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Abstract—This paper discusses the Cambridge University
HTK (CU-HTK) system for the automatic transcription of con-
versational telephone speech. A detailed discussion of the most
important techniques in front-end processing, acoustic modeling
and model training, language and pronunciation modeling are pre-
sented. These include the use of conversation side based cepstral
normalization, vocal tract length normalization, heteroscedastic
linear discriminant analysis for feature projection, minimum
phone error training and speaker adaptive training, lattice-based
model adaptation, confusion network based decoding and confi-
dence score estimation, pronunciation selection, language model
interpolation, and class based language models.

The transcription system developed for participation in the 2002
NIST Rich Transcription evaluations of English conversational
telephone speech data is presented in detail. In this evaluation the
CU-HTK system gave an overall word error rate of 23.9%, which
was the best performance by a statistically significant margin.
Further details on the derivation of faster systems with moderate
performance degradation are discussed in the context of the 2002
CU-HTK 10 RT conversational speech transcription system.

Index Terms—Large-vocabulary conversational speech recogni-
tion, telephone speech recognition.

I. INTRODUCTION

THE transcription of conversational telephone speech is
one of the most challenging tasks for speech recognition

technology. State-of-the-art systems still yield high word error
rates typically within a range of 20%–30%. Work on this
task has been aided by extensive data collection, namely the
Switchboard-1 corpus [10]. Originally designed as a resource
to train and evaluate speaker identification systems, the corpus
now serves as the primary source of data for work on automatic
transcription of conversational telephone speech in English.

The first reported assessment of word recognition perfor-
mance on the Switchboard-1 corpus was presented in [9] with
an absolute word error rate of around 78%.1 In this experiment
only a small portion of the Switchboard-1 corpus was used in
training. Over the years the performance of systems on this
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1The focus of the work was topic and speaker identification rather than word
recognition.

task has gradually improved. Progress is assessed in the yearly
“Hub5E” evaluations conducted by the U.S. National Institute
for Standards in Technology (NIST). The Cambridge University
HTK group first entered these evaluations in 1997 using speech
recognition technology based on the Hidden Markov Model
Toolkit (HTK) [37] and has participated in evaluations on this
task ever since. This paper describes the CU-HTK system for
participation in the 2002 NIST Rich Transcription (RT-02)
evaluation. We focus on two test conditions: the unlimited
compute transcription task where the only design objective is
the word error rate (WER); and the less than 10 times real-time
(10 RT) transcription task where the system processing time
is not allowed to exceed 10 times the duration of the speech
signal.

This paper is organized as follows: the first section briefly
reviews basic aspects of the HTK Large Vocabulary Recogni-
tion (LVR) system, followed by a detailed description of the
data used in experiments. In Section IV we present the acoustic
modeling techniques essential to our system and discuss par-
ticular data modeling aspects. Section V outlines the pronunci-
ation modeling, followed in Section VI by a description of the
language models used in our systems. In Section VII we discuss
issues in decoding and system combination. The structure of the
full transcription system is presented in Section VIII, including
a detailed analysis of the performance on large development and
evaluation test sets. This system served as the basis for the 10
RT system described in Section IX.

II. HTK LVR SYSTEMS

The HTK large vocabulary speech recognition systems
are built using the Hidden Markov Model Toolkit [37] and
are based on context dependent state clustered HMM sets
with Gaussian mixture output distributions. The same basic
model training methodology is used for a variety of tasks.
The acoustic data is normally represented by a stream of
39 dimensional feature vectors with a frame spacing of 10
ms, based on 12 Mel-frequency perceptual linear prediction
(MF-PLP) coefficients [33] and the zeroth cepstral coefficient

representing the signal energy. The first and second order
derivatives of each coefficient are appended to form the full
feature vector. The words are mapped into phoneme strings
using dictionaries based on a modified and regularly updated
version of the LIMSI 1993 WSJ pronunciation dictionary [8].
The dictionaries contain multiple pronunciations per word.
Cross-word context-dependent phone models using a context of
either 1 in the case of triphones or 2 for the quinphones are
used as the acoustic models. In addition to models for speech,
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the acoustic model set usually contains two silence models,
one for silence, and one for short inter-word pauses with
the latter preserving context across words.2 In order to avoid
under-training and the effect of unseen phone contexts, the
HMM states are clustered using phonetic decision trees trained
with a maximum likelihood (ML) criterion [37]. Initial single
Gaussian per state models are created prior to state clustering
by two-model re-estimation [35]. After state clustering and
several iterations of Baum-Welch re-estimation, the number of
mixture components is gradually increased, interleaved with
multiple re-estimation steps.

The language models (LMs) are based on N-grams with
backoff for smoothing. For conversational telephone speech
large amounts of task-dependent material is not available and
other schemes have to be adopted (see Section VI).

In order to allow for the use of complex acoustic and language
models word graphs (lattices) are used extensively in re-scoring
passes. The recognition system normally operates in multiple
stages where an important aspect is acoustic model parameter
adaptation, for example using maximum likelihood linear re-
gression [21]. A more detailed description of the basic setup
can be found in [35] or [37].

III. TRAINING AND EVALUATION DATA

The experiments in this paper made use of data from the
Switchboard-1 (Swbd1) corpus [10], the CallHome English
corpus and small parts from the Switchboard-2 corpus. The
Switchboard-1 corpus covers more than 2900 conversations
from about 550 U.S. speakers. The speakers were unknown to
each other and were requested to converse on a certain topic.
The data used had 4-wire recordings with a sample rate of 8
kHz and -law encoded with a resolution of 8 b per sample. An
initial manual segmentation and transcription of more than 250
h of speech was provided by the Linguistic Data Consortium
(LDC). The inherent difficulty even in manual transcription
of this type of data had forced many research sites to create
their own segmentations and corrected versions of the tran-
scriptions. In order to provide an improved baseline the data
was more recently re-transcribed and re-segmented by Missis-
sippi State University (MSU).3 The CallHome English (CHE)
corpus consists of a total of 200 conversations between family
members and close friends, no restriction was placed on the
conversation topics. The LDC distributed 120 conversations,
comprising a total of 18.5 h of speech. The remainder was used
in Hub5E evaluations in the years 1997–2001. A particular,
though minor effect is the occasional existence of multiple
speakers per conversation side on this data. The Switchboard-2
(Swbd2) corpus was collected with the intention to serve as
test-bed for speaker recognition, consequently most of it is not
transcribed. The corpus was collected in a total of 5 phases, all
calls were made within the U.S.A. The phases were recorded
in different regions of the U.S.A, the fourth phase is also called
Switchboard Cellular (Cell) collecting data over mobile phone
channels with special focus on the GSM channel.4 Each corpus

2The silence models differ only in the skip transition present in the model for
short pause.

