A shape anal-ysis for heap-directed pointers in C. In Proceedings of the 23rd Annual ACMSymposium on the Principles of Programming Languages, pages 1{15, Jan. 1996.44. A. Ghuloum and A. Fisher. Flattening and parallelizing irregular, recurrent loopnests. In Proceedings of the 5th ACM SIGPLAN Symposium on Principles andPractice of Parallel Programming, pages 58{67, Santa Barbara, CA, July 1995.ACM, New York.45. P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedingsof the Sixth Annual IEEE Symposium on Logic in Computer Science, Amsterdam,The Netherlands, July 1991.46. D. Grunwald and H. Srinivasan. Data 
ow equations for explicitly parallel pro-grams. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles andPractice of Parallel Programming, San Diego, CA, May 1993.47. M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic parallelization of recursiveprocedures. In Proceedings of the 1999 Conference on Parallel Algorithms andCompilation Techniques (PACT) '99, Newport Beach, CA, Oct. 1999.48. M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-grain parallelism using an interprocedural parallelizing compiler. In Proceedingsof Supercomputing '95, San Diego, CA, Dec. 1995. IEEE Computer Society Press,Los Alamitos, Calif.49. C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M. Weiser. Using threads ininteractive systems: A case study. In Proceedings of the Fourteenth Symposiumon Operating Systems Principles, Asheville, NC, Dec. 1993.50. P. Havlak and K. Kennedy. An implementation of interprocedural bounded reg-ular section analysis. IEEE Transactions on Parallel and Distributed Systems,2(3):350{360, July 1991.51. L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer datastructures: Improving the analysis and transformation of imperative programs. InProceedings of the SIGPLAN '92 Conference on Program Language Design andImplementation, San Francisco, CA, June 1992. ACM, New York.52. M. Hill. Multiprocessors should support simple memory consistency models. IEEEComputer, 31(8), Aug. 1998.



1753. F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th An-nual ACM Symposium on the Principles of Programming Languages, San Diego,CA, Jan. 1988.54. J. Kam and J. Ullman. Global data 
ow analysis and iterative algorithms. Journalof the ACM, 23(1):159{171, Jan. 1976.55. G. Kildall. A uni�ed approach to global program optimization. In ConferenceRecord of the Symposium on Principles of Programming Languages. ACM, Jan.1973.56. J. Knoop and B. Ste�en. Code motion for explicitly parallel programs. In Pro-ceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice ofParallel Programming, Atlanta, GA, May 1999.57. J. Knoop, B. Ste�en, and J. Vollmer. Parallelism for free: E�cient and optimalbitvector analyses for parallel programs. ACM Transactions on ProgrammingLanguages and Systems, 18(3):268{299, May 1996.58. A. Krishnamurthy, D. Culler, A. Dusseau, S. Goldstein, S. Lumetta, T. vonEicken, and K. Yelick. Parallel programming in Split-C. In Proceedings of Super-computing '93, Nov. 1993.59. A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared addressspace programs. Journal of Parallel and Distributed Computing, 38(2), Nov. 1996.60. J. Larus and P. Hil�nger. Detecting con
icts between structure accesses. InProceedings of the SIGPLAN '88 Conference on Program Language Design andImplementation, Atlanta, GA, June 1988. ACM, New York.61. D. Lea. Concurrent Programming in Java: Design Principles and Patterns.Addison-Wesley, Reading, Mass., San Mateo, CA, 1996.62. J. Lee, S. Midki�, and D. Padua. A constant propagation algorithm for explicitlyparallel programs. International Journal of Parallel Programming, 26(5), 1998.63. J. Lee and D. Padua. Hiding relaxed memory consistency with compilers. In Pro-ceedings of the 2000 International Conference on Parallel Algorithms and Com-pilation Techniques, Philadelphia, PA, Oct. 2000.64. J. Lee, D. Padua, and S. Midki�. Basic compiler algorithms for parallel programs.In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and Practiceof Parallel Programming, Atlanta, GA, May 1999.65. B. Liblit and A. Aiken. Type systems for distributed data structures. In Pro-ceedings of the 27th Annual ACM Symposium on the Principles of ProgrammingLanguages, Boston, MA, Jan. 2000.66. D. Long and L. Clarke. Data 
ow analysis of concurrent systems that use therendezvous model of synchronization. In Proceedings of the ACM Symposium onAnalysis, Veri�cation, and Testing, Victoria, B.C., Oct. 1991.67. J. Maessen, Arvind, and X. Shen. Improving the Java memory model using CRF.In Proceedings of the 15th Annual Conference on Object-Oriented ProgrammingSystems, Languages and Applications, Portland, OR, Oct. 2000.68. J. Manson and W. Pugh. Core multithreaded semantics for Java. In Proceedingsof the Joint ACM Java Grande - ISCOPE 2001 Conference, Stanford, CA, June2001.69. S. Masticola and B. Ryder. Static in�nite wait anomaly detection in polynomialtime. In Proceedings of the 1990 International Conference on Parallel Processing,St. Charles, IL, Aug. 1990.70. S. Masticola and B. Ryder. Non-concurrency analysis. In Proceedings of the 4thACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,San Diego, CA, May 1993.



