
Robotica
http://journals.cambridge.org/ROB

Additional services for Robotica:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Using optimization to create selfstable humanlike running

Katja Mombaur

Robotica / Volume 27 / Issue 03 / May 2009, pp 321  330
DOI: 10.1017/S0263574708004724, Published online: 13 June 2008

Link to this article: http://journals.cambridge.org/abstract_S0263574708004724

How to cite this article:
Katja Mombaur (2009). Using optimization to create selfstable humanlike running. Robotica, 27, pp 321330 doi:10.1017/
S0263574708004724

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ROB, IP address: 130.203.136.75 on 12 Aug 2013



http://journals.cambridge.org Downloaded: 12 Aug 2013 IP address: 130.203.136.75

Robotica (2009) volume 27, pp. 321–330. © 2008 Cambridge University Press
doi:10.1017/S0263574708004724 Printed in the United Kingdom

Using optimization to create self-stable human-like running
Katja Mombaur
Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368,
69120 Heidelberg, Germany.
E-mail: kmombaur@uni-hd.de

(Received in Final Form: April 28, 2008. First published online: June 13, 2008)

SUMMARY

This paper demonstrates how numerical optimization
techniques can efficiently be used to create self-stable
running motions for a human-like robot model. Exploitation
of self-stability is considered to be a crucial factor for
biological running and might be the key for success to make
bipedal and humanoid robots run in the future. We investigate
a two-dimensional simulation model of running with nine
bodies (trunk, thighs, shanks, feet, and arms) powered
by external moments at all internal joints. Using efficient
optimal control techniques and stability optimization, we
were able to determine model parameters and actuator inputs
that lead to fully open-loop stable running motions.

KEYWORDS: Bipeds; Control of robotic systems; Design;
Robot dynamics; Biomimetic robots.

1. Introduction

1.1. Stability control of walking and running in robotics
and biomechanics
The past few decades have seen a remarkable development
in the field of humanoid robots producing robots that can
walk, climb stairs, avoid obstacles, and even lift-off the
ground for very short periods of time. Famous examples are
Asimo (Honda15,33), HRP-2 (Kawada/AIST18), Johnnie (TU
Munich11,22), QRIO (Sony36), or Toyota’s Partner Robots.37

But despite this technological progress, there is still a big gap
between humanoid robots and their biological counterparts
in terms of speed (6 km/h vs. 36 km/h) and efficiency, and it
will take many more years, until we will see a robot running
as fast and as elegantly as a human.

Stability control of fast motions in general, and running
in particular, is still a big technological issue, even though
technical signal processing can be faster than neural signal
transmission in biology. Most contemporary humanoid
robots are still based on conventional robotics control
concepts using rigid components and high-gain controllers
which are very suitable to satisfy the accurate path following
demands of industrial robotics, but seem to be less adequate
to bring running motion speeds up to a biological level since
the online computational effort for stabilization is too high.

Stability is the property of a system to recover from
perturbations of its state. Running in nature is characterized
by a high level of self-stability, i.e., the property to

automatically recover from perturbations, just by the inherent
properties of the mechanical or musculoskeletal system.
Brown and Loeb3 used the term “preflex” to describe
such an intrinsic reaction to a perturbance with zero delay.
During the biological learning process, walking and running
motions evolve in such a way that they harmonically fit
to the kinematic and dynamic properties of the walking
systems and that the natural stability properties of the system
are exploited. Self-stabilizing properties of the muscular
actuators also play an important role in biology.14,21,38 Self-
stability is the property that allows animals and humans to
run at very high speeds with a relatively low burden on the
online control system. Addressing the issue of self-stability
therefore seems to be the key to success in making humanoid
and other bipedal robots faster.

In order to enhance the stability of humanoid robots, as
much intelligence and knowledge as possible should be
put into the choice of design parameters and open-loop
actuator inputs of a robot. This approach is taken by many
researchers of the passive-dynamic walking community,
starting with the early research of McGeer.23,24 From
these purely mechanical devices with no actuators walking
down inclined slopes, focus has now shifted to actuated
mechanisms with some feedback control (see, e.g., Collins
et al.8). Pratt32 and Buehler4 also have built robots that use
a combination of natural stabilization and feedback control.
Wisse and co-workers in Delft have assembled a remarkable
series of passive-dynamic and actuated robots of increasing
complexity and with a high level of self-stability43−45 the
tuning of which was mainly based on years of practical robot
building and experience.

1.2. Contribution of this paper: generation of open-loop
stable running for a human-like robot model using
optimization
The contribution of this paper is to look at the problem
of tuning the stability properties of a robot model from a
more theoretical perspective: it will be shown that using
mathematical models and efficient optimization techniques,
it is possible to significantly enhance the natural stability
properties of a humanoid robot. We present combinations
of model parameters and actuation inputs for a human-like
running robot such that the resulting running motion is fully
open-loop stable.

