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ABSTRACT

This paper proposes a closed-loop beamforming algorithm
for MIMO systems employing quasi-orthogonal space-time
block codes (QOSTCB) and low rate feedback channels over
slowly fading channels. A recursion is formulated using a
stochastic signed gradient approximation, where the receiver
employs a single feedback bit to command the transmit an-
tenna weights adaptation, at a frequency much lower than that
of the data rate. The algorithm tracks the weight vector that
optimizes a link performance measure, which takes into ac-
count both the self-interference properties of the space-time
code and the channel conditions. Simulations show that the
proposed algorithm can effectively exploit the channel tem-
poral correlation, and outperform existing single-bit feedback
schemes in low mobility scenarios.

1. INTRODUCTION

Space-time block codes (STBC) have been extensively stud-
ied in MIMO systems due to their ability to exploit diver-
sity, thus enhancing the link reliability, see, e.g., [1]. Among
space-time block codes, orthogonal designs are specially ap-
pealing, because maximum likelihood (ML) detection can be
implemented with linear processing. However, it is known
that full-rate orthogonal STBC (OSTBC) employing complex-
valued symbol constellations only exist for the special case of
two transmit antennas. Full-rate quasi-orthogonal space-time
codes (QOSTBC), on the other hand, sacrifice orthogonality
to retain full-rate, see, e.g., [2, 3, 4]. Due to their inherent self-
interference, however, they do not fully exploit the available
diversity. This can be alleviated by using symbol constellation
rotations (see, e.g., [5]), thereby restoring the full diversity
when operating under the ML detector, which is non-linear
for QOSTBC. In contrast, the availability of some channel
state information at the transmitter can enable both full di-
versity and array gain under a linear detector. In frequency
division duplex (FDD) systems such as the one considered
here, a feedback channel is required.

The use of beamforming in conjunction with OSTBC has

been studied in [6] and extended to QOSTBC in [7]. These
algorithms employ multiple-direction beamformers based on
the channel mean and covariance, as conveyed to the trans-
mitter through the feedback channel. In contrast, the schemes
presented here exploit a single feedback bit to track the an-
tenna weight vector that optimizes a link performance metric,
given the current channel conditions.

Other works relating beamforming and STBC found in lit-
erature are as follows: phase rotation of a group of antennas
has been considered in [8, 9]. These works compute the exact
phase rotation necessary to eliminate the self interference of
some specific QOSTBC. However, it is not known how the
quantization associated to the feedback channel affects their
performance. Another study is given in [10], where a beam-
former is derived assuming that the transmitter has an esti-
mate of the antenna correlations, either from an unspecified
feedback mechanism, or from uplink measurements. In [11],
the authors propose a pseudo random phase rotation that al-
ters the statistics of the self-interference term, and provides
gain in a channel-coded system without feedback. The use
of matrix codebooks and the necessary conditions to guaran-
tee full diversity has been studied in [12]. These codebooks,
however, have larger feedback requirements and a computa-
tional complexity that grows exponentially with the number
of feedback bits.

On the other hand, closed-loop antenna and code selection
have also been studied, see, e.g., [13, 14, 15]. In [16], the
authors present a closed-loop design based on OSTBC, which
specializes to a single feedback bit algorithm, for the case
of four transmit antennas. These group-coherent codes have
been analyzed in [17]. Further references can be found in the
extensive review of limited feedback techniques [18].

This paper presents a formulation for transmit weight re-
cursion in temporally correlated channels. Given a QOSTBC
and a linear receiver structure, the recursion utilizes a single
feedback bit, in order to track the antenna weights that opti-
mize the uncoded BEP. This can be viewed as a closed-loop
beamforming system with a single beam where the metric is a
link performance measure instead of the received power, and



the QOSTBC encoder is taken into account explicitly. This
contrasts with [6, 7], which employ beamforming matrices
derived from transmit-side estimates of the channel mean and
covariance, and with [8, 9], where only phase adjustments are
performed, as opposed to per-antenna power and phase con-
trol used in the proposed algorithm. The single feedback bit
is computed as a signed stochastic gradient approximation,
a method which has been applied in closed-loop eigenbeam-
forming systems for both single and multiple beams, see for
example [19, 20, 21].