3See http://www.isip.msstate.edu/projects/switchboard/index.html.
4A more detailed description of the data can be obtained from the LDC web-

site: http://www.ldc.upenn.edu.

TABLE I
DATA SETS USED FOR TRAINING AND TEST. TRAINING SETS ARE DESCRIBED

BY THE SOURCE OF TRANSCRIPTS, TEST SETS BY THE ORIGINATING CORPUS

has specific unique attributes and automatic speech recognition
(ASR) system performance varies significantly with the corpus
from which the data is drawn. In the following word error
results, are also presented for each of the data sources in the
test sets.

Multiple training and test sets are used in the experiments in
this paper. The selection of data for training of acoustic models
allows a scaling of the complexity of experiments. Table I shows
details of the training sets used in this paper. Note that most
experiments are based on the h5train02 set which covers
data from Swbd1, CHE and Cell.

The Switchboard-1 part of h5train00 and consequently
h5train00sub and h5train02 are based on a January
2000 snapshot of the MSU transcripts. The segment boundaries
for these sets have been modified to reduce the amount of
silence present in the training data. Based on forced alignments
of the training data, a collar of only 0.2 s of silence on either
side was retained and segments were split at long pauses. The
table only shows data used for acoustic training. Details on the
data used for language model training data can be found in
Section VI.

Table I also shows the test-sets used in this paper. Note
that dev01 is the official 2001 Hub5 evaluation development
set [28] consisting of 40 sides of Switchboard-2 (from the
1998 evaluation), 40 sides of Switchboard-1 (from the 2000
evaluation) and 38 sides of Switchboard-2 cellular data. The
dev01sub set was selected to show similar word error rates
to the full dev01 set. For all cases a manual segmentation into
speaker turns was available.

IV. ACOUSTIC MODELING EXPERIMENTS

In this section fundamental acoustic modeling techniques for
conversational telephone data are presented. We discuss front-
ends, the use of feature transformation schemes, data issues,
the use of discriminative and speaker adaptive training schemes,
and test-set speaker adaptation.

A. Acoustic Analysis

Due to the special transfer characteristics of telephone chan-
nels, the lower and upper frequency regions of the speech signal
are attenuated and often very greatly so. In order to avoid the
placement of filter-banks in regions containing only noise, the
frequency analysis has been restricted to a range of 125–3800
Hz [13]. Initial experiments indicate WER improvements using
these band limits after cepstral normalization.

1) Cepstral Mean and Variance Normalization: Cepstral
mean normalization (CMN) can be used to reduce the effects
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Fig. 1. Piecewise linear frequency scaling. Two parameters are needed to
determine the frequency scaling are the scale factor�, and the cut-off frequency
f .

of constant channel characteristics. The normalization can
be performed on a per segment basis if the segments are of
sufficient length. However, the audio data for this task has an
average utterance length of 3.4 s (h5train02) which also
includes a collar of 0.2 s of silence at the boundaries. There-
fore segment based mean normalization is problematic. Since
acoustic conditions can be assumed to be relatively stable over
the duration of a conversation the mean can be calculated over
a complete conversation side. This approach will be referred to
as side-based mean normalization (Side-CMN). In preliminary
experiments [12] significant reductions in WER by about 1%
absolute with Side-CMN compared to segment-based CMN
were observed.

In a similar manner to CMN, variance normalization can also
be used. Again normalization on a per-side basis (Side-CVN)
is advisable. Initial results indicate a 1–1.5% absolute improve-
ment with both Side-CVN and Side-CMN over Side-CMN only.
Another important advantage of side-based CVN with respect
to its effect on vocal tract length normalization are discussed in
the following section. For more detailed results the reader is re-
ferred to [12], [13].

2) Vocal Tract Length Normalization: Maximum likeli-
hood vocal tract length normalization (VTLN) implements a
per speaker frequency scaling of the speech spectrum [20].
The optimal scale factor is obtained by searching for
the factor that yields the highest data likelihood. The optimal
scale factor is then applied to yield a speaker specific feature
stream. Normalization can be performed on the test data only
or both on the training and test data. The advantage of VTLN
lies in its simplicity and effectiveness. Since only a single
parameter needs to be estimated, the method is robust and can
be implement very efficiently.

The frequency scaling can be implemented by inverse scaling
of the Mel filter-bank centre frequencies. In [12] we proposed
a piecewise linear approach of the form presented in Fig. 1.
This form ensures that frequencies tie up at the boundaries.
The cut-off frequency is determined in advance. Warp factors
are found by searching over a range of warp factors where the
data likelihood is computed by performing an alignment of a
previously obtained word level transcript. In our experience the

TABLE II
%WER FOR SYSTEMS TRAINED ON h5train98 AND TESTED ON dev01.

VTLN WARPING IN TEST ONLY OR TRAINING AND TEST

Fig. 2. Frequencies of warp factors per gender on h5train02. Triphone
models for likelihood measurement were trained on h5train98.

quality of this transcript only has a minor effect on performance
given enough speaker-specific data is available. Note that in this
process the cepstral mean and variance normalization vectors
have to be recomputed. Warping with a certain factor has an
effect on the data likelihoods that would introduce a system-
atic bias in the warp factor search. This bias should be corrected
using Jacobian compensation, but the application of CVN to the
warped data achieves the same effect.

Table II shows a performance comparison of VTLN in test
only and in both training and test. Triphone acoustic models
and a trigram language model were used in the experiments.
The gain from test-only VTLN is less than half the gain ob-
tained when VTLN is used in both training and test. Overall
a relative reduction in WER of about 10% is usually observed
over a range of test sets. In order to obtain a reasonable warp
factor distribution on the training data multiple iterations of
warp factor estimation and model retraining are necessary. Fig. 2
shows a typical distribution of warp factors across speakers on
the h5train02 training set. Note the clear split in the warp
factor per gender with a broad distribution within-gender.

