
PROPORTIONAL DIFFERENTIATED SERVICESFOR THE INTERNETbyKonstantinos Dovrolis



PROPORTIONAL DIFFERENTIATED SERVICESFOR THE INTERNETbyKonstantinos DovrolisA dissertation submitted in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy(Electrical Engineering)at theUNIVERSITY OF WISCONSIN - MADISON2000



iTo my familyM����o& , K����, A�����, T��o&



iiPROPORTIONAL DIFFERENTIATED SERVICESFOR THE INTERNETKonstantinos DovrolisUnder the supervision of Professor Parameswaran RamanathanAt the University of Wisconsin-MadisonInternet applications and users have diverse Quality-of-Service (QoS) requirements, making thecurrent common-service-for-all paradigm inadequate and limiting. It is widely agreed that theInternet architecture should o�er some type of service di�erentiation, so that some tra�c classesget better QoS than others. This dissertation focuses on relative service di�erentiation. This is ascalable and simple network architecture, because it does not require per-ow state in the routers,admission control, signalling, static routing, or resource reservations. In this context, we developthe Proportional Di�erentiated Services (PDS) architecture. In PDS, the di�erentiation betweenclasses is controllable, allowing the network provider to adjust the QoS spacing between classes,and predictable, providing higher classes with better service than lower classes independent ofthe load conditions.We �rst consider the issue of delay di�erentiation, and the related packet schedulingproblem. The proposed Proportional Delay Di�erentiation (PDD) model constrains the averagedelay ratios between classes. We design three scheduling algorithms for the PDD model. TheProportional Average Delay (PAD) scheduler meets the PDD model when it is feasible; PAD,however, is not predictable in short timescales. The Waiting Time Priority (WTP) schedulerapproximates closely the PDD model even in short timescales, but only in heavy load conditions.The Hybrid Proportional Delay (HPD) scheduler combines the PAD and WTP features.We then consider the issue of loss di�erentiation, and the related packet dropping prob-lem. The Proportional Loss Di�erentiation (PLD) model constrains the loss rate ratios betweenclasses. We design and evaluate two dropping algorithms for the PLD model. The two drop-pers, PLR(1) and PLR(M), di�er in the interval over which the loss rates are measured. This



iiidi�erence causes a trade-o� between the two droppers, in terms of implementation complexity,accuracy, and adaptability to varying class loads.Users with an absolute QoS requirement can dynamically search for the minimum classthat meets that QoS. We investigate this Dynamic Class Selection (DCS) framework in thecontext of proportional delay di�erentiation. We examine whether an acceptable class existsfor each user, and show the properties of the resulting distributed DCS equilibria. Simulationsprovide further insight in the dynamic behavior of DCS, and in the factors that determine thewell-provisioning of a network.Finally, we consider the class provisioning problem. The network provider, in this case,knows the rate and average delay requirement of each tra�c type in a link. The objective is tocompute the required link capacity and the appropriate parameters of the PDD model that meetthese requirements. We give a methodology that meets this objective.



ivAcknowledgementsThe last �ve years were an amazing journey. A journey through hard challenges and uniqueexperiences. Looking back, I remember days of discovery and excitement, sleepless nights ofhard work, and moments of satisfaction every time something would be completed. I can alsoremember days of disappointment and discouragement when I was unable to proceed with aresearch problem, or when obstacles of various kinds were showing up on the way. It seemsnow that those `darker' days were perhaps the most valuable, as I learned from them my manyweaknesses and mistakes.I had the great fortune to be guided in this journey by Professor Parmesh Ramanathan.Prof. Ramanathan was not simply an academic or research advisor; he was a true mentor, withthe special meaning of this word in both the Indian and Greek vocabularies. My memories fromthe hundreds of hours that we spent together are still too vivid to isolate one or another of themany ways in which he helped me. I only hope that I will manage to become a mentor like himin the years to come.I am also grateful to a number of people that o�ered signi�cant help and advice in thelast �ve years. Professor Apostolos Dollas, my undergraduate advisor at the Technical Universityof Crete, helped this journey to start. Dimitrios Stiliadis was my advisor during the summerof 1998, when I was a summer intern at Bell Labs. It was then that I started working on thesubject of this thesis, and Dimitrios helped me signi�cantly to better understand the problemand come up with the �rst results. I hope that I will have the chance to work with him againin the future. During the summer of 1999, as a summer intern at CAIDA, I was also fortunateto work with Kimberly Cla�y and David Moore, and to meet Professor Evi Nemeth that helpedme signi�cantly later on.I would also like to thank the members of my thesis committee, Mary Vernon, LawrenceLandweber, Mikko Lipasti, Kewal Saluja, and David Wood. Professor Vernon took a genuine



vinterest in this thesis, and pointed out an important omission in our original work on DCS.Professor Saluja provided valuable comments on this dissertation, and wise advices throughoutmy graduate studies. I was also fortunate to take two computer networking courses fromProfessorLandweber. His unique teaching talent and his great experience on how the Internet works hada major impact on my `vision' about the future Internet.This work would not be completed without the support of our sponsors. Speci�cally,the National Science Foundation (grant No. MIP-9526761), the USENIX association, and CiscoSystems Inc, helped me with their support to pursue this research with absolute independence.In February of 1998, I met Lori Ring and her three wonderful children Chaz, Coddye,and Chelsea. These four people became my best friends in Madison, and with all their love andcare, a second family. I will never forget the nights that Lori was bringing me supper at theo�ce, or all her e�orts to make me live a happy and `normal' life, even in the most stressfulmoments of the graduate program.Finally, and most importantly, I thank my family in Greece, whose love and support inevery moment of my life have been `the wind beneath my wings'. This dissertation is dedicatedto them.



viContentsAbstract iiAcknowledgements ivAcronyms xiii1 Introduction 11.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 The `Common-Service-For-All' paradigm . . . . . . . . . . . . . . . . . . . . . . 31.3 Integrated Services architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Di�erentiated Services architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81.5 Previous work on di�erentiated services . . . . . . . . . . . . . . . . . . . . . . . 111.5.1 Virtual Leased Line (VLL) service . . . . . . . . . . . . . . . . . . . . . . 111.5.2 Assured service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.5.3 Other proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.6 Thesis scope and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Relative Di�erentiation 182.1 Relative di�erentiation premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2 Controllability requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.3 Predictability requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4 Proportional di�erentiation model . . . . . . . . . . . . . . . . . . . . . . . . . . 27



vii2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Proportional Delay Di�erentiation 323.1 Proportional Delay Di�erentiation (PDD) model . . . . . . . . . . . . . . . . . . 323.1.1 Per-class average delays in the PDD model . . . . . . . . . . . . . . . . . 343.1.2 Delay dynamics in the PDD model . . . . . . . . . . . . . . . . . . . . . . 353.1.3 Feasibility of the PDD model . . . . . . . . . . . . . . . . . . . . . . . . . 373.2 Proportional Average Delay (PAD) scheduling . . . . . . . . . . . . . . . . . . . 413.3 Waiting Time Priority (WTP) scheduling . . . . . . . . . . . . . . . . . . . . . . 453.4 Hybrid Proportional Delay (HPD) scheduling . . . . . . . . . . . . . . . . . . . . 503.5 Related work on delay di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . 583.5.1 Link sharing schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.5.2 Backlog Proportional Rate (BPR) scheduling . . . . . . . . . . . . . . . . 603.5.3 Additive Delay Di�erentiation (ADD) . . . . . . . . . . . . . . . . . . . . 613.5.4 Recent contributions on proportional delay di�erentiation . . . . . . . . . 633.6 Summary and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Proportional Loss Di�erentiation 684.1 Proportional Loss Di�erentiation (PLD) model . . . . . . . . . . . . . . . . . . . 684.1.1 Per-class loss rates in the PLD model . . . . . . . . . . . . . . . . . . . . 734.1.2 Loss rate dynamics in the PLD model . . . . . . . . . . . . . . . . . . . . 734.1.3 Feasibility of the PLD model . . . . . . . . . . . . . . . . . . . . . . . . . 744.2 Proportional Loss Rate (PLR) droppers . . . . . . . . . . . . . . . . . . . . . . . 764.2.1 PLR(1): Proportional Loss Rate dropper with `in�nite' memory . . . . . 78



viii4.2.2 PLR(M): Proportional Loss Rate dropper with memoryM . . . . . . . . 794.3 Evaluation of PLR droppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.4 TCP throughput with proportional delay and loss di�erentiation . . . . . . . . . 924.5 Related work on loss di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 934.5.1 Early bu�er management schemes . . . . . . . . . . . . . . . . . . . . . . 944.5.2 Multiclass Random Early Detection (RED) schemes . . . . . . . . . . . . 964.5.3 Other proportional loss rate droppers . . . . . . . . . . . . . . . . . . . . 964.6 Summary and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 Dynamic Class Selection and Class Provisioning 1005.1 Dynamic Class Selection (DCS) and proportional di�erentiation . . . . . . . . . . 1015.2 A single link DCS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.2.1 Link and user models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.2.2 The well-provisioned case . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.2.3 The under-provisioned case . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.3 Simulation study of an end-to-end DCS algorithm . . . . . . . . . . . . . . . . . 1115.4 Class provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225.4.1 Problem description and formulation . . . . . . . . . . . . . . . . . . . . . 1245.4.2 Optimal Class Operating Point (COP) selection . . . . . . . . . . . . . . 1255.4.3 Minimumlink capacity and optimalDelay Di�erentiation Parameters (DDPs)1295.4.4 Other issues in class provisioning . . . . . . . . . . . . . . . . . . . . . . . 1325.5 Related work on class selection and provisioning . . . . . . . . . . . . . . . . . . 1335.6 Summary and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



ix6 Summary and Future Work 1386.1 Summary and retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1386.2 Suggestions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1417 Appendix 1427.1 Simulation setup and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427.2 Proofs of Properties (1)-(5) in x3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1447.3 Proof of Proposition 3.1 in x3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467.4 Proof of Proposition 4.1 in x4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487.5 Proofs of Lemmas in x5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Bibliography 153



xList of Figures1 Architectural layout of a conventional IP router. . . . . . . . . . . . . . . . . . . 22 A QoS requirement curve for a network link that services four tra�c types. . . . 43 Architectural layout of an IntServ router. . . . . . . . . . . . . . . . . . . . . . . 64 Architectural layout of a Di�Serv router. . . . . . . . . . . . . . . . . . . . . . . . 95 The structure of the PDS architecture. . . . . . . . . . . . . . . . . . . . . . . . . 176 Dynamic class selection in a relative di�erentiation network. . . . . . . . . . . . . 207 Well-provisioned and under-provisioned di�erentiation in a link with four classesand four tra�c types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Short-term average delays (K=10000pks) with a three-class SP scheduler. . . . . 239 Short-term average delays (K=1000pks) with a two-class WFQ scheduler. . . . . 2610 Proportional di�erentiation in terms of a general performance metric �. . . . . . 2711 Proportional di�erentiation in short timescales. . . . . . . . . . . . . . . . . . . . 2912 Average delays with SP as a function of the load distribution. . . . . . . . . . . . 3913 Average delay ratios with SP as a function of the load distribution. . . . . . . . . 4014 Average delay ratios with PAD and SP as a function of the utilization. . . . . . . 4315 Individual packet delays and short-term delay ratios with PAD. . . . . . . . . . . 4416 Individual packet delays and short-term delay ratios with WTP. . . . . . . . . . 4717 Average delay ratios with WTP and PAD as a function of the utilization. . . . . 4918 E�ect of the HPD parameter g on the average delay ratios. . . . . . . . . . . . . 51



xi19 Individual packet delays and short-term delay ratios with HPD. . . . . . . . . . . 5220 Average delay ratios with HPD as a function of the utilization. . . . . . . . . . . 5321 Average delay ratios with HPD as a function of the load distribution. . . . . . . 5522 Percentiles of the average delay ratios with WTP and HPD as a function of theaveraging timescale K (u=95%). . . . . . . . . . . . . . . . . . . . . . . . . . . . 5623 Percentiles of the average delay ratios with WTP and HPD as a function of theaveraging timescale K (u=80%). . . . . . . . . . . . . . . . . . . . . . . . . . . . 5724 Average delays with a two-class WFQ scheduler as a function of the weight w1. . 5925 Average delays with a three-class WFQ scheduler in two slightly di�erent loaddistributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6026 Short-term (K=100pks) average delays and delay di�erences in ADD. . . . . . . 6327 The lossy model of a Packet Forwarding Engine (PFE). . . . . . . . . . . . . . . 6928 Description of the PLR(1) dropper. . . . . . . . . . . . . . . . . . . . . . . . . . 7829 Description of the PLR(M) dropper. . . . . . . . . . . . . . . . . . . . . . . . . . 8030 Loss rate di�erentiation with PLR(1) and PLR(M) (feasible LDPs). . . . . . . . 8331 Proportional loss rate di�erentiation at the onset of infeasibility. . . . . . . . . . 8532 The e�ect of the LHT size in PLR(M). . . . . . . . . . . . . . . . . . . . . . . . 8633 Percentiles of the loss rate ratios with PLR(1) and PLR(M) as a function of theaveraging timescale K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8734 Loss rate di�erentiation with PLR(1) and PLR(M) in a stationary class loaddistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8835 Loss rate di�erentiation with PLR(1) and PLR(M) in a nonstationary class loaddistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xii36 Example of two-dimensional di�erentiation. . . . . . . . . . . . . . . . . . . . . . 9137 Loss rates with a two-class CBP dropper. . . . . . . . . . . . . . . . . . . . . . . 9538 Dynamic Class Selection (DCS) model. . . . . . . . . . . . . . . . . . . . . . . . . 10139 Algorithm to compute the minimum acceptable CSV ĉ. . . . . . . . . . . . . . . 10740 DCS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11341 Simulation topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11442 Static versus dynamic class selection for a ow with Dmax=100msec. . . . . . . . 11643 Three satis�ed and one unsatis�ed DCS ows. . . . . . . . . . . . . . . . . . . . . 11844 Controlling the DCS parameters to meet a per-packet RTD requirement. . . . . . 11945 The e�ect of the DDPs on DCS ows. . . . . . . . . . . . . . . . . . . . . . . . . 12046 The e�ect of the CT delay requirements on a DCS ow. . . . . . . . . . . . . . . 12147 An acceptable COP and the optimal COP for a link with N=2 classes and M=4tra�c types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12748 Algorithm to determine the optimal COP v̂. . . . . . . . . . . . . . . . . . . . . . 12849 The backlog and the inverse backlog functions for Pareto tra�c with �=1.5. . . . 13150 The simulation model for a Packet Forwarding Engine. . . . . . . . . . . . . . . . 142



xiiiAcronymsABE: Asymmetric Best E�ort (scheduler)ADD: Additive Delay Di�erentiation (scheduler)ADD: Average Drop Distance (dropper)ATM: Asynchronous Transfer ModeBPR: Backlog Proportional Rates (scheduler)CBP: Complete Bu�er Partitioning (dropper)CBQ: Class Based Queueing (scheduler)COP: Class Operating PointCSC: Class Selector Compliant (PHBs)CSV: Class Selection VectorCT: Cross Tra�cDCS: Dynamic Class SelectionDDP: Delay Di�erentiation ParameterDi�Serv: Di�erentiated Services (architecture)DSCP: Di�erentiated Services Code PointD-WFQ: Dynamic Weighted Fair Queueing (scheduler)EDD: Earliest Due Date (scheduler)FCFS: First Come First Served (scheduler)FEC: Forward Error CorrectionFTP: File Transfer ProtocolGPS: Generalized Processor Sharing (scheduler)HPD: Hybrid Proportional Delays (scheduler)H-PFQ: Hierarchical Packet Fair Queueing (scheduler)HTTP: HyperText Transport ProtocolIETF: Internet Engineering Task Force



xivIntServ: Integrated Services (architecture)IP: Internet ProtocolJoBS: Joint Bu�er Management and Scheduling (scheduler/dropper)LDP: Loss Di�erentiation ParameterLHT: Loss History TableLIFO: Last In First Out (dropper)LOPD: Local Optimal Proportional Delays (scheduler)MDP: Mean Delay Proportional (scheduler)MPLS: Multi-Protocol Label SwitchingmRED: multi-class Random Early Detection (dropper)PAD: Proportional Average Delays (scheduler)PBS: Partial Bu�er Sharing (dropper)PDD: Proportional Delay Di�erentiation (model)PDS: Proportional Di�erentiated Services (architecture)PFE: Packet Forwarding EnginePHB: Per-Hop BehaviorPLD: Proportional Loss Di�erentiation (model)PLR: Proportional Loss Rate (droppers)PMP: Paris Metro Pricing (architecture)PQCM: Proportional Queue Control Mechanism (scheduler)QoS: Quality of ServiceRED: Random Early Detection (backlog controller)RIO: RED In/Out (dropper)RSVP: Resource Reservation ProtocolRTCP: Real-Time Control ProtocolRTD: Round-Trip DelaySCORE: Scalable Core (architecture)SP: Strict Priorities (scheduler)TCP: Transport Control Protocol



xvUSD: User Share Di�erentiation (architecture)VLL: Virtual Leased Line (architecture)WDM: Wavelength Division MultiplexingWFQ: Weighted Fair Queueing (scheduler)WTP: Waiting Time Priorities (scheduler)WWW: World Wide Web



