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ABSTRACT 

A novel fidelity constraint to the image enhancement problem is 
presented.  With this constraint, we exploit the motion vectors 
of a compressed video bit-stream.  These vectors establish a 
correspondence between image pixels across a series of frames, 
and we guarantee that processing the decoded sequence does 
not violate this correspondence.  We develop the constraint 
within the context of MPEG-2 and incorporate the constraint 
into a regularized enhancement algorithm. Simulations are then 
performed.  Quantitative and qualitative results illustrate an 
improvement in visual quality. 

1. INTRODUCTION 

Image compression systems introduce a variety of artifacts into 
the decoded imagery.  These artifacts include blocking, ringing 
and temporal flicker.  Removing or attenuating these artifacts 
can significantly improve the quality of the decoded sequences, 
and many post-processing algorithms are proposed for this task 
[2].  In general, these algorithms fall into two distinct 
categories.  Enhancement algorithms rely on a heuristic 
procedure to filter and improve the quality of compressed video.  
Recovery techniques depend on a rigorous definition of the 
enhanced image and utilize an optimization technique. 

Here, we are concerned with recovery methods.  These 
algorithms improve visual quality by finding a solution that 
balances two conflicting requirements.  First, desirable 
characteristics of the decoded images must be present.  These 
properties include deterministic statements such as "The image 
should be smooth" as well as stochastic definitions for the 
image distribution.   Second, fidelity constraints require a 
solution that is consistent with any observations of the original 
signal.  For example, we might require individual pixels to be 
close to the observed data.  Alternatively, we could restrict the 
solution to a valid range of Discrete Cosine Transform (DCT) 
coefficients.  The allowable range is extracted from the 
compressed bit-stream. 

In this paper, we introduce a new fidelity constraint for 
image recovery techniques.  Deterministic methods are the 
focus, though the constraint is also applicable to stochastic 
methods.  The method relies on the motion vectors within a 
compressed bit-stream.  These vectors define a relationship 
between blocks of pixels in different image frames, and the goal 
of our constraint is to maintain these temporal relationships 

during processing.  Image sequences that do not exhibit these 
temporal correspondences are therefore excluded as solutions to 
the proposed post-processing algorithm.  

The rest of the paper is organized as follows.  In section 2, 
we provide an overview of current video compression methods.  
These methods motivate the definition of the new constraint, 
and an example shows its potential impact on a post-processing 
procedure.  In Section 3, a method for realizing the constraint is 
proposed.  Then, the constraint is incorporated into a 
regularized post-processing algorithm.  Finally, simulations are 
presented in section 4.  Visual quality metrics are used in 
evaluating the results. 

2. MOTIVATION 

Standards-based video compression systems rely on a variety of 
video compression algorithms.  These algorithms are specified 
in the ITU and MPEG family of standards, and each utilizes a 
similar approach for video compression.  In general, images are 
encoded as either intra- or inter-frames. In intra-mode, an image 
is divided into equally sized blocks.  Blocks are then 
independently processed with the DCT, and the resulting 
transform coefficients are quantized.  The quantized data is sent 
to the decoder, which computes the inverse-DCT of quantized 
coefficients and reassembles the image blocks into a frame. 

Inter-frame compression exploits the temporal redundancies 
of a video sequence and is a second mode for compression.  In 
this method, images are still divided into equally sized blocks 
and independently processed.  However, processing begins by 
first finding the best estimate for each block in the previously 
transmitted images.  Once the best match is found, its position is 
encoded relative to the current block and communicated to the 
decoder.  The difference between the current block and the 
prediction is then calculated, transformed with the DCT, 
quantized and transmitted to the decoder.  Finally, the current 
block is reconstructed by taking the inverse-DCT of the 
quantized information and adding it to the block referenced by 
the motion vectors.  The image blocks are then reassembled into 
a complete frame. 

