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Abstract

Multi-fractal processes have recently been introduced as a new tool for
modeling the stylized facts in financial time series, and it is becoming more
and more popular due to its well capturing the long memory property. In
this paper, we introduce multivariate multi-fractal model based on our
previous proceeding works. We implement its estimation via GMM and
bayesian approach, as its high dimensional structure, we employ particle
filter to implement simulation based inference. Monte Carlo studies for
their estimation performances are conducted.
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1 Introduction

Financial markets display some similarities to fluid turbulence. For example,
both turbulent fluctuations and financial fluctuations display intermittency at
all scales. A cascade of energy flux is known to occur from the large scale of
injection to the small scale of dissipation and it is typically modeled by a multi-
plicative cascade, which then leads to multi-fractal field. the Multi-Fractal (MF)
Model has been recently introduced as an alterative formalization to financial
time series, the model conceives volatility as a hierarchical, multiplicative pro-
cess with heterogeneous components. The essential new feature of MF models is
their ability of generating different degrees of long-term dependence in various
powers of returns - a feature pervasively found in empirical financial data, see
Ding et al. (1993).

Research on Multi-Fractal models originated from statistical physics, cf.
Mandelbrot (1974). The initial MF proposed by Mandelbrot et al. (1997),
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named the Multi-Fractal Model of Assets Returns (MMAR), assumes that re-
turns x(t) follow a compound process:

x(t) = BH [θ(t)] (1)

in which an incremental fractional Brownian motion with index H, BH [·],
is subordinate to the cumulative distribution function θ(t) of a multi-fractal
measure, in the earlier work of Mandelbrot (1974), it was employed to model
the distribution of energy in turbulent dissipation.

However, the model used in physics is of a combinatorial nature and suffer
from non-stationarity due to the limitation to a bounded interval and the non-
convergence of moments in the continuous-time limit. This major weakness
was overcome by introducing a iterative version of the multi-fractal model, cf.
Calvet and Fisher (2001), Calvet and Fisher (2004). In their approach, returns
are modeled as:

xt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ut (2)

with a constant scale parameter σ and increment ut drawn from a standard
Normal distribution N(0, 1). Thus, instantaneous volatility being determined
by the product of k volatility components or multipliers M

(1)
t , M

(2)
t ..., M

(k)
t ,

certain constrains can be arbitrary imposed in E[M (i)
t ] or E[

∑
M

(i)
t ] for the sake

of normalizing the time-varying components of volatility. Furthermore, each
volatility component is renewed at time t with probability γi depending on its
rank within the hierarchy of multipliers or remains unchanged with probability
1− γi. The transition probabilities are specified as:

γi = 1− (1− γ1)(b
k−1) (3)

with parameters γ1 ∈ [0, 1] and b ∈ (1,∞). Whereas Lux (2003) and Lux
(2005) use analogous specification:

γi = 2−(k−i) (4)

which leads to an very close approximate to that of eq. 3 with parsimonious
parameters (by fixing b = 2 and γ1 = 2−(k−1)), and eg. 4 is sufficient to cap-
ture the hierarchical structure in the transitional probability, that is, volatility
component in a lower frequency state will be renewed as twice as often as its
neighbor (a higher one), and it happens with certainty for the component of
highest frequency (i = k).

The main attraction of Multi-Fractal model is that it shares certain proper-
ties of asset returns: fat tails and long memory (asymptotic power-law behavior
of the autocovariance function, i.e. Cov(|xt|q, |xt+τ |q) ∝ τ2d(q)−1). Further-
more, multifractality implies that different powers of the measure have different
decay rates of their autocovariances, see Calvet and Fisher (2004). In this sense,
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other alternatives like FIGARCH or ARFIMA models belong to the catalogue
of uni-fractal model, i.e. they have the same decay rate for all moments.

As the increasing requirements in empirical research, multi-variate settings
are necessary, in particulary it is now well accepted that financial volatilities
move together over time across assets and markets. This is particularly im-
portant when considering asset allocation, value-at-risk and portfolio hedging
strategies for a basket assets. Secondly, since the information on the source of
long memory in the volatility process is quite limited, the Multivariate model
may provide additional insight into the factors responsible for long memory.