1Chapter 1Introduction1.1 BackgroundPacket networks can transfer a wide range of information types, such as E-mail, WWW pages,voice, music, video, and others. In general, if an information unit can be digitally represented, itcan also be assembled into packets and transferred through a network. The Internet, which is aninterconnection of many di�erent networks using the Internet Protocol (IP), was mainly used forE-mail and �le transfers in the eighties, for WWW access in the nineties, and more recently, formultimedia streaming and conferencing as well. The ever-increasing diversity in the data typesthat can be carried over a packet network is a major reason for the unprecedented success of theInternet.The information transfer in a packet network is accomplished through a sequence of linksand routers from the sender to the receiver(s). The links serve as direct connections betweenend-users or routers. The routers serve as `junction' points where packets from an input link aretransmitted, or forwarded, to one or more output links. The path and the service that packetsreceive in a network is determined by information stored in the packet headers, such as the sourceor destination addresses and the application port numbers.Figure 1 shows the basic architectural components of a conventional IP router [53].Packets arrive at input links (input interfaces) and depart from output links (output interfaces).A routing protocol creates the routing table, which speci�es the output interface(s) that a packetshould be sent to. A packet switch, which can be a shared bus, a multi-ported memory bank, or aswitching fabric, is used to convey packets from input interfaces to output interfaces [80]. Packets



2
Protocol Table

RoutingRouting

Packet Switch

One queue for each interface

Queues
Input

Queues
Output

Interfaces
Output 

Interfaces
Input

Routing 
Processor

Figure 1: Architectural layout of a conventional IP router.can arrive at the input interfaces in a higher rate than the switch or the output interfaces canforward. Additionally, packets destined to the same output interface can arrive simultaneouslyfrom di�erent input interfaces. These scenarios can cause bandwidth contention in the router.Bandwidth contention is dealt with packet bu�ers that temporarily store (or queue) the pendingpackets until they can be forwarded. If the number of available packet bu�ers is not adequate,the router also experiences bu�er contention, and some packets need to be dropped. Other typesof resource contention in a router can be caused in the main router CPU or in the `routing-processor', and they are also dealt with packet bu�ering and dropping.An important point in this architectural layout of an IP router is that packet queuesare inevitable, and they can cause delays and packet losses. These two e�ects are the majorperformance degradation factors in packet networks. Since the queueing delays and losses arecaused by individual routers or links, they are considered local, or per-hop, performance factors.A second important point is that the two main resource types in a router are the rate withwhich it can forward and transmit packets (usually called `bandwidth') and the packet bu�ers inthe router queues. The performance that tra�c experiences in a router degrades when there iscontention for either of these resources.In the rest of this chapter, we introduce the notion of service di�erentiation in packet



3networks. We �rst discuss the current Internet service model, and highlight its common-service-for-all paradigm. Then, we present IntServ and Di�Serv, which are the two major architecturesproposed for introducing service di�erentiation in the Internet. IntServ is based on ows, end-to-end resource reservations, and admission control. Di�Serv is based on tra�c aggregation, per-hopdi�erentiation, and resource provisioning. This dissertation focuses on the Di�Serv architecture.Two major proposals in Di�Serv are the Virtual Leased Line (VLL) and Assured service models.These two models, as well as some more recent works, are reviewed. Our major contribution is todevelop an original architecture, called Proportional Di�erentiated Services (PDS). The chaptercloses with a summary of the PDS architecture and with an overview of the dissertation.1.2 The `Common-Service-For-All' paradigmNot all applications have the same QoS requirement from the network. An interactive video-conference session requires lower delays and less losses than a �le transfer with FTP. Similarly,the access of a Web page should be completed faster than the transfer of an E-mail message.Additionally, not all users need the same performance. Some individuals and companies usethe Internet for important transactions, and rely on it for their everyday life and business. Thecentral point in this discussion is that some degree of service di�erentiation would be bene�cialin packet networks, so that the more demanding applications or users get a better performancethan the rest. Such a service di�erentiation capability, of course, would need to be accompaniedin practice with some pricing or policy rules, according to which a better service level either costsmore, or is limited to certain tra�c types or users.The current Internet does not o�er, at least in its vast majority, any service di�erentia-tion. This is reected in Figure 1 by the fact that there is only one queue in each input or outputinterface. In other words, all packets that follow the same path are treated in the same way, beingqueued or dropped at the same contention points, independent of the application or the user thatgenerates them. We refer to this e�ect as the common-service-for-all paradigm of the currentInternet. To illustrate the de�ciencies that it causes, Figure 2 shows a generic QoS requirement



4
Games

WWW

Email 

Voice

QoS Requirement

Thin Bottleneck
QoS with

QoS with
Fat Pipe

Traffic DistributionFigure 2: A QoS requirement curve for a network link that services four tra�c types.curve for a network link that services four tra�c types. Say that about 20% of the tra�c isE-mail or FTP with very low QoS requirements in order to perform well, 35% is WWW tra�cwith somewhat higher requirements, 20% is voice tra�c with interactive requirements, while therest of the tra�c is generated from applications like distributed interactive games that are verydemanding. Even though these applications have diverse performance expectations, they wouldget the same treatment in the router queues, and so they would receive the same QoS in today'sInternet.If the router has enough forwarding resources, it can provide an adequate performanceeven to the most demanding applications and users. This type of over-provisioned routers or linksare referred to in practice as fat pipes, since they have enough resources to satisfy the requirementsof the entire tra�c mix. In the example of Figure 2, the fat pipe would o�er the stringent QoS ofthe `Games' tra�c type to all packets, even if they need a much lower performance. The problemwith fat pipes is that, from an economic point of view, they do not utilize the network resourcese�ciently. This is especially important for networks in which the forwarding resources are costly,such as transcontinental links, satellite connections, or access links that are priced based on thebandwidth of the interconnection.On the other hand, if the router or link does not have enough forwarding resources,it can only provide adequate performance to the less demanding tra�c. This type of under-provisioned routers and links are referred to in practice as thin bottlenecks. In the example of



5Figure 2, the thin bottleneck only meets the QoS requirement of the E-mail and WWW tra�ctypes, preventing the more demanding applications from performing well.In summary, the fact that current routers follow the common-service-for-all paradigmleads to either ine�cient network operation, or to inadequate performance for some applicationsand users. Because of this issue, there is a wide consensus that the current Internet servicemodel should be replaced with an architecture that can o�er di�erent QoS to di�erent tra�ctypes or users [41]. The desired characteristics or objectives of this new service model, however,are not yet clear. The following two sections describe the two major architectures that havebeen developed within the Internet Engineering Task Force (IETF) [49] for addressing this issue:the Integrated Services architecture (or IntServ), and the Di�erentiated Services architecture (orDi�Serv).1.3 Integrated Services architectureThe Integrated Services (IntServ) architecture was developed within the IETF in the mid-nineties[15, 118, 115], and has its roots in earlier research results [5, 79, 27, 28, 38]. The basic premise inIntServ is that applications have hard network performance requirements, and they cannot oper-ate e�ectively unless these requirements are met. For instance, an IP telephony application mayrequire a maximum end-to-end delay of 200msec for each packet, while a video streaming appli-cation may need a packet loss rate that is less than 10�3. In the IETF terminology, the IntServarchitecture is mainly appropriate for intolerant or unelastic applications, i.e., applications thatdo not tolerate or adapt to a performance level that is lower than what they ask for.Figure 3 shows the major architectural blocks of an IntServ-capable router. The servicemodels that have been discussed or standardized in the IntServ architecture include a maximumend-to-end delay [98], a su�ciently low loss rate [117], and a minimum end-to-end rate [3]. Eventhough these service models di�er in their implementation or usage, they are all based on thefollowing IntServ architectural principle: the service di�erentiation is accomplished with per-ow end-to-end resource reservations. These three terms (`per-ow', `end-to-end', and `resource



6
Protocol Table

Control
Admission

(RSVP)

Flow
Classifier

Scheduler

Routing Routing

Interfaces
Input

Interfaces
Output 

Packet
Switch

Data & Control State

Per-Flow Queues

Per-Flow

Routing
Processor

Per-Flow
Billing

SignallingFigure 3: Architectural layout of an IntServ router.reservations') have important implications on the strengths and the weaknesses of IntServ, andare discussed next.First, IntServ is ow-centric, meaning that the service di�erentiation router mechanismsapply to individual packet ows, i.e., streams of packets that belong to the same applicationsession. IntServ requires that routers perform the following operations on the packets of a ow:� ow classi�cation, to identify the ow in which a packet belongs to [57, 100],� scheduling, to provide a certain delay deadline or rate to a ow [101, 102],� bu�er management, to allocate a number of bu�ers to a ow [107], and� tra�c shaping or policing, to control certain tra�c characteristics (e.g., maximum bursti-ness) of a ow [20, 101].The previous operations must be performed for all active ows. In addition to the data-planeper-ow state, which summarizes the above operations, a router has to also maintain and processinformation for each ow at the control-plane. The control-plane in IntServ is responsible forresource reservations and signalling operations (discussed next), but also for per-ow accounting[37] and policy control [86].



7Second, IntServ is an end-to-end architecture, and so it requires the cooperation betweennetwork providers in order to provide an end-to-end service guarantee. Suppose, for instance,that a network path between two users goes through networks X, Y, and Z. If one of thesenetworks does not support the service type that a user requests, the service cannot be providedin an end-to-end basis. The Internet has a highly hierarchical structure, with major backboneproviders connecting smaller regional networks, which then connect even smaller local networks,and so on. In such a hierarchical structure, establishing the required multilateral agreements inorder to enable end-to-end services has been proven to be quite di�cult in practice [41].Third, IntServ is based on per-ow resource reservations, meaning that a certain amountof forwarding resources (bandwidth and bu�ers) has to be reserved for a ow before the sessionstarts and for the duration of the session. In order for resource reservations to be accomplished ina network, a signalling protocol is also required. The signalling protocol conveys the applicationQoS requirements and tra�c characteristics from the end-hosts to the routers along the ow'spath. If the resources do not su�ce for the new ow in any of the routers, the signalling protocolnoti�es the end-hosts that the ow request has been denied. This process is called admissioncontrol [52, 62]. The signalling protocol that has been designed for the IntServ architecture is theResource Reservation Protocol (RSVP) [123, 16]. The signi�cant per-ow processing that RSVPrequires at the control-plane raised concerns about the IntServ scalability [97]. Recent measure-ments with a commercial RSVP implementation, however, showed that the RSVP overhead maynot be so important [73].Despite the fact that IntServ is able to provide strict QoS guarantees to individualows, its deployment by network providers has been quite limited. In addition to the issues ofinter-domain deployment and RSVP overhead, discussed earlier, there are also scalability andmanageability issues in IntServ [64]. The scalability concerns are raised because IntServ requiresthat routers maintain and process data and control state for every active ow in the router.Gigabit or terabit links carry millions of simultaneously active ows, making it di�cult to buildIntServ-capable routers. Next generation routers may be able to accommodate millions of owsby maintaining per-ow state only at the edge routers [106, 105], giving to the term `ow' a more



8coarse granularity [56], or using approximations of the ideal algorithms [99].The manageability concerns are raised because of the conventional wisdom that anIntServ network is harder to install, debug, and operate. This is probably true, given thatIntServ requires admission control, signalling, per-ow accounting, and the con�guration of sev-eral router mechanisms. Another important issue is that routes can dynamically change in an IPnetwork. Routing changes may not be a frequent event in the Internet as a whole, but there arecertain links in which they occur quite often [81]. If a certain end-to-end QoS is guaranteed to aow, the architecture should be able to either forbid routing changes for that ow (route-pinning)[46], or to reserve the required forwarding resources, while the session is in progress, in the ow'snew path. Both these operations are hard to implement in practice. Similar complexities arisewhen IntServ ows need fault tolerance [32].Other factors that have contributed to the weak deployment of IntServ is that it requiresnew Application Programming Interfaces (APIs) at the end-hosts, especially for multimedia ap-plications [45], and that it can provide true end-to-end service guarantees only if similar resourcereservation mechanisms are also deployed in the servers [8], and the end-host operating systems[120]. The combination of all these issues led the IETF and the research community to considersimpler and more scalable service di�erentiation architectures, such as the proposals discussed inthe next section.1.4 Di�erentiated Services architectureThe Di�erentiated Services (Di�Serv) architecture was developed within the IETF in the latenineties [74, 9], and in several aspects it is still work-in-progress. The initial objective in Di�Servwas a more scalable, manageable, and easily deployable architecture for service di�erentiation inIP networks. The major Di�Serv premise is that individual ows, or microows, with similarQoS requirements can be aggregated in larger tra�c sets, called macroows. All packets in amacroow receive the same `forwarding behavior' in routers. So, a macroow is the minimumlevel of granularity in a Di�Serv network in terms of service di�erentiation. Each macroow



9
Protocol Table

Scheduler

Routing Routing

Interfaces
Input

Interfaces
Output 

Packet
Switch

Data & Control State

Per-Class Queues

Per-Class

Dropper

Processor
Routing

Figure 4: Architectural layout of a Di�Serv router.uses a certain service class, or Per-hop Behavior (PHB). A PHB is identi�ed by a short label(currently six bits) in the IPv4 or IPv6 header, which is called Di�erentiated Services Code Point(DSCP).Microows are aggregated into macroows at the edges of a Di�Serv network. The`edge' can be the host-network interface. In that case, the operating system or the applicationdetermines the macroow that the ow belongs to. Or, the `edge' can be a router that connectsa microow-aware network to a Di�Serv network. The mapping from microows to macroowsrequires ow classi�cation [100]. This is a relatively expensive operation, but since it is onlyperformed at the network edges, where the number of microows is much smaller, it is expectedto not cause scalability problems. Microows are aggregated in macroows based on rules set bythe network operator. For instance, a macroow can be all the tra�c originating or destined toa certain organization, the tra�c that is sent/received by a certain host, or all the tra�c of acertain application.Figure 4 shows the main architectural components in a Di�Serv router. The �rst bene�tthat aggregation provides is that it addresses the scalability issue, since state is only requiredfor a few service classes. Note in Figure 4 that there is a queue for each class, instead of aqueue for each ow. If the number of classes is small, say a few tens, the per-queue operations ofclassi�cation, scheduling, bu�er management, or shaping/policing, become signi�cantly simpler



10and faster. Second, aggregation simpli�es the network management, since the operator needsto only monitor and control the service level of a few classes, rather than of millions of ows.Third, aggregation makes the network pricing/accounting simpler, since users do not have tobe billed for each session or microow, but for the overall tra�c they generate in each serviceclass. Obviously, the fundamental drawback of aggregation is that the network cannot guaranteea certain QoS to a microow.Besides exploiting the bene�ts of aggregation, the Di�Serv architecture also makes othersimpli�cations. First, the PHBs have strictly local (per-hop) semantics. So, they can provideservice di�erentiation even if they are deployed only at individual congestion points, withoutrequiring deployment in an entire network or across di�erent domains. For example, a networkprovider can decide that the entire network will be over-provisioned, without using any servicedi�erentiation mechanisms, and deploy Di�Serv only at the transoceanic links where congestionis acceptable due to the high bandwidth cost.Second, Di�Serv does not require a signalling protocol, since there are no resource reserva-tions for individual ows. In some proposals, though, such as the VLL service (x1.5.1), forwardingresources need to be reserved for a macroow during a certain time period. Instead of a signallingprotocol, the VLL proposal uses a bandwidth broker, which is a centralized agent controlling theresource reservations in a network. Other proposals, such as the Assured service (x1.5.2), re-quire careful resource provisioning. Provisioning refers to determining the necessary amount offorwarding resources for a service class over a large time period (say hours to days) based onthe expected tra�c load in that class. The limitations of bandwidth brokers and provisioning arediscussed in Section x1.5.Third, Di�Serv allows both absolute (or quantitative) and relative (or qualitative) servicedi�erentiation. An absolute service model aims to provide a macroow with a quantitativeperformance level, such as a minimum forwarding rate or a maximum loss rate, at a certain linkor network path. Examples of absolute services are the VLL and the Assured service proposals.These service models require `semi-static' bandwidth reservations or provisioning, as mentionedin the previous paragraph. An absolute service model also requires some form of admission



11control or policing, in order to prevent users from sending tra�c at a higher rate than theirnetwork contract allows.Relative services, on the other hand, provide a number of classes with increasing per-formance. The network simply guarantees that higher classes will provide better QoS than lowerclasses [33]. The exact QoS in each class is not speci�ed, and it depends on the load conditionsand the service di�erentiation mechanisms that the network deploys. If the applications andusers have absolute QoS requirements, they can dynamically search for the class that best meetstheir QoS and pricing constraints. The relative di�erentiation model does not require resourcereservations, admission control, signalling, or �xed routing, and so it is considered as simpler tomanage and deploy.Summarizing the last two sections, Table 1 shows the main di�erences between theIntServ and Di�Serv architectures.1.5 Previous work on di�erentiated servicesThe two Di�Serv models that received most attention so far are the Virtual Leased Line (VLL)service [51], and the Assured service [24]. We briey present them next, discussing also theirlimitations. Then, we review some more recent proposals on service di�erentiation.1.5.1 Virtual Leased Line (VLL) serviceThe VLL service, also called Premium service, was proposed by Van Jacobson in 1997 [51], andit is widely considered today as the Di�Serv starting point. The VLL service aims to implementa guaranteed peak bandwidth service with negligible queueing delay and losses, similar to theservice that a user would get with a leased line in a circuit-switched network. The VLL tra�cis limited at the network ingress to its contracted peak rate, say R, using tra�c shaping at theedge routers. The shapers guarantee that packet bursts are not injected into the network, andthat the VLL tra�c never exceeds the rate R at the network ingress. In the network core, the



12
Integrated Services Di�erentiated ServicesGranularity of Microows Macroowsservice di�erentiation (tra�c aggregates or classes)State in routers Per-ow Per-class(scheduling,bu�er management, etc)Tra�c classi�cation Several header �elds DSCP �eld (6 bits)basis in IPv4/v6 headerAdmission control Required Required for absolutedi�erentiation onlySignalling protocol Required (RSVP) Not required for relative schemes.Absolute schemes need semistaticreservations or broker agents.Coordination for service End-to-End Local (per-hop)di�erentiationScalability Limited by number of Limited by number ofows classesNetwork accounting Based on ow Based on class usagecharacteristicsand QoS requirementNetwork management Similar to circuit- Similar to existingswitched networks IP networksInterdomain deployment Multilateral agreements Bilateral agreementsissues needed neededTable 1: A comparison of the IntServ and Di�Serv architectures.