From a robotics point of view, two different questions can
be raised:
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1. For a given robot design, which actuator inputs lead to
self-stable motions?

2. If the robot design is not yet fully determined, which
combination of design parameters and actuation inputs
leads to self-stable motions?

Since usually there is at least some freedom in a robot
design, and since experience with passive-dynamic walkers
has shown how much can be achieved just by parameter
modifications, we prefer to address question 2 and will focus
on this scenario in this paper. However, if one prefers to
explore question 1 in a given situation, this could equally be
done by the approach presented in this paper.

This research builds on a series of previous publications
of producing, for several simpler robotic models, a variety
of open-loop stable motions such as walking,7,26 running,29

somersaults,28 and flip-flops.25 In this paper, we treat a model
of significantly increased complexity: we optimize, for the
first time, the stability of a model with torso, arms, and
actuated feet. Optimizing parameters and inputs at the same
time was only possible due to a new approach to stability
optimization modifying all free variables in one optimization
loop. The two-level approach used for previous publications
only allowed to tune parameters and not controls with respect
to stability.

The robot model consists of nine segments and describes
human-like sprinting in the sagittal plane. The model has
been developed in the thesis,34 and we have used it before
to produce natural looking human-like running based on
energy-related optimization criteria.35 The solutions in that
paper were however open-loop unstable, and the availability
of appropriate stabilizing feedback control systems had to
be assumed. Here, we use stability optimization to produce
open-loop stable solutions for a slightly modified runner
model. As we will see below, stability is a much more
difficult optimization objective than energy and most other
common criteria, since it implies the necessity for higher-
order derivatives of the trajectories and generally exhibits
nondifferentiabilities in the objective function.

We would like to stress the fact that the focus of this
paper is stabilization in robotics and not in biomechanics.
Even though anthropometric parameters have been used as
an example set of starting parameters, this model cannot be
used to explain stability of real human running, since one
important part is missing in the model: muscle actuators play
an important role in biomechanical motion, as mentioned
above, and would definitely have to be included in the
model in order to attempt an explanation of biomechanical
stabilization of running. It is to be expected that optimal
motions for a biomechanical model and a robot model would
be quite different.

1.3. Review of stability measures
In order to facilitate the discussion of stability of the running
model, this section gives a brief overview of different stability
measures used in walking robotics. For a longer comparison
see, e.g., ref. [31].

Stability of a gait implies that the walking or running
system does not fall and that it is able to recover from
perturbations. Open-loop stability or self-stability means that

this recovery occurs automatically without any feedback
implying that the system inputs are not modified at all.

In our study, we only consider strictly periodic motions
which are the most basic form of running that should be
mastered before more serious perturbations, uneven terrain,
and obstacles are taken into account. A stable gait thus
represents a periodic limit cycle of the system.

If gaits are regarded from the limit cycle perspective,
the most straightforward stability criterion to apply follows
the mathematical definition of stability in the sense of
Lyapunov’s first method (compare, e.g., refs. [9, 16]): a T -
periodic solution of a T -periodic non-autonomous system

ẋ(t) = f (t, x(t)) with f (t, ·) = f (t + T , ·) (1)

is asymptotically stable if all eigenvalues of the monodromy
matrix X(T ) = dx(T )

dx(0) are inside the unit circle

|λi(X(T ))| < 1. (2)

It is this eigenvalue criterion that we use to generate open-
loop stable motions by means of optimization. This criterion
has been applied to gaits by various authors (e.g., Cheng and
Lin [5], Coleman [6], Goswami et al. [13], Hurmuzlu [17],
and McGeer [23]), who used it to analyze the stability of a
given motion, but not in optimization.

In the field of humanoid robots, stability definitions based
on the concept of the zero moment point (ZMP), the center
of pressure (CoP), or the foot rotation indicator (FRI) play
important roles. The ZMP and the CoP39 define the point
where the resulting moment of the ground reaction forces
about the horizontal axes lying in the ground vanishes. ZMP
and CoP are equivalent, but while the CoP is computed based
on ground reaction forces, the ZMP is generally defined using
accelerations of the segments. In order to produce stable
gaits, ZMP/CoP control algorithms generally aim at keeping
this point within the polygon of support, and the distance
of the ZMP to the nearest edge of the support polygon is
seen as a stability margin. However, this ZMP condition is
neither necessary nor sufficient for stable walking. The FRI
point12 is defined as the point where—for a given robot state
and acceleration—the resulting ground reaction force would
have to be located in order to keep the foot fixed. This is
equivalent to the ZMP for a ZMP lying inside the polygon
of support, but it can also define negative stability margins.
What is important to note for the purpose of this paper is that
all ZMP-related concepts are made for flat-foot contact and
are not directly applicable to motions with flight phases and
pointwise contact phases.