The rest of this paper is organized as follows: Section 2 provides the multi-
variate Multi-fractal model of financial returns and implement its estimation via
GMM and Maximum likelihood approaches; Section 3 introduces a simulation
based inference for multivariate MF model; A preliminary conclusion in Section
4.

2 The Higher Dimensional Multi-Fractal Model

By extending the Bivariate MF case, time series for N assets are assumed to
have the same overall number of volatility cascades, which contain the k joint
cascades level, after kth level each series has separate additional multifractal
components.

rq,t = σq ·

[(
k∏

i=1

M
(i)
t

)
·

(
n∏

l=k+1

M
(l)
t

)]1/2

· uq,t (5)

q = 1, 2, · · · , N is the number of assets. σq are the unconditional standard
deviation of the return series, it is scale parameter. uq,t is N × 1 vector, whose
elements are N -variate normal distribution, by considering three asset portfolio
N = 3, that is, a multivariate normal distribution in three variables (tri-variate
Normal) with correlation matrix: 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


In addition, we restrict the specification of the transition probabilities to:

γj = 2−(k′−j) (6)

Each component is renewed at time t with probability γi depending on its
rank within the hierarchy of multipliers and remains unchanged with probability
1− γi.

We specify the multipliers to be random draws from either a Binomial or
Lognormal distribution, In the binomial case in which we assume two draws

3



m0 ∈ (0, 2) and alternative m1 = 2−m0, for the latter, we assume −log2M ∼
N(λ, σ2), and assign constraint E[M (i)

t ] = 0.5 which leads to σ2
m = 2(λ−1)/ln2.

Figure 1 and Figure 2 show simulations of the tri-variate multi-fractal model
(k = 4, n = 15) with Binomial distribution of its multipliers together with its
ACFs. The simulation apparently shares some of the stylized facts of financial
time series, namely volatility clustering and hyperbolical decay of the autocor-
relation function. One also easily recognizes the correlation in the volatility of
both time series.

Historically, the first attempt at estimating the multi-fractal models is the
scaling estimator. Since multifractal measures are characterized by a non-linear
scaling function of moments (scaling law), through a Legendre transformation,
parameter estimation is achieved by matching the empirical and hypothetical
spectrum of Hölder exponents. In our proceeding higher dimensional MF model,
we will, however, exclude the scaling estimator due to its bias and lack of asymp-
totic distribution theory, cf. Lux (2003), Lux (2004).

2.1 Generalized Method of Moments Estimation

We adopt the GMM (Generalized Method of Moments) approach by Hansen
(1982) with analytical solutions of a set of appropriate moment conditions. In
the GMM approach, the vector of parameter estimates of the model, say β, can
be obtained as:

β̂ = arg min
β∈Θ

M̄(β)′WM̄(β) (7)

with β the parameter vector, M̄(β) the vector of differences between sample
moments and analytical moments, and W a positive definite weighting matrix,
which controls the over-identification when applying GMM. Implementing (7),
one typically starts with the identity matrix, then the inverse of the covariance
matrix obtained from the first round estimation is used as the weighting ma-
trix in the next step, and the procedure will continue until the estimates and
weighting matrices converge. Under suitable conditions, β̂ is consistent and
asymptotically converges to T 1/2(β̂ − β0) ∼ N(0,Ξ) with covariance matrix Ξ.

The applicability of GMM for multi-fractal models has been discussed by
Lux (2003). The approach recommended in this paper is using log differences of
absolute returns together with the pertinent analytical moment conditions, i.e.
to transform the observed data rt into T th differences of the log observations:

Rt,T = ln |rt| − ln |rt−T | (8)

with ε
(i)
t = ln

(
M

(i)
t

)
.

