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Abstract

Clathrate hydrates are well known structures that were considered for many years as harmful by the oil
and gas industry because of their annoying tendency to plug pipelines. However, hydrates are now attract-

ing renewed interest in many fields. Indeed, gas hydrates naturally found in deep seas and permafrost may

provide a large amount of methane. Other positive applications include carbon dioxide sequestration, sep-

aration and natural gas storage and transportation. Finally, the use of their dissociation energy can be

applied in refrigeration processes and cool storage.
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1. Introduction

The term ‘‘clathrate’’, from the Greek word khlatron meaning barrier, indicates crystalline
inclusion compounds in which small guest atoms or molecules are physically trapped in host
cavities shaped by a three dimensional assembly of hydrogen bonded molecules. These com-
pounds are called clathrate hydrates when they contain water and gas hydrates when the en-
closed molecules are gases; the latter are much more commonly encountered. According to
the size of the trapped molecule, three types of structures are observed: cubic I [1], cubic II
[2] and hexagonal H [3]. These structures correspond to different arrangements of the water
molecules.
Over a long period following their discovery by Sir Humphry Davy in 1810, interest in clathrate

hydrates was purely academic. Intense research on natural gas hydrates was conducted by the oil
and gas industry when it was pointed out that these compounds were responsible for plugging nat-
ural gas pipelines [4]. In fact, light gases such as methane or ethane present in petroleum products
are easily trapped as guest molecules in hydrate structures.
The opposite is also true: other processes, such as separation technologies, employ these inclu-

sion compounds favorably [5]. Thanks to their high gas concentration, hydrates can also be used
propitiously for either carbon dioxide sequestration [6] or storage and transportation of natural
gas [7]. Moreover, natural gas hydrates naturally occurring in deep seas and permafrost have high
gas concentrations and, therefore, turn out to be a possible source of energy, provided that the
environmental impact is taken into account. Finally, clathrate hydrates offer high latent heats
of dissociation that can be utilized for refrigeration applications, such as cold storage or air con-
ditioning [8,9]. The objective of the present review paper is to distinguish various areas of interest
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related to hydrates in accordance with their respective needs, either by combating these solid com-
pounds or by taking advantage of their properties.
2. The drawbacks of clathrate hydrates: pipeline plugging

In 1934, Hammerschmidt indicated that the formation of gas hydrates was responsible for
blocking pipelines [4]. Considering the significant economic risks in the gas and oil industry, a
great deal of research has been conducted by the petroleum industry in order to inhibit this phe-
nomenon. In fact, hydrate propagation tends to gradually form a plug that separates the pipe into
two pressure sections: a high pressure section between the well and the plug and a second section
at low pressure between the plug and the recovery division. In the upstream section, a pipe blast
can occur due to the pressure rise. The plug can also behave as a projectile that destroys the pipe
when the pressure difference between the upstream and downstream sections increases. Both
events can imperil personnel safety and damage production equipment [10]. Preventing hydrate
agglomeration in pipelines is a real challenge, since it happens in hostile environments, such as
the Arctic where very low temperatures are encountered, and in subsea pipelines where pressure
can reach high levels.
Four main processes were investigated in order to combat hydrate plugs and ensure regular

flow: chemical, hydraulic, thermal and mechanical processes. The chemical method, which can
be used either to prevent or to remove plugs, consists in injecting additives in the pipe that act
differently on hydrate agglomeration according to whether the inhibitors are thermodynamic, ki-
netic or dispersant. The thermodynamic inhibitors, generally methanol [11–13] or glycols [14–16]
and/or aqueous electrolyte solutions [13,17,18], are injected in order to shift the equilibrium tem-
perature, thus enabling gas hydrate crystallization. This method is efficient but limited by the large
quantity of additives implemented (60 wt%), which is, moreover, difficult to recover from water,
and by the corrosive properties of salts (electrolytes) [19]. A new generation of additives has been
developed: dispersants such as QAB (quaternary ammonium bromide) that prevent hydrate
agglomeration [20]; kinetic inhibitors, generally polymers, that slow down hydrate crystal growth
so much that it cannot disturb oil transport [20–24]. Only small amounts of dispersant and kinetic
inhibitors are required to prevent pipeline plugging, making them economically attractive.
The hydraulic removal method is based on the dissociation of the hydrate plug by depressur-