Pratt and Tedrake31 present velocity-based stability
margins that can also be applied to irregular gaits, and can
easily be measured and computed, but are restricted to fast
walking with at least one foot in ground contact at any time.

Other criteria that seem to have some relationship to
stability are concerned with minimizing the total angular
momentum about the center of mass (c.o.m.)30 or the widely
used minimization of jerk known to produce smooth motions,
or of other derivatives of the c.o.m. trajectory to produce
viability.42 Some of these criteria might present an alternative
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to classical Lyapunov stability and will be investigated for
the bipedal running model in a future publication.

1.4. Outline of paper
The remaining sections of this paper are organized as follows:
Section 2 describes the model of the two-dimensional
humanoid running robot. Section 3 outlines the formulation
and solution of optimal control problems for the generation
of optimal periodic gaits—with and without inclusion of
stability criteria on the problem. Section 4 presents self-
stable running motions for the humanoid model that have
been computed using the presented optimization approach.
In Section 5, we finally formulate some conclusions and
future research directions.

2. Model of a Two-Dimensional Humanoid Runner

For the investigations in this paper, we use a model of a
two-dimensional humanoid runner with nine segments (one
torso and two thighs, shanks, feet, and arms). The model is
a slightly modified version of the two-dimensional model
presented in ref. [35] to which we refer for more details. It
describes human-like forefoot running in the sagittal plane
which does not include flat-foot ground contact at any instant,
but point-like contact with the ball of foot.

Running motions consist of multiple motion phases, where
each phase is characterized by different sets of governing
equations and possibly different degrees of freedom (DOF).
We only consider strictly periodic and symmetric running
gaits, such that the order of phases is a priori known (single-
foot contact phases alternating with flight phases) and can be
prescribed in the model. In addition, due to the symmetry, the
periodic cycle investigated can be reduced to one step with a
subsequent shift of sides. Impacts at touchdown are assumed
to be fully inelastic, and no sliding between foot and ground
occurs. Arms are modeled as one segment each, with both
elbow angles fixed to 100◦ during the whole running motion.
We also use the simplifying assumption that the ankle angle
is fixed to 90◦ during the step in which it does not encounter
ground contact. This results in a model with 10 DOF for one
step and 11 DOF for the overall running motion involving
left and right steps. In the model, we use the coordinates

qT := (ypelvis, zpelvis, φtrunk, φ(stance hip), φ(stance knee),

φ(stance ankle), φ(swing hip), φ(swing knee), φ(arm (stance side)),

φ(arm (swing side)))

and corresponding velocities v = q̇. The first three
components of q describe position and orientation of the
pelvis and the remaining components indicate relative
interior angles at the joints. This same set of coordinates
is used for the description of both flight and contact phase
representing in the first case a set of minimal coordinates,
and redundant coordinates in the latter case.

The equations of motion during flight phase are formulated
as a set of ordinary differential equations of the following
general form:

M(q, p)q̈ + N(q, q̇, p)q̇ = F (q, q̇, p,M), (3)

where M is the symmetric positive-definite mass matrix of
the system, vector N combines all nonlinear effects, and F

denotes the sum of all external forces acting on the multibody
system. F depends on gravity, motor torques M and other
applied active forces, moments and forces of spring-damper
elements (with spring constants ki , offset angles �φi , and
damper constants bi)

Fsd,i(qi, q̇i) := ki(qi − �φi) − biq̇i , i = 2, . . . , 9, (4)

drag (with the simplifying assumption that only drag on the
trunk in horizontal direction plays a role, using air density
ρair, drag coefficient cw, trunk cross section Atr, and forward
speed q̇0)

Fdrag ≈ Fdrag, trunk, y = −cw

ρair

2
Atrq̇

2
0 , (5)

etc. For the model used in this paper, the terms M and N

which both are too complicated to be derived by hand have
been established using the automatic model generator of the
software package HuMAnS.41

During single leg contact phase, additional constraints of
form g(q) = 0 describing the point-like contact of the ball
of foot with the ground have to be taken into account, which
results in a system of differential algebraic equations (DAE)
of index 3.

We formulate this model in the equivalent form of an
index-1 DAE with invariants

q̇ = v (6)

v̇ = a (7)(
M GT

G 0

)(
a

λ

)
=

(−N + F

γ

)
(8)

gpos = g(q(t), p) = 0 (9)

gvel = G(q(t), p) · q̇(t) = 0, (10)

with acceleration vector a := q̈, and the vector of Lagrange
multipliers λ. G is the derivative matrix of the position
constraints, G = (∂g/∂q), and γ the right-hand side of the
acceleration constraints, γ = ((∂G/∂q) q̇) q̇. (9) and (10) are
the invariants on position and velocity level. The fact that
ground contact only represents a unilateral constraint (i.e.,
ground can only push against the foot but not pull) is taken
into account in the optimization by formulating an inequality
constraint on the Lagrange multiplier associated with the
normal contact force.