GMM provides more convenient and efficient way towards the estimation of
higher dimensional MF model, it allows to treat each couple of time series as
bivariate case. In order to exploit as much information as possible, the moment
conditions that we consider include two categories:
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the first set of conditions is obtained by considering moments for cross time
series observations:

Cov[Rt,1, R
−
t,1];

R−
t,1 represents any one other time series rather than Rt,1. In trivariate case, we

have 3 moments corresponding to 3 pairs time series. The second set of moment
conditions is the moments for autocovariance:

Cov[Rt+T,T , Rt,T ];

for T = 1, 5, 10, 20. Furthermore, for either category, we select moment
conditions for Rt,T and R2

t,T , i.e. moments of the raw transferred observations
and square transferred observations. The detailed analytical moments for each
pair are given in Liu and Lux (2005). Table 1 and Table 2 show the performance
of the GMM estimator.

We proceed by conducting several Monte Carlo experiments as Andersen
and Sorensen (1996) and Lux (2003) to explore the performance of the GMM
estimation. We simulate 100,000 data in each iteration, and randomly choose
three different sub-sample with sample sizes N1 = 2000, N2 = 5000, and N3 =
10000, which is robust to discover the estimation performance. We start with
the Binomial Model (n = 12) with number of joint cascades k = 3, we fixed
multipliers m0 = 1.3, the scale parameters (unconditional variance) σ1 = σ2 =
σ3 = 1, and the three correlation parameters. Table 1 shows the statistical result
of the GMM estimator: for the Binomial distribution parameter m̂0, not only
the bias but also the finite sample standard deviation and root mean squared
error show quite encouraging behavior. It is also the case for other parameters,
even in the small sample size N = 2000 and N = 5000, the average bias of the
Monte Carlo estimates is moderate, and particularly close to zero for the larger
sample sizes N = 10000.

It is also interesting to note that our estimates are in harmony with T
1
2

consistency, and the Hansen’s J test reveals that there is not disappointing
concerning the over-identification restrictions (see Figure 3). All these results
can be viewed as a positive signal of the log transformation in practice.

One advantage of GMM is that it allows to estimate MF with a continuous
distribution, following the work of Mandelbrot et al. (1997) and Calvet and
Fisher (2002), we use the same Lognormal distribution −log2M ∼ N(λ, σ2) in
tri-variate model, and impose a restriction of E[M ] = 0.5. In our Monte Carlo
simulations reported in Table 2, we cover parameter values λ = 1.40, and other
initial setting as in the Binomial case above. As can be seen, results are not too
different from those obtained with the Binomial model: Biases are moderate
again, SD and RMSE significantly decrease with increasing the sun-sample size

we also make the Monte Carlo study towards other different choice of pa-
rameter values, we skip them for saving some space as no significant divination
is observed comparing with the performance above. All in all, the performance
from both the Binomial and Lognormal Monte Carlo simulation and estimation
shows that GMM seems to work quite well for multi-fractal processes both in
the discrete and in the continuous state space.
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3 Particle filter

The MF dynamics can be interpreted as a special case of a Markov-switching
process with a large state space, this makes Maximum Likelihood Estimation
feasible. In our tri-variate MF model, the state spaces is relatively finite when
the multipliers follow a discrete distribution (i.e. Binomial distribution). The
likelihood function can be derived by determining the exact form of each possible
component in the transition matrix, and is similar to the likelihood function
in Calvet et al. (2006), but differs in so far as the transition matrix of each
multifractal component contains two starting cascade levels. We denote rt is
the set of joint return observations {rq,t}, and have the likelihood function as
below:

f(r1, · · · , rT ; Θ) =
T∏

t=1

f(rt|Mt = mi) · (πt−1A) . (9)

With the conditional density f(rt|Mt = mi), and the transition matrix A
which has components Aij = P (Mt+1 = mj |Mt = mi), it is a 8n × 8n matrix in
our tri-variate case. Both Mt and m(·) are vectors, Mt = (M1

t , · · · ,Mk
t , · · · ,Mn

t ),
mi

k denotes the kth component of vector mi. The last unknown component
within the likelihood function above is πt, which is the conditional probability
of volatility state given observations πi

t = P (Mt = mi|r1, · · · , rt). We denote

πt = (π1
t , π2

t , · · · , πR
t ) and R = 8n, we also know

R∑
i=1

πi
t = 1. The conditional

probability can be recursively defined through Bayesian updating, we get1

πt+1 =
f(rt+1|Mt+1 = mi)