Thinking of the compressed bit-stream in terms of fidelity 
constraints, we see that there are two key pieces of information 
that describe the original image during intra-frame compression.  
First, the original pixel data is approximated by the pixels of the 
decoded result.  Thus, we are justified in saying that the original 
image is "close" to the decoded information, though a definition 
of this similarity must be provided.  As a second constraint, the 
quantized values for the DCT coefficients convey information This work was supported in part by a grant from the Motorola 
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about the original image.  These coefficients are transmitted to 
the decoder by a quantization index and scale factor.  The set of 
coefficients that contains the original image then has a width 
equal to the quantization scale factor and is centered on the 
value of the quantizer index multiplied by the scale factor.  

The intra-mode constraints are often utilized in post-
processing algorithms [4,7].  In both cases, the goal is to restrict 
any modifications to the decoded image data so that the 
constraints are not violated. (Violating the constraints 
guarantees a solution unequal to the original image.)  In inter-
mode encoding, an additional description of the original image 
appears in the compressed bit-stream.  This suggests another 
constraint on the solution.  In this mode, motion vectors identify 
the best match between each block in the original image and 
previously encoded data. With knowledge of this relationship, it 
is reasonable to constrain a post-processed solution to be "close" 
to these estimated values.  

Satisfying the proposed motion vector constraint requires 
that a post-processing algorithm define a measure of similarity 
between a solution and the predicted blocks.  Within our 
framework, any definition is allowable.  However, the 
constraint should utilize the same definition as enforced by the 
encoder.  In typical ITU or MPEG compression systems, the 
purpose of the motion vectors is to reduce the bit-rate 
requirement for video transmission.  While many different 
measures are conceivable, most procedures rely on the sum of 
the absolute difference (SAD) as the similarity test.  This 
definition is well-suited for video coding, as it reduces the 
magnitude of the error residual and simplifies coding. 

Independent of the similarity measure, the motion vector 
constraint requires that motion vectors calculated for the post-
processed image correspond to the information transmitted in 
the bit-stream.  Using the SAD metric as an example, we should 
then require that the minimum SAD between each post-
processed block corresponds to the block of pixels referenced 
by the motion vector, when compared to all other pixel 
locations within a search region.  This is stated as 

   ( ) { }iji,jii,iiii ≠∀−≤−∈ ,ˆˆ:PMV bbbbbb , (1) 

where PMV is the motion vector constraint operator, bi is the ith 

block in the current frame, i,ib̂  is the estimate for the ith block 

as denoted by the motion vector and ji,b̂  are all of the blocks 

that were considered by the encoder as best matches. 
Defining the blocks that were not chosen as the best match 

is an important component of the constraint, as it implicitly 
determines the amount of similarity between the original image 
and the estimate. In the standards, the specific region and 
pattern of the motion vector search is undefined.  Instead, a 
maximum search range is identified as well as the precision of 
the motion vectors.  Many applications do not have the 
resources for an exhaustive search over all potential matches.  
Instead, a reduced search or imperfect strategy must be 
considered.  Nevertheless, rejected candidates express 
additional knowledge of the original image and should benefit 
the post-processing procedure. 

The maximum number of search locations is defined in all 
of the standards, and we utilize this information to illustrate the 

potential influence of the motion vector constraint.  Consider an 
interlaced compression system based on MPEG-2 [1].  In this 
scenario, motion vectors are calculated for each 16x8 block of 
the current frame and are encoded at half-pixel resolution.  The 
maximum extent of the search is ±64 pixels, and two modes of 
inter-frame compression are available.  When encoding using 
the first mode, a P-field is generated and relies on two previous 
fields as temporal references.  A full search of the candidate 
motion vectors produces 107,519 rejected search locations.  
More constraints are introduced when encoding a B-field.  In 
this situation, two motion vectors are transmitted for each 16x8 
block and averaging the two references is an acceptable way to 
form the estimate.  In the case of the maximum search window, 
there are 1,156,055,038 rejected search locations. This 
effectively provides 1x109 examples of what each block in the 
original image does not look like, which is a significant amount 
of information about the original image.  

