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Non-Coherent Detection for
Two-Way AF Cooperative Communications in

Fast Rayleigh Fading Channels
Jian Tian, Student Member, IEEE, Qi Zhang, and Fengqi Yu

Abstract—Two-way cooperative communications are consid-
ered to improve the throughput of conventional one-way coop-
erative communications. For fast Rayleigh fading channels, we
propose optimal and suboptimal non-coherent detectors for on-
off keying (OOK) and frequency-shift keying (FSK) modulated
two-way amplify-and-forward (AF) cooperative communications
in this paper. In the proposed system, the relaying node combines
the received signals from two nodes, amplifies them and retrans-
mits the conjugate of the combined and amplified signals to
the above-mentioned nodes. At the receivers of above-mentioned
nodes, the optimal non-coherent detection is employed which is
based on maximum likelihood rule. Since it involves integration
operation, the optimal detector is simplified to a suboptimal
detector which omits the real component of the relayed signal
over the frequency which includes interference. The simulation
results have shown that compared with the optimal detector,
the proposed suboptimal detector reduces the receiver com-
plexity at the expense of acceptable performance degradation.
Furthermore, we have analytically studied the bit-error-rate
performance upper and lower bounds of proposed non-coherent
FSK modulated two-way AF cooperative communications.

Index Terms—Non-coherent detection, cooperative communi-
cation, amplify-and-forward (AF), two-way, Rayleigh fading.

I. INTRODUCTION

COOPERATIVE communications, which can provide ex-
tra spatial diversity for conventional single antenna

transceivers to combat fading in wireless communication
networks, have received more and more attentions [1]-[9].
In cooperative communications, the cooperative nodes relay
the signals according to different relaying protocols, such
as amplify-and-forward (AF), decode-and-forward (DF), and
compress-and-forward (CF) [2]-[4]. Among them, AF protocol
is widely employed in the situations where the relaying nodes
have limited ability of signal processing.

The coherent detection for AF cooperative communications,
studied in [5], requires perfect channel state information (CSI)
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known at the destination. To obtain CSI, we should transmit
extra pilot symbols and estimate the wireless channels, which
reduces the network throughput and increases the system com-
plexity. Especially when the wireless channels vary rapidly, the
coherent detection at the destination is almost impossible.

When coherent detection is impossible, non-coherent
(de)modulations have been proposed in [6]-[9]. In [6], An-
navajjala et al proposed optimal non-coherent detectors for
on-off keying (OOK) and binary frequency-shift keying (FSK)
modulated AF cooperative communications in a Rayleigh
fading environment. However, the proposed optimal detectors
are not in closed form and involve numerical integration,
which makes the receiver have very high complexity. In [7],
Zhu et al developed the suboptimal detectors as a low com-
plexity counterpart for the above-mentioned optimal detectors
by employing Jensen’s inequality. Simulation results have
shown that the suboptimal detectors are able to approach the
performance of optimal detectors when the signal-to-noise-
ratio (SNR) is high.

The work in [6]-[9] considers one-way cooperative commu-
nications. To improve the transmission efficiency and increase
the network throughput, two-way cooperative communications
employing network coding have been studied extensively [10]-
[19]. The idea of two-way cooperative communications is that
considering two nodes need to exchange information with each
other, the third node cooperatively relays the combination of
exchanged information symbols from both nodes by “XOR"
operation [12] or other means [13]-[16] after receiving them.
By employing these methods, the cooperative communications
between the three nodes require less time slots.

The above-mentioned two-way cooperative communications
consider coherent (de)modulations by assuming the channels
are static or slow fading. However, for fast fading channels,
above-mentioned schemes cannot be applied, especially for
AF cooperative communications. In this paper, we propose
optimal non-coherent detection for two-way OOK and 𝑀 -
ary FSK modulated AF cooperative communications in fast
Rayleigh fading channels. In non-coherent two-way AF co-
operative communications, how to combine the exchanged
information symbols from two source nodes is a problem.
In this paper, we propose simple addition, amplification,
conjugate and retransmission operations on the received ex-
changed symbols from two source nodes. The proposed signal
combination method facilitates the signal detection at the des-
tination. Without channel state information (CSI), we derive
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Fig. 1. System model for two-way cooperative communications.

the non-coherent optimal detectors for two-way AF coop-
erative communications. Since the optimal detectors involve
integration operation, we derive a suboptimal detector without
integration. Simulation results will be provided to show that
the suboptimal detector is able to approach the bit-error-
rate (BER) performance of the optimal detector. Furthermore,
we analytically study the BER performance upper and lower
bounds of proposed two-way 𝑀 -ary FSK modulated AF
cooperative communications.

The rest of this paper is organized as follows: Section
II describes the system model of two-way AF cooperative
communication network. We derive the non-coherent opti-
mal and suboptimal detectors in Section III and Section IV,
respectively. In Section V, we derive the optimal detector
when the partial CSI is known. In Section VI, the BER
performance upper and lower bounds of proposed two-way
FSK modulated AF cooperative communications are studied.
Computer simulated results are presented and discussed in
Section VII. Finally, conclusions are given in Section VIII.

II. SYSTEM MODEL

In flat Rayleigh fading channels, we consider a three-
node two-way wireless cooperative communication network
where nodes 𝑠1 and 𝑠2 communicate with each other with the
assistance of node 𝑟, as illustrated in Fig. 1. In this two-way
cooperative communication network, each node works in half-
duplex mode. This is because each node cannot transmit and
receive signals simultaneously on the same frequency band.
Thus, the exchange of information symbols between nodes 𝑠1
and 𝑠2 is divided into three phases. In the first and second
phases, nodes 𝑠1 and 𝑠2 broadcast their signals, respectively.
In the third phase, node 𝑟 broadcasts the combination of the
received signals from nodes 𝑠1 and 𝑠2.

The nodes 𝑠1 and 𝑠2 employ an on-off keying (OOK) or
𝑀 -ary frequency shift keying (FSK) modulation to transmit
signals. Denote the modulated signals at nodes 𝑠1 and 𝑠2 as
vectors x𝑠1 and x𝑠2 with length 𝑀 , respectively. The vectors
x𝑠1 ,x𝑠2 ∈ Θ,

Θ =

{ {√
2𝐸𝑠, 0

}
; OOK

{x𝑚,𝑚 = 2, 3, ⋅ ⋅ ⋅ ,𝑀} ; 𝑀 -ary FSK
(1)

where 𝐸𝑠 is the transmission power per symbol and

x𝑚 =

⎡
⎣0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸

𝑚−1

,
√
𝐸𝑠, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸

𝑀−𝑚

⎤
⎦†

(2)

in which † denotes the transpose and conjugate operation. Thus
OOK can be seemed as a special case of 𝑀 -ary FSK where

𝑀 = 1. Without loss of generality, we only focus on the
signals transmitted from the node 𝑠1 to the node 𝑠2 in this
paper. The relationships between the transmitted and received
signals at nodes 𝑟 and 𝑠2 are as follows

y𝑠1𝑠2 = ℎ𝑠1𝑠2x𝑠1 + n𝑠1𝑠2 , (3)

y𝑠1𝑟 = ℎ𝑠1𝑟x𝑠1 + n𝑠1𝑟, (4)

y𝑠2𝑟 = ℎ𝑠2𝑟x𝑠2 + n𝑠2𝑟, (5)

y𝑟𝑠2 = 𝐴𝑟ℎ𝑟𝑠2 (y𝑠1𝑟 + y𝑠2𝑟)
∗
+ n𝑟𝑠2 (6)