1871. S. Midki� and D. Padua. Compiler algorithms for synchronization. IEEE Trans-actions on Computers, 36(12):1485{1495, Dec. 1987.72. S. Midki� and D. Padua. Issues in the optimization of parallel programs. InProceedings of the 1990 International Conference on Parallel Processing, pagesII{105{113, 1990.73. G. Naumovich, G. Avrunin, and L. Clarke. Data 
ow analysis for checking prop-erties of concurrent Java programs. In Proceedings of the 21st International con-ference on Software Engineering, Los Angeles, CA, May 1999.74. G. Naumovich, G. Avrunin, and L. Clarke. An e�cient algorithm for computingMHP information for concurrent Java programs. In Proceedings of the 7th ACMSIGSOFT Symposium on the Foundations of Software Engineering, Toulouse,France, Sept. 1999.75. G. Naumovich, L. Clarke, and J. Cobleigh. Using partial order techniques toimprove performance of data 
ow analysis based veri�cation. In Proceedings ofthe ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Toolsand Engineering, Toulouse, France, Sept. 1999.76. J. Ousterhout. Why threads are a bad idea (for most purposes). Invited Talk atthe 1996 USENIX Technical Conference.77. W. Pugh. A practical algorithm for exact array dependence analysis. Commun.ACM, 35(8):102{114, Aug. 1992.78. W. Pugh. Fixing the Java memory model. In Proceedings of the ACM 1999 JavaGrande Conference, San Francisco, CA, June 1999.79. M. Rinard. E�ective �ne-grain synchronization for automatically parallelized pro-grams using optimistic synchronization primitives. ACM Transactions on Com-puter Systems, 17(4):337{371, Nov. 1999.80. M. Rinard and P. Diniz. Commutativity analysis: A new analysis technique forparallelizing compilers. ACM Transactions on Programming Languages and Sys-tems, 19(6):941{992, Nov. 1997.81. M. Rinard and M. Lam. The design, implementation, and evaluation of jade. ACMTransactions on Programming Languages and Systems, 20(3):483{545, May 1998.82. E. Ruf. E�ective synchronization removal for Java. In Proceedings of the SIG-PLAN '00 Conference on Program Language Design and Implementation, Van-couver, Canada, June 2000.83. R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. InProceedings of the SIGPLAN '99 Conference on Program Language Design andImplementation, Atlanta, GA, May 1999.84. R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indexes,and accessed memory regions. In Proceedings of the SIGPLAN '00 Conference onProgram Language Design and Implementation, Vancouver, Canada, June 2000.85. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languageswith destructive updating. ACM Transactions on Programming Languages andSystems, 20(1):1{50, Jan. 1998.86. A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded Javaprograms. In Proceedings of the 8th ACM SIGPLAN Symposium on Principlesand Practice of Parallel Programming, Snowbird, UT, June 2001.87. V. Sarkar and B. Simons. Parallel program graphs and their classi�cation. InProceedings of the Sixth Workshop on Languages and Compilers for Parallel Com-puting, Portland, OR, Aug. 1993.88. S. Savage, M. Burrows, G. Nelson, P. Solbovarro, and T. Anderson. Eraser:A dynamic race detector for multi-threaded programs. In Proceedings of the



19Sixteenth Symposium on Operating Systems Principles, Saint-Malo, France, Oct.1997.89. D. Scales and M. S. Lam. The design and evaluation of a shared object systemfor distributed memory machines. In Proceedings of the 1st USENIX Symposiumon Operating Systems Design and Implementation. ACM, New York, Nov. 1994.90. D. Shasha and M. Snir. E�cient and correct execution of parallel programsthat share memory. ACM Transactions on Programming Languages and Systems,10(2), Apr. 1988.91. H. Srinivasan, J. Hook, and M. Wolfe. Static single assignment for explicitlyparallel programs. In Proceedings of the 20th Annual ACM Symposium on thePrinciples of Programming Languages, Jan. 1993.92. G. Steele. Making asynchronous parallelism safe for the world. In Proceedings ofthe 17th Annual ACM Symposium on the Principles of Programming Languages,pages 218{231, San Francisco, CA, Jan. 1990. ACM, New York.93. B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the23rd Annual ACM Symposium on the Principles of Programming Languages, St.Petersburg Beach, FL, Jan. 1996.94. N. Sterling. Warlock: A static data race analysis tool. In Proceedings of the 1993Winter Usenix Conference, Jan. 1994.95. R. N. Taylor. A general purpose algorithm for analyzing concurrent programs.Commun. ACM, 26(5):362{376, May 1983.96. C. Tseng. Compiler optimizations for eliminating barrier synchronization. InProceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice ofParallel Programming, pages 144{155, Santa Barbara, CA, July 1995.97. A. Valmari. A stubborn attack on state explosion. In Proceedings of the 2ndInternational Workshop on Computer Aided Veri�cation, New Brunswick, NJ,June 1990.98. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Javaprograms. In Proceedings of the 14th Annual Conference on Object-Oriented Pro-gramming Systems, Languages and Applications, Denver, CO, Nov. 1999.99. M. Young and R. Taylor. Combining static concurrency analysis with symbolicexecution. IEEE Transactions on Software Engineering, 14(10), Oct. 1988.100. H. Zhu and L. Hendren. Communication optimizations for parallel C programs.In Proceedings of the SIGPLAN '98 Conference on Program Language Design andImplementation, Montreal, Canada, June 1998.