ization. This method seems promising, given the porous structure of the gas pipeline plugs
[10,25]. However, it is not suitable for liquid hydrocarbons, since depressurization induces its
vaporization.
The thermal method consists in delivering locally a heat flow towards the plug through the pipe

wall in order to raise the system temperature above the hydrate formation point. This method is
possible for external pipelines but unsuitable for subsea equipment [19].
Finally, a mechanical method, such as pipeline pigging, can be used to prevent hydrate plugs.

Pipeline pigs are inserted into the pipe and travel throughout the pipeline, driven by product flow.
These projectiles then remove the obstacles or deposits they encounter [10].
Despite all these methods, pipeline blockage by gas hydrates remains a concern in the oil and

gas industry, and ongoing research is being conducted in this field. In particular, transmission
lines are increasingly being placed in deepwater pipelines. The selection of an optimal method
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involves taking into account the type of products (gas, liquid hydrocarbon or crude oil) trans-
ported and the type of pipeline (external, subsea) used. Sometimes, several processes can be com-
bined to destroy plugs more efficiently, for instance, chemical inhibitors can be used in
conjunction with a mechanical removal method [19].
3. Methane hydrates as a possible energy source: an environmental dilemma

The important amounts of gas hydrates in the Earth�s crust might be considered as a new
source of sustainable energy [26]. Kvenvolden [27] and Makogon [28] pointed out that the
amount of gas in known hydrate reserves up until 1988 was at least twice as much as the energy
contained in the total fossil fuel reserves. Indeed, one volume of methane hydrate can yield 164
times more methane than one volume of gaseous methane under the same pressure conditions
and at standard temperature [29]. This study was completed by Collett and Kuuskraa [30],
who estimated that these gas reserves range from 1.4 · 101 to 3.4 · 104 trillion cubic meters
(tcm) for permafrost areas and from 3.1 · 103 to 7.6 · 106 tcm for oceanic sediments. Gas hy-
drate deposits, principally considered as the result of a permanent migration of natural gases
throughout Earth fractures, are mainly distributed offshore due to the high pressure and low
temperature conditions at the seabed and more parsimoniously encountered in permafrost
[19,31]. Nevertheless, fossil fuel resources are currently sufficient to face worldwide energy needs,
and thus, gas-hydrate exploitation is dedicated to being a distant prospect, especially for offshore
hydrates [32].
In order to anticipate future needs, however, some prospective plans are being studied to devel-

op viable extraction schemes from hydrate sediments; one such project is the Mallik 2002 Gas Hy-
drate Research Well Program concerning permafrost deposits exploitation in the Canadian Arctic
region [33]. Gas recovery is generally based on in situ hydrate dissociation by either heating or
depressurization [34]. The thermal approach generates huge heat losses and, therefore, seems less
exploitable than [35] depressurization that requires high porosity hydrate deposits [36]. Moreover,
the transport stage can be problematical, since extracted gas and water may re-crystallize into gas
hydrates inside the transmission lines and then provoke pipe plugging.
Even though they are considered as the main hydrocarbon source for the future, gas hydrate

deposits might represent a real threat to the environment. Indeed, when considering offshore hy-
drates as a global methane reservoir, exploitation of these sediments in unfavorable circumstances
could drastically modify the marine ecosystem and even generate underwater gas blowouts [37].
Moreover, destabilizing hydrate sediments plays an undeniable role in climate change. According
to Brewer [38], a slight global warming would raise the hydrate temperature above the equilibrium
point, involving dissociation and the release of a great quantity of methane. Given that a mole of
methane is about 24 times more effective at absorbing infrared radiation and affecting the climate
than a mole of carbon dioxide [39], such discharge would cause a chain reaction mechanism. How-
ever, methane hydrate sediments may be reinforced by injecting chemical promoters and, thus,
limiting the predictable safety risks.
An original perspective proposed by other authors [40,41] would consist in swapping methane,

encased in hydrate, with carbon dioxide and, thus, limiting disturbances in underwater layers and
preventing sub-oceanic landslides.
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4. The benefits of clathrate hydrates