where ∗ denotes the conjugate operation. In (3)-(6), the vector
y𝑝𝑞 with length 𝑀 denotes the received signals at node 𝑞
transmitted from node 𝑝, 𝑝, 𝑞 ∈ {𝑠1, 𝑟, 𝑠2}, whose 𝑚𝑡ℎ entry
is the received signal over the 𝑚𝑡ℎ frequency; ℎ𝑝𝑞 denotes
the channel fading coefficient from node 𝑝 to node 𝑞; and the
vector n𝑝𝑞 with length 𝑀 denotes the additive white Gaussian
noise (AWGN) at node 𝑞 when node 𝑝 broadcasts signals,
whose 𝑚𝑡ℎ entry is the AWGN over the 𝑚𝑡ℎ frequency.
The channel fading coefficient ℎ𝑝𝑞 is a circular symmetric
complex Gaussian random variable (RV) with variance Ω𝑝𝑞 ,
where Ω𝑝𝑞 = Ω𝑞𝑝. Same as the channel fading coefficient,
the entry of the noise vector n𝑝𝑞 is also circular symmetric
complex Gaussian RV, whose variance is 𝑁𝑜. In (3)-(6), the
fading coefficients ℎ𝑠1𝑠2 , ℎ𝑠1𝑟, ℎ𝑠2𝑟 are mutually independent
and ℎ𝑠1𝑠2 , ℎ𝑠1𝑟, ℎ𝑟𝑠2 are also mutually independent. However,
due to the channel symmetry, ℎ𝑠2𝑟 and ℎ𝑟𝑠2 are correlated RVs
whose correlation coefficient is denoted as 𝜌. In this paper,
we focus on fast fading channel. The instantaneous channel
fading coefficients {ℎ𝑠1𝑠2 , ℎ𝑠1𝑟, ℎ𝑠2𝑟, ℎ𝑟𝑠2} are assumed to be
unknown at any node. Hence node 𝑠2 has to employ non-
coherent detection. In (6), 𝐴𝑟 is the amplification factor which
satisfies the long-term power constraint for ergodic channels

𝐴2
𝑟E
[
(y𝑠1𝑟 + y𝑠2𝑟)

†
(y𝑠1𝑟 + y𝑠2𝑟)

]
= 𝐸𝑟 (7)

where E[∙] denotes the expectation of [∙] and 𝐸𝑟 denotes the
transmission power per symbol at node 𝑟. Thus,

𝐴𝑟 =

(
𝐸𝑟

𝐸𝑠Ω𝑠1𝑟 + 𝐸𝑠Ω𝑠2𝑟 + 2𝑀𝑁𝑜

) 1
2

. (8)

It is worth noting that in (6), the relayed signal is actually
conjugate version of the received signals at node 𝑟. In doing
that, the complexity of the relaying nodes is increased a little
whereas the complexity of the proposed detector is reduced
significantly compared with the relaying without conjugate
operation. This is because by conjugate operation, we can
exploit the correlation of the channel coefficients ℎ𝑠2𝑟 and
ℎ𝑟𝑠2 .

III. OPTIMAL DETECTOR UNDER MAXIMUM LIKELIHOOD

RULE

We consider to employ maximum likelihood detection rule
to detect the received signals at node 𝑠2. The estimated symbol
transmitted from node 𝑠1 is expressed as follows

x̂𝑠1 = arg max
x𝑠1∈Θ

𝑃 (y𝑠1𝑠2 ,y𝑟𝑠2 ∣x𝑠1 ,x𝑠2) (9)

where 𝑃 (y𝑝𝑞 ∣x𝑝) is the conditional probability density func-
tion (PDF) of y𝑝𝑞 given x𝑝. Since the channels ℎ𝑠1𝑠2 , ℎ𝑠1𝑟,
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and ℎ𝑟𝑠2 are mutually independent, the conditional PDF
𝑝(y𝑠1𝑠2 ,y𝑟𝑠2 ∣x𝑠1 ,x𝑠2) can be reduced to

𝑃 (y𝑠1𝑠2 ,y𝑟𝑠2 ∣x𝑠1 ,x𝑠2) = 𝑃 (y𝑠1𝑠2 ∣x𝑠1)𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2).
(10)

In (9)-(10), y𝑠1𝑠2 is 𝑀 -dimensional complex Gaussian dis-
tributed with mean vector 0 and covariance matrix

Ψ𝑠1𝑠2 = 𝑁𝑜I𝑀 +Ω𝑠1𝑠2x𝑠1x
†
𝑠1 (11)

where I𝑀 is an 𝑀 ×𝑀 identity matrix. Thus, the conditional
PDF of y𝑠1𝑠2 on x𝑠1 is

𝑃 (y𝑠1𝑠2 ∣x𝑠1) =
1

𝜋𝑀det (Ψ𝑠1𝑠2)
exp

(−y†
𝑠1𝑠2Ψ

−1
𝑠1𝑠2y𝑠1𝑠2

)
(12)

where det(∙) denotes the determinant of (∙). The computation
of 𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 ) is not straightforward because the trans-
mission of x𝑠2 from node 𝑠2 affects the relaying signal. From
(3)-(6), we have

y𝑟𝑠2 = 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1 + ℎ𝑠2𝑟x𝑠2 + n𝑠1𝑟 + n𝑠2𝑟)
∗
+ n𝑟𝑠2 .

(13)
Since ℎ𝑟𝑠2 and ℎ𝑠2𝑟 are correlated with the correlation coef-
ficient 𝜌, we can express ℎ𝑠2𝑟 as follows

ℎ𝑠2𝑟 = 𝜌ℎ𝑟𝑠2 + 𝜂 (14)

where 𝜂 is a circular symmetric complex Gaussian RV with
zero mean and variance

(
1− 𝜌2

)
Ω𝑟𝑠2 and 𝜂 is uncorrelated

with ℎ𝑟𝑠2 . Therefore, we can rewrite (13) as follows

y𝑟𝑠2 = 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1 + 𝜌ℎ𝑟𝑠2x𝑠2)
∗

+ 𝐴𝑟ℎ𝑟𝑠2 (𝜂x𝑠2 + n𝑠1𝑟 + n𝑠2𝑟)
∗
+ n𝑟𝑠2 . (15)

Given x𝑠1 , x𝑠2 , ℎ𝑠1𝑟 and ℎ𝑟𝑠2 , y𝑟𝑠2 is 𝑀 -dimensional com-
plex Gaussian distributed with mean vector

𝜉 = 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1 + 𝜌ℎ𝑟𝑠2x𝑠2 )
∗ (16)

and covariance matrix

Ψ𝜉=𝐴2
𝑟 ∣ℎ𝑟𝑠2 ∣2

(
1−𝜌2)Ω𝑟𝑠2x𝑠2x

†
𝑠2+𝑁𝑜

(
1+2𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2
)
I𝑀 .

(17)
The conditional PDF of y𝑟𝑠2 on x𝑠1 ,x𝑠2 , ℎ𝑠1𝑟 and ℎ𝑟𝑠2 is

𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 , ℎ𝑠1𝑟, ℎ𝑟𝑠2 ) (18)

=
1

𝜋𝑀det (Ψ𝜉)
exp

[
− (y𝑟𝑠2 − 𝜉)

†
Ψ−1

𝜉 (y𝑟𝑠2 − 𝜉)
]
.

To derive the conditional PDF 𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 ), we need
the following lemma which is from [6]

Lemma 1 : If 𝑍 is circular symmetric complex Gaussian
random variable with the mean 𝑚𝑧 and variance 𝜎2

𝑧 , then the
expected value of exp

(−∣𝑍∣2) is

E
[
exp

(−∣𝑍∣2)] = 1

1 + 𝜎2
𝑧

exp

(
− ∣𝑚𝑧∣2
1 + 𝜎2

𝑧

)
. (19)

With Lemma 1, the conditional PDF
𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 , ℎ𝑟𝑠2 ) is obtained by taking expectation
over ℎ𝑠1𝑟. Given ℎ𝑟𝑠2 , y𝑟𝑠2 is 𝑀 -dimensional complex
Gaussian distributed with mean vector

y𝑟𝑠2 = 𝜌𝐴𝑟 ∣ℎ𝑟𝑠2 ∣2 x𝑠2 (20)

and covariance matrix

Ψ𝑟𝑠2 = Ψ𝜉 +𝐴2
𝑟 ∣ℎ𝑟𝑠2 ∣2 Ω𝑠1𝑟x𝑠1x

†
𝑠1 . (21)

The conditional PDF of y𝑟𝑠2 on x𝑠1 ,x𝑠2 and ℎ𝑟𝑠2 is

𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 , ℎ𝑟𝑠2 ) =
1

𝜋𝑀det (Ψ𝑟𝑠2)
(22)

exp
[
− (y𝑟𝑠2 − y𝑟𝑠2

)†
Ψ−1

𝑟𝑠2

(
y𝑟𝑠2 − y𝑟𝑠2

)]
.

