TEMPOS : Managing Time and Historieson top of OO DBM S *

M. Dumas, J.F. Canavaggio, M.C. Fauvet, P.C. Scholl

1. Introduction

TEMPOS (Temporal Extension Model for Persistent
Object Servers) [1, 2] is a multigranular temporal model
integrating the main functionalities required to manage
the data historical dimensions on top of a DBMS. It is
composed of a time model, which defines a hierarchy of
simple and complex datatypes for modelling temporal
values, and a historical model, which allows to update
and query timestamped object properties.

The main originalities of this model are :

- The set of temporal units at which temporal values
and histories may be observed is extensible. More-
over, operations on temporal values and histories
are independent of the units being involved.

- It allows various representations of histories and
provides means for switching between them.
Again, operations on histories are independent
of their representation. In particular, the opera-
tions’ semantics ensure coalescing and restructur-
ing whenever it is required.

- Updating operations take into account the type of
history to which they apply (i.e. the nature of the
phenomena being observed).

2. Managing temporal values

TEMPOS temporal data model provides means for
managing simple and complex, anchored and unan-
chored temporal values observed at any temporal unit.
It comprises a wide variety of temporal datatypes (in-
stant, span, interval, set of instants) and a set of opera-
tions over them which are independent of the units being
involved.

Moreover, the model takes into account the multi-
plicity of external representations of temporal values
by means of unit systems and formats. Unit systems
are sequences of comparable units which allow to ex-
press temporal values in different calendars while for-
mats map strings into temporal values representations
in a given unit system. Non-overlapping formats may
be grouped into a set of formats so that the user can in-
put/output temporal values following his own calendars
and syntactical conventions. For instance, having de-
fined the appropriate set of formats and unit systems,

*To appear in EDBT’98 demo session
tLSR-IMAG, University of Grenoble, BP 72, 38402 Saint-Martin
d’Heéres, France. E-mail : Marlon.Dumas@imag.fr

the user can write “9/3/95” or “September 3, 1995” to
denote the corresponding instant.

3. Managing object histories

The TEMPOS historical model integrates the main
functionalities required to manage timestamped object
properties (named histories).

In TEMPOS, a history is specified by a temporal do-
main, a sequence of inputted snapshots and a temporal
interpolation function. This definition models in a uni-
fied framework different historical types (discrete, step-
wise, interpolated).

The model allows various representations of histo-
ries by grouping instants together in several ways.
For instance, a history can be represented as an
I_Chronicle (ordered sequence of instant-timestamped
values), an X_Chronicle (coalesced sequence of interval-
timestamped values) or a D_Chronicle, (set of dis-
tinct values timestamped by non-overlapping and non-
contiguous sets of intervals). Operations on chronicles
allow to switch from one representation to another.

Query operations on histories are stemming from tem-
poral extensions of the relational algebra and from adap-
tations of iterators on sequences, which allow to reason
about succession in time and to express aggregate oper-
ations. Updating facilities allow to set and modify both
the temporal domain and the sequence of inputted snap-
shots of a history.

4. Implementation

The TEMPOS model has been implemented on top of
the OO DBMS 0O,. This implementation consists of a
package of temporal classes corresponding to the types
described above and a preprocessor for an OQL exten-
sion, TempOQL, in which temporal and historical types
are primitive in the same way as integer, real, etc. In
particular, TempOQL overrides OQL arithmetic opera-
tors to deal with temporal values.

Figure 1 illustrates the prototype architecture.

As the figure shows, the administrator can adapt and
extend the facilities of the temporal package by defining
new temporal units and formats.

The temporal package is about 14000 lines of O,C*
code while the preprocessor is about 4000 lines of O,C,
C, Lex and Yacc.

10,C is one of the database programming languages provided by
the O, system



TempOQL

Application (
queries

programs

/ TempOQL preprocessor

Vv
Compraopes > s ez
Administrator
T b

’ 02/0QL ‘

Figure 1: Prototype architecture

5. Examples

The following schema in O2’s DDL illustrates the use
of the TEMPOS prototype?.

class Truck
public type tuple(
licence_number : string,
bought_on : Instant<Day>,
maintenances : Discrete_History<
Day,
tuple(Type : string,
Price : real)>,
driver : Stepwise_History<Day, string>);

name Trucks : set(Truck);

The following queries over this schema show some
facilities offered by TempOQL.

Q1 : temporal restriction and structural projection

For each truck bought after 1980, retrieve its number
and the set of maintenance services done over it between
January and September 1995.

select tuple(
number : t.licence_number,
service : SDomain(Restrict(
t.licence_number,
[@'1/95',@9/95'])))
from t in Trucks where t.bought_.on > @’'1980’

- Restrict allows to restrict the temporal domain of
a history to a given period.

- SDomain gives the set of values taken by a history
over time.

Q2 : temporal product
For each pair of trucks, retrieve the set of instants when
they where both simultaneously in maintenance.

select tuple(
truckl : t1,

2The construct class.name<type_name> denotes a template in-
stantiation.

truck? : t2,
when : TDomain(IProduct(t1.maintenance,
t2.maintenance)))
from t1 in Trucks, t2 in Trucks

- The inner temporal product (IProduct) of two his-
tories h1 and h2, is the chronicle whose shapshots
are obtained from those snapshots in h1l and h2
which have the same temporal value.

- TDomain gives the temporal domain of a history.

Q3 reasoning about succession in time
Did Tom ever drive a truck which had previously been
driven by Ed?

exists tin Trucks :
Exists(EndOf(t.driver, As « SV(s) = “Ed"),
AS « SV(s) = “Tom”)

- The function EndOf restricts a history to the in-
stants following the first time when the given pred-
icate was true.

- The predicate Exists over a history is true iff there
is a at least one snapshot in the history which veri-
fies the given predicate.

- In both lambda-expressions above, the formal pa-
rameter s denotes a snapshot. s being a snapshot
of a history, SV(s) denotes its structural value.

6. Applicationsand future research

Two applications have been modelled and imple-
mented using TEMPOS : a toy application about a
water-bottling factory, and an application from eco-
nomics involving time series. In addition, we are study-
ing several spatio-temporal applications from the GIS
domain. In order to tackle the spatial dimension of these
applications, we expect to integrate TEMPOS with a
spatial data model.

Current efforts aim to design and implement a DDL
and a DML based on the TEMPOS model and to study
issues related to temporal query evaluation, such as op-
timization and storage structures. Moreover, we plan to
accommaodate bitemporal operators in the model.

References

[1] M.-C. Fauvet, J.-F. Canavaggio, and P.-C. Scholl.
Modelling histories in object DBMS. In proc.
of the 8th International Conference on Database
and Expert Systems Applications (DEXA), Toulouse
(France), September 1997. Springer Verlag. LNCS
1308.

[2] P-C. Scholl, M.-C. Fauvet, and J.-F. Canavaggio.
Un modele d’historique pour un SGBD temporel.
TSI, Numéro thématique ““Bases de données’, Mars
1998.