The model formulation uses a set of free model parameters
p. These parameters include characteristic data of each
segment (segment length, relative c.o.m. location, mass, and
moment of inertia for planar motion), and parameters of
spring-damper elements in all joints.

Phase changes between flight phase and single-leg contact
phase do not occur at fixed times, but depend on the position
variables of the robot, which can be expressed by zeroes of
switching functions of the following general form:

s(q(τs), v(τs), p) = 0. (11)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 12 Aug 2013 IP address: 130.203.136.75

324 Using optimization to create self-stable human-like running

Touchdown occurs when the lowest point of a foot reaches
zero height, and lift-off is characterized by a vanishing
vertical contact force (which corresponds to a vanishing
Lagrange multiplier in Eq. (8)).

The lift-off event is smooth, but the impact at touchdown
results in velocity discontinuities �v = v+ − v− of all
components of the system, which can be computed solving
the following system of equations (using the same matrices
as in (8), see ref. [40]):

(
M GT

G 0

)(
v+
	

)
=

(
Mv−

0

)
. (12)

An artificial discontinuity is introduced in the model at the
end of the cycle to describe the swap of variables describing
left and right half of the robot.

Periodicity constraints are imposed in the model on all
velocity variables v and a reduced set of position variables
qred eliminating the coordinate describing the forward
running direction of the robot

(
qred(T )
v(T )

)
=

(
qred(0)
v(0)

)
. (13)

T is the step time of the running cycle which, along with the
individual phase times, is a free variable of the model.

3. Generation of Open-Loop Stable Periodic Running

Motions

Simulation-based optimization, or optimal control, is a useful
tool to generate motions, since in contrast to approaches
based on pure simulation it allows to leave both the trajectory
and the force and torque inputs free and to determine them
simultaneously.

The problem of generating an optimal periodic gait can be
formulated as multiphase optimal control problem

min
x(·),u(·),p,τ

∫ T

0
φ(x(t), u(t), p) dt + 
(T , x(T ), p) (14)

s.t. ẋ(t) = fj (t, x(t), u(t), p) for t ∈ [τj−1, τj ],

j = 1, . . . , nph, τ0 = 0, τnph = T (15)

x(τ+
j ) = x(τ−

j )) + J (τ−
j ) for j = 1, . . . , nph

(16)

gj (t, x(t), u(t), p) ≥ 0 for t ∈ [τj−1, τj ]

(17)

req(x(0), . . . , x(T ), p) = 0 (18)

rineq(x(0), . . . , x(T ), p) ≥ 0. (19)

This formulation uses free variables of different types:

• x(t) is the vector of state variables and summarizes the
positions and velocity variables of the robot model xT =
(qT , vT ).

• u(t) is the vector of control or input variables of the system.
For the model used in this paper, u corresponds to the
motor torques Mi applied at all internal joints.

• p is the vector of model parameters described in
Section 2.

• τ is the vector of phase switching times which also
determines the cycle time T = τnph ; here we have τT =
(τflight, τcontact).

Eq. (14) describes the objective function in a very general
form. Different sets of constraints are considered in the
optimal control problem:

• Eqs. (15) and (16) stand for appropriate ODE/DAE
models of the hybrid dynamics of the robot with multiple
continuous phases and discrete phases, as described in
Section 2

• Continuous inequality constraints of form (17) on all
optimization variables, including simple lower and upper
bounds on controls, states, and parameters, but also more
complex relations between several variables

• Pointwise equality and inequality constraints on all
variables, (18) and (19), including conditions for single
points (start point/end point/phase switching conditions)
as well as relationships between several distinct points,
such as periodicity constraints.

Possible candidates for objective functions of form (14) are,
e.g., functions related to energy consumption, efficiency,
speed, step frequency, and stride length.

The situation however gets more complicated if stability
is to be taken into account, as done in this paper. Asymptotic
open-loop stability is the property of a solution to persist,
even under small perturbations, with all perturbed solutions
eventually converging back to the original unperturbed
solution.

This stability property of a solution is directly related to the
sensitivities, i.e., derivatives of its end values with respect to
its initial values. In addition to the quantities used in (14), an
objective function describing stability therefore also requires

X(T ) = d x(T )

d x(0)
, (20)

which is the monodromy matrix associated with the solution
(also termed Jacobian of the Poincaré map).

As described in Section 1.3, asymptotic stability in the
sense of Lyapunov requires that for all eigenvalues of X(T ),
we have |λi(X(T )| < 1, i.e., for the spectral radius ρ :=
|λi(X(T ))|max < 1. Note that this stability criterion is also
valid for hybrid multiphase systems, as we have shown in
ref. [27]. This results in using the spectral radius as objective
function for stability optimization

min ρ(X(T )). (21)

If not all entries of x are periodic, the nonperiodic directions
have to be eliminated by projection prior to usage in the
above criterion. The same has to be done in the case of
autonomous systems (i.e., systems without input variable)
with the direction associated with the invariant eigenvalue of
one that always exists in this case.