Taking the expectation of (22) over ∣ℎ𝑟𝑠2 ∣2, we obtain the
conditional PDF 𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 )

𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 ) =

∫ ∞

0

𝜋−𝑀

Ω𝑟𝑠2det (Ψ𝑧)
(23)

exp

[
− 𝑧

Ω𝑟𝑠2

− (y𝑟𝑠2− 𝑧𝜌𝐴𝑟x𝑠2 )
†
Ψ−1

𝑧 (y𝑟𝑠2− 𝑧𝜌𝐴𝑟x𝑠2)

]
𝑑𝑧

where

Ψ𝑧 = 𝑧𝐴2
𝑟

(
Ω𝑟𝑠2

(
1− 𝜌2

)
x𝑠2x

†
𝑠2 +Ω𝑠1𝑟x𝑠1x

†
𝑠1

)
+ 𝑁𝑜

(
1 + 2𝑧𝐴2

𝑟

)
I𝑀 . (24)

To our best knowledge, the closed-form expressions of (23)
does not exist in the literature. In Section VII, we calculate
(23) numerically to obtain the simulation results of proposed
optimal receivers.

IV. SUBOPTIMAL DETECTOR

The optimal detector under maximum likelihood rule in-
volves integration operation which is complicated. In this
section, we will derive suboptimal detector without integra-
tion operation. The proposed suboptimal detector reduces
the system complexity at the expense of slight performance
degradation.

We rewrite the expression (15) as follows

y𝑟𝑠2 − n𝑟𝑠2 (25)

= 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1 + 𝜌ℎ𝑟𝑠2x𝑠2 + 𝜂x𝑠2 + n𝑠1𝑟 + n𝑠2𝑟)
∗ .

In (25), y𝑟𝑠2 − n𝑟𝑠2 is a vector with length 𝑀 whose entry
is the product of two complex Gaussian RVs. Without loss
of generality, we assume that in vector x𝑠2 , the 𝑙𝑡ℎ entry
is nonzero. The proposed suboptimal detector only employs
y𝑙/𝑟𝑠2 and the imaginary component of 𝑦𝑟𝑠2,𝑙 for symbol
detection, where z𝑙/𝑝 denotes the vector z𝑝 without the 𝑙𝑡ℎ

entry and 𝑧𝑝,𝑙 denotes the 𝑙𝑡ℎ entry of z𝑝. Thus, the estimated
symbol transmitted from node 𝑠1 by employing the suboptimal
detection is expressed as follows

x̂𝑠1 = arg max
x𝑠1∈Θ

𝑃 (Im (𝑦𝑟𝑠2,𝑙) ∣x𝑠1 ,x𝑠2 )

⋅𝑃 (y𝑙/𝑟𝑠2 ∣x𝑠1 ,x𝑠2

) ⋅ 𝑃 (y𝑠1𝑠2 ∣x𝑠1). (26)

The proposed suboptimal detector discards the real component
of 𝑦𝑟𝑠2,𝑙 because the real component contains the interference
𝜌𝐴𝑟 ∣ℎ𝑟𝑠2 ∣2 x𝑠2 , which is an exponential distributed RV. Thus,
we propose to derive the suboptimal detector without consid-
ering the real component of 𝑦𝑟𝑠2,𝑙.

The imaginary component of 𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙, denoted as
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Im (𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙), is

Im (𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙) (27)

= 𝐴𝑟Im
[
ℎ𝑟𝑠2 (ℎ𝑠1𝑟𝑥𝑠1,𝑙 + 𝜂𝑥𝑠2,𝑙 + 𝑛𝑠1𝑟,𝑙 + 𝑛𝑠2𝑟,𝑙)

∗]
whose entry is the inner product of two independent zero mean
Gaussian vectors with length of two. The conditional PDF
𝑃 [Im (𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙) ∣x𝑠1 ,x𝑠2 ] is [20]

𝑃 [Im (𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙) ∣x𝑠1 ,x𝑠2 ] (28)

=
1√
𝜓𝑙

exp
[
−2𝜓

− 1
2

𝑙 ∣Im(𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙)∣
]

where

𝜓𝑙 = 𝐴2
𝑟Ω𝑟𝑠2

[
𝐴2

𝑟Ω𝑠1𝑟𝑥
2
𝑠1,𝑙 + (1− 𝜌2)Ω𝑟𝑠2𝑥

2
𝑠2,𝑙 + 2𝑁𝑜

]
.

(29)
Thus the conditional PDF 𝑃 [Im (𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙) ∣x𝑠1 ,x𝑠2 ]
can be achieved by taking expectation of expression (28)
over 𝑛𝑟𝑠2,𝑙. Unfortunately, to best of our knowledge, there
is no closed form expression available for above-mentioned
expectation. As an alternative, we will employ the Jensen’s
inequality to obtain the lower bound of the expectation. By
applying Jensen’s inequality, we have

𝑃 [Im (𝑦𝑟𝑠2,𝑙) ∣x𝑠1 ,x𝑠2 ] (30)

≥ 1√
𝜓𝑙

exp

[
−2𝜓

− 1
2

𝑙

√
E (Im(𝑦𝑟𝑠2,𝑙 − 𝑛𝑟𝑠2,𝑙)

2)

]

=
1√
𝜓𝑙

exp

[
−2𝜓

− 1
2

𝑙

√
Im2(𝑦𝑟𝑠2,𝑙) +𝑁𝑜/2

]
.

In (30), the Jensen’s inequality is valid because exp (−√
𝑥)

is a convex function whose second-order derivative is greater
than or equal to zero, i.e.

𝑑2

𝑑𝑥2
[
exp

(−√
𝑥
)]

=
𝑥−

3
2

4
exp

(−√
𝑥
)
+

1

4𝑥
exp

(−√
𝑥
) ≥ 0.

(31)
The expression of vector y𝑙/𝑟𝑠2 is as follows(
y𝑙/𝑟𝑠2 − n𝑙/𝑟𝑠2

)
= 𝐴𝑟ℎ𝑟𝑠2

(
ℎ𝑠1𝑟x𝑙/𝑠1 + n𝑙/𝑠1𝑟 + n𝑙/𝑠2𝑟

)∗
(32)

whose entry is the product of two independent zero mean
complex Gaussian RVs. By applying Jensen’s inequality as in
[7], we have

𝑃
(
y𝑙/𝑟𝑠2 ∣x𝑠1 ,x𝑠2

)≈ 𝑀∏
𝑖=1, 𝑖∕=𝑙

2

𝜋𝜓𝑖
𝐾0

(
2𝜓

− 1
2

𝑖

√
∣𝑦𝑟𝑠2,𝑖∣2+𝑁𝑜

)
(33)

where 𝐾0(∙) is the zero-order modified Bessel function of the
second kind and

𝜓𝑖 = 𝐴2
𝑟Ω𝑟𝑠2

(
Ω𝑠1𝑟𝑥

2
𝑠1,𝑖 + 2𝑁𝑜

)
, 𝑖 ∕= 𝑙. (34)

The above suboptimal detector is obtained without considering
the real component of 𝑦𝑟𝑠2,𝑙. It is worth noting that when
𝜌 = 0, the interference 𝜌𝐴𝑟 ∣ℎ𝑟𝑠2 ∣2 x𝑠2 does not exist. Under
this situation, the suboptimal detector still employs (9)-(10)
for symbol detection with 𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2) is replaced by

𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2)≈
𝑀∏
𝑖=1

2

𝜋𝜓𝑖
𝐾0

(
2𝜓−1

𝑖

√
∣𝑦𝑟𝑠2,𝑖∣2+𝑁𝑜

)
.