3. PROPOSED ALGORITHM 

To realize the motion vector constraint, we propose the 
following algorithm 

 
( ) ( )ii,iii bbbb −+= ˆPMV α , (2) 

where  is the minimum positive value that makes the statement  
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true.  MSimilarity is the similarity measuring operator.  In the case 
of the SAD test for similarity, we would restate (3) as 

 ( ) ( ) i,jii,iii,iii,ii bbbbbbbb ˆˆˆˆ −−+≤−−+ αα . (4) 

With the procedure, a post-processing algorithm takes each 
image block and moves it closer to its predicted value.  Blocks 
are only modified if the similarity between the predicted block 
and the current solution is greater than the similarity between a 
rejected block and the current solution.  Under this condition, 
the solution block is modified until the constraint is satisfied.  A 
visual example of the procedure is shown in Figure 1.  

Incorporating the motion vector constraint into a post-
processing algorithm leads to a novel procedure.  Consider the 
deterministic framework presented in [3, 5].  In this work, the 
post-processing algorithm is posed as the minimization of  

 
 
 
 
 
 
 
 
Figure 1. Simplified representation of the motion vector 
constraint.  The current block is moved towards the estimated 
block until the sum of absolute difference criterion is satisfied. 
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 ( ) dTransmitteDCTts ∈fDCTP..  (5) 

where g is a decompressed image, f is the sought after enhanced 
image, Q1 is a high-pass operator that measures smoothness 
across the entire image, Q2 is a horizontally oriented high-pass 
operator, W2 restricts the influence of the operator to the 
horizontal boundaries of the blocks, Q3 is a vertically oriented 
high-pass operator, W3 restricts the influence of the operator to 
the vertical boundaries of the blocks, fMC are previously 
enhanced images projected through a motion field to the current 
frame location, DCTTransmitted represents the allowable range of 
the transmitted DCT coefficients and PDCT is the projection 
operator onto this range.  The importance of the fidelity term 

2
fg −  is controlled by the parameter 1 and is traditionally 

equal to one.  The relative influence of the within image, 
between block and inter-frame smoothness measures are 
controlled by λ1, λ2, λ 3 and λ4, respectively. 

Incorporating the motion vector constraint and utilizing the 
method of successive approximations to minimize (5), an 
iterative solution evolves.  The procedure becomes 
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where PMV is the motion vector constraint in (2) and  
determines the convergence and the rate of convergence of the 
algorithm. 

4. EXPERIMENTS 

Incorporating constraints into a post-processing algorithm is 
only worthwhile if it improves the visual quality of the decoded 
sequence.  In this section, we present experimental results 
utilizing the proposed motion vector constraint.  Results consist 
of visual quality measurements and visual examples.  For the 
simulations, we process 100 frames of an MPEG-2 video 
sequence.  The sequence consists of interlaced CCIR601 video 
data with a spatial resolution of 720x240 pixels and a frame rate 
of 60 fields per second.  The bit-stream is generated with the 
TMN5 rate controller operating at MAIN profile and MAIN 
level and a target bit-rate of 4.25Mbps.  When finding the 
motion vectors, the encoder searches an 8x8 region for a P-field 
and a 3x3 region for a B-field.  In both instances, results utilize 
the same parameters when defining the rejected matches for the 
motion vector constraint. 

Parameters for the algorithm are chosen to provide a 
reasonable post-processing method.  At the same time, we 
present an algorithm that relies heavily on the motion vector 
constraint.  Towards this goal, experiments utilize the method of 
(6) but disable any smoothing between temporal frames by 
setting 4=0.  Thus, each frame is processed independently.  
Also, we minimize the impact of the linear constraints with the 

parameter choice 1=0, 2= 3=1 and 1=0.  This results in an 
algorithm that attempts to smooth across block boundaries, with 
no penalty for deviating from the decoded intensities.  The DCT 
constraint is realized by calculating the DCT at each iteration, 
projecting the invalid coefficients to the nearest valid value and 
calculating the inverse DCT.  The entire algorithm terminates 

when 622
10−

+ ≤− kk1k fff . 