4.1. Marine carbon dioxide sequestration

About 64% of the enhanced greenhouse gas effect is due to carbon dioxide emissions [42], of
which more than 6 Gt/yr are attributed to anthropogenic activities [43]. Given that the green-
house effect is undeniably responsible for climate warming [44], reducing the quantities of
CO2 released into the atmosphere is a major environmental challenge. Carbon dioxide can be
partially taken up by various methods such as chemical absorption in amines [43,45,46] or
sequestration in geological media and oceans [47,48]. Such can be performed by releasing the
CO2 in water using a process adapted to the injection depth [49,50]. Down to 400 m (shallow
sea), gaseous CO2 is injected and then trapped by dissolution in the water [51]. Between 1000
and 2000 m (deep water), CO2 in the liquid state diffuses and also dissolves in the ocean [52].
In addition, CO2 hydrates can appear from 500 to 900 m in CO2-rich seawater [50] and then
sink, owing to their density [53], towards the deep sea bottom where they stabilize in the long
term [6,54]. Marine carbon dioxide sequestration is presently at an experimental stage, implying
further research on CO2 solubility [50,55–57], CO2-hydrate formation kinetics [6,53,58,59] and
CO2 hydrate stability [54,59,60].
4.2. Separation processes

Desalination or gas–liquid fractionation also use hydrates in a beneficial manner. During the
1960s and early 1970s, the feasibility of seawater desalination via hydrates was demonstrated,
but the process was not developed industrially since it was not economically viable [5]. This pro-
cess is based on gas hydrate formation by refrigerant injection in seawater. After separating the
hydrate crystals from the residual concentrated brine solution, pure water is recovered by heating
the hydrates. Other authors [61] pointed out that the hydrate desalination process may be difficult
to implement because of the slurry texture of the hydrates.
Other research work exploring the potential of hydrates to act as a gas separation mech-

anism is being conducted in order to extract CO2 from flue gas exhausted by large power
plants [62]. The US Department of Energy (DOE) is developing a high pressure process
for carbon dioxide separation [63]. It focuses on the low temperature SIMTECHE process,
where a shifted synthesis gas stream (CO2, H2 and other gases) is combined with pre-cooled
nucleated water in a CO2 hydrate slurry reactor. The outlet mixture (CO2 hydrate slurry, H2

and other gases) flows into a hydrate slurry gas separator which divides the flow into two
streams: CO2 hydrate slurry and H2 rich product gas. Another process named hydrate base
gas separation (HBGS) has been investigated with tetrahydrofuran (THF) chosen as a hydrate
promoter [60]. THF is used for lowering the equilibrium hydrate formation pressure and,
thus, for expanding the gas hydrate stability region. According to the authors, the HBGS
process makes it possible to recover more than 99 mol% of CO2 from the flue gas. This pro-
cess has several advantages, such as moderate operational temperatures in the range of 273–
283 K and continuous operations, making it possible to treat a large amount of gaseous
stream.
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4.3. Natural gas storage and transportation

For a few years [64], gas capture via methane hydrates has been implemented for storage and
transportation of natural gases, partially thanks to the ability of hydrates to provide a high gas
concentration [29]. This new process involves hydrate production, transportation to the place
of use, and gas recovery by dissociation of the hydrate structure [65]. The first step is generally
achieved by mixing gas and water under hydrate formation conditions (275–283 K; 8–10 MPa)
[65]. In order to increase the hydrate formation rate, surfactants can be added to the solution
[66–68]. A novel exploratory production method consists in heating a mixture of melting ice par-
ticles and natural gas, thus initiating hydrate crystallization [69]. During the transportation stage,
the hydrates are cooled to approximately 258 K at atmospheric pressure to ensure their stabiliza-
tion during storage in insulated bulk carriers [70]. In the last step, the hydrates are slowly melted,
releasing gas from the resulting water. This storage and transportation process is possible thanks
to the metastability of methane hydrates [69]. Indeed, the latter tend to exhibit metastable beha-
vior between 193 and 348 K at atmospheric pressure [71]. Provided that it is performed at higher
temperature and lower pressure levels than those required for liquefaction and compression,
respectively, gas transportation using hydrates seems to be as viable as these classical processes.
In addition, the use of structure H hydrate [72] or surfactant promoters is currently being consid-
ered to increase storage capacity [67,68,73].