(35)

V. OPTIMAL DETECTOR WITH PARTIAL CSI

In the above two-way AF cooperative communications, we
assume that the nodes have no channel state information (CSI).
This assumption is valid when the whole communication
network undergoes fast fading. In practical systems, another
situation that one source node, 𝑠1 or 𝑠2, is moving at a high
speed, the other one and node 𝑟 are static may be common.
Without loss of generality, we assume that node 𝑠1 is moving.
Under this situation, the channels from node 𝑠2 to node 𝑠1
and from node 𝑟 to node 𝑠1 undergo fast fading whereas the
channel from node 𝑟 to node 𝑠2 is quasi-static or undergoes
slow fading. Thus, the detector at node 𝑠1 has to employ the
optimal or suboptimal schemes proposed in Sections III and
IV for symbol detection whereas the node 𝑠2 may exploit
the CSI of ℎ𝑟𝑠2 to improve the system performance. When
the detection at node 𝑠2 is considered, the node 𝑟 does not
exploited the CSI of ℎ𝑠2𝑟 since it is assumed to have limited
signal processing power and it just amplifies and forwards its
received signals.

With the knowledge of ℎ𝑟𝑠2 , the optimal detector at the
node 𝑠2 is derived as follows. From (15), we obtain

y𝑟𝑠2 = 𝜌𝐴𝑟 ∣ℎ𝑟𝑠2 ∣2 x𝑠2 (36)

+ 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1 + 𝜂x𝑠2 + n𝑠1𝑟 + n𝑠2𝑟)
∗
+ n𝑟𝑠2 .

Given x𝑠1 and x𝑠2 , y𝑟𝑠2 is 𝑀 -dimensional complex Gaussian
distributed with mean vector

𝜉𝑝 = 𝜌𝐴𝑟 ∣ℎ𝑟𝑠2 ∣2 x𝑠2 (37)

and covariance matrix

Ψ𝑝 = 𝐴2
𝑟 ∣ℎ𝑟𝑠2 ∣2

[
Ω𝑠1𝑟x𝑠1x

†
𝑠1+
(
1−𝜌2)Ω𝑟𝑠2x𝑠2x

†
𝑠2+2𝑁𝑜I𝑀

]
+ 𝑁𝑜I𝑀 . (38)

The conditional PDF of y𝑟𝑠2 on x𝑠1 and x𝑠2 is

𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 ) =
1

𝜋𝑀det (Ψ𝑝)

exp
[
− (y𝑟𝑠2 − 𝜉𝑝)

†
Ψ−1

𝑝 (y𝑟𝑠2 − 𝜉𝑝)
]
. (39)

Substitute (39) into (9)-(10), we obtain the estimated symbol
transmitted from node 𝑠1 for the optimal detector with partial
CSI.

VI. BER PERFORMANCE UPPER AND LOWER BOUNDS

In this section, we will derive the bit-error-rate (BER)
performance upper and lower bounds of the optimal non-
coherent detector for 𝑀 -ary FSK modulated two-way AF
cooperative communications in Rayleigh fading channels.

A. BER Performance Lower Bound

Without loss of generality, we assume that x𝑠1 = x1 and
x𝑠2 = x𝑙. From (23), the optimal detector involves integration
operation which causes the exact analytical BER performance
is difficult to obtain. The integration operation in the optimal
detector is due to the interference x𝑠2 included in y𝑟𝑠2 which
causes the expression for probability distribution of the real
component of 𝑦𝑟𝑠2,𝑙 to be very complicated. However, from
Section V, we know that with the partial CSI ℎ𝑟𝑠2 , the
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conditional PDF 𝑃 (y𝑟𝑠2 ∣x𝑠1 ,x𝑠2 ) can be achieved in a close
form thus the performance analysis for the optimal detector
with partial CSI is possible. In this paper, we propose to derive
the BER performance of optimal detector with partial CSI for
two-way AF cooperative communications which is the lower
bound of optimal detector without partial CSI.

From (9)-(10), the pairwise error probability of x1 erro-
neously detected as x𝑘, 𝑘 ∈ {2, 3, ⋅ ⋅ ⋅ ,𝑀}, is expressed as
follows

𝑃 (x1 → x𝑘) = 𝑃 (𝜆1𝑘 < 0) (40)

where

𝜆1𝑘 = log
𝑃 (y𝑠1𝑠2 ∣x1)𝑃 (y𝑟𝑠2 ∣x1,x𝑙)

𝑃 (y𝑠1𝑠2 ∣x𝑘)𝑃 (y𝑟𝑠2 ∣x𝑘,x𝑙)
. (41)

After some mathematical manipulation, we obtain [21]

𝜆1𝑘 = 𝑈1 − 𝑈𝑘 + 𝑉1 − 𝑉𝑘 (42)

where 𝑈𝑚 and 𝑉𝑚, 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀}, are shown on the top
of the next page, in which 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀},

𝛾 =
𝐸𝑠

𝑁𝑜
, (45)

𝛽1 =
1

1 +𝐴2
𝑟∣ℎ𝑟𝑠2 ∣2(2 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

(46)

− 1

1 +𝐴2
𝑟∣ℎ𝑟𝑠2 ∣2(2 + 𝛾Ω𝑠1𝑟 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

,

𝛽2 =
1

1 + 2𝐴2
𝑟∣ℎ𝑟𝑠2 ∣2

− 1

1 +𝐴2
𝑟 ∣ℎ𝑟𝑠2 ∣2(2 + 𝛾Ω𝑠1𝑟)

. (47)

In (43), regardless of 𝑙 = 𝑚 or 𝑙 ∕= 𝑚, 𝜉𝑚 is the sum of two
weighted independent chi-square distributed RVs, whose PDF
is [20]

𝑃𝑈𝑚(𝑧) =
1

𝑊1 −𝑊2

(
exp

(
− 𝑧

𝑊1

)
− exp

(
− 𝑧

𝑊2

))
,

𝑧 ≥ 0, 𝑊1 ∕= 𝑊2 (48)

where

𝑊1 =

{
𝛿11 = 𝛾Ω𝑠1𝑠2 ; 𝑚 = 1

𝛿12 =
𝛾Ω𝑠1𝑠2

1+𝛾Ω𝑠1𝑠2
; 𝑚 ∕= 1

(49)

and 𝑊2 is shown on the top of the next page. Therefore, when
𝑙 = 1, i.e. x𝑠1 = x𝑠2 , the conditional probability of correct
detection is evaluated as follows

𝑃 (𝑐∣x𝑠1 = x𝑠2 , ℎ𝑟𝑠2) = 𝑃

(
𝑀∩
𝑘=2

𝜆1𝑘 > 0

)

=

∫ ∞

0

𝑃𝜉11(𝑧1) ⋅
(

𝑀∏
𝑘=2

∫ 𝑧1+𝜁1−𝜁2

0

𝑃𝜉𝑘2
(𝑧𝑘)𝑑𝑧𝑘

)
𝑑𝑧1 (51)

=

∫ ∞

0

1

𝛿11 − 𝛿21

(
exp

(
− 𝑧1
𝛿11

)
− exp

(
− 𝑧1
𝛿21

))

⋅
[∫ 𝑧1+𝜁1−𝜁2

0

1

𝛿12−𝛿24

(
exp

(
− 𝑧2
𝛿12

)
− exp

(
− 𝑧2
𝛿24

))
𝑑𝑧2

]𝑀−1
𝑑𝑧1.