13rate R is reserved for the VLL macroow along its path, and additionally the VLL tra�c isserviced with the highest priority. The original expectation was that the VLL macroows wouldnot experience any signi�cant queueing delays or losses.Recent research, however, has shown that these expectations are not always met. TheVLL tra�c, even if it is shaped at the network edge and serviced with the highest priority inthe network core, can still become bursty as it ows through the network. The reason is thatmultiplexing of VLL tra�c from di�erent input interfaces in the core routers can create packetbursts [21], causing queueing delays and potentially losses. The magnitude of this burstinessdepends on the VLL load, the hop count of a VLL macroow, and the shaping parameters atthe network ingress. This implies that in order to guarantee reasonably low queueing delays, theVLL load must only be a small fraction of the network capacity [105]. Experimental results haveshown that, under certain conditions, it is indeed possible that the VLL service can experiencesigni�cant queueing delays and losses [42]. More recently, [47] investigated how to address theseVLL issues with re-shaping at the boundaries between network domains. Re-shaping, though,requires information about the microows that constitute the VLL macroow, and so it may notbe a feasible operation in high-speed links.The VLL service requires some form of semi-static bandwidth reservations that a `band-width broker' protocol or agent has to setup in each domain [51]. Interdomain reservations haveto be agreed upon and coordinated between the individual bandwidth brokers of each domain[111]. The requirement for a centralized bandwidth broker in each domain causes concerns aboutthe scalability and fault-tolerance of the architecture, while distributed broker architectures raiseconsistency issues that are not yet solved [105]. The VLL service also requires some form ofroute-pinning for holding the VLL tra�c in the links where the bandwidth reservations havebeen setup, despite of route changes that can occur in IP networks. Despite these issues, theVLL service is the most popular Di�Serv model today, and there are routers that support it.Also, there has been some experimentation with VLL in the QBone [110] and in other networks.These e�orts are still in progress.



141.5.2 Assured serviceThe Assured service was originally proposed by David Clark in [25], under the name ExpectedCapacity framework, and it was later re�ned in [75] and [24]. The basic idea in the Assured serviceis quite simple. A user purchases from the network a certain bandwidth `pro�le', say R. As longas the tra�c that the user generates has a lower rate than R, it is marked as IN; otherwise, itis marked as OUT. In times of congestion, the network drops OUT tra�c with a signi�cantlyhigher probability than IN tra�c. Consequently, users are allowed to obtain a higher throughputthan their pro�le R in times of low network load, but they are limited to their IN tra�c in timesof congestion. How does the network guarantee that the IN tra�c will not be dropped, andthat each user will get the contracted bandwidth pro�le? The original conjecture was that if thenetwork is su�ciently provisioned, the IN tra�c should not be dropped. `Provisioning', here,means that the network operator keeps track of the pro�les of di�erent users and of the routesthat the IN tra�c goes through, in order to reserve an adequate bandwidth capacity in eachnetwork link. The Assured service was further studied in [24], in the context of TCP transfers,focusing on speci�c marking procedures for TCP tra�c.Recent results, however, have shown that it is di�cult to design provisioning algorithmsthat achieve simultaneously good service quality with large spatial granularity and high resourceutilization [104]. Some form of route-pinning is also necessary to implement the Assured service,since the provisioning procedure assumes �xed routing and steady load in each network link. Inthe context of TCP transfers using the Assured service, [121] and [93] showed that under certainconditions it is impossible to provide a certain throughput to a TCP connection, independentof how well-provisioned the network is. The Assured service has been also analytically studiedin [66] and [92] with simple queueing models, attempting to quantify the `assurance level' of theprovided bandwidth pro�les.



151.5.3 Other proposalsThe early works in the context of di�erentiated services focused on the VLL and Assured servicemodels. More recently, however, there has been a large interest in other service models as well.Some of these proposals are based on the Di�Serv principle of ow aggregation, while othersattempt to provide per-ow service guarantees (as in IntServ) but without maintaining per-owstate in the core routers.The Asymmetric Best E�ort (ABE) architecture [14] provides two service classes: onefor delay-sensitive applications (such as IP telephony) and another for throughput-sensitive ap-plications (such as data transfers). The User Share Di�erentiation (USD) scheme, proposed in[114], guarantees that the per-hop distribution of bandwidth is performed proportionally to thepro�le that each user purchases. USD is an example of relative di�erentiation. A similar relativeservice model has been studied in [4]. A re�nement of the Assured service appeared in [40],proposing that the IN/OUT marker should adapt to the measured ow throughput.A simple case of relative service di�erentiation is the Paris Metro Pricing (PMP) scheme[76]. PMP is based on pricing, instead of special router forwarding mechanisms, to providerelative service di�erentiation. It is based on the assumption that larger prices for the higherclasses will lead to lower loads, and thus, better performance. Pricing mechanisms, however,can only be e�ective over relatively long timescales, especially when the class tari�s cannot befrequently modi�ed. When higher classes become overloaded (because, for example, many `rich'users become active at the same time), they will o�er worse performance than lower classes.This would be an instance of inconsistent or unpredictable relative di�erentiation, as we discussin x2.3. The SCORE (Scalable Core) architecture provides per-ow service guarantees, as inIntServ, but without per-ow state in the core routers [106]. In SCORE, the QoS-related in-formation is carried in the packet headers (similar to the MPLS technology [113]), instead ofbeing stored in the routers. This architecture can provide fair-queuing [106] or guaranteed delay[105] services. SCORE requires per-ow state only at the ingress routers. When a ow goes



16through multiple domains however, which is the common case in the Internet, the border routersbetween networks should also maintain per-ow state, which may be a scalability problem inhigh-bandwidth links. In a similar architecture, [18] proposed a scheme in which resource man-agement and admission control are performed only at egress routers, without any coordinationbetween backbone routers and per-ow state in the core.1.6 Thesis scope and overviewThe broad subject of this dissertation is service di�erentiation in packet networks. Even thoughmost of our contributions are applicable to any packet network technology, we focus on IP net-works, and especially on the Internet, as the major IP-based interconnection of packet networkstoday. Within the broad subject of service di�erentiation, we focus on the Di�Serv architecture,which is based on a few classes of service, local di�erentiation, and provisioning, rather than onthe more `heavy-weight' IntServ architecture of per-ow and end-to-end resource reservations.In most of this thesis we consider the relative di�erentiation model, which is more scalable andsimpler to deploy than the absolute di�erentiation model, because it does not require admissioncontrol, signalling, bandwidth brokers, or static routing.Having limited the scope and focus of this dissertation on relative di�erentiation, wepropose and study an original architecture, called Proportional Di�erentiated Services (PDS).PDS re�nes the basic premise of relative di�erentiation in two ways. First, it makes the di�er-entiation between classes controllable, allowing the network provider to adjust the performancespacing between classes. This is achieved with simple proportional constraints on the averagedelays and loss rates between classes. Second, it makes the di�erentiation between classes pre-dictable, providing the assurance to users and applications that higher classes will lead to betterperformance, independent of the load conditions.As shown in Figure 5, the PDS architecture consists of three components: router mech-anisms for packet scheduling and dropping, user/application dynamic class selection algorithms,and class provisioning methodologies. These components, in more detail, are:



17
Proportional Differentiated Services

Differentiation
Delay

Scheduler:

Differentiation
Loss

Dropper:

Router Mechanisms Users & Applications Network Providers

Dynamic Class
Provisioning

Class
SelectionFigure 5: The structure of the PDS architecture.1. Router mechanisms and PDS: the routers have to use special forwarding mechanisms forproviding proportional delay and loss rate di�erentiation. These mechanisms are the sched-uler and the dropper, respectively.2. Users/Applications and PDS: the users and applications that need an absolute QoS canperform dynamic class selection over a PDS network in order to dynamically select theminimum acceptable class that meets their requirements.3. Class provisioning and PDS: the network operator can use the PDS architecture in or-der to provision an absolute QoS level in each class. The class provisioning methodologydetermines the class di�erentiation parameters and the capacity of a link.The structure of this dissertation is as follows. The general framework of relative dif-ferentiated services, the requirements for controllability and predictability, and the proportionaldi�erentiation model are presented in Chapter 2. The implementation of the PDS architecturerequires the design of special scheduling and bu�er management router mechanisms. The sched-uler in the PDS context has to provide proportional delay di�erentiation, which is the subjectof Chapter 3. Similarly, the packet dropper in the PDS context has to provide proportional lossrate di�erentiation, which is the subject of Chapter 4. Chapter 5 has two parts. In the �rst part,we study a dynamic class selection algorithm that users and applications can use to meet anabsolute QoS requirement. In the second part, we propose a class provisioning methodology thatcan provide an absolute QoS level to each class. The dissertation is summarized and suggestionsfor future work are given in Chapter 6.



18Chapter 2Relative Di�erentiationThis chapter provides the background for the Proportional Di�erentiated Services architecture.We �rst state the relative di�erentiation premise, as the basic requirement between a numberof graded classes of service. The important concepts of dynamic class selection and class provi-sioning are discussed. We then impose two crucial requirements on the relative di�erentiationpremise. The controllability requirement aims to provide the network provider with the appropri-ate `knobs' for adjusting the performance spacing between classes. The predictability requirementstates that higher classes should provide better performance than lower classes, independent ofthe load conditions. Finally, we propose the Proportional Di�erentiation model as a means forcontrollable and predictable di�erentiation, in terms of the per-hop queueing delays and packetlosses.2.1 Relative di�erentiation premiseAs discussed in x1.4, there are two distinct models in the Di�Serv architecture: absolute di�er-entiation and relative di�erentiation. The former uses some form of admission control in orderto provide an absolute , or quantitative, performance level to each class or macroow. The lattero�ers a number of classes of service that are relatively di�erentiated, such that higher classesreceive better performance than lower classes, but at a higher cost. The actual performance ofa class is not known a priori. Consequently, users and applications that have an absolute QoSrequirement have to search dynamically for an acceptable class, depending on their QoS and costrequirements.



19The relative di�erentiation model does not require admission control, bandwidth brokersand resource reservations, or any form of signalling between the users and the network. It alsodoes not require route pinning or provisioning. So, it is considered as a simpler architecture todeploy and manage overall [33]. Since there is no admission control, however, the o�ered loadin a link cannot be controlled or predicted. This is the fundamental reason why absolute QoSguarantees cannot be provided in this architecture.The central premise of relative di�erentiation is that the N classes of service are orderedin the following sense:Class i provides better (or at least no worse) performance than class j, for i > j, interms of the per-hop queueing delays and packet losses.The elucidation `or no worse' is required, since all classes may experience the same performancelevel in low load conditions. The IETF has standardized eight relative di�erentiation classes,called Class Selector Compliant Per-Hop-Behaviors (CSC PHBs), or simply Class Selectors [74].The three bits of the IPv4 header that identify the Class Selectors correspond to the Precedencebits in the original IPv4 packet header [84]. Even though the use of the Precedence bits hasbeen limited in the past, there have been certain links or networks that deployed simple Di�Servschemes (such as providing higher priority to Telnet tra�c) [67].An important point about the Class Selectors is that higher classes o�er better perfor-mance in terms of both queueing delays and packet losses. In other words, the Class Selectorsprovide `one-dimensional' di�erentiation. This simpli�cation is justi�ed by the fact that thePrecedence bits in the original IPv4 header were not discriminating between delays and losses.It is likely that a `two-dimensional' di�erentiation model, in which a class causes higher delaysbut less losses than another class, would be more useful for some applications. An example oftwo-dimensional di�erentiation is given in x4.3.The mapping of packets to a certain Class Selector can be done either at the applicationlevel, at the operating system of the end-hosts, or at the edge routers of a network. For example, aWWW server can classify the requested HTTP transactions based on the user-subscription level,



20
Selection

Class
Adjust Channel

Feedback

Performance?
End-to-End
Acceptable

Sender
Receiver

Per-Hop
Delay & Loss

Differentiation
(N Classes) NetworkFigure 6: Dynamic class selection in a relative di�erentiation network.so that `non-members' are mapped to the lowest class, while `members' get the better serviceof a higher class [8]. Or, in the case of an academic organization, a policy-based classi�cationof packets may be performed at the local hosts, so that faculty use the highest service class,graduate students a middle service class, while the undergraduate students the lowest class. Or,a commercial network may classify the ingress tra�c at the corresponding edge router basedon the class prices and the maximum tari� that customers are willing to pay. The mapping ofpackets to di�erent classes can be performed using ow classi�cation techniques [6, 100].Applications and users that do not have absolute QoS requirements can select their classbased on the performance versus cost trade-o�. In this case, a user would choose the highestpossible class that she is willing to pay for. We believe that a large part of the Internet workloadfalls in this category. On the other hand, for applications and users that have an absolute QoSrequirement, the relative di�erentiation architecture requires that they dynamically search forthe class that provides them with an acceptable QoS level. This dynamic class selection model isillustrated in Figure 6.The network, in this model, o�ers per-hop delay and loss di�erentiation, providing higherclasses with a better performance. The application, on the other hand, aims for an operatingrange in which it performs well in terms of the end-to-end delay and loss rate. In this example,the sender maps the packet ow to a Class Selector, while the receiver monitors the end-to-end



21
Class-1

Traffic Distribution

Class-2

Class-3

Class-4

QoS Requirement

Games

Voice

WWW

Email (a) Well-provisioned di�erentiation
QoS Requirement

Class-1

Traffic Distribution

Class-4
Class-3

Class-2

Games

Voice

WWW

Email (b) Under-provisioned di�erentiationFigure 7: Well-provisioned and under-provisioned di�erentiation in a link with four classes andfour tra�c types.performance. The receiver noti�es the sender about the current performance through a feedbackchannel. Based on this feedback, the sender decides whether to stay in the same class, or switchto a higher or lower class. If the user is also interested in minimizing the cost of the session, theapplication searches for the least expensive (i.e., minimum) class that o�ers acceptable delaysand losses. The dynamic class selection process, outlined here, is studied in detail in Chapter 5.It is possible that an application cannot �nd an acceptable class, even if the highestclass is selected. This depends on the forwarding resources in the link (bandwidth and bu�ers),and on the volume and QoS requirements of the tra�c mix. Intuitively, if the link is adequatelyprovisioned, i.e., if it has enough forwarding resources for the given workload, there will be anacceptable class for each tra�c type. A detailed study of a speci�c instance of this provisioningproblem is given in x5.4. We next give a graphical example to illustrate the provisioning issue.Figure 7 shows a QoS requirement curve for a link with four tra�c types: Email,WWW,Voice, and Games (as in Figure 2). The link o�ers four classes of service. In the well-provisionedcase (Figure 7-a), the performance level in each class is such that all tra�c types can �nd anacceptable class. For instance, the `Games' tra�c type can meet its requirements in Class-4,while the WWW tra�c type would use Class-2. In the under-provisioned case (Figure 7-b), on



22the other hand, the forwarding resources in the link are not adequate for Class-4 to meet itsQoS requirement. The result is that a large part of the `Games' tra�c type does not �nd anacceptable performance, even in the highest class.2.2 Controllability requirementThe relative di�erentiation premise of x2.1 simply states that a higher class should provide betterperformance than a lower class. This is a minimalistic requirement, similar to the Precedence�eld speci�cation in the original IPv4 header [84]. We advocate that in order for a relativedi�erentiation model, such as the Class Selectors, to be e�ective in practice, it has to meetsome additional requirements on the relation between classes. The �rst of these requirements ispresented in this section.A requirement, from the perspective of the network provider, is that the relative QoSspacing between classes should be controllable, based on appropriate performance `knobs' that therouter provides and the operator can adjust. A separate set of performance knobs can exist foradjusting the queueing delay di�erentiation, and another for controlling the packet loss di�erenti-ation. For example, using these knobs the operator can make the highest class much better thanthe lower N -1 classes, and restrict its usage only to routing and network management tra�c.Additionally, the operator can use the performance knobs to create a smoother di�erentiationbetween the lower N -1 classes, aiming to capture the wide range of QoS and cost requirementsthat users have.Note that, ideally, a di�erentiation scheme should be able to adjust not only the relativespacing between classes, but also the absolute QoS level in each class. For instance, instead ofcontrolling how much better a class is relative to another class, a network provider would preferto specify a maximumdelay and/or a maximum loss rate for each class. Since the aggregate loador the class load distribution is not known, however, due to the lack of admission control, suchabsolute performance levels cannot be provided in this architecture.As an example of a relative di�erentiation model that is not controllable, consider the



23
9000 9200 9400 9600 9800 10000

Time (/1000)

0

25

50

75

100

125

150

175

A
ve

ra
ge

 d
el

ay
s 

(p
er

 1
00

00
 p

ac
ke

ts
)

SP scheduling

Class−1
Class−2
Class−3

Figure 8: Short-term average delays (K=10000pks) with a three-class SP scheduler.Strict Priority (SP) packet scheduler. SP services the packet from the highest backlogged class�rst. Even though SP satis�es the relative di�erentiation premise, providing higher classes withlower delays, it has some important drawbacks. First, the lower classes can experience long`starvation' periods in which the queueing delays are excessive. Second, SP does not o�er anydi�erentiation knobs that the network provider can adjust in order to control the performancespacing between classes. Instead, the delays in each class depend exclusively on the load condi-tions and the load distribution between classes.These drawbacks of SP are illustrated in Figure 8. The graph resulted from a simulationof a three-class lossless Strict Priority (SP) scheduler. Note that all simulation procedures andparameters in this dissertation are described in x7.1; the reader can refer to that appendix forall the simulation details not given here. The utilization of the scheduler is u=90%, and theclass load distribution is (�1; �2; �3)=(60,30,10)1. The sample path shows the average delays forthe three classes, measured in every K=10000 packet departures of the aggregate tra�c, (i.e., itshows short-term average delays in a timescale of K packets). The queueing delays are measuredin (�xed-size) packet transmission times, e.g., a queuing delay of 10 units means that the packethas to wait in the queue for 10 other packets to be transmitted �rst.Returning to Figure 8, note that only Class-1 encounters signi�cant queueing delays,1This notation means that 60% of the tra�c is Class-1 packets, 30% Class-2, and 10% Class-3.