B. Acoustic Training Data

The training sets used for transcription of conversational tele-
phone speech are relatively large compared to those available on
other tasks. Such large training sets are required due to the con-
siderable amount of variability in the data. In [14] we showed
that, not unexpectedly, the incremental gain from an increase
in the amount of training data slowly decreases even on a log-
arithmic scale. Starting from 20 h of data trebling the amount
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TABLE III
%WER ON dev01sub USING 16COMP VTLN ML TRIPHONES. RESULTS ARE

OBTAINED USING RE-SCORING OF 4-g LATTICES

resulted in a WER improvement of more than 4%, a further tre-
bling of the amount of data only gave an additional 1.6% gain.5

Another aspect is the appropriateness for the acoustic condi-
tions. Table III shows experimental results on dev01sub using
triphone models trained on different training sets. Note that the
dev01sub test set also contains data from Swbd2 and Cell.
The WER on the cellular data is similar to the Swbd2 perfor-
mance. By adding the about 17 h of cellular data to the training
set (h5train02) the word error rate can be reduced by 0.7%
absolute. Note that the improvement is mostly on the Swbd2 and
Cell portions of the data.

All experimental results in Table III were obtained using tri-
phone models with 16 mixture components per speech state and
approximately 6000 decision tree clustered states. Additional
experiments with higher numbers of components gave an op-
timum result at 28 mixture components. This further decreased
the overall error rate to 35.1%.

C. Heteroscedastic LDA

In this work a mixture of Gaussians with diagonal covariance
is used to model the output distribution of each state. However,
it is known that there are correlations in the feature vector which
may limit the ability of the mixture model to accurately repre-
sent the underlying data. One solution to this is to linearly trans-
form the features so that the data associated with each compo-
nent is approximately uncorrelated. In addition, some dimen-
sions contain little discriminatory information and should be re-
moved.

Heteroscedastic linear discriminant analysis (HLDA) [18] is
a linear projection scheme and may be viewed as a generaliza-
tion of LDA. It removes the restriction that all the within class
covariance matrices are the same. The HLDA projection matrix,

, for a -dimensional feature space, , may be written as

(1)

where the top dimensions are deemed to be those dimensions
that contain discriminatory information, the useful dimensions.
The final -dimensions, contain no useful information and
are called the nuisance dimensions. Those are modeled using a
global distribution and hence can be ignored for the purpose of
further training and evaluation.

The maximum likelihood estimate of the transform parame-
ters can be obtained in an iterative process [7]. In this work the
projection matrix is initialized to an identity matrix. The useful
dimensions where selected based on Fisher ratios.

5It is important to note that these results were obtained by testing on Swbd2
and CHE data. The smallest training set however only contained data from
Swbd1, while the larger sets included CHE data.

TABLE IV
%WER ON dev01sub USING 28COMP h5train02 TRIPHONES, WITH

MF-PLP (STD), SEMI-TIED (ST) COVARIANCE MATRIX AND HLDA
FRONT-ENDS. RESULTS WERE OBTAINED BY RE-SCORING OF 4-g LATTICES

The HLDA transforms built for this work projected a 52-di-
mensional feature down to 39 dimensions.

The 52-dimensional source vector consisted of the standard
39-dimensional feature vector with third order derivatives ap-
pended. HMMs with 16-component mixtures based on the stan-
dard feature vectors were trained and then extended to incor-
porate the third derivatives. After further steps of Baum-Welch
re-estimation the transform was estimated and the number of
model components increased by mixing-up [37] to 28 mixture
components per state. For semi-tied covariance systems [7], the
process is identical except no addition of third derivatives was
used.

Table IV compares systems using the 39-dimensional
front-end with the use of both a global semi-tied covariance
system, and HLDA system and with ML training. Using a
global semi-tied covariance matrix reduced the error rate by
1.4% absolute. An additional 0.4% absolute was obtained by
using HLDA with third order differential coefficients rather
than a semi-tied system. Hence there is additional discrimina-
tory information that can be extracted from the third derivatives.
Discriminative training (see Section IV-D) was then applied to
the ML-trained system. Though the reduction in WER due to
HLDA with discriminatively trained models is 1.3% absolute
rather than the 1.8% obtained with the ML-trained system,
there was still a significant advantage in using HLDA [25].

D. Discriminative Training

The standard criterion for estimation of HMM parameters is
maximum likelihood. The maximum likelihood estimate is op-
timal in the sense that it is consistent with minimum variance.
Two important assumptions are made: a large number of training
samples is available; and the model itself is correct, i.e., reflects
the true nature of the data. Neither of these assumptions is true
for HMM based speech recognizers [26]. Consequently discrim-
inative training schemes are of interest.

In conjunction with HMM based speech recognizers several
discriminative training schemes have been proposed. Most im-
portantly we have shown that Maximum Mutual Information
(MMI) yields better performance than ML for the transcription
of conversational telephone speech. Use of discriminative cri-
teria in training is well known in small vocabulary tasks [29].
The next section gives a brief description of MMI training, fol-
lowed by a more detailed description of an alternative discrim-
inative training scheme, minimum phone error (MPE) training.

1) Maximum Mutual Information: For training observa-
tion sequences with corresponding tran-
scriptions , the MMI objective function for HMM param-
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TABLE V
%WER ON eval98 AND A SUBSET OF THE TRAINING SET (train) USING

TRIPHONE MODELS. train RESULTS WERE OBTAINED USING A LATTICE

UNIGRAM LM, TEST-SET RESULTS BY RE-SCORING OF 4-g LATTICES

eter set , including the effect of scaling the acoustic and LM
probabilities can be written

(2)

where is the composite model corresponding to the word
sequence , is the probability of this sequence as deter-
mined by the language model and is a scale factor.6 The sum-
mation in the denominator of (2) is taken over all possible word
sequences allowed in the task. Hence MMI maximizes the pos-
terior probability of the correct sentences. The denominator in
(2) can be approximated by a word lattice of alternative sentence
hypotheses.