Similarly, when 𝑙 ∕= 1, i.e. x𝑠1 ∕= x𝑠2 , the conditional
probability of correct detection is evaluated as follows

𝑃 (𝑐∣x𝑠1 ∕=x𝑠2 , ℎ𝑟𝑠2)=

∫ ∞

0

𝑃𝜉12(𝑧1) ⋅
∫ 𝑧1+𝜁2−𝜁1

0

𝑃𝜉𝑙1(𝑧𝑙)𝑑𝑧𝑙

⋅
⎛
⎝ 𝑀∏

𝑘=2,𝑘 ∕=𝑙

∫ 𝑧1

0

𝑃𝜉𝑘2
(𝑧𝑘)𝑑𝑧𝑘

⎞
⎠ 𝑑𝑧1

=

∫ ∞

0

1

𝛿11 − 𝛿23

(
exp

(
− 𝑧1
𝛿11

)
− exp

(
− 𝑧1
𝛿23

))
(52)

⋅
∫ 𝑧1+𝜁2−𝜁1

0

1

𝛿12 − 𝛿22

(
exp

(
− 𝑧2
𝛿12

)
− exp

(
− 𝑧2
𝛿22

))
𝑑𝑧2

⋅
[∫ 𝑧1

0

1

𝛿12− 𝛿24

(
exp

(
− 𝑧3
𝛿12

)
− exp

(
− 𝑧3
𝛿24

))
𝑑𝑧3

]𝑀−2

𝑑𝑧1.

The integrals in (51) and (52) are trivially evaluated, and after
some mathematical manipulation, we can obtain

𝑃 (𝑐∣x𝑠1 = x𝑠2 , ℎ𝑟𝑠2)

=
2∑

𝑘1=1

𝑀−1∑
𝑘2=0

𝑀−1−𝑘2∑
𝑘3=0

𝑘2∑
𝑘4=0

(−1)𝑘3+𝑘4

(
𝑀 − 1
𝑘2

)(
𝑘2
𝑘4

)
(

𝑀 − 1− 𝑘2
𝑘3

)
𝛿12𝛿24𝐵

𝑀−1−𝑘2
14 𝐵𝑘2

24𝐵𝑘11

𝑘3𝛿𝑘11𝛿24 + 𝑘4𝛿𝑘11𝛿12 + 𝛿12𝛿24

⋅ exp
(
−𝑘3𝛿24 + 𝑘4𝛿12

𝛿12𝛿24
(𝜁𝑚1 − 𝜁𝑚2)

)
(53)

and 𝑃 (𝑐∣x𝑠1 ∕= x𝑠2 , ℎ𝑟𝑠2) which is shown on the top of the
next page, where

𝐵11 =
𝛿11

𝛿11 − 𝛿21
, (55)

𝐵12 =
𝛿12

𝛿12 − 𝛿22
, (56)

𝐵13 =
𝛿11

𝛿11 − 𝛿23
, (57)

𝐵14 =
𝛿12

𝛿12 − 𝛿24
, (58)

𝐵2𝑝 = 1−𝐵1𝑝, 𝑝 ∈ {1, 2, 3, and 4}. (59)

Thus the conditional symbol-error-rate (SER) performance is

𝑃𝑠(𝑒∣ℎ𝑟𝑠2) = 1− 𝑀 − 1

𝑀
𝑃 (𝑐∣x𝑠1 ∕= x𝑠2 , ℎ𝑟𝑠2)

− 1

𝑀
𝑃 (𝑐∣x𝑠1 = x𝑠2 , ℎ𝑟𝑠2). (60)

We take the expectation of (60) with respect to the channel
coefficients ℎ𝑟𝑠2 to obtain the SER performance of the optimal
detector with partial CSI

𝑃𝑠(𝑒) =

∫
Φ

1

Ω𝑟𝑠2

exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑃𝑠(𝑒∣ℎ𝑟𝑠2)∣∣ℎ𝑟𝑠2 ∣2=𝑧𝑑𝑧

(61)
where Φ denotes the interval (0,∞) excluding countable
poles. According to [22], the BER performance of the optimal
detector with partial CSI is

𝑃𝑏(𝑒) =
𝑀

2(𝑀 − 1)
𝑃𝑠(𝑒). (62)

B. BER Performance Upper Bound

From (36), we know that 𝜌𝐴𝑟∣ℎ𝑟𝑠2 ∣2x𝑠2 is an interference
for the detection of x𝑠1 at node 𝑠2. If ℎ𝑟𝑠2 is unknown to
node 𝑠2, the detector involves integration operation which
causes the BER performance upper bound is difficult to obtain.
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𝑈𝑚 =

⎧⎨
⎩

𝜉𝑚1 =
𝛾Ω𝑠1𝑠2

𝑁𝑜 (1 + 𝛾Ω𝑠1𝑠2)
∣𝑦𝑠1𝑠2,𝑚∣2 + 𝛽1

𝑁𝑜

∣∣∣𝑦𝑟𝑠2,𝑚 − 𝜌𝐴𝑟

√
𝐸𝑠∣ℎ𝑟𝑠2 ∣2

∣∣∣2 ; 𝑙 = 𝑚

𝜉𝑚2 =
𝛾Ω𝑠1𝑠2

𝑁𝑜 (1 + 𝛾Ω𝑠1𝑠2)
∣𝑦𝑠1𝑠2,𝑚∣2 + 𝛽2

𝑁𝑜
∣𝑦𝑟𝑠2,𝑚∣2 ; 𝑙 ∕= 𝑚

(43)

𝑉𝑚 =

⎧⎨
⎩

𝜁1 = log
1 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2(2 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

1 +𝐴2
𝑟∣ℎ𝑟𝑠2 ∣2(2 + 𝛾Ω𝑠1𝑟 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

; 𝑙 = 𝑚

𝜁2 = log
1 + 2𝐴2

𝑟∣ℎ𝑟𝑠2 ∣2
1 +𝐴2

𝑟∣ℎ𝑟𝑠2 ∣2(2 + 𝛾Ω𝑠1𝑟)
; 𝑙 ∕= 𝑚

(44)

𝑊2 =

⎧⎨
⎩

𝛿21 = 𝛽1
[
1 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2
(
2 + 𝛾Ω𝑠1𝑟 + 𝛾

(
1− 𝜌2

)
Ω𝑟𝑠2

)]
; 𝑚 = 𝑙 = 1

𝛿22 = 𝛽1
[
1 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2
(
2 + 𝛾

(
1− 𝜌2

)
Ω𝑟𝑠2

)]
; 𝑚 ∕= 1 and 𝑚 = 𝑙

𝛿23 = 𝛽2
[
1 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2 (2 + 𝛾Ω𝑠1𝑟)
]
; 𝑚 = 1 and 𝑙 ∕= 1

𝛿24 = 𝛽2
(
1 + 2𝐴2

𝑟∣ℎ𝑟𝑠2 ∣2
)
; 𝑚 ∕= 1 and 𝑚 ∕= 𝑙

(50)

𝑃 (𝑐∣x𝑠1 ∕= x𝑠2 , ℎ𝑟𝑠2) =

2∑
𝑘1=1

𝑀−2∑
𝑘2=0

𝑀−2−𝑘2∑
𝑘3=0

𝑘2∑
𝑘4=0

(−1)𝑘3+𝑘4

(
𝑀 − 2
𝑘2

)(
𝑀 − 2− 𝑘2

𝑘3

)(
𝑘2
𝑘4

)

⋅𝐵𝑀−2−𝑘2
14 𝐵𝑘2

24𝐵𝑘13 ⋅ exp
(
−𝑘3𝛿𝑘1(2𝑘1−1)𝛿24 + 𝑘4𝛿𝑘1(2𝑘1−1)𝛿12 + 𝛿12𝛿24

𝛿𝑘1(2𝑘1−1)𝛿12𝛿24
(𝜁𝑚1 − 𝜁𝑚2)

)
(54)