24while Class-2 and Class-3 have only minor delays and they are practically indistinguishable2.This implies that the network operator does not have a way to di�erentiate the two higherclasses, users have no reason to select Class-3 instead of Class-2, and Class-1 receives the entireperformance penalty.As an example of a controllable scheme, consider the capacity di�erentiation model. Thebasic idea in this scheme is to provide more forwarding resources to higher classes, relative tothe class input loads. The amount of forwarding resources allocated to each class controls therelative di�erentiation in this model. To illustrate the capacity di�erentiation model, we focusnext on the allocation of bandwidth between classes and on the corresponding queueing delaydi�erentiation.A scheduling discipline that has been proposed in [48] for providing relative delay di�er-entiation is the Generalized Processor Sharing (GPS) scheduler [29] and its many packet-basedapproximations, such as Weighted Fair Queueuing (WFQ) (see [103] and references therein).GPS provides a minimum service rate ri(t) to each backlogged class i at time t, based on theclass weights fwj; j = 1 : : :Ng ri(t) = C wiPj2B(t) wj (2.1)where C is the link bandwidth (capacity), and B(t) is the set of backlogged classes at time t.The GPS weights wi are the performance knobs that determine the delay di�erentiation betweenclasses. If the GPS weights are selected so that a class has a larger share of the link capacitythan the lower classes, relative to the class input loads, higher classes are expected to encounterlower queueing delays. The delay di�erentiation that results with the GPS scheduler is furtherdiscussed in x3.5.1.2The curves for the Class-2 and Class-3 delays are also indistinguishable in the graph.



252.3 Predictability requirementThe second requirement that we impose on the relative di�erentiation model is that the di�eren-tiation between classes should be predictable. By `predictable', we mean that the performance ofhigher classes should be better than the performance of lower classes independent of the aggregateload, the class load distribution, or the timescales in which the performance is measured.Obviously, the value of relative di�erentiation would be limited if the class ordering isonly met in a certain load range (e.g., when the utilization is more than 90%), or in a class loaddistribution (e.g., uniform load between classes). It is also important to provide predictable classordering in all timescales. Saying that the average delay in class i is lower than the average delayin class j, implying the use of long-term average delays, does not provide any information on therelation between the delays of the two classes in short timescales. A predictable di�erentiationin short timescales is particularly important because most ows in the Internet are rather short-lived. For instance, an HTTP connection often consists of less than ten data packets [112].The predictability requirement is important for two reasons. First, since users would paya larger tari� for higher classes, they need to know that the performance in higher classes is betterthan the performance in lower classes. Factors such as the load conditions, the load distribution,or the timescales in which the performance is measured, are important for the network providerbut not for the users. Such factors should not a�ect the `class ordering contract' between thenetwork and the users.Second, as will be discussed in more detail in Chapter 5, a predictable class di�erentiationin all load conditions and timescales allows users and applications to dynamically select anacceptable class, when such a class exists. Intuitively, if the di�erentiation is not predictable, theclass ordering may vary as the class load distribution varies. In that case, users and applicationsmay end up moving between classes in an erratic manner, without converging to an acceptableclass, even if such a class exists.To illustrate the predictability requirement, and to also show that the WFQ (or GPS)scheduler of x2.2 is not predictable, Figure 9 shows a sample path of the queueing delays in



26
950 955 960 965 970 975 980 985 990 995 1000

Time (/1000)

0

20

40

60

80

100

120

A
ve

ra
ge

 d
el

ay
s 

(p
er

 1
00

0 
pa

ck
et

s)

WFQ scheduling

Class−1
Class−2

Figure 9: Short-term average delays (K=1000pks) with a two-class WFQ scheduler.a two-class WFQ scheduler. The queueing delays shown are short-term averages measured inevery K=1000 packet departures (i.e., the performance measuring timescale here is 1000 packetdepartures). The load distribution is uniform and the utilization is 90%. The WFQ weights areselected as (w1; w2)=(0.475,0.525), so that the long-term average delay is about 50 time unitsin Class-1, and about 20 time units in Class-2. Note that even though the class di�erentiationis predictable in terms of long-term averages, the di�erentiation between the two classes in theshorter timescale of Figure 9 is not predictable. At several time periods (with a duration of Kpacket departures), the delays in Class-2 are higher than the delays in Class-1, meaning that theperformance ordering between classes has been inverted. The fact that GPS is not predictablecan also be illustrated showing its dependence on the load distribution between classes. This isis shown in a more extensive discussion of GPS in x3.5.1.As an example of a predictable di�erentiation model, consider the Strict Prioritizationscheme discussed in x2.2. The SP scheduler services the highest backlogged class always �rst,independent of the load conditions, and so it provides predictable delay di�erentiation. SP ispredictable, but as shown in the previous section it is not controllable. On the other hand, theGPS scheduler is controllable, but as shown in this section it is not predictable. The crucialquestion is whether there exists a relative di�erentiation model that is both controllable andpredictable. Such a model is proposed in the next section.



27
__ __ =i

j j

iφ
φ

π
π

Class-2

Time

Performance

Class-3

Class-1Figure 10: Proportional di�erentiation in terms of a general performance metric �.2.4 Proportional di�erentiation modelIn this section, we propose the Proportional Di�erentiation model as a means for controllable andpredictable di�erentiation between the N o�ered classes. The idea of proportional di�erentiationis quite simple: the spacing between classes should follow proportional constraints on the classperformance levels. More formally, if �i is a metric for the performance of class i (e.g., averagedelay, loss rate), the proportional di�erentiation model requires that�i�j = �i�j 1 � i; j � N (2.2)where �i is the di�erentiation parameter for class i. Note that if lower values of �i lead to betterperformance, we must have that �i < �j if i > j.Figure 10 illustrates the basic idea of proportional di�erentiation in terms of a genericperformance metric �. If higher classes are assigned lower di�erentiation parameters, they willget better performance than the lower classes. The performance spacing between classes can beadjusted through the di�erentiation parameters �i, which makes the proportional di�erentiationmodel controllable (x2.2). Notice that the proportional di�erentiation model is independent ofthe aggregate load or the class load distribution. Consequently, the network operator can providea certain spacing between classes, even if the load conditions are not a priori known, or evenwhen they dynamically vary.



28The performance spacing between classes can be expressed in terms of the per-hop queue-ing delays and/or in terms of packet losses. Since these two e�ects are the major performancedegradation factors in packet networks, we apply the proportional di�erentiation model in thisdissertation in terms of both queuing delays and packet losses. Speci�cally, let �di be the averagequeueing delay of the serviced packets in class i. The proportional di�erentiation model in thecontext of queueing delays requires that�di�dj = �i�j 1 � i; j � N (2.3)where �i is the Delay Di�erentiation Parameter (DDP) for class i. The DDPs are ordered as�1 > �2 > : : : > �N > 0. The Proportional Delay Di�erentiation (PDD) model of (2.3) is studiedin detail in x3.1.Similarly, let �li be the packet loss rate in class i, i.e., the long-term fraction of packetarrivals in class i that are dropped. The proportional di�erentiation model in the context ofpacket losses (or drops) requires that�li�lj = �i�j 1 � i; j � N (2.4)where �i is the Loss Di�erentiation Parameter (LDP) for class i. The LDPs are ordered as�1 > �2 > : : : > �N > 0. The Proportional Loss Di�erentiation (PLD) model of (2.4) is studiedin detail in x4.1. For example, the network provider can specify that the average delay and thepacket loss rate in each class is twice as large, compared to the immediately higher class, setting�i = 2�i+1 and �i = 2�i+1 for i = 1 : : :N � 1.A crucial point about the proportional di�erentiation model is that it speci�es a QoSspacing between classes that holds independent of the aggregate load or the class load distribution.This is a radically di�erent approach than other di�erentiation schemes that expect certain loadconditions, and provision an absolute QoS level in each class that can only be met in thoseload conditions. In those di�erentiation schemes, when the load prediction fails, the resultingdi�erentiation becomes unpredictable in the sense that a class can get worse performance than



29
π1

3π

π1
__ π2

__ 
1

φ
φ

3

__ 
1

φ
φ

2

Performance

Time

__ (a) Small deviations π1

3π__ 

π1
__ π2

__ 
1

φ
φ

3

__ 
1

φ
φ

2

Performance

Time(b) Large deviationsFigure 11: Proportional di�erentiation in short timescales.some lower classes. An example of this behavior is shown in x3.5.1 for the GPS scheduler. Theproportional di�erentiation model does not have this problem, because it speci�es an invariantperformance spacing between classes that is independent of the load conditions.A large part of this thesis focuses on router mechanisms that can implement the propor-tional di�erentiation model in terms of queueing delays (Chapter 3) and packet losses (Chapter4). We show there that there are fundamental issues that prevent the proportional di�erentia-tion model from being always feasible. Given that it may be impossible to always achieve theconstraints of (2.3) or (2.4), we have to accept some approximation errors or deviations from theideal proportional constraints that the di�erentiation parameters specify. Consequently, when wecompare di�erent mechanisms for packet scheduling or dropping, the magnitude of these errorsis used to decide which mechanism is better.To illustrate this issue, Figure 11 shows two cases of proportional di�erentiation betweenthree classes, resulting from two di�erent mechanisms. In both cases, the proportional constraintsare met when we measure the class performance ratios over the entire time axis (i.e., in terms ofthe long-term average behavior). In the �rst case (Figure 11-a), that results say from a mechanismX, the di�erentiation between classes is not always as speci�ed by the ratios �i=�j, but it is quite



30close to those constraints. In the second case (Figure 11-b), that results from a mechanism Y, theerrors in meeting the proportional di�erentiation constraints are signi�cantly larger. In termsof choosing a candidate mechanism, we would choose X instead of Y because the former causessmaller deviations from the proportional di�erentiation model.Note that we choose to not quantify these errors using second-order statistics (such asthe variance or standard deviation of the resulting performance ratios). Instead, we evaluate theerrors in the time-domain; this is done by measuring the performance ratios between classes inshort timescales, say in every K packet departures or arrivals, and then computing the resultingclass ratio distributions. This time-domain technique will be illustrated in Chapter 3 for short-term average queueing delays, and in Chapter 4 for short-term packet loss rates.The evaluation of proportional di�erentiation in the time domain provides us with twobene�ts. First, as discussed in the previous paragraph, it quanti�es the deviations from theideal proportional constraints that the di�erentiation parameters specify. Second, it allows usto investigate the predictability of the resulting relative di�erentiation in short timescales. Themeasurement of the performance ratios between classes in a range of timescales, from a few tensor hundreds of packets to thousands or millions of packets, shows whether the higher classesencounter better performance independent of the performance monitoring timescales.2.5 SummaryThe main strength of the relative di�erentiation model is its simplicity. It does not requireadmission control, signalling, provisioning, or bandwidth brokers. Also, it does not requirethe knowledge or control of the o�ered load in each network link, and so it is insensitive todynamic routing changes. The fundamental drawback, though, is that it only provides a relativeordering between classes, and not a per-class absolute QoS level. We stated two requirementsthat a relative di�erentiation model should meet: controllability and predictability. The formerrequires that the network operator should be able to adjust the class spacing between classes.The latter requires that the relative ordering between classes should be met independent of load



31conditions and timescales. Existing di�erentiation models, such as strict prioritization or capacitydi�erentiation, are either not controllable or not predictable. We proposed an original servicemodel, called proportional di�erentiation, that is both controllable and predictable. The modelis stated in terms of both queueing delay and loss rate di�erentiation. The next two chaptersinvestigate these two models, and design router mechanisms that can implement them.



32Chapter 3Proportional DelayDi�erentiationThe subject of this chapter is the queueing delay di�erentiation between tra�c classes, and the re-lated packet scheduling problem. We �rst propose the Proportional Delay Di�erentiation (PDD)model as a means for controllable and predictable delay di�erentiation. Starting from the PDDmodel, we derive the average queueing delay in each class, show the dynamics of the class delaysunder the PDD constraints, and state the conditions under which the PDD model is feasible. Inthe second part of the chapter, we focus on packet scheduling algorithms that can implementthe PDD model, when the model is feasible. The Proportional Average Delay (PAD) schedulermeets the PDD constraints, when they are feasible, but it exhibits unpredictable behavior inshort timescales. The Waiting Time Priority (WTP) scheduler, on the other hand, approximatesclosely the PDD model even in the shortest timescales of a few packet departures, but only inheavy load conditions. PAD and WTP serve as motivation for the third scheduling algorithm,called Hybrid Proportional Delay (HPD). HPD combines the features of PAD and WTP. Thechapter closes with a review of other schedulers in the context of relative or proportional delaydi�erentiation.3.1 Proportional Delay Di�erentiation (PDD) modelConsider a Packet Forwarding Engine (PFE) in a router. The PFE consists of a router outputinterface (or output), which transmits (or services) packets with a constant capacity (or service



33rate). Packets arrive in the PFE from other PFEs or router input interfaces, which generally havedi�erent capacities. Packets that cannot be transmitted immediately upon their arrival, becausethe output services other packets, are queued in the PFE. A separate First-Come First-Serve(FCFS) packet queue is maintained for each of the N classes of service1. The order in whichpackets are selected for transmission, from the head of each backlogged queue, is determined bythe packet scheduler. It is the scheduler that provides the queueing delay di�erentiation betweentra�c classes, which is the subject of this chapter. In Chapter 4, we will extend the PFE modelwith two other modules, the backlog controller and the packet dropper, used when packets areoccasionally dropped from the PFE queues. For now, we assume that the PFE queues are lossless.In more detail, the PFE model is as follows. A lossless, work-conserving, and non-preemptive PFE with transmission capacity C (bytes per second) services N queues, one for eachtra�c class. Let �i be the average input rate, or simply the average rate, in class i (packets persecond), and �=PNi=1 �i the average input rate in the PFE. Let �Li be the average size (bytes)of class i packets, and �L=PNi=1(�i �Li)=� the average size among all packets. The utilization ofthe PFE is u=�L�=C. The lossless property requires that u < 1 (i.e., the PFE is stable), andthat there are enough bu�ers for packets that need to be queued. The work-conserving propertymeans that the scheduler does not idle when there are waiting packets; this is a common practicein routers in order to minimize the queueing delays. The non-preemptive property means thata packet transmission is always carried out to completion, which is also the standard practice inpacket networks.The Proportional Delay Di�erentiation (PDD) model aims to control the ratios of theaverage queueing delays between classes based on the Delay Di�erentiation Parameters (DDPs)f�i; i = 1; : : : ; Ng. Speci�cally, let �di be the average queueing delay, or simply average delay, ofthe class i packets. The PDD model requires that the ratio of average delays between two classesi and j is �xed to the ratio of the corresponding DDPs�di�dj = �i�j 1 � i; j � N (3.1)1We use the terms `class' and `queue' interchangeably.



34Following the convention that higher classes provide better service, �1 > �2 > : : : > �N > 0. Inthe following, we choose Class-1 as the `reference class' and set �1=1. Then, the PDD modelrequires that the average delay of each class i is a certain fraction �i of the average delay ofClass-1, �di = �i �d1 i = 2; : : : ; N (3.2)independent of the aggregate load, or the class load distribution.3.1.1 Per-class average delays in the PDD modelIn given load conditions, the N -1 ratios of the PDD model specify uniquely the average delaysof the N classes. The key additional relation in the mapping from delay ratios to class delays isthe conservation law [54, 13], which constrains the average class delays in any work-conservingscheduler S. The conservation law holds under arbitrary distributions for the packet interarrivalsand packet sizes, as long as the �rst moment of these distributions (�i and �Li) and the secondmoment of the packet size distribution exist, and the packet scheduling discipline S is independentof the packet sizes.Speci�cally, the conservation law requires that for any work-conserving scheduler S ofcapacity C that causes an average delay �di in each class i, we must have thatNXi=1 �i �Li �di = � �L �dag = �qag (3.3)where �dag and �qag is the average delay (in seconds) and the average backlog (in bytes), re-spectively, in a First-Come First-Served (FCFS) scheduler of capacity C that services the sameaggregate tra�c stream as S. The conservation law implies that even though a scheduler S cana�ect the relative magnitude of the class delays, making the delay of one class lower than thedelay of another class, this is a `zero-sum' game because the weighted sum of (3.3) has to beequal to the average backlog �qag of the aggregate tra�c stream. The average backlog �qag is asigni�cant invariant in this balance, as it does not depend on the scheduling discipline S, but



35only on the aggregate tra�c stream and the service rate C.Suppose now that the scheduler S satis�es the PDD model of (3.1). With the additionalconstraint (3.3) that the conservation law imposes, we can show that the average delay in classi is �di = �i �qagPNn=1 �n�n �Ln i = 1; : : : ; N (3.4)Consequently, even though the PDD model consists of N -1 relative constraints, the average delayin each class is absolutely speci�ed when the PDD model is applied to a certain tra�c streamwith load distribution f�ig, average packet sizes f�Lig, and aggregate backlog �qag.When all classes have the same average packet size, i.e., �Li = �L for all i, we can set �L = 1,and normalize the backlog measures to average packet size units. In that case, the average delayin each class can be simpli�ed to�di = �i �qagPNn=1 �n�n i = 1; : : : ; N (3.5)We assume that all classes have the same packet size distribution, and so2, the same averagepacket size �L = 1.3.1.2 Delay dynamics in the PDD modelBased on Equation (3.5), we can now investigate the variations in the average class delays, underthe constraints of the PDD model as the aggregate load, the class load distribution, or the DDPsvary. We refer to the following properties as the delay dynamics in the PDD model. The proofsof these properties are given in x7.2.Property 1: Increasing the input rate of a class, increases (in the wide sense)3 the averagedelay of all classes.2The reason for the stronger assumption on the packet size distribution will become clear in x3.1.3.3`Increasing in the wide sense' means that the corresponding function is non-decreasing.