The Extended Baum-Welch (EBW) algorithm is used for pa-
rameter optimization [11]. The parameter update formulae re-
quire the collection of numerator (num) and denominator (den)
statistics derived from word lattices based on recognition of the
training set. In order to allow a broader range of confusable hy-
potheses the use of a weak language model has been shown to
be important [34]. The parameter update formulae for the means
and variances of Gaussian in state is given by

(3)

(4)

where and denote -th order Gaussian oc-
cupancy weighted sums of the data based on the numerator and
denominator lattices respectively and is the Gaussian occu-
pancy summed over time. The constant can be used to control
convergence speed and robustness and is set on a per Gaussian
level.

It was shown that data weighted per Gaussian interpolation
between ML and MMI parameter estimates substantially in-
creases the robustness of the training process. I-smoothing [31]
is a way of applying an interpolation between a ML and a dis-
criminative objective function in a way which depends on the
amount of data available for each Gaussian. In the case of MMI
this means that the numerator occupancies are increased by a
certain amount , while leaving the average first and second
order data values unchanged. I-smoothing is used in training of
all discriminative models in this paper.

Table V shows a comparison of ML versus MMI, on dif-
ferent training set sizes. Note that the ML system serves as a

6It is assumed that the LM probabilities P (s) have already been “scaled”
(raised to the power) by the normal LM scale factor 1=� and hence further
scaling by � takes them back to their original values.

starting point for further parameter estimation steps using the
MMI criterion. In conjunction with I-smoothing substantial im-
provements in WER are obtained. I-smoothing trades perfor-
mance on the training set against improved generalization to the
test set. Furthermore the relative gain from using MMI training
on a 68 h training set is about 6%, however on 265 h of data the
relative WER improvement is 10%.

2) Minimum Phone Error Training: The aim in discrimina-
tive training is to choose the model parameters such as to mini-
mize the word error rate. The minimum word error rate (MWE)
criterion [31] is designed to maximize the expected word accu-
racy on the training set. It was found that an equivalent formu-
lation at the phone level yields better generalization. The min-
imum phone error criterion is defined as

(5)
where is a measure of the number of phones
accurately transcribed in hypothesis . The objective function
takes into account that many phone sequences are at least
partially correct and consequently cannot fully count as a
competitor. This is expressed by adding the correct fraction
to the numerator. Details on how the computation of the

and the re-estimation procedure can be
found in [31].

Table V also shows WER results on eval98 for MPE
training using the h5train00 training set. MPE outperforms
MMI with I-smoothing by 0.6% absolute on this test set.
Improvements of a similar kind have been verified on other test
sets. It is important to note the necessity for I-smoothing when
using the MPE criterion. Without I-smoothing the absolute
WER is 50.7% which is even poorer than the baseline ML
result. More detailed results and descriptions of MPE/MWE
are given in [31] and [36].

E. Unsupervised Test-Set Adaptation

Adaptation to the test speaker and the acoustic environment
greatly improves the performance of automatic speech recog-
nizers. The VTLN and side based normalization schemes dis-
cussed above are essentially adaptation techniques and show
substantial performance improvements. Techniques discussed
in this section use errorful transcripts of the data generated in
previous decoding stages for adaptation supervision.

1) Maximum Likelihood Linear Regression: MLLR [21] is
a well known adaptation technique that is widely used in many
speech recognition tasks. The model parameters are adjusted by
a linear transform (including a bias) such that the likelihood on
the adaptation data is increased. On this task, assuming a single
speaker on a conversation side, side-based adaptation is per-
formed. Typically mean vectors are adapted using block-diag-
onal transforms. However, the use of HLDA (see Section IV-C)
removes the association of blocks to the static cepstra and the
derivatives. Consequently a full transform for the means was
used in these experiments. Variance adaptation is performed
using diagonal transforms [5].

The sets of Gaussians can be grouped into multiple classes,
each associated with a particular transform. This is especially
helpful if more data is available. The classes can be found using
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TABLE VI
%WER ON dev01sub USING 28COMP TRIPHONES TRAINED ON

h5train02. ALL RESULTS ARE OBTAINED BY RESCORING OF 4-g LATTICES

regression class trees [22] or by manual definition. In practise
most of the WER gain is obtained by using one transform for
speech and one for the silence models, further termed global
MLLR.

Table VI shows results using a single iteration of global
MLLR using ML and MPE trained model sets. Note that the
models also use side-based mean, variance and VTL-normal-
ized data. The relative improvement using ML trained models
is about 8%, compared to a 5% relative reduction in WER using
MPE trained models. The relative improvements are similar for
all sub-sets of the data.

2) Full Variance Transforms: In the above experiments di-
agonal transforms for variance adaptation were used. Even with
multiple transform classes this guarantees that the model covari-
ances remain diagonal after adaptation. Improved performance
can be obtained by using a full matrix for speaker based vari-
ance adaptation. In this case the transformed covariance matrix,

, for mixture component is given by

(6)

where is the speaker-independent covariance matrix and
is a linear transform estimated on the adaptation data. This

can be interpreted as speaker-dependent global semi-tied covari-
ance matrix [7]. A summary of this adaptation scheme is given
in [6]. There are a number of options. Theoretically the trans-
forms may be full, diagonal, or block-diagonal. In practice a full
transform was used in all cases in this paper. The full variance
(FV) transform was computed after standard mean and variance
MLLR. Typically a WER reduction of 0.4% to 0.8% was ob-
tained. However as a side effect, we found that there were re-
duced benefits from multiple MLLR regression classes when
used with a full variance transform.

3) Lattice Based MLLR: In unsupervised adaptation the
word level output of a previous recognition pass is used as
the word level supervision. Errors in this transcription will
affect the effectiveness of the adaptation. To compensate for
the uncertainty in the transcription a set of alternative word
hypotheses can be used as the supervision. The lattice MLLR
technique presented in [32] employs word lattices to represent
these alternatives. During the transform estimation the contri-
bution of the alternatives is weighted by posterior probability
estimates based on a lattice forward-backward pass.