To quantify the improvement in visual quality, we utilize 
the metric discussed in [6].  Effectively, this metric incorporates 
a model of the human visual system into a weighted error 
calculation. These weights are dependent on several 
characteristics of human perception, including a variety of 
luminance and spatial masking properties.  With this model, 
visibility thresholds for each DCT coefficient of a block are 
calculated.  These thresholds define the errors required for the 
perception of a visual artifact.  Then, the metric is computed by 
finding the quantization error for each coefficient and dividing 
by the corresponding threshold.  Within this framework, 
measurements less than one denote an invisible error.  Values 
greater than one identify visible artifacts.   

Visual quality measurements for each of the 200 fields are 
provided in Figure 2.  Care must be taken in interpreting the 
values, as the scale only provides relative measurements.  
However, it is reasonable to expect images with higher values 
for the measurement to contain more visual errors.  In the 
figure, (a) displays the visual quality of the decoded image 
sequence (without processing) for each field, while (b) plots the 
visual quality of the post-processing image sequence for each 
field.  The difference between these two sequences is shown in 
(c), where positive numbers represent an improvement in visual 
quality after post-processing.  From the figure, we see that the 
post-processing algorithm improves the visual quality metric of 
every frame of the sequence.  The average improvement is 4.04, 
which is expressed in terms of a spatially pooled, just-noticeable 
difference.  The reduction in the visual quality metric suggests 
that the algorithm improves visual quality.  

Perhaps the most important evidence in evaluating visual 
quality is the inspection of actual images. Two small portions of 
a CCIR field are shown in Figure 3.  The decoded images 
(without post-processing) are displayed in (a) and (c), while the 
post-processed results are shown in (b) and (d).  From the 
figure, we see that the post-processing algorithm is able to 
reduce the ringing and blocking artifacts appearing around the 
statue in the top set of images.  Also, the blocking artifact in the 
second set of images is reduced.  Perhaps a more interesting 
observation is that de-blocking and de-ringing is accomplished 
without blurring significant features.  Notice the preservation of 
the monument feature at the lower left of the top set of images.  
Also, observe the strong vertical feature at the right of the 
bottom set of images.      The motion vector constraint facilitates 
this adaptive smoothing, as the significant features appear in 
previous images and are maintained by the constraint.  

5. CONCLUSIONS 

In this paper, we introduce a new fidelity constraint for 
regularized video enhancement.  The constraint relies on the 
motion vectors in the compressed bit-stream and guarantees that 
relationships defined by the motion vectors are maintained 



during processing.  The motion vector constraint is incorporated 
into a deterministic post-processing algorithm, and the novel 
technique is applied to an MPEG-2 coding scenario.  Quality is 
measured with a visual quality metric and visual examples. 
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(a) (b) 

  
 (c) (d) 

Figure 3.  Two examples of the motion vector constraint: (a) and 
(c) are the decoded images without processing; (b) and (d) are the 
images after post-processing.  The motion vector constraint 
facilitates removal of blocking and ringing artifacts but preserves 
significant image content. 
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(c) 

Figure 2.  Visual quality measurements versus field number.  
Visual quality is a pooled just-noticeable difference calculation and 
suggests that the motion vector constraint improves visual quality: 
(a) quality of decoded sequence; (b) quality of sequence after 
post-processing with (6), and (c) improvement in visual quality 
resulting from the motion vector constraint.  In (a) and (b), higher 
values for the visual quality measurement reflect more severe 
degradations.  In (c), positive values for the metric suggests that 
the post-processing algorithm improves the visual results.  