36This property shows that in the PDD model there is no segregation between classes, that isexpected due to the relative di�erentiation nature of the model. When the delay of a classincreases, due to additional load in that class, the delays of all classes will also encounter anincrease.Property 2: Increasing the rate of a higher class causes a larger increase in the average classdelays than increasing the rate of a lower class.In the case of two classes, for instance, suppose that the class rates become either �01 = �1 + �and �02 = �2, or �001 = �1 and �002 = �2+� (� > 0). Even though the conservation law requires thatthe weighted average of the class delays is the same in both cases (�01 �d01 + �02 �d02 = �001 �d001 + �002 �d002),the class average delays in the second case are larger, i.e., �d001 > �d01 and �d002 > �d02, because of thePDD constraints. This property shows that higher classes cost more, in terms of queueing delay,than lower classes.Property 3: Decreasing the delay di�erentiation parameter of a class increases (in the widesense) the average delay of all other classes, and decreases (in the wide sense) the average delayof that class.This property implies that if the delay of a class is reduced, by lowering its DDP, then the delayof all other classes will increase.The following two properties are important in the Dynamic Class Selection (DCS) model(see x5.1 and x5.2). In the DCS model, users dynamically choose the class they use, searchingfor the minimum class that provides them with an acceptable delay. The �rst property statesthat when one ore more users move to a higher class, the delay of all classes increases. The classdelays decrease, on the other hand, when one or more users move to a lower class. The secondproperty shows that when a user switches from one class to another, the user still observes aconsistent class ordering, i.e., the higher class provides a lower delay.Suppose that the class load distribution changes from f�ng to f�0ng, with �0i = �i � �,�0j = �j + �, and �0k = �k for all k 6= i; j (� > 0). Let �d0n be the average delay in class n when the



37class load distribution is f�0ng.Property 4: If i > j then �d0n � �dn for all n = 1 : : :N . Similarly, if i < j then �d0n � �dn.Property 5: If i > j then �d0j � �di. Similarly, if i < j then �d0j � �di.3.1.3 Feasibility of the PDD modelWe have assumed so far that the PDD model is feasible, i.e., that there exists a work-conservingscheduler that can meet the constraints of (3.2). However, this is not always possible. Giventhe load distribution and the average backlog of the aggregate tra�c, the PDD model not onlyspeci�es the N -1 delay ratios, but also the N average delays of Equation (3.5). The importantpoint, though, is that there may not exist a work-conserving scheduler that can set the averagedelay of each class to a certain value. Intuitively, the reason is that the average delay of a class(or of any set of classes) has a lower bound due to the inherent load in that class (or set ofclasses). This lower delay bound would result if that class (or set of classes) was given strictpriority over the rest of the tra�c.Formally, given the input rates f�ig and the average backlog �qag of the aggregate tra�cstream, we say that a set of DDPs f�i; i = 2; : : : ; Ng is feasible when there exists a work-conserving scheduler that can set the average delay of each class as in (3.5). So, the set of DDPsf�i; i = 2; : : : ; Ng is feasible when the set of class delays f �di = �i�qag=(PNn=1 �n�n); i = 1; : : : ; Ngis feasible.The necessary and su�cient conditions for the feasibility of a set of N average classdelays, given the N class loads, were derived by Co�man and Mitrani in [26] (see also the follow-up work [69]). Under general assumptions4, a set of N average delays f �di; i = 1; : : : ; Ng is4Most of [26] assumes Poisson arrivals. The particular result that we include here holds, as [26] also states, forgeneral arrival and packet size distributions.



38feasible if and only if the following 2N -2 inequalities hold,Xi2� �i �di � �dSP� Xi2� �i = �qSP� for all� 2 � (3.6)where � is the set of 2N -2 nonempty proper subsets of the set f1; 2; : : :; Ng. �qSP� and �dSP� are theaverage backlog and the average delay, respectively, of the tra�c in the set �, if � was given strictpriority over all other classes. The Co�man-Mitrani inequalities state that any set of classes �has a lower bound on its average backlog and this bound results when the tra�c in � is servicedwith the highest priority in a Strict Priority (SP) scheduler.If all classes have the same packet size distribution, which is also our assumption5,Regnier [88] extended the Co�man-Mitrani results, showing that the necessary and su�cientfeasibility conditions can be reduced from 2N -2 to the following N -1 inequalitiesNXi=k �i �di � �dSPk;N NXi=k �i = �qSPk;N k = 2; : : : ; N (3.7)where �qSPk;N and �dSPk;N are the average backlog �qSP� and average delay �dSP� , respectively, for � =fk; : : : ; Ng. When � = fkg, we simply write �qSPk and �dSPk . Regnier's result imposes a lowerbound on the average backlog of only the N -1 subsets of the k highest classes (k = 1; : : : ; N �1).From (3.7) and (3.5), we can now show that the necessary and su�cient condition forthe feasibility of the PDD model when N = 2 is�d2 = �2�qag�1 + �2�2 � �dSP2 (3.8)with �2 < �1 = 1. Since �qag = �1 �dSP1 + �2 �dSP2 , it is easy to show that the feasibility conditionbecomes �2 � �dSP2�dSP1 or 1�2 � �dSP1�dSP2 (3.9)5Note that this is stronger than assuming that all classes have the same average packet size, required for (3.5).



39
0 10 20 30 40 50 60 70 80 90 100

Percentage of Class−1 traffic 

0

1

10

100

A
ve

ra
ge

 d
el

ay

SP scheduling

Class−1
Class−2

(a) Average delays, u=75% 0 10 20 30 40 50 60 70 80 90 100
Percentage of Class−1 traffic 

0

1

10

100

1000

10000

A
ve

ra
ge

 d
el

ay

SP scheduling

Class−1
Class−2

(b) Average delays, u=95%Figure 12: Average delays with SP as a function of the load distribution.So, a given delay ratio �2 < 1 between Class-2 and Class-1 is feasible if and only if the corre-sponding average delay ratio in the SP scheduler is not higher than �2. Note that the averagedelays of the two classes in SP, and so their ratio, are a function of the input rate �, the loaddistribution (�1; �2), and the aggregate average backlog �qag.When N > 2, the feasibility conditions for the PDD model are the following N � 1inequalities NXi=k �i�i � S�qag NXi=k �i �dSPi k = 2; : : : ; N (3.10)where S =PNi=1 �i�i and �qag =PNi=1 �i �dSPi .To illustrate the feasibility conditions graphically, Figure 12 shows for the case of twoclasses the per-class average delays with SP in two utilization points (u=75% and u=95%) over arange of load distributions. Also, Figure 13 shows the average delay ratios �dSP1 = �dSP2 for the sameload conditions. These graphs resulted from a simulation of the SP scheduler. When u=75%(Figure 13-a) and the load distribution is (�1; �2)=(70,30), the DDP 1=�2=8 is feasible, while theDDP 1=�2=16 is infeasible. On the other hand, if 1=�2=14, the load distribution must be suchthat 0:3 < �1=� < 0:6 in order for the PDD model to be feasible. When u=95% (Figure 13-b),



40
0 10 20 30 40 50 60 70 80 90 100

Percentage of Class−1 traffic 

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 d
el

ay
 r

at
io

SP scheduling

Class−1 / Class−2

(a) Ratios of average delays, u=75% 0 10 20 30 40 50 60 70 80 90 100
Percentage of Class−1 traffic 

0

100

200

300

400

500

600

A
ve

ra
ge

 d
el

ay
 r

at
io

SP scheduling

Class−1 / Class−2

(b) Ratios of average delays, u=95%Figure 13: Average delay ratios with SP as a function of the load distribution.the DDP 1=�2=32 is always feasible, while the DDP 1=�2=100 is only feasible when at least 12%of the tra�c belongs to Class-1.There are two important points shown in Figures 12 and 13. First, for a certain loaddistribution, the higher the utilization is, the larger the ratio �dSP1 = �dSP2 becomes. So, as theutilization becomes higher, the feasible range for the DDP �2 increases. Second, for a certainutilization, the feasible range for �2 decreases as the fraction of Class-1 or Class-2 tra�c tendsto zero. The reason for this e�ect is as follows. When �1 ! 100% (and �2 ! 0%), the averagedelay in Class-1 decreases to the average aggregate delay �dag. The average delay in Class-2, onthe other hand, does not decrease to zero, because it is lower bounded from the (non-preemptive)service time of Class-1 packets. The end-result is that the ratio �dSP1 = �dSP2 decreases, as �1 !100%. Similarly, when �1 ! 0, the average delay in Class-2 increases to �dag. The average delayin Class-1 does not increase to in�nity, because it is upper bounded from the (�nite) duration ofthe Class-2 busy periods. The end-result is that the ratio �dSP1 = �dSP2 decreases, as �1 ! 0.If the number of classes is N > 2, such a graphical interpretation of the feasibilityconditions is not straightforward. One can still use (3.10) to examine numerically if the N -1



41conditions are satis�ed for the given DDPs, load distribution, and aggregate backlog. The majorissue, however, in examining the feasibility of the PDD model in a practical setting is to knowthe average delays �dSPk that would result if a class was serviced with the highest priority by anSP scheduler. If the tra�c does not conform well to a mathematically tractable queueing model,for which the average class delays are known analytically (see [13] for instance), one needs toestimate or measure them experimentally. Most existing routers provide an SP scheduler. So,a network provider can measure the class average delays �dSPk deploying the SP scheduler forshort time intervals in the actual workload. Alternatively, if the SP deployment is consideredharmful due to its starvation e�ects (x2.2), the delays �dSPk can be estimated from emulating anSP scheduler with the actual workload of the link.3.2 Proportional Average Delay (PAD) schedulingAnother way to interpret the PDD model is that the normalized average delays, de�ned as~di = �di=�i, must be equal in all classes, i.e.,~di = �di�i = �dj�j = ~dj 1 � i; j � N (3.11)A scheduler that aims to equalize the normalized average delays among all classes is describednext. We refer to this algorithm as Proportional Average Delay (PAD) scheduling.Let B(t) be the set of backlogged classes at time t, Di(t) be the sequence of Class-ipackets that departed before time t (in order of their departure), and dmi be the delay of them'th packet in Di(t). Assuming that there was at least one departure from class i before t, thenormalized average delay of class i at t is~di(t) = 1�iPjDi(t)jm=1 dmijDi(t)j = 1�i SiPi (3.12)where Si is the sum of queueing delays of all packets in Di(t), and Pi is the number of packetsin Di(t) (or cardinality of Di(t)).



42Suppose that a packet has to be selected for transmission at time t. PAD chooses thebacklogged class j with the maximum normalized average delay at t,j = arg maxi2B(t) ~di(t) (3.13)The packet at the head of queue j is transmitted, after a queueing delay dPj+1j . The variables Sjand Pj are then updated as Sj = Sj + dPj+1j and Pj = Pj + 1, and the new normalized averagedelay ~dj(t) is computed from (3.12).The selection of the maximum ~di(t) term, as in (3.13), requires at mostN -1 comparisons,which is a minor overhead for the small number of classes that we consider here. The maincomputational overhead of PAD is a division, for the calculation of Sj=Pj, after each packetdeparture6. With current commodity microprocessors (� 500MHz), a oating-point divisiontakes less than 100ns (� 50 cycles). This delay would not be an issue for network interfaces ofup to 1Gbps, which transmit a (minimum-size) 40-byte packet in about 320ns. For even fasternetwork interfaces, one can avoid the division operation and compute ~di(t) using an exponentialrunning-average of the form ~di(t) = (1� 2�w) ~di(t) + 2�wdPi+1i =�i, where w is a positive integer.Also, during `cold-start', or when the counters Si and Pi are reset to zero due to an overow,some classes will not have a history of departed packets. The scheduler can then start servicingpackets in a FCFS order, until Pi 6= 0 for all i.The basic idea in PAD is that if a packet is serviced from class j with the maximumnormalized average delay, the delay of that packet will not increase any more (since it is serviced),and thus the increase of Sj due to that packet will be minimized. So, servicing a packet fromclass j tends to reduce the di�erence of ~dj(t) from the normalized average delays of the otherclasses. In the long-run, if the scheduler always minimizes the di�erences between the normalizedaverage delays in this manner, we expect that the normalized average delays will be about thesame. As will be illustrated next, this is the case with PAD when the selected DDPs are feasible.6Obviously, the factor 1=�i can be precomputed and does not require a division. If it is a power of two, it doesnot require a multiplication either.



43
65 70 75 80 85 90 95

Utilization (%)

1

10

100

1000

A
ve

ra
ge

 d
el

ay
 r

at
io

s

PAD scheduling (relative to SP)

Class−1 / Class−2 (SP)
Class−1 / Class−2 (PAD)

(a) 1/�2 = 8 65 70 75 80 85 90 95
Utilization (%)

1

10

100

1000

A
ve

ra
ge

 d
el

ay
 r

at
io

s

PAD scheduling (relative to SP)

Class−1 / Class−2 (SP)
Class−1 / Class−2 (PAD)

(b) 1/�2 = 32Figure 14: Average delay ratios with PAD and SP as a function of the utilization.PAD is an excellent scheduler in terms of meeting the PDD model, when the chosenDDPs are feasible. We were unable to prove that PAD is optimal, in the sense that it can alwaysmeet a set of feasible DDPs. Simulation results, though, have provided us with evidence thatPAD is quite close to such an optimal scheduler.To illustrate this point, Figure 14 shows typical simulation results for N=2 classes. Thetwo graphs show the ratio �d1= �d2 of the average delays with PAD and SP for two DDP selectionsand for a uniform load distribution (�1=�2), as a function of the utilization u. Recall fromEquation (3.9) that in the case of two classes, a given DDP 1/�2 is feasible if and only if it islower than the ratio �d1= �d2 in SP. As shown in Figure 14-a, PAD achieves the speci�ed delay ratio1/�2=8 in all utilization points that this DDP is feasible. The resulting delay ratio is less thaneight only when u <70%, but SP does not lead to a larger delay ratio either, meaning that thisDDP is infeasible in that utilization range. Similarly, in Figure 14-b, PAD achieves the speci�eddelay ratio 1/�2=32 when the utilization is higher than about 80%, which is also when this DDPis feasible. Because PAD can achieve the PDD model when the given DDPs are feasible, at leastbased on our simulation results, we consider PAD as an optimal scheduler for the PDD model.