Table VII shows a break-down of results for the adaptation
techniques on dev01sub. When using HLDA, global MLLR
adaptation brings an improvement of 1.6% WER absolute over
the baseline. Iterative lattice MLLR using two speech trans-
forms brings a further 0.9%. In this case the result can be im-
proved only slightly when using a FV transform. Overall the im-
provement in WER from adaptation in this case is about 9% rel-
ative. Table VII also shows results of adaptation with or without
the use of an HLDA transform (Section IV-C). Note that the

TABLE VII
%WER ON dev01sub USING 28-COMPONENT HLDA MPE TRIPHONES

TRAINED ON h5train02. ALL RESULTS ARE OBTAINED BY

RESCORING OF 4-g LATTICES

TABLE VIII
%WER ON dev01sub USING 28COMP HLDA TRIPHONES TRAINED ON

h5train02. ALL RESULTS ARE OBTAINED BY RESCORING OF 4-g LATTICES

USING CONSTRAINED MLLR ADAPTATION ONLY

difference between systems without or with HLDA transforms
for unadapted models is 1.3% WER absolute, compared to 1.4%
with adapted models. This indicates that the improvements from
these techniques are approximately additive.

F. Speaker Adaptive Training

Adaptive training is a powerful training technique for
building speech recognition systems on nonhomogeneous data.
Variability in the training data may result from the speaker
changing, differing acoustic environments or varying channel
conditions. The basic idea of adaptive training is to use one or
more transformations of features or model parameters to rep-
resent these speaker and environment differences. A canonical
model can then be trained, given the set of speaker/environment
transforms. This canonical model should be more compact and
amenable to being transformed to a new speaker, or acoustic
condition, than standard speaker independent (SI) systems.

Forms of adaptive training have already been incorporated
into the training process in the form of VTLN and mean and
variance normalization (see Section IV-A). These methods use
constrained transformations of the feature space for normal-
ization. However, gains are increased further by incorporating
linear transformations of model parameters, for example MLLR
[21], into the training process. This was the original form of
speaker adaptive training (SAT) described in [1]. One of the is-
sues with the original SAT scheme is the cost of training. This
may be solved by using constrained MLLR transforms [6]. Then
SAT can be implemented by transforming the features, and there
is no need to change the model parameter optimization process.
As constrained MLLR is a feature space transform it is simple
to incorporate it into the discriminative training framework.

Table VIII shows the performance of SAT systems, trained
using constrained MLLR transforms. In testing, the systems are
adapted by using constrained MLLR. An improvement of 0.5%
absolute over the baseline can be observed, for the ML trained
models, where the gain originates from the more difficult data
Switchboard-2 and Switchboard Cellular. With MPE training
the gain is reduced. Note that these results, for the purpose of
consistency, only involve test set adaptation using constrained
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TABLE IX
%WER ON dev01sub USING 28COMP TRIPHONE MODELS TRAINED ON

h5train02, HLDA AND OPTIONALLY PRONUNCIATION PROBABILITIES.
RESULTS ARE OBTAINED BY RESCORING OF 4-g LATTICES

MLLR. Using the MPE HLDA SAT models as in Table VIII
in conjunction with LatMLLR+FV adaptation gives a WER of
27.3% absolute. The use of SAT is important to yield compli-
mentary system output for the purpose of system combination
(see Section VII-B).

V. PRONUNCIATION MODELLING

CU-HTK systems use a pronunciation dictionary for trans-
lation of words into phoneme sequences, where each word in
the dictionary has one more possible pronunciations associated
with it. The dictionaries used in training and test are obtained
from the CU base dictionary. The core of this base is the 1993
LIMSI WSJ lexicon [8], with manually generated additions and
corrections. Pronunciations for new words if needed are added
manually. On average 1.1 to 1.2 pronunciations per word are in-
cluded.

A. Pronunciation Probabilities

Unigram pronunciation probabilities, that is the probability
of a certain pronunciation variant for a particular word, can be
estimated based on an Viterbi-alignment of the training data.
Counting the number of occurrence of pronunciation variants
gives rise to an estimate for the probabilities. Considerable
smoothing is necessary to account for the inevitable data spar-
sity.

The dictionaries in the HTK system explicitly contain silence
models as part of a pronunciation. This allows the inclusion
of the silence models when estimating probabilities. The most
successful scheme in our experiments uses three separate dic-
tionary entries for each real pronunciation which differed by
the word-end silence type: no silence; a short pause preserving
cross-word context; and a general silence model altering con-
text. Smoothing of the probability estimates used the overall dis-
tribution for each silence variant. Finally all dictionary proba-
bilities are renormalized so that for a given word the probability
of the most likely pronunciation is set to one to avoid an addi-
tional penalty for words with many variants. During recognition
the pronunciation probabilities are scaled by the same factor as
used for the language model. Table IX shows that the use of pro-
nunciation probabilities gives a reduction in WER of 0.9% ab-
solute on dev01sub for ML. Even larger gains were observed
on some other test-sets [15].

B. Single Pronunciation (SPron) Dictionaries

The standard approach to pronunciation modeling is to use
multiple pronunciations (MPron) for each word. However, the

considerable pronunciation variation in conversational data
makes the use and selection of multiple pronunciations difficult
and causes additional confusability in decoding. Theoreti-
cally Gaussian mixture based HMMs should be able to cope
with phone or sub-phone substitutional effects. These phone
substitutions are the main cause of the existence of multiple
pronunciations in dictionaries. In this case the training of model
parameters can implicitly perform a similar task to manual
phonemic labeling.

An automated scheme for deriving a single pronunciation
from the multiple pronunciation dictionary was developed. This
is described in detail in [16]. The algorithm obtains pronuncia-
tion information from the acoustic training data to train simple
statistical models that allow the selection of pronunciation
variants. Since the list of words used in training usually differs
from that used in recognition, the algorithm also provides
a method for the selection of pronunciations for words not
observed in training. An MPron dictionary and an HMM set
trained using that dictionary are used to obtain pronunciation
frequencies from the training data.

Table IX shows a comparison of the SPron system with the
standard MPron system, and in addition the use of pronuncia-
tion probabilities. Note that for the SPron system the “pronun-
ciation probability” is simply the probability of the word being
followed by an optionally deletable “short” silence model, or
a standard silence model. In the ML training case the SPron
system outperforms the baseline MPron system by 1% absolute,
in conjunction with pronunciation probabilities this is reduced
to 0.4% absolute. In the case of MPE training both pronuncia-
tion probabilities and SPron system give reduced gains. How-
ever, the output of SPron and MPron systems still differ signif-
icantly and consequently can be used for system combination
(see Section VII-B).