2. SYSTEM MODEL
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Fig. 1. System model. A space-time codeword X ∈ CT×Nt

is transmitted over T symbol periods, during each of which
the elements of a row of X are transmitted through the corre-
sponding antennas and their weighting coefficients. The op-
erator (·)T represents matrix transpose.

The discrete time MIMO system under consideration is il-
lustrated in Fig. 1, and consists of a fixed transmitter with Nt
antennas and a mobile receiver with Nr antennas. The wire-
less channel is assumed to be frequency-flat and fade slowly.
The transmission is arranged into slots or groups of L � 1
symbol periods, and during each period all the antennas trans-
mit one symbol. Let s ∈ CT×1 be the T non-redundant infor-
mation symbols encoded into the ST codeword X ∈ CT×Nt ,
which is transmitted over T � L symbol periods. At the
end of each slot, a single feedback bit b ∈ {−1, 1} is sent by
the mobile to the transmitter and processed without delay, so
that the changes to the transmit antenna weights are effective
at the beginning of the next slot, and the weights remain the
same during the whole slot. The feedback message frequency
is fb Hz, and the symbol and block periods are 1/(Lfb) and
T/(Lfb), respectively.

Assuming that the channel is constant over the T periods
of the transmission, the received codeword Y(k) ∈ CT×Nr

is

Y(k) =X(k)W(l)H(k) + N(k)
k = (l − 1)(L/T ) +m,m = 0, . . . , L/T − 1

(1)

where for the kth codeword, H(k) ∈ CNt×Nr is the chan-
nel matrix assumed to have a coherence time of more than

one slot, W(l) ∈ CNt×Nt is a diagonal matrix containing
the antenna transmit weights w1(l), . . . , wNt

(l), l > 0 is the
slot index, and N(k) ∈ CT×Nr is a matrix containing white
Gaussian noise with i.i.d. entries drawn from a circularly sym-
metric Gaussian distribution of variance σ2. In this article,
we restrict our attention to full-rate QOSTBCs, and therefore
consider T = Nt. Furthermore, only one set of Nt weights
will be used, and it will be denoted w = [w1 . . . wNt

]T , with
||w|| = 1.

Depending on the QOSTBC of choice, one can rearrange
the entries of Y to write an equivalent linear system in terms
of non-redundant information symbols s(k) ∈ CT×1:

ỹ(k) = H(k, l)s(k) + ñ(k) (2)

where ỹ(k), ñ(k) ∈ CNtNr×1 are the vectorized versions of
Y(k),N(k) that can include conjugation of some entries [1].
Note that the Nt transmit antenna weights w1(l), . . . , wNt

(l)
are included inside the equivalent channel matrixH(k, l).

A linear receiver Ω is assumed, so that the detection of
the block is based on the vector

z(k) = Ω†(k, l)ỹ(k)

= Ω†(k, l)H(k, l)s(k) + Ω†ñ(k)
:= G(k, l)s(k) + n′(k)

(3)

where † denotes Hermitian transpose.

3. CLOSED-LOOP QOSTBC

Equation (3) defines an equivalent linear system for the T
symbols encoded into the codeword X, given the QOSTBC
encoder function and the linear receiver structure. The to-
tal gain matrix G := Ω†H and the covariance matrix of
the filtered noise n′ determine the conditional uncoded BEP
of the system. It is straightforward to write the signal-to-
interference ratio of each of the T symbols from (3) as

γi =
|Gii|2

||Gi·||2 − |G2
ii|+ Ω†·iQΩ·i

i = 1, . . . , T (4)

where Gi· is the ith row of G, Ω·i is the ith column of Ω,
Gmn is the element (m,n) of G and Q = E

{
ñ(k)ñ†(k)

}
=

σ2I is the covariance matrix of the additive white Gaussian
noise at the receive antennas.

The combined conditional BEP across the T symbols is a
function of the current weights and channel w, H, and reads

P (w|H,Q) =
1
T

T∑

i=1

P(γi/B) (5)

where P(·) represents the conditional BEP expression for the
symbol constellation employed, and B is the number of bits
per symbol in that constellation. The conditional BEP func-
tion P(·) can be any suitable SINR to BEP mapping, such as
laboratory measurements of a particular receiver implementa-
tion.