Other than the spectral radius, possible choices for
objective functions are induced norms on the monodromy
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matrix, such as the 1- or ∞-norm or the singular value, which
all are upper bounds on the spectral radius and therefore
represent stricter measures of stability.

In any case, first-order derivative information of the
trajectory is required, and the resulting optimal control
problem formulation for stability computations becomes

min
x(·),X(·),u(·),p,τ

∫ T

0
φ(x(t), u(t), p) dt + 
(T , x(T ), X(T ), p)

(22)

s.t. ẋ(t) = fj (t, x(t), u(t), p) for t ∈ [τj−1, τj ],

j = 1, . . . , nph, τ0 = 0, τnph = T

(23)

x(τ+
j ) = x(τ−

j )) + J (τ−
j ) for j = 1, . . . , nph

(24)

Ẋ(t) = ∂fj

∂x
(t, x(t), u(t), p)X(t)

for t ∈ [τj−1, τj ] with X(0) = I

(25)

X(τ+
j ) =

(
(fj+1(τ+

j ) − fj (τ−
j )

−Jt − Jxfj (τ−
j ))

1

ṡ
sT
x + I + Jx

)
X(τ−

j )

for j = 1, . . . , nph (26)

gj (t, x(t), u(t), p) ≥ 0 for t ∈ [τj−1, τj ]

(27)

req(x(0), . . . , x(T ), p) = 0 (28)

rineq(x(0), . . . , x(T ), X(T ), p) ≥ 0. (29)

In addition to the modifications in (22), this formulation
includes augmented dynamics in the form of the variational
differential equation (25) and the corresponding update
formula (26) taking into account that phase switching points
would be shifted in time in the presence of perturbations.

Our experience has shown that using only stability as
an objective function does not lead to natural and efficient
motions. We therefore use either a combination of stability
and some energy or efficiency-related measure in the
objective function, or formulate stability not as an objective
function at all but as a constraint, as indicated by the usage
of X(T ) in (29), e.g.,

ρ(X(T )) ≤ c < 1, e.g., c = 0.8. (30)

For the solution of the above problem, we built
upon the optimal control methods based on the direct
boundary value problem methods developed by Bock
and co-workers (MUSCOD2,19,20) and adapted them to
handle index-3 DAE. Optimal control problems in the
forms given above are infinite-dimensional (since x(t)
and u(t) are variables in function space), but can be
transformed into finite-dimensional problems by means

of discretization. The MUSCOD method uses a direct
approach for control discretization, using base functions
with local support, such as piecewise constant, linear, or
cubic functions. State parameterization is performed by the
multiple shooting technique which transforms the original
boundary value problem into a set of initial value problems
with corresponding continuity and boundary conditions.
The same grid is used for both parameterizations (controls
and states). The resulting structured nonlinear programming
problem is solved by an efficient tailored sequential quadratic
programming (SQP) algorithm. It is important to note that
this approach still includes a simulation of the full problem
dynamics on each of the multiple shooting intervals. This
is performed simultaneously to the nonlinear programming
solution using fast and reliable integrators also capable of an
efficient and accurate computation of trajectory sensitivity
information.1

The spectral radius criterion, no matter if as optimization
criterion or as a constraint, has a serious difficulty: it becomes
nondifferentiable, and sometimes even non-Lipschitz at
points of multiple maximum eigenvalue. SQP techniques,
however, in general require second-order differentiable
functions. But our numerical experiments have shown
that—despite this violation of theoretical assumptions at
certain iterates—the optimal control techniques described
above work very well using finite differences for gradient
evaluation, even at nondifferentiable points. It delivers much
better results in much shorter computation times than our
previous two-level optimization methods that took into
account the nondifferentiability of the objective function and
used a split of variables27 and derivative-free optimization
techniques in the outer loop.

4. Results of Stability Optimization

In this section, we present stability optimization results for
the two-dimensional bipedal running model (see Fig. 1).
Formulating problem (22)–(29) for the biped results in
an optimal control problem with 420 state variables (=
20 + 202, including the augmented dynamics), 7 control
variables, 59 model parameters, and 2 free phase times.
We apply a piecewise constant control discretization. Both
control and state parameterization are performed on a grid
with 16 intervals for the flight phase and 24 intervals for the
contact phase. Two transition phases of duration zero are used
to describe ground impact after flight phase and switching of
left and right half. All constraints discussed in Section 2 are
formulated in the optimization problem, along with suitable
upper and lower bounds on all optimization variables (states,
controls, parameters, and phase times). Among them is a
lower bound on the velocity of the pelvis in forward direction
(here chosen as 5 m/s) in order to produce a significant
forward running motion. The dimensions of the optimal
control problem given above after discretization result in
a nonlinear programming problem with 18,415 unknown
variables, 17,673 equality constraints, and 36,881 inequality
constraints.