VI. LANGUAGE MODELLING AND WORD LISTS

In most speech transcription tasks such as for example dic-
tation or Broadcast News transcription large amounts of repre-
sentative text data are available. In the case of transcription of
spontaneous speech over the telephone a very large corpus is
not available as the cost of transcribing the data is considerable.
Consequently the amount of in-domain data for the training of
language models and vocabulary selection is fairly small and re-
stricted to the transcription of the acoustic training data.

CU-HTK systems have followed a certain strategy for
building language models and selecting word lists on this task
for several years [13]. All words from the acoustic training set
are used in decoding.7 In order to minimize the Out-of-Vocab-
ulary (OOV) rate on the test sets, this set of words is merged
with the 50 000 most frequent words occurring in 204 million
words (MW) of Broadcast News (BN) training data, yielding a
vocabulary size of around 55 000. Given the vocabulary, word
bigram, trigram, and 4-g language models are trained on the
acoustic LM training set. These models are then interpolated
with corresponding models trained on the BN corpus. The
resulting 4-g LM is further interpolated with a class-based

7Note that for the purpose of LM training some text processing steps are nec-
essary to deal with for example partial words.
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TABLE X
PERPLEXITIES ON VARIOUS TEST SETS USING INTERPOLATED LANGUAGE

MODELS (tg = trigram, fg = 4 � g)

trigram language model where the classes are automatically
generated based on word bigram statistics [17], [24], [27].

The vocabulary selected for the CU-HTK 2002 Hub5E
system is derived from h5train02 in the aforementioned
manner, giving a word list of 55 449 distinct entries. This
yielded an OOV rate of 0.38% on eval98, 0.17% on the
cellular part of dev01 and 0.54% on eval02. Three language
models were trained on different sets of data: AcAllLM is
trained on h5train00 and h5train98 to encompass both
MSU and LDC transcript styles. This version of the transcripts
includes the false starts and covers a total of 6.2 MW. As the
amount of training was relatively small the model was trained
using modified Kneser-Ney discounting [2]. CellLM was
trained on the Switchboard Cellular part of the h5train02
set with a size 0.2 MW. Again modified Kneser-Ney dis-
counting was used. The BNLM model was trained on 204 MW
of Broadcast News data ranging in epoch from January 1992
to December 1997 to cover approximately the dates of data
collection. Smoothing used Katz-backoff and Good-Turing
discounting. The individual language models were merged to
form a single language model that effectively interpolates the
component models with interpolation weights 0.43:0.25:0.32
for the three language models (AcAllLM:CellLM:BNLM)
where interpolation weights were chosen by perplexity mini-
mization. The merged language model (fgint02) contained
4.77 million bigrams, 6.33 million trigrams and 7.35 million
4-g.

The class trigram language model used 350 automatically
generated word classes. Classes and trigram models were
trained on the h5train02 transcriptions only. The final
class model contained 75 k bigrams and 337 k trigrams. In
the final interpolation stage the optimal weight was 0.81 for
the word 4-g and 0.19 for the class model. Table X shows
the perplexities on several test sets. Note that before merging
the individual perplexities are high compared to the merged
model (fgint02). Despite significantly higher perplexities
the category LM yields a further reduction of about one point
in perplexity on all test sets.

VII. DECODING AND SYSTEM COMBINATION

In Section II we briefly mentioned the generic decoding
strategy for HTK LVR systems. Initial Viterbi decoding passes
are used to produce lattices that allow the search space to be
constrained in subsequent passes. This is useful for using more
complex acoustic and language models, for example using
quinphone models or 4-g LMs.

A. Minimum Word Error Rate Decoding

The standard criterion in ASR uses the Maximum A Poste-
riori (MAP) principle. For continuous speech recognition this
implies the search for the sentence yielding the highest poste-
rior probability. This is notably different from the desired ob-
jective of word error rate (rather than sentence error rate) min-
imization. The use of confusion networks [23] allows an effi-
cient implementation of the minimum word error rate principle.
For a particular word lattice link posterior probabilities are es-
timated using the forward-backward algorithm. The lattice is
transformed into a linear graph, or confusion network (CN) em-
ploying a link clustering procedure [23]. Both temporal infor-
mation as well as information on phonetic similarity of words
is used in clustering. The linear graph consists of a sequence of
so called confusion sets, which contain competing single word
hypotheses with associated posterior probabilities. By picking
the word with the highest posterior from each set the sentence
hypothesis with the lowest overall expected word error rate can
be found. The use of CN decoding normally reduces the WER
by 0.5%–1% absolute. More detailed results on the CU-HTK
2002 Hub5E evaluation system can be found in Section VIII-B.

The estimates of the word posterior probabilities encoded in
the confusion networks can be used directly as word confidence
scores. As the posteriors tend to be over-estimates of the true
posteriors they are mapped to confidence scores using a piece-
wise linear function based on a decision tree [3].

B. System Combination

In recent years interest in the development of complementary
systems, i.e. systems that substantially differ in their word level
output while retaining a similar word error rate, was stimulated
by techniques such as ROVER [4]. ROVER allows the combi-
nation of the system outputs either by voting or by the use of
confidence scores. This approach can be generalized to the use
of confusion networks in the combination [3]. In this case CN
output from each system is generated and dynamic program-
ming is used to align the confusion networks. The cost function
is an estimate for the probability of a word match given two
confusion sets. After alignment the networks are merged and
standard CN-decoding is applied. Confusion network combina-
tion (CNC) allows the weighting of systems, however normally
with limited effect. In this paper no weighting is used in system
combination. Results of CNC are discussed in Section VIII-B.

VIII. CU-HTK APRIL 2002 Hub5E SYSTEM

In the previous sections we have presented a set of tech-
niques that are important for the transcription of conversational
telephone speech and have discussed the performance of each
technique. However, in practise the performance improve-
ments are rarely additive and the selection of techniques is
nontrivial. Accordingly the use of new techniques cannot be
assessed purely using baseline comparisons, their operation
in a complete speech recognition system is of at least equal
importance. Consequently research of the development of large
ASR systems is not only interesting for the purpose of finding
the best performance, but also for an improved understanding
of the relationship of techniques.
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Fig. 3. First three passes (P1)–(P3) in the CU-HTK 2002 Hub5E system.
Normal arrows denote word level output, arrows with “L” denote lattices. The
output of these stages is a set of word lattices.