3.1. Signed gradient approximations

In this section, we consider recursions based on a single feed-
back bit, which can be used to adapt w to optimize the un-
coded BEP (5). At a given update instance, the receiver eval-
uates two candidates for the update of w, namely w− and
w+, and chooses the one that offers a smaller BEP, as given
in (5). The feedback bit b(l) then informs the transmitter
which candidate was chosen, and the transmitter updates its
transmit weights. The candidates are generated as perturba-
tions around the current weights w(l) through the use of a
common random seed, which allows the transmitter and the
receiver to generate the same candidates synchronously. Dif-
ferent recursion types are possible when generating w±. In
general, all the recursions are governed by a step size param-
eter µ and are based on the idea of probing the cost function in
diametrical directions. More specifically, given the two can-
didates for the update w±, the feedback bit is computed as

b(l) =

{
1 if P (w+|H,Q) < P (w−|H,Q)
−1 otherwise

(6)

where P (w±|H,Q) is the total uncoded BEP from (5) and
H ≡ H(lL/T − 1) is the channel associated to the last block
of slot l. The step size reflects a trade-off between accu-
racy in the BEP optimization and tracking performance given
the feedback frequency fb and the fading rate of the channel.
Upon the arrival of b, the update at the transmitter is done by

w(l + 1) =

{
w+(l) if b(l) = 1
w−(l) otherwise

(7)

Note that if more than one feedback bit per slot were avail-
able, then a vector codebook approach would be feasible,
where the vector giving the smallest BEP would be selected,
its index transmitted through the feedback channel. This ap-
proach, however, has the disadvantage that the computational
complexity of the update grows exponentially with the num-
ber of feedback bits. Alternatively, more directions could be
exploited following the approach in (6).

We consider two different update recursions in the follow-
ing sections, which define how the candidates w± are built.
Other recursions are possible as well, such as the use of pre-
multiplication by unitary matrices and their Hermitian trans-
poses. This approaches, however, will not be considered.

3.1.1. STBC-SCGAS

The first recursion under consideration uses a parameteriza-
tion of complex-valued vectors in terms of real-valued an-
gles, through a cascade of complex-valued Givens rotors. Pa-
rameterizations involving Givens rotors have been used in
the context of closed-loop eigenbeamforming, see for exam-
ple [22, 23, 21]. Here, we consider the mapping employed in
the SCGAS algorithm [21], restricted to a single beam.

One mapping of θ ∈ R2(Nt−1)×1 angles to a norm-one
vector in CNt×1 can be written as

M(θ) =

[
Nt∏

m=2

Jm1(θ2m−3, θ2m−2)

]
w0 (8)

where w0 is the first column of the identity matrix of size
Nt, θm is the element m of θ and Jpq(α, β) ∈ CNt×Nt is a
complex-valued Givens rotor [24], which is a unitary matrix
built from an identity by replacing the entries (p, p), (q, p),
(p, q), (q, q) with terms cos(α) and sin(α)ejβ . This map-
ping can represent any norm-one complex-valued vector, up
to scaling by a unit-modulus scalar. This ambiguity does not
affect the performance of the algorithm, as such a scaling rep-
resents a phase rotation of the same amount to all the anten-
nas, which cannot alter the relative time of arrival of the sig-
nals to the receive antenna array.

The generation of the update candidates takes the form of
adding a real-valued perturbation to the angles defining the
current weights. That is, if w(l) = M(θ(l)) withM(·) de-
fined in (8), then the candidate weights are

w±,SCGAS(l) =M{θ(l)± µp(l)} (9)

with p(l) ∈ R2(Nt−1)×1 generated as a Gaussian vector with
i.i.d. entries of zero mean and unit variance. Since the map-
pingM(·) is a cascade of unitary matrices, the resulting vec-
tor has always unit norm. After the update, the parameters are
restored to their nominal ranges by the inverse mapping:

θ(l + 1) =M−1{w(l + 1)} (10)

whereM−1(·) involves Nt − 1 rotors Jm1, m = Nt, Nt −
1, . . . , 2 that sequentially null the lowermost Nt− 1 elements
of w(l + 1) [24]. This is used to restore the angles to their
nominal ranges, in order to keep the search procedure within
a bounded space.

3.1.2. STBC-BZ

Another recursion under consideration is obtained by addition
of complex-valued vector perturbations, followed by normal-
ization of the perturbed vector. This can be considered an
extension of the stochastic sign gradient feedback algorithm
by Banister and Zeidler (BZ) [19], where the original cost
function is replaced by (5).