44
999.5 999.6 999.7 999.8 999.9 1000.0 1000.1 1000.2

Time (/1000)

0

20

40

60

80

100

120

140

160

In
di

vi
du

al
 p

ac
ke

t d
el

ay
s 

up
on

 d
ep

ar
tu

re

PAD scheduling

Class−1
Class−2

(a) Individual delays (1=�2=5) 1000 1100 1200 1300 1400 1500
Time (/1000)

0

4

8

12

16

20

24

A
ve

ra
ge

 d
el

ay
 r

at
io

s 
(p

er
 1

00
00

 p
ac

ke
ts

)

PAD scheduling

Class−1 / Class−3
Class−1 / Class−2

(b) Short-term (K=10000pks) delay ratios(1=�2=4, 1=�3=8)Figure 15: Individual packet delays and short-term delay ratios with PAD.Is PAD also a predictable scheduler however? In order to answer this question we haveto examine the behavior of PAD in short timescales, and check whether higher classes alwaysencounter lower delays. To get a deeper insight on the behavior of PAD in short timescales, Figure15-a shows the queueing delays of individual packets at their departure instant. The utilization inthis simulation is u=90% and the load distribution to (�1; �2) = (70; 30). Note that during mostof the time, the Class-2 packets depart with minor queueing delays. Occasionally though, as itoccurs shortly after time 999.900, some Class-2 packets depart with signi�cantly larger queueingdelays, even larger than the Class-1 delays in the corresponding time frame.Let us analyze in detail what happens in the time period 999.760-999.960. Just before999.760, the Class-2 queue is almost empty and its queueing delays are close to zero. From999.760 to 999.920 (phase-1), ~d2 is less than ~d1, and there are no departures from Class-2. Thearriving Class-2 packets during phase-1 accumulate large waiting times, up to the duration ofthis phase (160 time units), but the normalized average delay ~d2 does not change since thereare no departures from that class. At about 999.920, ~d1 becomes less than ~d2, after servicingexclusively packets of that class during phase-1. From that point and until 999.960 (phase-2),



45all the backlogged Class-2 packets from phase-1 depart back-to-back without interventions fromClass-1 packets. At about 999.960, the two normalized average delays become comparable, andthe scheduler starts servicing packets again in a more uniform manner. This example shows thatbecause PAD is unaware of the waiting times of backlogged packets, it occasionally allows higherclasses to experience much larger queueing delays than their long-term average delays, or thequeueing delays of lower classes. This is a manifestation of unpredictable delay di�erentiationthat should be avoided.It is also instructive to examine the ratios of short-term average delays between classeswith PAD, in relatively short timescales. Figure 15-b shows the ratios of average delays, measuredin every K=10000 successive packet departures, for N=3 classes. The utilization is u=90%, andthe load distribution is (�1; �2; �3)=(50,30,20). Note that PAD does a rather poor job in meetingthe PDD constraints in this short timescale. This should be expected, since PAD attempts toequalize the long-term normalized average delays and not the normalized average delays in thelast K departures. Another important point in this graph is that there are several time periodsin which the ratio �d1= �d2 is larger than the ratio �d1= �d3, meaning that Class-3 experiences higherdelays than Class-2. These are incidents, again, of unpredictable delay di�erentiation. A goodscheduler for the PDD model should not only achieve or closely approximate the constraints of(3.2), but it should also provide predictable delay di�erentiation in short timescales. A schedulerthat emphasizes on this predictability issue is studied next.3.3 Waiting Time Priority (WTP) schedulingThe Waiting Time Priority scheduling algorithm was �rst studied by L.Kleinrock in 1964 [54]under the name Time-Dependent Priorities. A packet is assigned a priority that increases pro-portionally to the packet's waiting time. Higher classes have larger priority-increase factors. Thepacket with the highest priority is serviced �rst (in non-preemptive order). In the following, wedescribe WTP in a di�erent way to highlight its similarities and di�erences with PAD.Suppose that class i is backlogged at time t, and that wi(t) is the head waiting time



46of class i at t, i.e., the waiting time of the packet at the head of class i at t. We de�ne thenormalized head waiting time of class i at t as~wi(t) = wi(t)=�i (3.14)Every time a packet is to be transmitted, the WTP scheduler selects the backlogged class j withthe maximum normalized head waiting time,j = arg maxi2B(t) ~wi(t) (3.15)The similarities with PAD are now obvious. In the same way that PAD chooses forservice the class with the maximum normalized average delay, WTP chooses for service theclass with the maximum normalized head waiting time. PAD attempts to minimize in thismanner the di�erences of the class normalized average delays, while WTP attempts to minimizethe di�erences between the normalized waiting times of successively departing packets. Suppose,hypothetically, that WTP manages to always reduce these di�erences to zero. The queueingdelays of successively departing packets will be then proportional to the given DDPs,dmdm+1 = �c(m)�c(m+1) (3.16)where dm and c(m) are the queueing delay and the class, respectively, of the m-th departingpacket. Of course, this goal is not always feasible. Equation (3.16) shows, though, that WTPattempts to achieve a proportional di�erentiation between the delays of successive packet depar-tures. In terms of scalability and performance, WTP requires at most N -1 comparisons foreach packet transmission, which is a minor overhead for the eight classes or so that we consider.To avoid the multiplication of the waiting time wi(t) with the factor 1/�i, the waiting timecan be increased by 1/�i after each time unit (instead of incrementing it). An implementationrequirement, which also applies to PAD, is that packets have to be timestamped upon arrival



47
999.5 999.6 999.7 999.8 999.9 1000.0 1000.1 1000.2

Time (/1000)

0

20

40

60

80

100

In
di

vi
du

al
 p

ac
ke

t d
el

ay
s 

up
on

 d
ep

ar
tu

re

WTP scheduling

Class−1
Class−2

(a) Individual delays (1=�2=5) 1000 1100 1200 1300 1400 1500
Time (/1000)

2

4

6

8

10

12

14

A
ve

ra
ge

 d
el

ay
 r

at
io

s 
(p

er
 1

00
00

 p
ac

ke
ts

)

WTP scheduling

Class−1 / Class−3
Class−1 / Class−2

(b) Short-term (K=10000pks) delay ratios(1=�2=4, 1=�3=8)Figure 16: Individual packet delays and short-term delay ratios with WTP.so that their delays can be measured; we do not expect this requirement to be an importantdi�culty in practice.WTP is an excellent scheduler in terms of providing higher classes with lower delays inshort timescales. To illustrate the behavior of WTP in short timescales, the two graphs (a) and(b) of Figure 16 show the individual delays of successive packet departures, and the ratios ofshort-term class delays averaged in every K=10000 packets, respectively. To compare WTP andPAD, these graphs refer to the same time interval and the same tra�c stream as the graphs inFigure 15.First, note that in Figure 16-a WTP services the Class-2 packets with lower queueingdelays, even in the shortest timescales of successive packet departures. A more careful exami-nation of that graph also shows that the individual packet delays in Class-2 are approximatelyproportional to the corresponding Class-1 packet delays, and that the proportionality factor isabout �ve, which is the speci�ed DDP (1/�2=5). In other words, as stated in Equation 3.16,WTP attempts to provide proportional delay di�erentiation between successive packet departures,and this objective is closely approximated when the delays are su�ciently large.



48Second, note that in Figure 16-b the correct class ordering is also maintained when thedelays are measured over short timescales, in this graph every K=10000 packets. Figures 22 and23 in the next section, show that this is also true in a wide span of timescales, ranging from afew packets to many thousands of packets. So, with WTP the average queueing delays in higherclasses are smaller than the average delays in lower classes, independent of the location or theduration of the averaging time window. Also note that the measured delay ratios in Figure 16-bvary around the speci�ed DDPs, 1/�2=4 and 1/�3=8, even though the deviations are sometimessigni�cant.In summary, WTP meets the goals that we have set for predictable delay di�erentiation,and it approximates the PDD model in short timescales. Is WTP also controllable, however, andspeci�cally does it meet the PDD constraints of (3.1)?In the special case of Poisson arrivals, we can show analytically that WTP converges tothe PDD model as the utilization approaches 100% (heavy load conditions). The following resultis proved in x7.3.Proposition 3.1: If the packet arrivals in each class are generated from a Poisson distribution,the WTP scheduler meets the PDD model of (3.1) as the utilization u tends to 100%,�dWTPi�dWTPj ! �i�j as u! 1 (3.17)Since the Poisson assumption has been shown to be often invalid in packet networks[82, 116], we have also examined the validity of Equation (3.17) with simulations, using thein�nite-variance Pareto interarrival distribution. The general observation from this empiricalstudy is that WTP meets the PDD model as the aggregate backlog in the PFE �qag tends toin�nity, but not always when the utilization tends to 100%. In the case of Poisson arrivals,the aggregate backlog tends to in�nity as the utilization tends to 100%, which is in agreementwith Proposition (3.1). For other arrival distributions, however, it is not always true that theaggregate backlog tends to in�nity as the utilization increases. In the extreme case that thetra�c is periodic, the aggregate backlog is zero even when the utilization is 100%.



49
60 65 70 75 80 85 90 95 100 105

Utilization (%)

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 d
el

ay
 r

at
io

s

WTP scheduling (relative to PAD)

Class−1 / Class−2 (PAD)
Class−1 / Class−2 (WTP)

q=0.7

q=1.2

q=2.4

q=4.8

q=10.9
q=30.4

q=145.3

q=3845.0

(a) 1/�2 = 8 60 65 70 75 80 85 90 95 100 105
Utilization (%)

0

4

8

12

16

20

24

28

32

36

40

A
ve

ra
ge

 d
el

ay
 r

at
io

s

WTP scheduling (relative to PAD)

Class−1 / Class−2 (PAD)
Class−1 / Class−2 (WTP)

q=1.2

q=2.4

q=4.8

q=10.9

q=30.4

q=145.3

q=3845.0

q=0.7 (b) 1/�2 = 32Figure 17: Average delay ratios with WTP and PAD as a function of the utilization.How close to `in�nity' does the aggregate backlog have to be, though, in order for WTPto closely approximate the PDD model? Figure 17 shows the achieved delay ratios for the caseof two classes and for a uniform load distribution, as a function of the utilization. The tra�cis generated from an in�nite variance Pareto distribution, as described in x7.1. The aggregatebacklog for each utilization point is also shown (denoted by q in the graphs). Note that theaggregate backlog does not depend on the load distribution or on the speci�ed DDPs. Thecorresponding curves for PAD are also shown, for comparison purposes.Figure 17 shows that WTP tends to the PDD model as the utilization approaches 100%and the aggregate backlog increases. For a moderate delay ratio, such as 1/�2=8, the requiredaverage backlog for a close approximation of the speci�ed delay ratio is a few tens of packets.This is not an unusual average backlog for heavily utilized, high-speed links [90]. In order toclosely approximate a more drastic delay di�erentiation with WTP however, such as 1/�2=32,an average backlog of hundreds of packets is needed. This may be impractical, especially whenthere are not enough bu�ers, or when the network operators prefer to drop packets (and so limittheir maximum delay) instead of queueing them for hundreds of packet transmission times. In



50moderate load conditions, say below 85%, WTP shows a large deviation from the PDD model,either because the speci�ed DDP is infeasible (as in Figure 17-b for u �65%), or simply becauseit is not a particularly good scheduler in terms of meeting the long-term average delay ratios ofthe PDD model.To summarize, WTP is an excellent scheduler in terms of providing predictable delaydi�erentiation even in short timescales. It also approximates the PDD model in heavy loadconditions, when the average backlog is su�ciently large for the given DDPs. For lower loadconditions, on the other hand, WTP deviates signi�cantly from the PDD model. In the nextsection, we combine the operation of PAD and WTP, in order to create a hybrid scheduler thatcombines the features of these two schedulers.3.4 Hybrid Proportional Delay (HPD) schedulingAs shown in x3.2, PAD attempts to minimize the di�erences between the normalized averageclass delays. This objective makes PAD capable of meeting the PDD model when the givenDDPs are feasible. WTP, on the other hand, attempts to minimize the di�erences between thenormalized head waiting times. This objective makes WTP capable of approximating the PDDmodel in successive packet departures. As a consequence of this behavior, WTP provides higherclasses with lower delays even in the shortest timescales. Can we combine the operation of thesetwo scheduling algorithms in order to create a scheduler that is both close to the PDD model,when the DDPs are feasible, and also that provides a predictable delay di�erentiation in shorttimescales? This is the objective of the Hybrid Proportional Delay (HPD) scheduling discipline,described next.HPD, just like PAD and WTP, maintains a delay metric for each class i, normalized bythe corresponding DDP �i. Speci�cally, if ~di(t) is the normalized average delay in class i at t,as de�ned in (3.12), and ~wi(t) is the normalized head waiting time in class i at t, as de�ned in



51
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

HPD parameter g

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling

Class−1 / Class−2 (u=95%)
Class−1 / Class−2 (u=75%)(a) 1=�2=8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

HPD parameter g

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling

Class−1 / Class−2 (u=95%)
Class−1 / Class−2 (u=75%)(b) 1=�2=16Figure 18: E�ect of the HPD parameter g on the average delay ratios.(3.14), the normalized hybrid delay in HPD is~hi(t) = g ~di(t) + (1� g) ~wi(t) (3.18)where g is the HPD parameter (0 � g � 1). When a packet is to be transmitted, HPD choosesthe backlogged class j with the maximum normalized hybrid delay,j = arg maxi2B(t) ~hi(t) (3.19)When g is zero HPD becomes equivalent to WTP, while when g is one HPD becomes equivalentto PAD. For other values of g, HPD combines the operation of PAD and WTP resulting in ahybrid behavior. In the following, we examine di�erent aspects of the HPD behavior and compareit with PAD and WTP using simulation results.Choosing a `good' HPD parameter value: Figure 18 shows the e�ect of the HPD parameterg on the ratio of average delays for two classes. In heavy load conditions (u=95%), the selectionof g does not matter much, and the PDD model is closely approximated for practically any g.



52
999.5 999.6 999.7 999.8 999.9 1000.0 1000.1 1000.2

Time (/1000)

0

20

40

60

80

100

In
di

vi
du

al
 p

ac
ke

t d
el

ay
s 

up
on

 d
ep

ar
tu

re

HPD scheduling (g=0.875)

Class−1
Class−2

(a) Individual delays (1=�2=5) 1000 1100 1200 1300 1400 1500
Time (/1000)

0

2

4

6

8

10

12

14

A
ve

ra
ge

 d
el

ay
 r

at
io

s 
(p

er
 1

00
00

 p
ac

ke
ts

)

HPD scheduling (g=0.875)

Class−1 / Class−3
Class−1 / Class−2

(b) Short-term (K=10000pks) delay ratios(1=�2=4, 1=�3=8)Figure 19: Individual packet delays and short-term delay ratios with HPD.The reason is that in heavy load conditions both PAD and WTP meet the PDD model, and sodoes HPD. In lower load conditions (u=75%) though, g needs to be close to one in order forHPD to approximate the PDD model well. Note that the dependency of the delay ratio on g isconvex, meaning that the approximation error decreases faster as g approaches one. Of course,a good value of g has to also take into account the predictability of HPD, which improves as gdecreases and HPD behaves more like WTP.Figure 19 shows the same sample paths of individual delays and short-term delay ratiosfor HPD, as Figure 16 shows for WTP, and Figure 15 shows for PAD. The HPD parameteris set to g=0.875. Comparing carefully the two graphs in Figures 19-a and 16-a shows that,with g=0.875, HPD provides almost indistinguishable results with WTP. Similar experimentsand comparisons of di�erent sample paths for other values of g have shown that a lower valueof g does not add to HPD's predictability. A much higher value of g, on the other hand, largerthan 0.95 or so, causes occasional predictability problems, similar to the PAD behavior shown inFigure 15-a.In summary, we have found that g=0.875 is a `good' value in the trade-o� between the



53
65 70 75 80 85 90 95

Utilization (%)

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling (relative to PAD and WTP)

Class−1 / Class−2 (PAD)
Class−1 / Class−2 (HPD, g=0.875)
Class−1 / Class−2 (WTP)(a) 1=�2=8 65 70 75 80 85 90 95

Utilization (%)

0

4

8

12

16

20

24

28

32

36

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling (relative to PAD and WTP)

Class−1 / Class−2 (PAD)
Class−1 / Class−2 (HPD, g=0.875)
Class−1 / Class−2 (WTP)(b) 1=�2=32Figure 20: Average delay ratios with HPD as a function of the utilization.behaviors of PAD and WTP. In the following, g is set to 0.875 unless stated otherwise. Note that0.875=1-2�3, which also means that the multiplication with g and 1 � g can be replaced withshift and subtract operations.E�ect of the aggregate load on the average delay ratios: Figure 20 shows the e�ect ofthe utilization u on the HPD average delay ratios. Results are shown for two classes, when thespeci�ed delay ratio is either 1=�2=8 or 1=�2=32. The load distribution between the two classesis uniform. For comparison purposes we also show the PAD and WTP curves.As the utilization increases, all three schedulers tend to the speci�ed delay ratios. Thedi�erences between HPD and PAD in heavy load conditions, above 90% or so, are minor. Inmoderate load conditions, between 70% to 90%, HPD is signi�cantly closer to the PDD con-straints than WTP. The largest relative error between HPD and PAD in this operating region isabout 20% in these graphs. This error can be further reduced with a higher HPD parameter, ifthe network operator values the importance of meeting the speci�ed DDPs more than providinga consistent delay ordering between classes in short timescales. In light load conditions, less thanabout 70% or 75%, the PDD model becomes infeasible, and so the PAD scheduler cannot achieve



54the speci�ed delay ratios either.E�ect of the load distribution on the average delay ratios: Figure 21 shows the e�ect ofthe class load distribution on the HPD average delay ratios. Results are shown for four classesand seven class load distributions in light load conditions (u=75%) and in heavy load conditions(u=95%). In Figures 21-a and 21-b the DDPs are: �1=�2 = �2=�3 = �3=�4=2, i.e., each classshould have a twice as large average delay than the next higher class. In Figures 21-c and 21-d,on the other hand, the required delay di�erentiation is set to a factor of four between successiveclasses, i.e., �1=�2 = �2=�3 = �3=�4=4.Ideally, HPD should meet the PDD model independent of the class load distribution.The �rst set of DDPs (�i=�i+1=2, i=1,2,3) is feasible in both load conditions, because PAD (notshown here) can meet the PDD model. In moderate load conditions (Figure 21-a), HPD closelyapproximates the speci�ed delay ratio between successive classes, and the deviations from thePDD model are less than 10%. In heavy load conditions (Figure 21-b), HPD accurately meetsthe speci�ed delay ratios in all load distributions.The second set of DDPs (�i=�i+1=4, i=1,2,3) is infeasible when u=75%, because PADcannot meet the PDD model. Since the DDPs are infeasible in that case (Figure 21-c)7, HPDexhibits large deviations from the speci�ed PDD model; it is noted that PAD exhibits similardeviations. In heavy load conditions (Figure 21-d), on the other hand, the DDPs are feasibleand HPD manages to closely approximate the PDD model without any signi�cant deviations. Ingeneral, HPD manages to closely approximate the PDD model, when it is feasible, independentof the class load distribution. The approximation errors increase as the utilization decreases, andas the required delay di�erentiation between classes becomes more extreme.Delay di�erentiation with HPD and WTP in short timescales: In evaluating the pre-dictability of a scheduler, our primary focus is to examine whether higher classes encounter lowerdelays in all timescales. It has already been illustrated in the previous graphs that HPD provideshigher classes with lower delays, but only in terms of long-term averages. Is the delay ordering7The class load distributions in this graph are as in the graph of Figure 21-d.