⋅
(

𝛿12𝛿24
𝛿𝑘1(2𝑘1−1) (𝑘3𝛿24 + 𝑘4𝛿12) + 𝛿12𝛿24

−
2∑

𝑘5=1

𝛿𝑘52𝛿12𝛿24𝐵𝑘52

𝛿𝑘1(2𝑘1−1) (𝑘3𝛿𝑘52𝛿24 + 𝑘4𝛿𝑘52𝛿12 + 𝛿12𝛿24) + 𝛿12𝛿𝑘52𝛿24

)

Since the interference 𝜌𝐴𝑟∣ℎ𝑟𝑠2 ∣2x𝑠2 increases the uncertainty
for symbol detection and the uncertainty is measured through
differential entropy, we may replace the interference with a
complex Gaussian noise vector having the same differential
entropy, which is denoted as n𝑒𝑞 , to derive the upper bound.
Thus the received signal y𝑟𝑠2 is expressed as

y𝑟𝑠2 = 𝐴𝑟ℎ𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1+ 𝜂x𝑠2+ n𝑠1𝑟+ n𝑠2𝑟)
∗
+ n𝑟𝑠2+ n𝑒𝑞

(63)

where the covariance matrix of n𝑒𝑞 is
𝛿𝑒𝑞x𝑠2x

†
𝑠2

𝐸𝑠
in which

𝛿𝑒𝑞 =
𝜌𝐴𝑟Ω𝑟𝑠2

√
𝐸𝑠

𝜋
. (64)

Furthermore, a suboptimal receiver is obtained by approximat-
ing the received signal y𝑟𝑠2 as follows

y𝑟𝑠2 ≈𝐴𝑟

√
Ω𝑟𝑠2 (ℎ𝑠1𝑟x𝑠1+𝜂x𝑠2+n𝑠1𝑟+n𝑠2𝑟)

∗
+n𝑟𝑠2+n𝑒𝑞

(65)
where ℎ𝑟𝑠2 in (63) is replaced by its square root of its
variance. We can derive the performance of above-mentioned
suboptimal detector which is the upper bound of our proposed
optimal detector.

Assuming that x𝑠1 = x1 and x𝑠2 = x𝑙, the pairwise
error probability of x1 erroneously detected as x𝑘, 𝑘 ∈
{2, 3, ⋅ ⋅ ⋅ ,𝑀}, can be derived by using (40) where 𝜆1𝑘 is
replaced by �̃�1𝑘 ,

�̃�1𝑘 = �̃�1 − �̃�𝑘 + 𝑉1 − 𝑉𝑘. (66)

In (66), �̃�𝑚 and 𝑉𝑚, 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀}, are shown on the
top of the next page, where 𝑚 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀},

𝛽1 =
1

1 + 𝛿𝑒𝑞 +𝐴2
𝑟Ω𝑟𝑠2(2 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

(69)

− 1

1 + 𝛿𝑒𝑞 +𝐴2
𝑟Ω𝑟𝑠2(2 + 𝛾Ω𝑠1𝑟 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

,

TABLE I
ASYMPTOTIC ERROR BOUNDS

𝑃 (𝑒∣x𝑠1 = x𝑠2) 𝑃 (𝑒∣x𝑠1 ∕= x𝑠2)

Lower Bound 𝜌 ∕= 1 Λ1 log 𝛾
𝛾2

Λ2

𝛾2

Lower Bound 𝜌 = 1 Λ3

𝛾2
Λ3

𝛾2

Upper Bound 𝜌 ∕= 1 Λ4

𝛾
Λ5

𝛾2

Upper Bound 𝜌 = 1 Λ6

𝛾1.5
Λ7

𝛾2

𝛽2 =
1

1 + 2𝐴2
𝑟Ω𝑟𝑠2

− 1

1 +𝐴2
𝑟Ω𝑟𝑠2(2 + 𝛾Ω𝑠1𝑟)

. (70)

Therefore, the BER performance upper bound of the optimal
detector can be obtained by using (51)-(62) where 𝑊2 is
replaced by �̃�2, shown on the top of the next page.

C. Asymptotic Error Bound Analysis

Since the derived expressions for the BER performance
bounds are very complicated, we analyze the asymptotic error
bounds to show the effectiveness of the proposed scheme. To
simplify our analysis, we focus on the asymptotic diversity
order when 𝑀 = 2 because the diversity order is uncor-
related with the value of 𝑀 [23]. Furthermore, the noise
vector n𝑝𝑞 is normalized such that 𝑁𝑜 = 1. In Table I,
we show the asymptotic error probability when 𝛾 → ∞,
where 𝑃 (𝑒∣x𝑠1 = x𝑠2) and 𝑃 (𝑒∣x𝑠1 ∕= x𝑠2) denote the error
probability when x𝑠1 = x𝑠2 and x𝑠1 ∕= x𝑠2 , respectively. The
derivation of Λ𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 7, in Table I is provided in the
Appendix.

VII. SIMULATED AND THEORETICAL RESULTS

In this section, we present computer simulated and theoret-
ical results to show the bit-error-rate (BER) performance of
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�̃�𝑚 =

⎧⎨
⎩

𝜉𝑚1 =
𝛾Ω𝑠1𝑠2

𝑁𝑜(1 + 𝛾Ω𝑠1𝑠2)
∣𝑦𝑠1𝑠2,𝑚∣2 + 𝛽1

𝑁𝑜
∣𝑦𝑟𝑠2,𝑚∣2 ; 𝑙 = 𝑚

𝜉𝑚2 =
𝛾Ω𝑠1𝑠2

𝑁𝑜(1 + 𝛾Ω𝑠1𝑠2)
∣𝑦𝑠1𝑠2,𝑚∣2 + 𝛽2

𝑁𝑜
∣𝑦𝑟𝑠2,𝑚∣2 ; 𝑙 ∕= 𝑚

(67)

𝑉𝑚 =

⎧⎨
⎩

𝜁1 = log
1 + 𝛿𝑒𝑞 +𝐴2

𝑟Ω𝑟𝑠2(2 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

1 + 𝛿𝑒𝑞 +𝐴2
𝑟Ω𝑟𝑠2(2 + 𝛾Ω𝑠1𝑟 + 𝛾(1− 𝜌2)Ω𝑟𝑠2)

; 𝑙 = 𝑚

𝜁2 = log
1 + 2𝐴2

𝑟Ω𝑟𝑠2

1 +𝐴2
𝑟Ω𝑟𝑠2(2 + 𝛾Ω𝑠1𝑟)

; 𝑙 ∕= 𝑚

(68)

�̃�2 =

⎧⎨
⎩

𝛿21 = 𝛽1
[
1 + 𝛿𝑒𝑞 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2
(
2 + 𝛾Ω𝑠1𝑟 + 𝛾

(
1− 𝜌2

)
Ω𝑟𝑠2

)]
; 𝑚 = 𝑙 = 1

𝛿22 = 𝛽1
[
1 + 𝛿𝑒𝑞 +𝐴2

𝑟 ∣ℎ𝑟𝑠2 ∣2
(
2 + 𝛾

(
1− 𝜌2

)
Ω𝑟𝑠2

)]
; 𝑚 ∕= 1 and 𝑚 = 𝑙

𝛿23 = 𝛽2
[
1 +𝐴2

𝑟∣ℎ𝑟𝑠2 ∣2 (2 + 𝛾Ω𝑠1𝑟)
]
; 𝑚 = 1 and 𝑙 ∕= 1

𝛿24 = 𝛽2
(
1 + 2𝐴2

𝑟∣ℎ𝑟𝑠2 ∣2
)
; 𝑚 ∕= 1 and 𝑚 ∕= 𝑙

(71)

non-coherent detection for two-way AF cooperative commu-
nications in Rayleigh fading channels. In the simulations, the
fading variances are assigned by adopting a path loss model of
the form Ω𝑝𝑞 ∝ 𝐿−4

𝑝𝑞 , where 𝐿𝑝𝑞 denotes the distance between
nodes 𝑝 and 𝑞, 𝑝, 𝑞 ∈ {𝑠1, 𝑟, 𝑠2}. The variance of Rayleigh
fading coefficient from node 𝑠1 to node 𝑠2 is normalized
such that Ω𝑠1𝑠2 = 1. The BER performance in our plots, if
not specified, is obtained by computer simulation where the
expression (23) is calculated numerically.