4.4. Cool storage application

Research and development on refrigerating systems with a reduced impact on the environment
have become urgent since the ratification of the Montreal Protocol (1987) and the signing of the
Kyoto Protocol (1997). Secondary refrigeration can be a promising alternative to face this prob-
lem by the containment of a reduced load of primary refrigerant (HFCs) in an engine room. The
refrigerating capacity delivered to the secondary refrigerant is then transported towards the places
of use [74–77]. The system�s exergy can be partially improved by implementing a phase change
material (PCM) in the secondary refrigerant [8,9,78]. Indeed, the PCM largely contributes to
the heat transfer thanks to its latent heat of melting. The two phase secondary refrigerants thus
formed may be ‘‘ice slurries’’ [78–81] or ‘‘hydrate slurries’’ [8,74,82], in which the carrying fluid is
an aqueous solution and the PCM ice or hydrate crystals, respectively.
In fact, the first implication of clathrate hydrates in refrigeration processes was related to refrig-

erant (CFC) hydrate crystallization, which unfortunately occurred in expansion valves [83]. How-
ever, clathrate hydrates were favorably reconsidered at a later date, specifically for cold storage,
since their large heat of melting was confirmed by various authors [8,61,79,84–86]. Moreover,
since their phase change temperature is above the freezing point of water [8,61,85,87,88], the
use of hydrate energy is clearly relevant for the field of air conditioning. Moreover, hydrate slur-
ries are fluid enough, up to operating solid concentrations, to flow easily through the secondary
refrigerant loop [8,61,74,82,89]. At this time, advanced research on hydrate slurries is being con-
ducted with guest molecules, such as TBAB hydrate, that are more environmentally friendly than
CFC refrigerant [8]. Other work is devoted to implementation of the CO2 hydrate under moderate
pressure [9]. From an energy point of view, the nature of the guest molecule is not obvious, since,
according to Sloan [19], the heat of dissociation of the hydrate could be related to only its host
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structure, made up of water molecules held together by hydrogen bonds. A notable outcome on
hydrate heat of dissociation using the Clausius–Clapeyron equation shows that structure I is less
energetic than structure II (excluding the less common occurrence of structure H) [90]. As pointed
out by Kang and Lee [60], it is possible to shift (CO2 + N2) hydrate from structure I to structure II
by adding THF in the aqueous solution. A Cemagref group is currently investigating this property
for a more favorable use of CO2 hydrate slurry energy [91].
5. Conclusion

The main purpose of this paper was to determine the role of hydrates in various areas of inter-
est. Historically, hydrates were only studied in the gas and oil industry because of their harmful
tendency to plug pipelines. More recently, they were encountered in refrigeration where their crys-
tallization occurred in expansion valves. However, combating these drawbacks has made it pos-
sible to acquire substantial knowledge of hydrates, including their existing conditions, their
crystalline structure, their ability to store gas and their heat of dissociation. Some of these char-
acteristics have been emphasized by various authors for positive applications. Indeed, the huge
amounts of natural gas stored in the methane hydrates of the Earth�s crust can be considered
as a future sustainable energy source, provided that environmental risks are taken into account.
Hydrates can be a useful means of partially mitigating climate change thanks to carbon dioxide
sequestration in submarine areas. This capacity to capture carbon dioxide may also be used in the
separation process used for flue gases. This storage capacity is even more relevant for methane
and facilitates natural gas storage and transportation. Finally, cold storage using hydrates as
phase change materials is a promising application in secondary refrigeration thanks to the large
amount of energy of hydrate dissociation (higher than the melting heat of ice). In a nutshell, even
if many studies focus on the disturbing aspect of hydrates, the positive prospects are numerous
and encouraging.
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