55
Class load distribution (1/2/3/4)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling 

Class−1 / Class−2 
Class−2 / Class−3 
Class−3 / Class−4

40
/4

0/
10

/1
0

10
/4

0/
40

/1
0

10
/1

0/
40

/4
0

40
/1

0/
10

/4
0

10
/4

0/
10

/4
0

40
/1

0/
40

/1
0

25
/2

5/
25

/2
5(a) �i=�i+1=2, u=75% Class load distribution (1/2/3/4)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling 

Class−1 / Class−2 
Class−2 / Class−3 
Class−3 / Class−4

40
/4

0/
10

/1
0

10
/4

0/
40

/1
0

10
/1

0/
40

/4
0

40
/1

0/
10

/4
0

10
/4

0/
10

/4
0

40
/1

0/
40

/1
0

25
/2

5/
25

/2
5(b) �i=�i+1=2, u=95%

Class load distribution (1/2/3/4)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling 

Class−1 / Class−2 
Class−2 / Class−3
Class−3 / Class−4(c) �i=�i+1=4, u=75% Class load distribution (1/2/3/4)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

 d
el

ay
 r

at
io

s

HPD scheduling 

Class−1 / Class−2
Class−2 / Class−3 
Class−3 / Class−4

40
/4

0/
10

/1
0

10
/4

0/
40

/1
0

10
/1

0/
40

/4
0

40
/1

0/
10

/4
0

10
/4

0/
10

/4
0

40
/1

0/
40

/1
0

25
/2

5/
25

/2
5(d) �i=�i+1=4, u=95%Figure 21: Average delay ratios with HPD as a function of the load distribution.



56
1 10 100 1000 10000

Averaging timescale K (# of successive packets)

0

1

2

3

4

5

6

7

8

9

10

11

12

A
ve

ra
ge

 d
el

ay
 r

at
io

WTP scheduling

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile(a) WTP, 1/�2=8 1 10 100 1000 10000

Averaging timescale K (# of successive packets)

0

1

2

3

4

5

6

7

8

9

10

11

12

A
ve

ra
ge

 d
el

ay
 r

at
io

HPD scheduling (g=0.875)

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile(b) HPD, 1/�2=8Figure 22: Percentiles of the average delay ratios with WTP and HPD as a function of theaveraging timescale K (u=95%).between classes, however, also met in short timescales?Figures 22 and 23 investigate the delay di�erentiation that HPD and WTP produce inshort timescales of di�erent length. The graphs in these two �gures show �ve percentiles of thedistribution of delay ratios between two classes, when the delay ratios are measured in successivetime windows of K packet departures. K determines the timescale in which we measure theclass delays and compute their ratio. In these experiments, K ranges from successive packetdepartures (K=2) to several thousands of packet departures (K=10000). The �ve percentilesshown give a comprehensive view of the distribution of the resulting delay ratios, providing themedian delay ratio (50th percentile), the 25th and 75th percentiles, as well as two tail delay ratios(10th and 90th percentiles). Note that when there are no packet departures from both classes ina time period of K packet departures, a delay ratio is not measured. Also, the duration of thesimulation runs is adjusted so that we get approximately the same number of delay ratios forall values of K. In both �gures, the speci�ed DDP is �2=1/8 and the class load distribution isuniform.



57
1 10 100 1000 10000

Averaging timescale K (# of successive packets)

0

4

8

12

16

20

24

28

32

36

A
ve

ra
ge

 d
el

ay
 r

at
io

WTP scheduling

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile

(a) WTP, 1/�2=8 1 10 100 1000 10000
Averaging timescale K (# of successive packets)

0

4

8

12

16

20

24

28

32

36

A
ve

ra
ge

 d
el

ay
 r

at
io

HPD scheduling (g=0.875)

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile

(b) HPD, 1/�2=8Figure 23: Percentiles of the average delay ratios with WTP and HPD as a function of theaveraging timescale K (u=80%).Figure 22 shows the results of these experiments in heavy load conditions (u=95%). Asshown, the resulting distributions of delay ratios are quite narrow, centered around the speci-�ed DDPs �1=�2=8, in both HPD and WTP. This means that in heavy load conditions, HPDinherits the excellent predictability of WTP, i.e., it provides lower delays to higher classes, andit approximates closely the PDD model. This behavior is consistent in a range of timescales,from successive departures to several thousands of packet departures. In Figure 23, on the otherhand, the utilization is u=80%, and the load is moderate. In this case, the HPD delay ratiodistributions are signi�cantly more spread than the WTP distributions. Additionally, the HPDdistributions are not centered exactly around the speci�ed �1=�2=8, but they indicate slightlyhigher delay ratios. Even if HPD does not approximate the PDD model as closely as WTP doesin moderate or low load conditions, however, it still provides lower delays to the higher class,and so it produces predictable delay di�erentiation.A summary of the previous simulation study follows. In heavy load conditions, above 90%or so, both PAD and WTP meet the PDD model, and so does HPD. In lower loads conditions,HPD is closer to the PDD model than WTP, but it does not achieve the optimal behavior



58of PAD. HPD closely approximates the PDD model, when it is feasible, independent of theclass load distribution. The approximation errors increase as the utilization decreases, and asthe required delay di�erentiation between classes becomes more extreme. HPD does not havethe predictability problems that PAD has. This means that HPD manages to provide lowerdelays to higher classes even in short timescales, ranging from successive packet departures toseveral thousands of packet departures. HPD, however, does not perform as well as WTP inapproximating the PDD model in short timescales when the load conditions are moderate orlow.3.5 Related work on delay di�erentiationIn this section, we review other scheduling algorithms for relative or proportional delay di�eren-tiation model. We start with the family of link sharing schedulers, showing that they can providecontrollable delay di�erentiation, but they are too sensitive to class load distribution changes.The next two schedulers, ADD and BPR, were presented in our original publications on delaydi�erentiation ([30] and [31]). The �nal part of this section presents recent contributions madeby other researchers, extending our work on proportional delay di�erentiation.3.5.1 Link sharing schedulersSeveral packet schedulers aim to provide each class with a minimum bandwidth share of the link'scapacity. Examples of such schedulers are the packet-based approximations of GPS (x2.2) suchas WFQ [29], as well as the Class Based Queueing (CBQ) [44] and Hierarchical Packet FairQueueing (H-PFQ) [7] link sharing schedulers. These mechanisms were developed in the linksharing context, where di�erent organizations or users are guaranteed a certain fraction of alink's capacity, sharing any available excess bandwidth. The link sharing schedulers have beenalso proposed for providing relative delay di�erentiation. For example, Heinanen suggests theuse of such a scheduler to implement the Olympic service model, which consists of the `Gold',`Silver', and `Bronze' classes [48].



59
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Class−1 WFQ weight w1 (w2=1−w1)

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 d
el

ay

WFQ sceduling 

Class−1
Class−2Figure 24: Average delays with a two-class WFQ scheduler as a function of the weight w1.To illustrate the use of link sharing weights as di�erentiation knobs, Figure 24 showsthe resulting average delays for a two-class WFQ scheduler8 , as a function of the Class-1 weightw1. The weight of Class-2 is �xed to w2=1-w1. The utilization is set to u=90% and the loaddistribution is uniform, i.e., (�1; �2)=(50,50). When w1 = w2, WFQ behaves as a First-ComeFirst-Serve (FCFS) scheduler and it provides the same average delay to each class. When w1 = 0WFQ behaves as a Strict Priority (SP) scheduler that services Class-2 as the high priority class.For a more moderate di�erentiation, w1 � 0.475 makes the average delay in Class-1 about twiceas large as in Class-2, while w1 � 0.40 makes the average delay in Class-1 about ten times largerthan in Class-2. This example shows that WFQ is a controllable delay di�erentiation scheduler.A drawback of the link sharing schedulers is that slight changes in the class load distribu-tion a�ect dramatically the resulting delay di�erentiation. Figure 25 shows short-term averagedelays in a three-class WFQ scheduler, measured in every K=10000 packet departures. TheWFQ weights are selected as (w1; w2; w3)=(0.5,0.35.,0.3) so that, when the load distribution is(�1; �2; �3)=(50,30,20), the average delay in Class-1 is about 50, in Class-2 about 20, and inClass-3 about 7 time units. In Figure 25-a, notice that the selected WFQ weights create a pre-dictable delay di�erentiation, providing the maximum delays to Class-1 and the lowest delays toClass-3.8In the context of this discussion, the di�erences between GPS, WFQ, and the other implementations of GPSare not important.



60
1000 1100 1200 1300 1400 1500

Time (/1000)

0

40

80

120

160

200

A
ve

ra
ge

 d
el

ay
s 

(p
er

 1
00

00
 p

ac
ke

ts
)

WFQ scheduler

Class−1
Class−2
Class−3

(a) (�1; �2; �3)=(50,30,20) 1000 1100 1200 1300 1400 1500
Time (/1000)

0

50

100

150

200

250

A
ve

ra
ge

 d
el

ay
s 

(p
er

 1
00

00
 p

ac
ke

ts
)

WFQ scheduler

Class−1
Class−2
Class−3

(b) (�1; �2; �3)=(40,35,25)Figure 25: Average delays with a three-class WFQ scheduler in two slightly di�erent load distri-butions.If, however, only 10% of the Class-1 tra�c moves to Class-2 and Class-3, leading to theload distribution (�1; �2; �3)=(40,35,25), the class ordering is violated, causing the maximumdelays for Class-2 and the minimum delays for Class-1 (see Figure 25-b). Obviously, such a`priority inversion' between the o�ered classes would be unacceptable for the higher class users.This example illustrates that link sharing schedulers are quite sensitive to changes in the classload distribution. One way to deal with this problem is to dynamically adjust the link shareweights based on the current class loads; this is the basic idea behind the following scheduler.3.5.2 Backlog Proportional Rate (BPR) schedulingBPR is a dynamic version of GPS (x2.2), in which the class weights are dynamically adjustedbased on the instantaneous class loads. Speci�cally, let ri(t) be the service rate that is assignedto queue i at time t. For two backlogged queues i and j, the service rate allocation in BPRfollows the proportional constraint: ri(t)rj(t) = �j�i qi(t)qj(t) (3.20)



61where qi(t) is the backlog of queue i at time t. If the queue i is empty at time t, ri(t) = 0.The sum of the assigned service rates PNi=1 ri(t) must be equal to the link capacity C when thescheduler is busy. We �rst studied BPR in [31].The main �nding of [31] is that BPR approximates the PDD model of Eq 3.2 underheavy load conditions. This asymptotic result can be explained informally as follows. In heavyload conditions, all BPR queues are almost always backlogged, due to the `simultaneous queueclearing' property stated and proved in [31]. So, if we write (3.20) in terms of averages and useLittle's law �q = � �d, we have that: rirj = �j�i �qi�qj = �j�i �di�i�dj�j (3.21)where ri is the average output (service) rate in class i. In steady-state and lossless conditions,however, the output rates ri are equal to the input rates �i (ri = �i), and so BPR tends to thePDD constraints, �dBPRi�dBPRj = �di�dj = �i�j (3.22)Even though BPR tends to the PDD model, [31] showed that it does not do so as well as WTP.Speci�cally, the deviations from the PDD model for the same load conditions are higher, andthe delay ratios in short timescales have a wider distribution. In addition, BPR su�ers fromthe simultaneous queue clearing property, according to which all queues in a BPR busy periodbecome empty at the same time. This e�ect causes occasional delay bursts in the high classpackets.3.5.3 Additive Delay Di�erentiation (ADD)ADD is a non-preemptive priority scheduler in which the priority of the packet at the head ofqueue i at time t is pi(t) = wi(t) + si (3.23)



62where wi(t) is the waiting time of that packet at time t, and 0 < s1 < s2 < : : : < sN are theADD parameters. Note that ADD is similar to WTP, with the di�erence that the priority of apacket does not increase proportionally with its waiting time, but additively. We �rst presentedADD in the context of relative delay di�erentiation in [30] and [31].The ADD scheduler was also presented in [13], together with the following expressionfor the average queueing delay of class i in heavy load conditions, assuming Poisson arrivals andthat all classes have the same average packet size,�di = �d0=(1� �) � Pq NXk=1�k(si � sk) (3.24)Pq here is the probability that an arriving packet has to wait in the queue, and �d0 is the meanremaining service time of the packet that is being transmitted when a new packet arrives. Asthe utilization u tends to 100% (� ! C=1), Pq tends to one, and we can show that the ADDscheduler tends to the following additive delay di�erentiation,�di � �dj ! sj � si (3.25)The heavy load result of Equation 3.25 appears to hold even with non-Poisson arrivals. Figure26 shows the short-term average delays and delay di�erences, averaged every K=100 packets,for three classes, with Pareto distributed interarrivals. The utilization in this simulation runis set to 95%, the load distribution to (�1; �2; �3) = (50,30,20), while the two graphs showncover the same time window. Note that when the queueing delays are adequately large, thedelay of Class-1 packets is about 50 time units larger than the delay of Class-2 packets andabout 100 time units larger than the delay of Class-3 packets. This di�erentiation matches thecorresponding di�erences of the ADD parameters: s3-s2=50 and s3-s1=100, as stated in (3.25).On the other hand, when the delays are not adequately large, the delay di�erences are less thanwhat is speci�ed, implying that the ADD parameters are infeasible during those time periods.We mention the ADD scheduler and the additive di�erentiation model here, as an in-teresting case of another relative di�erentiation model that deserves further investigation in the



63
1990 1992 1994 1996 1998 2000

Time (/1000)

0

50

100

150

200

250

300

A
ve

ra
ge

 d
el

ay
s 

(p
er

 1
00

 p
ac

ke
ts

)

ADD scheduling

Class−1
Class−2
Class−3

(a) (s1; s2; s3)=(0,50,100) 1990 1992 1994 1996 1998 2000
Time (/1000)

0

25

50

75

100

125

150

175

200

D
el

ay
 d

iff
er

en
ce

s 
(p

er
 1

00
 p

ac
ke

ts
)

ADD scheduling

Class−1 − Class−3
Class−1 − Class−2

(b) (s1; s2; s3)=(0,50,100)Figure 26: Short-term (K=100pks) average delays and delay di�erences in ADD.future.3.5.4 Recent contributions on proportional delay di�erentiationThe WTP scheduler received further attention in [59]. The authors, starting from Kleinrock'sresult [54] on the average class delays in WTP (see Equation 7.8), derived the feasible loaddistribution range for a given set of DDPs. They also proposed a numerical method for calculatingthe scheduling weights (when N >2), so that WTP can achieve a feasible set of DDPs for anygiven load conditions. For N=2, they showed that WTP can achieve a DDP �2 only when theutilization is u > 1� �2. Also, given a DDP �2, the WTP proportional priority-increase factorsshould be chosen as b1 = 1 for Class-1, and b2 = u=(u� 1 + �2) for Class-2. The results of [59],however, are only valid in the case of Poisson arrivals, since the WTP analysis by Kleinrock wasbased on that assumption.Another scheduler for proportional delay di�erentiation, calledMean-Delay Proportional(MDP), was proposed in [72]. MDP is similar to HPD, in the sense that it also chooses for serviceat time t the class with the maximumnormalized `delay' metric ~Di(t). The delay metric in MDP,



64though, is ~Di(t) = 1�i Si + 1=2Qi(1 +Qi)Pi + Qi (3.26)where Si and Pi are de�ned as in PAD (x3.2), and Qi is the number of backlogged packets inclass i at t. For a unit packet size and transmission rate, the term 1=2Qi(1+Qi) is a lower boundon the cumulative delays that the backlogged packets in class i at t will experience before beingserviced. In other words, the average delay metric in MDP takes into account both the previouslydeparted packets (through Si and Pi), and also all the currently backlogged packets. Note that asthe history of departing packets develops (and Pi increases), the e�ect of the currently backloggedpackets diminishes (because Qi � Pi), and gradually the scheduler behaves in the same way asPAD. The authors of [72] mention a number of heuristics that can be applied to MDP, such asperiodic re-initialization of the counters Si and Pi, or computation of the average class delaysin �xed-length time windows, but they do not give details on how these heuristics a�ect thescheduler's behavior.[70] and [60] proposed two proportional delay schedulers (called Proportional QueueControl Mechanism (PQCM) and Dynamic Weighted Fair Queueing (D-WFQ), respectively)which are based on the GPS rate allocation mechanism (x2.2). Both schedulers adjust the GPSweights periodically, say every � seconds, based on the measured class backlogs and input rates,attempting to achieve proportional average delay di�erentiation in the next window of � seconds.PQCM uses the instantaneous backlogs to adjust the weights, while D-WFQ uses exponentialaveraging estimators for the computation of the backlogs and input rates. Note that PQCM andD-WFQ are similar to BPR, but with an important di�erence. BPR adjusts the weights aftereach packet departure, and so it is not based on a �xed window �. PQCM and D-WFQ, on theother hand, perform the rate adjustments periodically, and so they introduce a feedback loopin the network, according to which the future service rates depend on the input rates over aprevious time interval. This feedback loop in the network can interact with the feedback loop inthe applications or users, when the latter attempt to dynamically choose an acceptable class. Ifthe delay � in the PQCM or D-WFQ feedback loop is comparable to the delay of the dynamicclass selection process, the two feedback loops may interact causing instability e�ects. This issue