In Fig. 2, we compare the optimal non-coherent detection
of OOK (denoted as “𝑀 = 1" in the legend) modulated one-
way (denoted as “OW" in the legend) and two-way (denoted
as “TW" in the legend) AF cooperative communications when
𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 . Throughout this paper, the trans-
mitted power per symbol of node 𝑟 for one-way cooperative
communications is 𝐸𝑠 whereas that for two-way cooperative
communications is 2𝐸𝑠, i.e. 𝐸𝑟 = 2𝐸𝑠, for fairly comparison.
This is because for one-way cooperative communication, if
the node 𝑟 relays the signals from nodes 𝑠1 and 𝑠2 with the
same transmission power per symbol𝐸𝑠, the total transmission
power for exchanging the signals between two source nodes
is 2𝐸𝑠. Thus the energy per bit, denoted as 𝐸𝑏, is 2𝐸𝑠.

It is found from Fig. 2 that compared with one-way scheme,
OOK modulated two-way AF cooperative communications
suffer performance degradation of about 2.0 dB when bit-
error-rate (BER) is 10−3 and the channels are static, i.e.
𝜌 = 1. When x𝑠2 = 0, two-way cooperative communication
scheme is reduced to one-way scheme except that the noise
power of the former is twice as much as that of latter. The
observed performance gap is mainly due to the fact that when
x𝑠2 =

√
2𝐸𝑠, the cooperative transmission at node 𝑟 includes

the signal transmitted from node 𝑠2, which is interference for
the detection of x𝑠1 . When the channel is fast fading, i.e.
𝜌 = 0, it is observed that two-way cooperative communi-
cation scheme provides little performance improvement over
the conventional communication scheme without cooperative
relaying (denoted as “No relay" in the legend). This is because
when x𝑠2 = 0, two-way scheme reduces to one-way scheme
thus cooperative relaying provides additional spatial diversity
gain, whereas when x𝑠2 =

√
2𝐸𝑠, the negative effect of signal

transmitted from node 𝑠2 on the detection of x𝑠1 is so strong
that it offsets the performance improvement when x𝑠2 = 0.

In Fig. 2, we also compare the optimal non-coherent detec-
tion of binary FSK (denoted as “𝑀 = 2" in the legend) modu-
lated one-way and two-way AF cooperative communications.
It is shown from Fig. 2 that both schemes perform better than
OOK modulated cooperative communications. It is also found
that compared with one-way cooperative communications,
two-way FSK modulated cooperative communications suffer
about 1.7 dB, 3.8 dB, and 4.2 dB performance degradation
when the BER is 10−4 and 𝜌 = 1, 0.9, and 0, respectively.
This is because for two-way FSK cooperative communica-
tions, the transmission of signals from node 𝑠2 affects the
detection of x𝑠1 at node 𝑠2 thus results in performance
degradation.

In Fig. 3, we provide the performance comparison of opti-
mal and suboptimal detectors for OOK and binary FSK mod-
ulated two-way AF cooperative communications. For OOK
modulation, it is shown that the suboptimal detector has almost
identical BER performance with the optimal detector in fast
Rayleigh fading channels (𝜌 = 0). In static Rayleigh fading
channels (𝜌 = 1), the suboptimal detector has about 1.3 dB
performance degradation compared with the optimal detector
when the BER is 10−3. The observed performance gap is due
to the discard of real component of 𝑦𝑟𝑠2,𝑙 and the employment
of Jensen’s inequality. From Fig. 3, it is also found that
suboptimal detector for binary FSK modulated signals has a
performance degradation at most 1 dB compared with optimal
detector when BER is 10−3 and 𝜌 = 1, 0.9, and 0.

In Fig. 4, we present the theoretically derived BER per-
formance upper and lower bounds of the BER performances
obtained numerically by using (61) and (62). It is found from
Fig. 4, the derived lower bound is about 1.6 dB and 0.8 dB
away from the simulated BER performance when the BER
is 10−4 and 𝜌 = 1 and 0, respectively. It is worth noting
that when 𝐸𝑏/𝑁𝑜 increases, the observed gap between the
lower bound and simulation results does not decrease. This is
because the above-mentioned gap, from (36), is mainly due to
the interference 𝜌𝐴𝑟∣ℎ𝑟𝑠2 ∣2x𝑠2 which increases with the in-
crease of 𝐸𝑏/𝑁𝑜. It is also noted that the derived lower bound
is actually the exact BER performances of optimal detectors
for FSK modulated two-way AF cooperative communications
with partial channel information ℎ𝑟𝑠2 . From Fig. 4, the derived
upper bound is about 0.6 dB and 1.5 dB away from the
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Fig. 2. BER versus 𝐸𝑏/𝑁𝑜; simulated BER performance comparison of
optimal detectors for one-way and two-way AF cooperative communications;
𝑀 = 1 and 2; 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 .
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Fig. 3. BER versus 𝐸𝑏/𝑁𝑜; simulated BER performance comparison of op-
timal and suboptimal detectors of two-way AF cooperative communications;
𝑀 = 1 and 2; 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 .

simulated BER performance when the BER is 2 × 10−4 and
𝜌 = 1 and 0, respectively.

In Fig. 4, we also present the BER performance of coherent
detector for binary FSK modulated two-way AF cooperative
communications (denoted as “Coherent" in the legend). It
is shown from Fig. 4, with coherent detection, the BER
performance can be significantly improved.

In Fig. 5, we compare the BER performances of 4-ary
FSK modulated one-way and two-way AF cooperative com-
munications, when 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 . It is shown
that compared with one-way scheme (denoted as “OW" in
the legend), two-way scheme suffers about 0.9 dB and 3.0
dB performance degradation when the BER is 2 × 10−4 and
𝜌 = 1 and 0, respectively. The performance degradation is
much less than that of binary FSK modulated AF cooperative
communications. This is for the detection of x𝑠1 , the signals
x𝑠2 transmitted from 𝑠2 only cause interference over one
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Fig. 4. BER versus 𝐸𝑏/𝑁𝑜; comparison of theoretical BER performance
lower bound and simulation results of optimal detector of two-way AF
cooperative communications; 𝑀 = 2; 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 .
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Fig. 5. BER versus 𝐸𝑏/𝑁𝑜; simulated BER performance comparison of op-
timal and suboptimal detectors of two-way AF cooperative communications;
𝑀 = 4; 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 = 0.6𝐿𝑠1𝑠2 .

frequency and leave the other three frequencies unchanged.
In Fig. 5, we also present the theoretically derived BER per-
formance upper and lower bounds of the BER performances.
It is found from Fig. 5, the derived lower bound is about 0.7
dB and 0.5 dB away from the simulated BER performance
when the BER is 3 × 10−4 and 𝜌 = 1 and 0, respectively.
From Fig. 5, the derived upper bound is about 1.1 dB and 1.5
dB away from the simulated BER performance when the BER
is 3× 10−4 and 𝜌 = 1 and 0, respectively.