The candidates are generated as

w±,BZ(l) =
w(l)± µq(l)
||w(l)± µq(l)||

(11)

with q ∈ CNt×1 generated with i.i.d. circular Gaussian en-
tries of unit variance.



3.2. Closed-loop ABBA

In this section, we illustrate the proposed method with the
“ABBA” QOSTBC [2], for Nr = 1. The equivalent MIMO
matrixH and the linear minimum mean square error (LMMSE)
combiner read [1]

HABBA =




w1h1 w2h2 w3h3 w4h4

w∗2h
∗
2 −w∗1h∗1 w∗4h

∗
4 −w∗3h∗3

w3h3 w4h4 w1h1 w2h2

w∗4h
∗
4 −w∗3h∗3 w∗2h

∗
2 −w∗1h∗1




ỹ =




Y1,1

Y ∗2,1
Y3,1

Y ∗4,1




Ω† = (H†H+ σ2I)−1H†

(12)

The algorithms presented in Section 3.1 work with an
equivalent system (3) defined by inserting (12) in (2), which
enables to compute the uncoded BEP (5) in order to com-
mand the weight adaptation through the single-bit feedback
channel.

4. SIMULATIONS

The BEP performance of the proposed closed-loop QOSTBC
is simulated in a system with Nt = 4, Nr = 1 antennas, a re-
ceiver moving at 3 km/h and a carrier frequency of 2.1 GHz.
The slot contains L = 160 symbol periods and the feedback
frequency is fb = 1500 Hz. The ST encoder of choice is
the “ABBA” scheme [2] with an LMMSE detector as given
in Section 3.2, using T = 4 QPSK independent symbols per
space-time word. The wireless channels are modeled as spa-
tially uncorrelated Rayleigh channels sampled every symbol
period and filtered with a fourth order digital Butterworth fil-
ter adjusted to the maximum Doppler frequency. The average
channel over each block is used in the ST decoder.

For the purpose of comparison, the group-coherent codes
proposed in [16] are also simulated. Here, the Alamouti code
is used as the building block, and the code selection has two
possibilities, according to the single feedback bit. QPSK sym-
bols are used over a period T = 2, which gives two non-
redundant data bits per channel use, the same as in the pro-
posed closed-loop QOSTBC. As reference, we plot the per-
formance curves for the original ABBA QOSTBC scheme [2]
and a fourth-order diversity OSTBC performance bound.

In order to assess the maximum performance of the BEP
formulation (5), a “genie-aided” scheme is considered, where
the receiver optimizes w for each slot, and makes it avail-
able to the transmitter without any distortion due to the feed-
back mechanism. This is done by employing a numerical
optimization technique, the random walk with direction ex-
ploitation [25], as a search procedure over the angle space
parameterizing w through the mapping M(θ) described in
Section 3.1.1.

Figure 2 shows the simulated average bit error rate (BER)
curves. It can be seen that both the group-coherent codes and
the proposed closed-loop ABBA outperform the pure fourth
order diversity. However, the proposed scheme provides addi-
tional array gain, compared to the group-coherent codes, and
a shift of about 0.5 dB can be observed. Furthermore, the “ge-
nie aided” ABBA-SCGAS curve shows that additional array
gain can still be obtained, but this would increase the compu-
tational complexity and the feedback requirements. The con-
vergence step µ has been optimized for both recursions under
consideration, and the effect of the step size choice is shown
in Fig. 3.
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Fig. 2. Average uncoded BER performance of the pro-
posed single-bit closed-loop recursion for ABBA, at pedes-
trian speeds. A closed-loop assisted orthogonal design by
Akhtar and Gesbert (A-G) [16] featuring the same data and
feedback rate is shown. The “genie aided” performance refers
to a system that can optimize (5) at every update without feed-
back limitations.

5. CONCLUSIONS

This work proposed a closed-loop enhancement for quasi-
orthogonal space-time block codes in temporally correlated
channels. The proposed scheme uses a single feedback bit
to enable a recursion, by which the transmitter adjusts its
antenna transmit weights. An uncoded conditional bit error
rate formulation is employed as a cost function, and the feed-
back bit is interpreted as a stochastic signed gradient. Simu-
lations show that the proposed scheme can outperform exist-
ing closed-loop space-time block codes operating at the same
data and feedback rate, at the cost of a slightly larger compu-
tational complexity.
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