The following optimization criteria have been applied:

• At first, stability has been optimized, using the eigenvalue
criterion given in Eq. (21).
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Fig. 1. 2D running motion resulting from stability optimization.

• Second, starting from the solution of the first problem, a
minimization of torques squared has been applied

∫ T

0
uT u dt (31)

which is considered a measure for energy (electrical, not
mechanical), while a constraint is imposed on the spectral
radius (see Eq. (30) using c = 0.8). The purpose of the
second step is to make the solution smoother. We have
varied input torque histories, state variable trajectories,
phase durations as well as all model parameters.

Figure 2 shows the position histories for the resulting open-
loop stable solution. It is characterized by a spectral radius
of 0.8. The initial values of the positions are

q(0) = (0.00, 9.30E − 01, −4.24E − 02, 8.15E − 01,

− 1.883, − 3.24E − 01, 1.06E − 1, − 7.68E − 01,

− 5.16E − 01, 7.45E − 01)T

and of the velocities

q̇(0) = (5.324, 5.60E − 01, 2.77E − 01, 1.65E − 01, 4.101,

− 2.297, 1.856, −6.607, 1.121, − 2.454)T .

Figure 3 gives the corresponding torque histories. The
resulting phase durations are 0.106 s for flight and 0.088 s
for contact, i.e. T = 0.194 s for a step. The overall step
length is �y = 1.017 m which corresponds to an average
speed of v̄ = ¯̇q0 = 5.24 m/s. Both state variable and control
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Fig. 2. Position histories for open-loop stable running motion.
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Fig. 3. Torque (control variable) histories for open-loop stable
running motion.

variable histories are very different from the corresponding
unstable starting solutions. Figure 4 shows a comparison
of the starting trajectory and the self-stable solution. The
stable solution is characterized by a reduced forward speed,
a smaller step length, and a more upright trunk position. The
shorter steps result in smaller extremal leg angles at the hip,
and thus a more elevated hip position during the whole step.
The ankle joint shows a small wiggle which apparently does
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Fig. 4. Comparison of position variable histories of starting trajectory (dashed line) and of open-loop stable solution (solid line).

not influence stability too much but is still undesirable and
might be avoided using additional constraints.

The computations show that it is in fact possible to produce
open-loop stable running for a human-like model.

We started with human data for segment lengths, masses,
and moments of inertia of all bodies. This data has been
left free (within bounds) during optimization. In addition,
parameters of all spring-damper elements acting at interior
joints have been varied. Tables I–V show the development
of all model parameters during stability optimization. They
indicate start values and final values after optimization and
relative change. We give these numbers only for a qualitative
assessment of which groups of parameters tend to change
about which magnitudes. It is not the exact values of these
numbers that matter, especially since it can be assumed that
the optimization problems have several local minima.

Since human-like parameters (taken from ref. [10]) have
been used for initialization, the segmentation used for
parameterization follows that of biomechanical literature
and does not directly correspond to the model described
in Section 2. As indicated by the lines in Tables I
and II, several segments of the biomechanical model are
summarized (assuming rigid coupling) to form the bodies of
the optimization model of Fig. 5:

• Lower trunk, mid trunk, upper trunk, and head are
combined to one single trunk segment.

• Upper arm, forearm, and hand on each side are
summarized to form the arms.

Shank, thigh, and foot also appear in the optimization model
as separate bodies (with the exception of the swing leg for
which shank and foot are fixed to each other).

Table I shows the changes of all segment masses. It is
important to note that none of them changes significantly
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φtrunk

φ(arm (swing side))

φ(arm) (stance side)

φ(swing hip)

φ(swing knee)

φ(stance hip)

ypelvis
zpelvis

φ(stance keep)

φ(stance angle)

Fig. 5. Coordinates of the two-dimensional humanoid running
model.

with maximum changes of 3%. None of the mass parameters
reaches its bounds. The same is true for the inertia parameters
Ii = mir

2
gyr shown in Table II which exhibit a maximum

change of ≈4%. The overall mass of the model also barely
changes (from 73 kg to 73.03 kg).

Tables III and IV show the development of the segment
lengths and segment c.o.m. positions measured from the
proximal end of the segments. Again, the changes are
relatively small (at maximum 4.5% and 3.5%, respectively),
and no bounds are attained. The overall height of the model
changes from 1.75 m to 1.74 m during optimization.

The last group of parameters considered are those
describing the spring-damper elements of form (4) active in
each joint. For the leg joints, they were allowed to be different
in flight and in contact. The development of these parameters
during optimization is shown in Table V. In contrast to all
other groups considered above, these model parameters can
be subject to significant changes, up to the order of 100%.