⊗
(πtA)∑

f(rt+1|Mt+1 = mi)
⊗

(πtA)
(10)

Applicability of the ML approach is constrained by its computational de-
mands: First, it is not applicable for models with an infinite state space, i.e.
continuous distributions of the multipliers such as Lognormal distribution we
use here. Secondly, even for the discrete distributions, say the Binomial case,
we may also realize that Eq (9) requires to evaluate the transition matrix which
has the size of R × R in the tri-variate case, current computational limitations
make choices of n beyond 3 unfeasible. Table 3 reports the Monte Carlo study
(designed as previous section) of the ML estimator. It would be not too surpris-
ing that the ML estimators are more efficient compared with the two previous
tables, as ML extracts all the information in the data. We also need to realize
that Table 3 uses n = 3 which is much smaller n = 12 in Table 1, and more
cascade levels generate more fluctuations.

To overcome this up-bound limit, we seek some support from simulation
based inference. Recalling the bayesian updating of eq. (10) above, we can

1
⊗

represents element by element product.
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think of

R∑
j=1

P (Mt+1 = mi|Mt = mj)πj
t (11)

as a prior probability P (Mt+1 = mi|rt), then combine it with the conditional
density f(rt+1|Mt+1 = mi) to generate a posterior, that is (P (Mt+1 = mi|rt+1).
This procedure can also be expressed by considering that the conditional prob-
abilities of current states (πt) are input, passing through a system of dynamic
transformation which is transition probability matrix A here, to produce the
conditional probabilities of future states (πt+1) as output. This procedure is
called filtering.

As pointed out before, the likelihood becomes difficult-to-compute due to
the dimension of the transition probability matrix increasing with exponential
rate. Numerous attempts have been made to provide algorithms that approxi-
mate this filtering probabilities (cf. Gordon et al. (1993); Jacquier et al. (1994);
Berzuini et al. (1997); Kim et al. (1998)). We use so called particle filter which
is the class of simulation based filters that recursively approximate the filtering
random variable by certain finite number of particles which are certain discrete
points viewed as approximated samples from the prior. In our case, we evaluate
eq. (10) by combining the conditional density with eq. (11)up to proportional-
ity:

πi
t+1 ∝ f(rt+1|Mt+1 = mi)

R∑
j=1

P (Mt+1 = mi|Mt = mj)πj
t . (12)

As particle filters treat the discrete support generate by the particles as the
“true” filtering density, which allows us to produce an approximation to the
prediction probability density P (Mt+1 = mi

t|rt), by using the discrete support
of the particles, and then one step ahead conditional probability is

πi
t+1 ∝ f(rt+1|Mt+1 = mi)

B∑
b=1

P (Mt+1 = mi|Mt = m(b)) (13)

This leaves us only one issue - how to make these finite number of draws?
We adopt Sampling/Importance Resampling (SIR) introduced by Rubin (1987);
Pitt and Shephard (1999). B draws M (1), . . . ,M (B) are taken independently
from the prior, and then associate each of draws with a weight wj , where

wj =
f(rt+1|Mt+1 = m(j))∑B
i=1 f(rt+1|Mt+1 = m(i))

, j = 1, . . . , B. (14)

Instead of evaluating each exact component of R numbers of A associated
with π

(·)
t , SIR produces B draws (“particles”) from prior P (Mt+1 = mi|rt)

which are used to generate the approximation of the corresponding one step of
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head conditional probability as eq. (13), and it will converge as increasing B (cf.
Pitt and Shephard (1999)). This procedure avoids the extreme high dimensional
evaluation.