In Fig. 6 and Fig. 7, we present BER performances of
optimal detector of two-way AF cooperative communications
where node 𝑟 has different locations. In Fig. 6, the sum of the
distances 𝐿𝑠1𝑟 and 𝐿𝑟𝑠2 is a constant equal to 1.2𝐿𝑠1𝑠2 . It is
found from Fig. 6 that when the detection of x𝑠1 is considered,
the BER performance is improved if the relaying node is close
to node 𝑠1. It is worth noting that from (8) and (23)-(24), the
optimal detection scheme for the received relaying signal y𝑟𝑠2



TIAN et al.: NON-COHERENT DETECTION FOR TWO-WAY AF COOPERATIVE COMMUNICATIONS IN FAST RAYLEIGH FADING CHANNELS 2761

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
10

−2

10
−1

L
s

1
r
/L

s
1
s

2

B
E

R

 

 

M=2, ρ=0

M=2, ρ=0.9

M=2, ρ=1

M=4, ρ=0

M=4, ρ=0.9

M=4, ρ=1

Fig. 6. BER versus 𝐿𝑠1𝑟/𝐿𝑠1𝑠2 ; simulated BER performance of optimal
detector of two-way AF cooperative communications; 𝐸𝑏/𝑁𝑜 = 10 dB;
𝐿𝑠1𝑟 + 𝐿𝑟𝑠2 = 1.2𝐿𝑠1𝑠2 .

is only related to the parameters 𝐸𝑠, 𝐸𝑟, 𝑁𝑜, 𝜌, Ω𝑠1𝑟, and
Ω𝑠2𝑟. When the detection of y𝑟𝑠2 is considered, the average
signal-to-interference-and-noise-ratio (SINR) at node 𝑠2 is

SINR =

∫ ∞

0

𝐸𝑠Ω𝑠1𝑟𝑧

𝑧2𝜌2𝐸𝑠 + 𝑧(1− 𝜌2)Ω𝑟𝑠2𝐸𝑠 + 2𝑧𝑁𝑜 +
𝑁𝑜

𝐴2
𝑟

⋅ 1

Ω𝑟𝑠2

exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧. (72)

When the signal-to-noise-ratio (SNR) is high, i.e. 𝛾 → ∞,
(72) is simplified as follows

SINR =
Ω𝑠1𝑟

𝜌2Ω𝑟𝑠2

ℰ1
(
1− 𝜌2

𝜌2

)
exp

(
1− 𝜌2

𝜌2

)
(73)

where ℰ1(∙) is the exponential integral function defined in
[24, eq. (5.1.1)]. Since we employ the path loss model of
Ω𝑝𝑞 ∝ 𝐿−4

𝑝𝑞 here, when the SNR and 𝜌 are constant, we know
that the optimal relaying position is only related to 𝐿𝑠1𝑟 and
𝐿𝑟𝑠2 .

In Fig. 7, the sum of the distances 𝐿𝑠1𝑟 and 𝐿𝑟𝑠2 increases
with 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 . It is shown from Fig. 7 that the BER
performance is improved if the relaying node get close to
nodes 𝑠1 and 𝑠2.

VIII. CONCLUSION

In this paper, we propose optimal non-coherent detection
for two-way OOK and 𝑀 -ary FSK modulated AF cooperative
communication schemes in fast Rayleigh fading channels.
The proposed schemes provide extra spatial diversity for
the communication network with single antenna transceivers.
Compared with conventional one-way cooperative communi-
cations, the proposed schemes increase the system throughput
at the expense of slight performance degradation. It is found
from the simulation results that the proposed two-way FSK
cooperative communication performs well in fast Rayleigh
fading channels. Since the optimal detector for two-way AF
cooperative communications involves integration operation,
we propose a suboptimal detector which reduces the re-
ceiver complexity significantly at the expense of acceptable
performance degradation. In this paper, we also derive the
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Fig. 7. BER versus (𝐿𝑠1𝑟 + 𝐿𝑟𝑠2) /𝐿𝑠1𝑠2 ; simulated BER performance of
optimal detector of two-way AF cooperative communications; 𝐸𝑏/𝑁𝑜 = 15
dB; 𝐿𝑠1𝑟 = 𝐿𝑟𝑠2 .

BER performance upper and lower bounds of the optimal
detection for 𝑀 -ary FSK modulated two-way AF cooperative
communications in Rayleigh fading channels. It is found that
the derived upper and lower bounds are close to the simulated
BER performance.

APPENDIX

THE EXPRESSION OF Λ𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 7

Λ1 =

∫
Φ

1 + 2𝑧𝐴2
𝑟

𝑧𝐴2
𝑟Ω𝑠1𝑠2Ω𝑠1𝑟Ω𝑟𝑠2

exp

(
− 𝑧

Ω𝑟𝑠2

)
(74)

⋅ log 𝑧𝐴2
𝑟Ω𝑠1𝑟Ω𝑟𝑠2(1− 𝜌2)

(Ω𝑠1𝑟 +Ω𝑟𝑠2 − Ω𝑟𝑠2𝜌
2)(1 + 2𝑧𝐴2

𝑟)
𝑑𝑧

Λ2 =

∫
Φ

3Ω𝑠1𝑟Ω𝑟𝑠2(1− 𝜌2) + Ω2
𝑟𝑠2(1 − 𝜌2)2 + 3Ω2

𝑠1𝑟

𝑧𝐴2
𝑟Ω𝑠1𝑠2Ω𝑠1𝑟Ω𝑟𝑠2(Ω𝑠1𝑟 +Ω𝑟𝑠2)

2

⋅(1 + 2𝑧𝐴2
𝑟) exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧 (75)

Λ3 =

∫
Φ

3(1 + 2𝑧𝐴2
𝑟)

𝑧𝐴2
𝑟Ω𝑠1𝑠2Ω𝑠1𝑟Ω𝑟𝑠2

exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧 (76)

Λ4 =

∫
Φ

(1 + 2𝑧𝐴2
𝑟)

3 exp
(
− 𝑧

Ω𝑟𝑠2

)
2𝐴2

𝑟Ω𝑠1𝑠2(𝑧 − Ω𝑟𝑠2)(1 + 2Ω𝑟𝑠2𝐴
2
𝑟)

(77)

⋅ Ω𝑟𝑠2

𝑧Ω𝑠1𝑟 + 2𝑧Ω𝑠1𝑟Ω𝑟𝑠2𝐴
2
𝑟 + (1− 𝜌2)(1 + 2𝑧𝐴2

𝑟)Ω
2
𝑟𝑠2

⋅
[
(Ω𝑠1𝑟+ (1− 𝜌2)Ω𝑟𝑠2)(1+ 2Ω𝑟𝑠2𝐴

2
𝑟)

𝛾(1− 𝜌2)Ω𝑠1𝑟Ω
2
𝑟𝑠2𝐴

2
𝑟

] 1+2Ω𝑟𝑠2𝐴2
𝑟

1+2𝑧𝐴2
𝑟

𝑑𝑧

Λ5 =

∫
Φ

[
𝑧Ω𝑠1𝑟

𝐴2
𝑟Ω𝑠1𝑠2Ω

3
𝑟𝑠2(Ω𝑠1𝑟 + (1− 𝜌2)Ω𝑟𝑠2)

2

+
𝑧Ω𝑠1𝑟Ω𝑟𝑠2 +Ω2

𝑟𝑠2(Ω𝑠1𝑟 + (1− 𝜌2)Ω𝑟𝑠2)

𝑧𝐴2
𝑟Ω𝑠1𝑠2Ω𝑠1𝑟Ω

3
𝑟𝑠2(Ω𝑠1𝑟 + (1− 𝜌2)Ω𝑟𝑠2)

]

⋅ (1 + 2Ω𝑟𝑠2𝐴
2
𝑟

)
exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧 (78)

Λ6 =

∫
Φ

(1 + 2𝑧𝐴2
𝑟)

3

2𝜋𝑧𝐴3
𝑟Ω𝑠1𝑠2Ω𝑠1𝑟(1 + 2𝐴2

𝑟Ω𝑟𝑠2)
2 (𝑧 − Ω𝑟𝑠2)

⋅
[
(1 + 2𝐴2

𝑟Ω𝑟𝑠2)

𝛾
1
2Ω𝑟𝑠2𝐴

2
𝑟

] 1+2Ω𝑟𝑠2𝐴2
𝑟

1+2𝑧𝐴2
𝑟

exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧 (79)
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Λ7 =

∫
Φ

3(1 + 2𝐴2
𝑟Ω𝑟𝑠2)

𝑧𝐴2
𝑟Ω𝑠1𝑠2Ω𝑟𝑠2Ω𝑠1𝑟

exp

(
− 𝑧

Ω𝑟𝑠2

)
𝑑𝑧. (80)
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