Table I. Optimization of model parameters: segment masses.

Start value Optimized
Segment (kg) value (kg) Change (%)

Lower trunk 8.150E+00 8.054E+00 −1.17
Mid trunk 1.192E+01 1.189E+01 −0.22
Upper trunk 1.165E+01 1.165E+01 0.02
Head 5.070E+00 5.080E+00 0.20
Thigh 1.034E+01 1.043E+01 0.93
Shank 3.160E+00 3.142E+00 −0.56
Foot 1.000E+00 9.978E-01 −0.22
Upper arm 1.980E+00 1.963E+00 −0.83
Forearm 1.180E+00 1.176E+00 −0.29
Hand 4.450E-01 4.589E-01 3.13

Table II. Optimization of model parameters: segment inertia.

Start value Optimized value
Segment (kg m2) (kg m2) Change (%)

Lower trunk 9.160E-02 9.555E-02 4.32
Mid trunk 2.960E-01 3.043E-01 2.84
Upper trunk 3.400E-01 3.385E-01 −0.43
Head 6.110E-02 6.018E-02 −1.50
Thigh 5.080E-01 5.177E-01 1.91
Shank 1.570E-01 1.589E-01 1.22
Foot 4.980E-03 5.053E-03 1.48
Upper arm 6.510E-02 6.656E-02 2.26
Forearm 2.440E-02 2.423E-02 −0.66
Hand 3.510E-03 3.340E-03 −4.84

Table III. Optimization of model parameters: segment lengths.

Optimized
Segment Start value (m) value (m) Change (%)

Lower trunk 1.457E-01 1.489E-01 2.26
Mid trunk 2.155E-01 2.123E-01 −1.46
Upper trunk 1.707E-01 1.706E-01 0.00
Thigh 4.222E-01 4.099E-01 −2.9
Shank 4.403E-01 4.457E-01 1.24
Dist. heel-ball 1.900E-01 1.956E-01 2.97
Foot 2.100E-01 2.100E-01 0.00
Dist. pelvis-shoulders 5.155E-01 5.386E-01 4.49
Upper arm 2.817E-01 2.771E-01 −1.62
Forearm 2.689E-01 2.729E-01 1.51

Table IV. Optimization of model parameters: segment c.o.m.
positions.

Segment Start value (m) Optimized value (m) Change (%)

Lower trunk 5.700E-02 5.668E-02 −0.54
Mid trunk 1.185E-01 1.146E-01 −3.27
Upper trunk 1.195E-01 1.228E-01 2.82
Head 8.200E-02 8.004E-02 −2.39
Thigh 1.730E-01 1.681E-01 −2.82
Shank 1.940E-01 1.946E-01 0.32
Foot 4.800E-02 4.841E-02 0.86
Upper arm 1.630E-01 1.573E-01 −3.46
Forearm 1.230E-01 1.200E-01 −2.40
Hand 6.950E-02 6.909E-02 −0.58

In addition, the parameter describing the drag acting on
the runner [see Eq. (5)]

Fdrag = −ddragv
2 with ddrag = cw

ρair

2
A (32)

in the order of 0.16 kg/m (resulting from ρair ≈ 1.2 kg/m3,
cw ≈ 1.0, and A ≈ 0.27 m2) changes from this initial value
of 0.16 to 0.155 (−3.4%).

Summing up this analysis of parameter variations, it is
important to note for the optimization run investigated we
observe the following lucky coincidence: the parameters
that would be harder to modify in a design such as masses,
inertias, segment lengths, and c.o.m. positions have not been
changed much by the optimization, while other parameters
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Table V. Optimization of model parameters: spring-damper
parameters.

Spring/damper Start Optimized
element value (m) value (m) Change (%)

khip, flight 4.576E-01 7.211E-01 57.57
bhip, flight 4.315E-01 4.774E-01 10.64
khip, contact 2.890E+00 2.245E+00 −22.32
bhip, contact 2.128E+00 2.092E+00 −1.69
�
hip 1.209E-01 1.204E-01 −0.41
kknee, flight 4.364E-01 5.333E-01 22.19
bknee, flight 1.103E-01 1.079E-01 −2.13
kknee, contact 2.869E+00 2.906E+00 1.31
bknee, contact 1.591E+00 1.640E+00 3.11
�
knee −2.040E-01 −2.526E-01 23.79
kankle, flight 1.832E+00 1.990E+00 8.58
bankle, flight 9.580E-01 9.934E-01 3.70
kankle, contact 1.707E+00 1.632E+00 −4.40
bankle, contact 3.141E-02 6.499E-02 106.92
�
ankle 7.851E-02 1.050E-01 33.82
kshoulder 5.000E-01 3.524E-01 −29.51
bshoulder 6.461E-01 6.412E-01 −0.77
�
shoulder 0.000E+00 1.801E-02 –

which might more easily be changed in a design such
as spring-damper elements are subject to larger variations.
Other computations not presented here have shown that it
is even possible to produce open-loop stable motions if the
parameter groups of Tables I–IV are fixed, and only spring-
damper elements left free.