By using particle filter, one step ahead density hence becomes:

f(rt|r1, · · · , rt−1) =
R∑

i=1

f(rt|Mt = mi)P (Mt = mi|It−1)

≈ 1
B

B∑
b=1

f(rt|Mt = mb), (15)

then the approximate likelihood function is given below:

g(r1, · · · , rT ; Θ) =
T∏

t=1

f(rt|r1, · · · , rt−1)

≈
T∏

t=1

[
B∑

b=1

f(rt|Mt = m(b))

]
. (16)

Table 4 reports estimation results through particle filter. Simulations are
based on the tri-variate Binomial Multi-Fractal process with n = 6, k = 2,
which is not possible to implement via ML under the computational ability of
personal computer. We make Monte Carlo study designed as previous tables,
the results also demonstrates the positive performance.

4 Conclusion

In this paper we extend our previous work to the higher dimensional Multi-
Fractal model, and implement its estimation by both GMM and exact Maximum
Likelihood estimation. To overcome the computational restrictions on the choice
of the number of cascade levels, we also employ simulation based inference via
particle filter.
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Table 1: GMM estimation for the trivariate multifractal Binomial model

θ̂ Sub-sample Size Bias SD RMSE
N1 -0.1214 0.1198 0.1705

m̂0 N2 -0.0464 0.0724 0.0859
N3 -0.0150 0.0405 0.0432
N1 -0.0088 0.0813 0.0817

σ̂1 N2 -0.0010 0.0560 0.0559
N3 -0.0004 0.0397 0.0396
N1 0.0001 0.0868 0.0867

σ̂2 N2 -0.0008 0.0565 0.0564
N3 -0.0034 0.0393 0.0394
N1 -0.0016 0.0894 0.0893

σ̂3 N2 -0.0026 0.0526 0.0526
N3 -0.0020 0.0402 0.0402
N1 0.0328 0.1194 0.1237

ρ̂12 N2 0.0150 0.0826 0.0838
N3 -0.0004 0.0632 0.0631
N1 0.0145 0.0704 0.0718

ρ̂23 N2 0.0075 0.0483 0.0488
N3 -0.0044 0.0345 0.0347
N1 0.0086 0.0455 0.0462

ρ̂13 N2 -0.0015 0.0379 0.0379
N3 -0.0033 0.0227 0.0229

Note: Simulations are based on the Trivariate Binomial Multi-Fractal process with n = 12, k =
4, and initial value m0 = 1.3, σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.7. Sample
lengths are N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000. Bias denotes the distance between
the given and estimated parameter value, SD and RMSE denote the standard deviation and
root mean squared error, respectively. For each scenario, 400 Monte Carlo simulations have
been carried out.
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Table 2: GMM estimation for the trivariate multifractal Lognormal model

θ̂ Sub-sample Size Bias SD RMSE
N1 -0.0435 0.0418 0.0603

λ̂ N2 -0.0122 0.0295 0.0319
N3 -0.0007 0.0193 0.0193
N1 -0.0094 0.1945 0.1945

σ̂1 N2 -0.0025 0.1225 0.1224
N3 -0.0031 0.0843 0.0842
N1 -0.0294 0.1987 0.2006

σ̂2 N2 -0.0098 0.1225 0.1227
N3 0.0010 0.0896 0.0895
N1 0.0005 0.2094 0.2091

σ̂3 N2 0.0017 0.1248 0.1246
N3 0.0058 0.0864 0.0865
N1 0.0176 0.1335 0.1345

ρ̂12 N2 -0.0013 0.0951 0.0950
N3 -0.0243 0.0733 0.0772
N1 0.0159 0.0694 0.0711

ρ̂23 N2 -0.0033 0.0490 0.0490
N3 -0.0151 0.0344 0.0375
N1 0.0003 0.0396 0.0395

ρ̂13 N2 -0.0075 0.0259 0.0269
N3 -0.0122 0.0179 0.0217

Note: Simulations are based on the Trivariate Binomial Multi-Fractal process with n = 12, k =
4, and initial value λ = 1.2, σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.7. Sample
lengths are N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000. Bias denotes the distance between
the given and estimated parameter value, SD and RMSE denote the standard deviation and
root mean squared error, respectively. For each scenario, 400 Monte Carlo simulations have
been carried out.
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Table 3: ML estimation