The following describes the system designed for participa-
tion in the RT-02 evaluations for transcription of conversational
telephone speech.8 We discuss the broad structure and the pro-
cessing and performance of the system.

A. System Structure

The system operates in a total of six passes. In general each
pass employs techniques that have not been used in previous
passes. A pass can sometimes be split into a certain number of
sub-processes. The output of a pass is either a word string, a
word lattice or a confusion network. Input to the system is a
set of audio files and time information of segments to be recog-
nized. The system presented here is based on manual segmenta-
tion of the audio stream. Each stage of the system operates on a
conversation side basis.9 Thus the following discussion will de-
scribe the transcription of a single conversation side only.

The first part of the system is shown in Fig. 3 and is designed
for the generation of lattices to be used in the second part. In
the first step the aim is to perform a robust estimation of mean
and variance normalization vectors and VTLN warp factors. The
data is encoded in MF-PLP coefficients as described in Sec-
tion IV-A. A set of transcripts is generated with ML triphone
models and a trigram language model (for details see [13]).
As this part of the system originates from the 1998 CU-HTK
system, the word error rate of this pass is fairly high. However,
no word level information is passed on to later stages. The ini-
tial set of word level transcripts also allows a re-segmentation

8The interested reader is referred to http://www.nist.gov/speech/tests/
rt/rt2002.

9This means that no information from the second channel or other conversa-
tions is used in the transcription process.

of the data.10 CMN and CVN vectors are recomputed and the
new segments and the word level transcripts are used in VTLN
estimation as described in Section IV-A2.

In the second pass (P2) transcripts for the purpose of HMM
parameter adaptation are produced. For this purpose state clus-
tered triphone models with 6155 speech states are used. Initially
the models were trained on h5train02 using the ML criterion
using the standard HTK mix-up procedure [37]. After estima-
tion of an HLDA matrix, the number of mixture components
was increased to the total number of 28 Gaussians per speech
state. Further re-estimation steps using the MPE criterion with
I-smoothing gave the model set used in this pass. Decoding used
the 54 k MPron dictionary described in Section VI. The Viterbi
decoding pass used a trigram language model (tgint02) pro-
duced in the fashion described in Section VI. Further rescoring
using the fgint02 LM gave the output of this pass.

In the third pass (P3) a set of lattices for use in all subsequent
rescoring passes is generated. Global MLLR transforms are es-
timated using the output from P2, followed by lattice-based
MLLR. The acoustic models used are identical to those in P2
and the interpolated and class smoothed 4-g LM fgintcat02
was used to obtain a set of lattices. In addition pronunciation
probabilities were used in decoding. Fig. 3 summarizes the es-
sential components of the first three stages. The output of P3
forms the basis for all subsequent processing steps.

The second part of the system is based on the principle of
system combination and contains stages based on comple-
mentary systems that differ in model training and adaptation
strategies. This part is split into branches where each branch
corresponds to a specific model construction strategy. In
total three branches were used: one associated with MPE
SAT-trained models, together with HLDA feature projection
and a standard MPron dictionary (branch 1); one associated
with a non-HLDA MPE trained model (branch 2); and one
branch using models based on an HLDA transform, MPE
training and an SPron dictionary (branch 3). All branches are
further subdivided into two passes: The (P4.[123]) passes
are based on triphone models, the (P5.[123]) passes use
quinphone models. Fig. 4 shows an outline of the essential
operation blocks and the data flow.

For adaptation in the triphone stage all branches use the same
strategy: the fgintcat02 lattices obtained in the first part of
the system and the associated first best output is used in a lat-
tice-based MLLR+FV scheme as described in Section IV-E3. A
total of four transforms for the speech classes are estimated. The
decoding step of these branches consists of an acoustic rescoring
step using the fgintcat02 lattices generated in (P3) with the
adapted models. Confusion networks were generated and word
strings obtained using CN decoding. The acoustic models in
the first two branches have the same characteristics in terms of
the number of states and mixture components as those used in
(P2)/(P3). The models in the third branch differ in so far as the
number of system parameters is slightly smaller with a total of
5955 states with 28 mixture components each.

The quinphone models use a cross-word context of 2
phones with word boundary information and are trained in a

10Only 0.2 s of silence are left at segment boundaries and segments are split if
more than a second of silence occurs. This ensures a similar silence/speech ratio
found on the training data which is important for side-based normalization.
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Fig. 4. Stages P4.[123], P5.[123] and the system combination stage P6 of the CU-HTK 2002 Hub5E system.

TABLE XI
%WER ON dev01 USING h5train02 TRAINING DATA FOR ALL STAGES OF THE CU-HTK 2002 Hub5E SYSTEM

similar fashion to the triphones. The average number of states
associated with speech models is higher, with 9640 states for
the models used in the first two branches and 9418 states in
case of the SPron based models. Models are first trained up
to 16 mixture components. After estimation of HLDA ma-
trices (branches 1 and 3 models only) the number of mixture
components was increased to 24. In the (P5.[123]) stages
adaptation is performed using global MLLR, together with a
full-variance transform. As the use of full cross-word quin-
phones substantially increases the size of static phone networks
the quinphone decoding stages use the dynamic network de-
coder [30] for the rescoring of lattices.

The output of each of the stages (P4.[123]) and
(P5.[123]) is a set of confusion networks. These are

merged in the final confusion network combination stage (P6).
In this stage minimum word error rate decoding is used to arrive
at the final word level transcription for the conversation side.
The overall structure of this second system part is represented
in Fig. 4. Note that the arrows denote the flow of information,
either in the form of word strings (W), lattices (L), or confusion
networks (C). The final output is a word string with word level
times and confidence scores.

B. Recognition Performance

Table XI shows WERs on the full dev01 test set and the full
2002 evaluation set for all system passes. Since performance of
the individual stages is very similar for both test sets the fol-
lowing discussion will concentrated on results on dev01. As
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dev01 has served in development this shows that the results
generalize to independent test sets.