It is of course not possible to derive a general rule from
these computations, but it seems likely that it will be possible
to stabilize a variety of humanoid robot designs using
some free model parameters and all control and trajectory
variables. The most significant stabilization effects come
from the variation of the actuator inputs and of the trajectory.

5. Conclusions and Future Research

The results of this paper show that it is possible to produce
bipedal human-like running motions that are stable without
feedback. This has been achieved for a model with 11 DOF
and torque actuators with parallel spring-damper elements
at all interior joints. These results are very encouraging
for the design of humanoid robots. If correctly applied to
a good model of a humanoid robot, the presented stability
optimization techniques might be very helpful in the design
phase of the robot and in the choice of actuator inputs during
operation. As a consequence, the complex task of stability
control should be considerably simplified for these robot
motions, even in the presence of perturbations, due to the
better exploitation of self-stability of the dynamical system.

The research might also be extended in the biomechanical
direction: incorporating models of appropriate muscle
actuators in the human-like running model might make it
possible to explain the stabilizing mechanisms of fast human
track running in more detail.

Another possible research direction is the investigation
of alternative optimization criteria with possible relation to
stability, as discussed in Section 1.3.
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Schlöder, “Open-loop stable running,” Robotica 23(01),
21–33 (Jan. 2005).

30. M. Popovic, A. Englehart and H. Herr, “Angular Momentum
Primitives for Human Walking: Biomechanics and
Control,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan
(2004).

31. J. Pratt and R. Tedrake, “Velocity-based stability margins
for fast bipedal walking,” Fast Motions in Robotics and
Biomechanics—Optimization and Feedback Control, Lecture
Notes in Control and Information Science (Springer,
Heidelberg, 2006).

32. J. E. Pratt, Exploiting Inherent Robustness and Natural
Dynamics in the Control of Bipedal Walking Robots. Ph.D.
Thesis (Massachusetts Institute of Technology, 2000).

33. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga,
N. Higaki and K. Fujimura, “The Intelligent ASIMO: System
Overview and Integration,” Proceedings of IROS, IEEE/RSJ
(Dec. 2002) Vol. 3, pp. 2478–2483.

34. G. Schultz, Generation of Optimal Human Running Gaits
Master’s Thesis (University of Heidelberg, 2007).

35. G. Schultz and K. Mombaur, “Modeling and optimization of
human-like running motions,” submitted.

36. Sony, QRIO—World’s first running humanoid robot, press
release, http://www.sony.net/SonyInfo/News/Press_
Archive/200312/03-060E/ (2003).

37. Toyota, Toyota Partner Robots, http://www.toyota.co.jp/
en/special/robot/ (2007).

38. A. J. van Soest and M. F. Bobbert, “The contribution of
muscle properties in the control of explosive movements,”
Biol. Cybernet. 69, 195–204 (1993).

39. M. Vukobratovic and B. Borovac, “Zero-moment point—
Thirty-five years of its life,” Int. J. Humanoid Rob. 1(1),
157–173 (2004).

40. P.-B. Wieber, Modélisation et commande d’un robot marcheur
anthropomorphe. Ph.D. Thesis (Ecole des Mines de Paris,
2000).

41. P.-B. Wieber, “Holonomy and nonholonomy in the dynamics
of articulated motion,” Fast Motions in Biomechanics and
Robotics—Optimization and Feedback Control (Springer,
Heidelberg, 2006) pp. 411–425.

42. P.-B. Wieber, “Viability and Predictive Control for Safe
Locomotion,” Proceedings of JNRR 2007 (Journées Nationales
de la Recherche en Robotique), Obernai, France (2007).

43. M. Wisse, “Three Additions to Passive Dynamic Walking:
Actuation, an Upper Body and 3D Stability,” Proceedings of
IEEE/RAS International Conference on Humanoid Robots,
Tsukuba, Japan (2005) pp. 295–300.

44. M. Wisse, C. G. Atkeson and D. K. Kloimwieder, “Dynamic
stability of a simple bipedwalking system with swng leg
retraction,” Fast Motions in Robotics and Biomechanics—
Optimization and Feedback Control, Lecture Notes in Control
and Information Science (Springer, Heidelberg, 2006).

45. M. Wisse and J. van Franzenhuyzen, “Design and Construction
of “Mike”: A 2D Autonomous Biped Based on Passive
Dynamic Walking,” Proceedings of International Conference
on Adaptive Motion of Animals and Machines (AMAM),
Kyoto, Japan (2003).

http://journals.cambridge.org