θ̂ Sub-sample Size Bias SD RMSE
N1 −0.0106 0.0170 0.0200

m̂0 N2 −0.0096 0.0118 0.0152
N3 −0.0101 0.0075 0.0126
N1 −0.0016 0.0222 0.0221

σ̂1 N2 −0.0004 0.0140 0.0140
N3 0.0002 0.0086 0.0086
N1 −0.0033 0.0227 0.0228

σ̂2 N2 −0.0017 0.0128 0.0128
N3 −0.0010 0.0087 0.0087
N1 −0.0033 0.0227 0.0228

σ̂3 N2 −0.0017 0.0128 0.0128
N3 −0.0010 0.0087 0.0087
N1 −0.0033 0.0227 0.0228

ρ̂12 N2 −0.0017 0.0128 0.0128
N3 −0.0010 0.0087 0.0087
N1 −0.0033 0.0227 0.0228

ρ̂23 N2 −0.0017 0.0128 0.0128
N3 −0.0010 0.0087 0.0087
N1 0.0099 0.0208 0.0230

ρ̂13 N2 0.0108 0.0123 0.0163
N3 0.0110 0.0079 0.0135

Note: Simulations are based on the Trivariate Binomial Multi-Fractal process with n = 3,
k = 1, which is almost the limit of computational feasibility, and initial value m0 = 1.3,
σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.7. Sample lengths are N1 = 2, 000,
N2 = 5, 000 and N3 = 10, 000. Bias denotes the distance between the given and estimated
parameter value, SD and RMSE denote the standard deviation and root mean squared error,
respectively. For each scenario, 400 Monte Carlo simulations have been carried out.
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Table 4: Particle filter

θ̂ Sub-sample Size Bias SD RMSE
N1 0.0056 0.0110 0.0113

m̂0 N2 0.0146 0.0294 0.0318
N3 0.0339 0.0228 0.0404
N1 0.0329 0.0189 0.0390

σ̂1 N2 0.0445 0.0108 0.0457
N3 0.0399 0.0167 0.0430
N1 0.0333 0.0165 0.0383

σ̂2 N2 0.0477 0.0122 0.0421
N3 0.0359 0.0247 0.0430
N1 0.0326 0.0182 0.0384

σ̂3 N2 0.0468 0.0136 0.0486
N3 0.0409 0.0176 0.0442
N1 0.0320 0.0210 0.0394

ρ̂12 N2 0.0407 0.0207 0.0423
N3 0.0383 0.0194 0.0426
N1 0.0360 0.0177 0.0413

ρ̂23 N2 0.0417 0.0190 0.0455
N3 0.0379 0.0208 0.0429
N1 0.0245 0.0191 0.0318

ρ̂13 N2 0.0429 0.0069 0.0434
N3 0.0382 0.0167 0.0415

Note: Simulations are based on the Trivariate Binomial Multi-Fractal process with n = 4,
k = 2, which is almost the limit of computational feasibility, and initial value m0 = 1.3,
σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.4, ρ23 = 0.5, ρ13 = 0.6. Sample lengths are N1 = 2, 000,
N2 = 5, 000 and N3 = 10, 000. Bias denotes the distance between the given and estimated
parameter value, SD and RMSE denote the standard deviation and root mean squared error,
respectively. For each scenario, 400 Monte Carlo simulations have been carried out.
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Figure 1: Simulation of the multivariate Binomial Multi-Fractal Model with m0

= 1.3, σ1 = σ2 = 1, σ3 = 1,ρ = 0.4, ρ = 0.5, ρ = 0.6.
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Figure 2: ACF for the Simulation of the multivariate Binomial Multi-Fractal
Model above.
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Figure 3: The distribution of p value for the test of overindentification restric-
tions for trivariate Binomial MF. Three figures from up to down corresponding
to three different sample size: N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000.
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