The WER of the first pass (P1) is rather high. As no word
level information is transferred beyond this stage this is of little
concern. Re-segmentation removed a total of 2628 s of audio
or about 12% of the audio data to obtain consistent amounts
of silence at segment boundaries. The second pass (P2) shows
the unadapted performance of triphone models using VTLN,
HLDA, MPE training and a 4-g language model. Note that the
word error rate on Switchboard-1 data is about 20%, substan-
tially lower than the data originating from Switchboard-2 and
Cellular sources. The (P2) output lattices are used to estimate
a global MLLR transform in (P3). Initial lattices are produced
using the bigram language model. In subsequent lattice expan-
sion and pruning steps more complex language models are ap-
plied. A more than 3% absolute performance difference can be
observed between bigram and trigram language models. The
use of 4-g yields another 0.7% absolute. Smoothing with the
class-based LM gave only a slight improvement, mostly due to
performance on the Cell data. On the evaluation set performance
gains are similar apart from applying the class LM.

As discussed above the second part of the system is split into
three branches. The lowest WER is obtained in branch 1 using
the MPE-SAT-HLDA model sets. Compared to (P3) the gain
from using SAT, lattice MLLR with multiple speech transforms
and FV transforms is 0.7% WER absolute. A further WER re-
duction by 0.7% is obtained when using CN decoding. For con-
trast purposes, the results for acoustic models as used in (P3)
but with (P4) style adaptation was included in the table (labeled
“Contrast”). Note that the effective gain from SAT after CN de-
coding is 0.3% absolute. The output of stage (P4.1) is used for
adaptation in (P5.1) which, after CN decoding, gives an abso-
lute WER of 25.7%. The second branch yields poorer perfor-
mance due to lower complexity of the model set, but was found
to be useful in system combination. Branch 3 differs from the
first by the use of a SPron dictionary and non-SAT training, ob-
taining the same results as the contrast system. Note that in gen-
eral the error rates on Cell data are lower for this branch. The
gain from CN decoding is on average 0.7% absolute for the first
branch, 1.1% on the second and 0.3%–0.7% for the third. The
quinphone stages give only marginal improvements over the re-
sults of the triphone stages. Compared to the contrast system
the performance of the SAT models is slightly better whereas
the SPron quinphones give identical word error rates. The value
of these systems lies in their contribution to system combina-
tion. Combining the output of the triphone stages (P4.[123])
gives a WER of 24.9% whereas the final result of CNC of all
system output is 24.2%, or a 1.5% absolute gain from system
combination.

The performance of the individual passes on the evaluation
set is similar. The performance of the SPron triphone models
was better giving the lowest triphone word error rate. Overall
the gain from CN-decoding of quinphone model output was
higher, especially in the case of SAT models with 1.1% WER
absolute. The final word error rate of 23.9% was the lowest in
the NIST RT-02 evaluations by a statistically significant margin
[19]. The confidence scores obtained from confusion networks
gave a normalized cross-entropy value (see, e.g., [28]) of 0.289
on eval02.

TABLE XII
EXECUTION TIMES OF DECODING STAGES USING IBM x330 SERVERS

(WITH PENTIUM III 1 GHz PROCESSORS)

TABLE XIII
%WERS AND REAL TIME FACTORS OF THE CU-HTK 2002 10 � RT
SYSTEM ON THE eval02 TEST SET. SPEED AS MEASURED USING

AN AMD ATHLON XP 1900+

Table XII shows the execution times for the recognition stages
associated with each of the passes. The individual numbers ex-
clude times for estimation of lattice-based MLLR. The overall
system had a real-time (RT) factor of about 320. In comparison
the result on eval02 after CN-decoding of (P3) output lattices
is 26.7% WER absolute using only 67 RT.

IX. BUILDING FASTER SYSTEMS

The system presented in the previous section was designed for
optimal WER performance. In practical scenarios it is not fea-
sible to take minutes of processing time for the transcription of a
second of speech. Consequently there is considerable interest in
research on how to modify recognition systems to yield optimal
performance under computational constraints. One test-condi-
tion in the 2002 NIST Rich Text Evaluation focused on opera-
tion in less than 10 RT. The system described before was mod-
ified to meet this objective. The first part of the full system has
relatively low complexity. Thus this part was chosen to form the
basis of development. Several issues were important in devel-
opment: the processing stages with relatively low gain but high
computational costs were excluded (for example lattice-based
MLLR); Lattices allow fast decoding with complex models or
adaptation strategies, but a three stage approach to lattice gen-
eration is too costly; pruning parameters in the decoding stages
can be tuned to substantially decrease the real-time factor with
moderate degradation in WER performance; the use of faster
computers with local disk storage allows for considerable speed
improvements.

The final system is structured as follows: The first stage is
identical to the full system P1 pass, however, much tighter
pruning in decoding is used. In the second stage fast adaptation
using least squares linear regression (LSLR) is performed.
Using the HLDA MPE triphone models lattices are produced
with the interpolated trigram LM tgint02 and further
re-scored using fgint02; the output of this stage is used
as supervision in adaptation using standard MLLR with two
transforms for speech models and one for silence. Lattices are
re-scored and CN decoding is performed on the output lattices.

Table XIII shows WER results for the CU-HTK RT-02 10
RT evaluation system. The high error rate of the first pass

gives only poor supervision, a second MLLR based rescoring
step allows further improvements. Note that the final result of
27.2% is only 0.5% absolute from the CN output of the full
system (P3) stage which took 67 RT.
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X. CONCLUSION

We have presented a complete state-of-the-art system for
the transcription of conversational telephone speech and we
described a range of techniques in acoustic, pronunciation
and language modeling specifically important for this task.
Particularly powerful methods in acoustic modeling are the use
of side-based cepstral normalization, VTLN, discriminative
training using the MMI or MPE criteria, and heteroscedastic
LDA. Speaker adaptation using standard or lattice-based MLLR
and full variance transforms yields considerable word error rate
improvements. In language modeling the use of a background
Broadcast News corpus together with class based language
models allows to reduce the effect of the general lack of training
data for this task. Pronunciation probabilities give consistent
performance improvements. The use of lattices allow the use of
confusion network decoding and the efficient implementation
of system combination. We have discussed several systems
with similar performance and their use in system combination.

Overall the word error rate achievable on the original Swbd1
corpus is now below 20%. More natural data is available in the
form Swbd2 and Cell data where the error rates are just below
30% absolute. The reasons for these high error rates are mani-
fold and can only partly be attributed to lack of data. Undoubt-
edly error rates are still too high for many applications but devel-
opment of speech recognition systems for this task is an ongoing
process.
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