65is further discussed in the context of Dynamic Class Selection (DCS) in x5.5.Other researchers proposed di�erent relative di�erentiation models than the PDD modelof x3.1, and studied scheduling mechanisms that can implement them. For instance, [95] proposedthe Local Optimal Proportional Di�erentiation (LOPD) scheduler, which attempts to provideproportional average delay di�erentiation in each busy period, assuming that there will be nofurther arrivals after each packet departure. LOPD is optimal for this di�erentiation objective of[95]. [10] extended the PDD model in the direction of deadline violation probabilities, proposinga scheduler that aims for proportional delay violation probabilities among classes. The scheduleris similar to Earliest Due Date (EDD), but the deadlines are dynamically adjusted based on thefraction of packets that missed their deadline in each class. Finally, [61] proposed a Joint Bu�ermanagement and Scheduling (JoBS) mechanism which determines both the scheduling order andthe packet drop decisions. JoBS can be used for both relative and absolute services. The basicidea is that JoBS makes a prediction after every packet arrival for the delays of the backloggedtra�c, and modi�es the service rates so that all QoS constraints are met. If this is not possible,some packets are dropped.3.6 Summary and extensionsOur objective in this chapter was to apply the general model of proportional di�erentiation inthe context of queueing delays. In the �rst part of the chapter, we proposed and studied theProportional Delay Di�erentiation (PDD) model. The PDD model controls the ratios of theaverage queueing delays between classes based on the speci�ed Delay Di�erentiation Parameters(DDPs). Starting from the PDD model, we derived the average queueing delay in each class givena class load distribution, showed certain dynamic properties for the class delays in PDD, andstated the conditions under which the PDD model is feasible. The feasibility model of the modelcan be determined from the average delays that result with the Strict Priorities (SP) scheduler.In the second part of the chapter, we designed three schedulers for the PDD model. TheProportional Average Delays (PAD) scheduler appears to always meet the PDD model when it



66is feasible, and so we conjecture that PAD is optimal. PAD, however, exhibits unpredictablebehavior in short timescales. The Waiting Time Priorities (WTP) scheduler, on the other hand,approximates the PDD model closely even in short timescales, but only in heavy load conditions.A third scheduler, called Hybrid Proportional Delays (HPD), combines the operation of PAD andWTP. Our simulation study showed that, in heavy load conditions, above 90% or so, both PADand WTP meet the PDD model, and so does HPD. In lower loads conditions, HPD is closer to thePDD model than WTP, but it does not achieve the optimal behavior of PAD. HPD approximatesthe PDD model closely, when it is feasible, independent of the class load distribution. Also, HPDmanages to provide predictable delay di�erentiation (i.e., lower delays to higher classes) even inshort timescales. HPD, however, does not perform as well as WTP in approximating the PDDmodel in short timescales, when the load conditions are moderate or low.Our focus throughout this study was on the design of scheduling algorithms that canachieve controllable and predictable delay di�erentiation, rather than on the analysis of these al-gorithms. Consequently, in several points our conclusions are based on empirical evaluation usingsimulations. Future work can pursue a more mathematical treatment of these schedulers, possi-bly making some simplifying assumptions on the tra�c model or on the algorithms themselves.Speci�cally, the following issues deserve further investigation.� The feasibility conditions for the PDD model can probably be analyzed in greater depthfor the general case of N > 2. If the SP delays �dSPk are known for a certain tra�c model,one can derive the feasible space of DDPs given the load distribution, or determine thefeasible load distribution space given a certain set of DDPs. [59] focused on this problemassuming Poisson arrivals, but for the WTP scheduler instead of the general PDD model.� It is likely that the PAD scheduler can be proven to be optimal in meeting the PDD modelwithin a certain family of scheduling algorithms. This family would probably include allwork-conserving schedulers that do not make decisions based on future arrivals (causality)and that service each class in a FCFS manner. This issue deserves further investigation.� We proved that WTP tends to the PDD model for the case of Poisson arrivals. It is likely



67that in heavy load conditions this assumption is not required, as long as the aggregateaverage backlog tends to in�nity. It is also likely that in heavy load conditions WTPnot only achieves the PDD model, but it also provides proportional delay di�erentiation insuccessive packet departures, at least in an average sense (i.e., averaging over all successivelydeparting packet pairs).



68Chapter 4Proportional Loss Di�erentiationThe subject of this chapter is the loss di�erentiation between tra�c classes, and the related bu�ermanagement and packet dropping problem. We �rst propose the Proportional Loss Di�erentia-tion (PLD) model as a means for controllable and predictable loss rate di�erentiation. The PLDmodel is similar in several aspects to the PDD model, such as the model formulation and objec-tives. There are also some important di�erences however, that become apparent in the design ofdropping algorithms for the PLD model. We propose and evaluate two Proportional Loss Rate(PLR) algorithms. The two droppers, PLR(1) and PLR(M), di�er in the interval over which theloss rates are measured and proportionally adjusted. This di�erence causes a trade-o� betweenthe two droppers in terms of their implementation complexity, accuracy in meeting the PLDconstraints, and adaptability to varying class load distributions. We also examine the couplede�ect of delay and loss rate proportional di�erentiation on the throughput of bulk-transfer TCPconnections. The chapter closes with a review of other bu�er management and packet droppingalgorithms in the context of relative or proportional loss di�erentiation.4.1 Proportional Loss Di�erentiation (PLD) modelThe lossless model of a Packet Forwarding Engine (PFE) was described in x3.1. In that model,a FCFS packet queue is maintained for each of the N classes of service. The N queues sharethe same pool of packet bu�ers, that in x3.1 was assumed to be unlimited. A scheduler, whichis one of the PFE modules, determines the order in which packets are selected for transmission,providing a certain delay di�erentiation between classes. In this section, we extend the PFE



69
Input Output

N Packet Queues

Proportional
Delay

Scheduler
S

Loss Rate
Proportional

Dropper
D

Drop signal
(B buffers)
B

Backlog
ControllerFigure 27: The lossy model of a Packet Forwarding Engine (PFE).model to capture the possibility of packet losses, imposing a limit B on the number of availablepacket bu�ers in the PFE.Packet losses occur in a PFE mainly for two reasons. First, occasionally packets arrivein such a bursty manner that the PFE does not have an adequate amount of bu�ers to storethem. The bu�er manager in the PFE is then forced to drop some of the arriving or backloggedpackets. Such `memory overow' losses can be reduced by adding more bu�ers. Increasing thenumber of bu�ers, though, can make the queueing delays encountered by some packets excessive.For this reason, network operators often prefer to limit the number of bu�ers in a PFE and dropsome packets, rather than transferring them too late.The second cause of packet drops is related to the reactive nature of TCP tra�c, whichis the dominant part of the Internet workload today [112]. Roughly speaking, the TCP protocolreacts to a packet drop by reducing the transmission rate of the sender by a factor of two.Making use of this TCP behavior, routers can decrease the input rate to the PFE by droppingsome packets, notifying the corresponding TCP senders in this manner that they should reducetheir rates. This technique is called active bu�er management [68] and it has several advantages,especially when the tra�c workload consists of bulk-transfer TCP connections [43].The lossy PFE model that we consider is shown in Figure 27. In addition to the N



70packet queues and the scheduler S, the model includes two more modules, the backlog controllerB and the dropper D. The backlog controller B determines the time instants that a packet shouldbe dropped, either because there is no available bu�er, or because the PFE uses an active bu�ermanagement mechanism. When a packet has to be dropped, the backlog controller signals thedropper to select the backlogged class that the packet should be dropped from. Consequently, Bdetermines the aggregate amount of losses, as well as the time instants that losses occur in thePFE, while D determines the distribution of losses between classes, i.e., the loss di�erentiation.Note that the total number of bu�ers B is a parameter of the backlog controller.The simplest type of backlog controller is called Drop-Tail and it signals a packet dropwhen there is no available bu�er to store an arriving packet. More sophisticated algorithms, suchas RED [43] and its variations [39, 78], are examples of other backlog controllers. An example ofa simple dropper is the Last-In First-Out (LIFO) algorithm, which removes the last packet thatentered the PFE, independent of its class. LIFO corresponds to the FCFS scheduler (x3.1), sinceboth schemes do not discriminate between classes. An important dropper is the Strict Priority(SP) algorithm, which removes the packet from the tail of the lowest priority backlogged class.The SP dropper corresponds to the SP scheduler (x3.1), since both schemes create the strongestpossible discrimination in favor of higher classes. As will be discussed later in this section, theSP dropper is directly related to the feasibility of the PLD model.The assumptions stated in x3.1 for the lossless PFE model, namely that the scheduleris work-conserving and non-preemptive, and that the packet size distribution is the same inall classes, also hold for the lossy model of this section. In addition, we make the followingassumptions. First, a backlogged packet requires one PFE bu�er independent of the packet size.This assumption simpli�es the PFE model, because an arriving packet can cause only one packetdrop. It is not a requirement, though, for the correct operation of the droppers proposed in x4.2.Second, we assume that the dropper can perform pushout, i.e., to drop a packet that isalready backlogged, as opposed to drop arriving packets only. In the past, it was often assumedthat pushout is hard to implement in high-speed links [55]. Recently, however, it has been shownwith actual implementations of high-performance routers that pushout can be e�cient [19, 108],



71when packets are removed from the head or the tail of the class queues.Third, we consider droppers that remove packets from the tail of the class queues. Eventhough removing packets from the head of a queue leads to lower average queueing delays [122],this optimization would make the delay di�erentiation between classes dependent not only onthe scheduler S, but also on the dropping algorithm D; we chose to avoid this complication.Fourth, we limit our attention to a Drop-Tail backlog controller. The Drop-Tail backlogcontroller that we consider forces the drop of a backlogged packet when a packet arrives, if thenumber of backlogged packets is equal to the number of bu�ers B. This is a necessary assumptionfor the loss-related conservation law and the dynamics or feasibility of the PLD model, that follownext. It is not a requirement though, for the correct operation of the droppers in x4.2.The loss-related performance metric that the di�erentiation is based on is the averageloss rate, or simply the loss rate. The loss rate �li in class i is de�ned as the fraction of class ipackets that have been dropped in the PFE. So, ifDi packets have been dropped out of Ai arrivalsin class i, the loss rate �li is Di=Ai. Similarly, the aggregate loss rate �lag in the PFE is de�ned asthe fraction of arrived packets that have been dropped in the PFE, independent of their class,i.e., �lag = D=A = PiDiPi Ai . Another loss-related performance metric is the fraction of droppedbytes, instead of packets, but this metric is not as commonly used in practice.The Proportional Loss Di�erentiation (PLD) model states that the loss di�erentiationbetween classes has to follow certain proportional constraints, independent of the aggregate loador the class load distribution. These proportional constraints are controlled with parametersthat the network operator speci�es. Formally, the PLD model requires that the ratio of lossrates between two classes i and j is set to the ratio of the corresponding Loss Di�erentiationParameters (LDPs), �li�lj = �i�j 1 � i; j � N (4.1)where �1 > �2 > : : : > �N > 0 are the LDPs. As in the PDD model, we choose Class-1 to bethe `reference class' and set �1=1. Then, the PLD model requires that the loss rate in each class



72i is a certain fraction �i of the loss rate in Class-1, i.e.,�li = �i �l1 i = 2 : : :N (4.2)independent of the aggregate PFE load, or the class load distribution.Before studying the PLD model further, we need to revise the PDD model of x3.1 in thelossy PFE model of this section. The PDD model was stated in x3.1 assuming no losses. In thelossy PFE model that we consider here, we have to distinguish between the o�ered rate �oi andthe accepted rate �ai in class i. If �li is the loss rate in class i, the accepted rate is the fraction ofthe o�ered rate that corresponds to serviced (i.e., non-dropped) packets,�ai = (1� �li)�oi i = 1 : : :N (4.3)Since packets are dropped only from the tail of the queues, the dropped packets do not a�ect thedelay distribution of serviced packets [122]. So, if �di is the average queueing delay of the servicedpackets in class i, the PDD model is still stated as in (3.1), while the conservation law of (3.3)becomes NXi=1 �ai �di = �qag (4.4)assuming the same average packet size �L=1 in all classes. The average delay in class i is�di = �i �qagPNn=1 �n�an i = 1 : : :N (4.5)The delay dynamics and the feasibility conditions for the PDD model are similarly modi�ed inthe lossy PFE model. In the following, when we refer to a class rate �i we mean the o�ered rate�oi .



734.1.1 Per-class loss rates in the PLD modelSimilar to the conservation law for the class average delays (4.4), a conservation law also holdsfor the class loss rates. The loss rate conservation law states that, given the assumptions in theprevious paragraph, for any dropper D that causes a loss rate �li in class i we must have thatNXi=1 �i �li = � �lag (4.6)where �lag is the aggregate loss rate in the PFE with a LIFO dropper (or with any other dropper)[63]. The conservation law implies that even though a dropper D can a�ect the relative magnitudeof the class loss rates, making the loss rate in one class lower than the loss rate in another class,this is a `zero-sum' game because the weighted sum of (4.6) has to be equal to the loss rate �lagof the aggregate tra�c stream. Note that �lag is independent of the class that packets belong to,and thus, of the scheduler S or the dropper D. The aggregate loss rate �lag depends only on thearriving tra�c stream, on the aggregate backlog controller B (and so, on the number of bu�ersB), and on the link capacity C.From the PLD model of (4.1) and the loss rate conservation law (4.6), it is easy to showthat the loss rate in each class i is�li = �i �lagPNn=1 �n�n i = 1 : : :N (4.7)which is of the same form as (4.5) for the average delay in each class. Equation (4.7) shows thateven though the PLD model consists of N -1 relative constraints on the class loss rates, the lossrate in each class is uniquely determined when the PLD model is applied to a tra�c stream witha certain load distribution f�ig and a certain aggregate loss rate �lag.4.1.2 Loss rate dynamics in the PLD modelBased on Equation (4.7), we can state the following properties for the loss rate dynamics in thePLD model. The proofs of these properties follow similar derivations with the proofs of the delay



74dynamics in the PDD model (see x3.1.2 and x7.2), and they are not included here.Property 6: Increasing the input rate of a class, increases (in the wide sense) the loss rate ofall classes.Property 7: Increasing the rate of a higher class causes a larger increase in the class loss ratesthan increasing the rate of a lower class.Property 8: Decreasing the loss di�erentiation parameter of a class decreases (in the widesense) the loss rate of that class, and increases (in the wide sense) the loss rate of all otherclasses. Suppose that the class load distribution changes from f�ng to f�0ng, with �0i = �i � �,�0j = �j + �, and �0k = �k for all k 6= i; j (� > 0). Let �l0n be the loss rate in class n when the classload distribution is f�0ng.Property 9: If i > j then �l0n � �ln for all n = 1 : : :N . Similarly, if i < j then �l0n � �ln.Property 10: If i > j then �l0j � �li. Similarly, if i < j then �l0j � �li.4.1.3 Feasibility of the PLD modelAs was the case in the PDD model, the PLD model may not be always feasible. Given the loaddistribution and the aggregate loss rate, the PLD model does not only specify N -1 loss rateratios, but it also speci�es the N loss rates of Equation (4.7). It may not be possible, though,to enforce a certain loss rate in each class. To see why, suppose that the dropper attempts toprovide a very low loss rate to a class k. It can happen, though, that the only backlogged classk at the drop time instants is class k, and so the dropper will be forced to drop only class kpackets. This scenario shows that the loss rate in class k cannot be arbitrarily manipulated.Formally, given a tra�c stream with class rates f�ig, a certain number of bu�ers B ina Drop-Tail backlog controller, an aggregate loss rate �lag , and a particular scheduler S, we say



75that a set of LDPs f�i; i = 2 : : :Ng is feasible if there exists a dropper D that can set the lossrate in each class as in (4.7). So, the set of LDPs f�i; i = 2 : : :Ng is feasible if and only if theset of loss rates f�li = �i�lag=(PNn=1 �n�n); i = 1 : : :Ng is feasible. Note that the feasibility of theLDPs depends on the scheduler S, since S a�ects the service that each class receives, and so thelikelihood that a class is backlogged at the time instant of a packet drop.Unfortunately, to the best of our knowledge, there are no results in the queueing theoryliterature for the feasibility of a set of class loss rates, similar to the feasibility conditions byCo�man and Mitrani or Regnier for the feasibility of a set of class average delays (x3.1.3). Thebasic intuition behind those delay-related feasibility conditions, however, seems to also hold inthe case of loss rates. Speci�cally, the loss rate of a class (or of any set of classes) has a lowerbound due to the inherent load in that class (or set of classes), given a certain scheduler S and aDrop-Tail backlog controller with B bu�ers. This lower loss rate bound would result in practiceif that class (or set of classes) was given strictly higher priority (i.e., minimum losses) over therest of the tra�c.In the following, we state, as a conjecture, a set of feasibility conditions for the N lossrates f�lig that are similar to the Regnier feasibility conditions of (3.7). It remains an importantopen question to formally prove that these are the necessary and su�cient conditions for thefeasibility of a set of class loss rates. Speci�cally, the conjecture is that the set of N class lossrates f�lig is feasible if and only if the following N -1 conditions are true,NXi=k �i �li � �lSPk;N NXi=k �i k = 2 : : :N (4.8)where �lSPk;N is the loss rate that would be encountered by classes fk; : : : ; Ng with an SP dropper,if these classes were given strictly higher priority over the rest of the tra�c in terms of packetdrops. These conditions impose a lower bound on the number of losses in the N -1 subsets of thek highest classes (k = 1 : : :N � 1).The conditions of (4.8) show that the feasibility of the PLD model depends on the lossrates that would occur with the same scheduler and number of bu�ers, if the dropper D was



76replaced by the Strict Priority (SP) dropper. In the case of N=2 classes, a certain LDP �2(�2 < �1 = 1), is feasible if and only if�2 � �lSP2�lSP1 or 1�2 � �lSP1�lSP2 (4.9)where �lSPk is the loss rate of class k in the SP dropper that gives Class-2 a higher priority (i.e.,a lower loss rate) than Class-1. So, a given loss rate ratio �2 < 1 between Class-2 and Class-1 isfeasible if and only if the corresponding loss rate ratio in the SP dropper is not higher than �2.When N > 2, the feasibility conditions for the PLD model become the followingN -1 inequalitiesNXi=k �i�i � S�lag NXi=k �i�lSPi k = 2 : : :N (4.10)where S =PNi=1 �i�i.The network operator can check the feasibility of a certain set of LDPs by either mea-suring the loss rates �lSPk on the actual link, or emulating the SP dropper with the workload ofthe actual link. This is essentially the same procedure as for checking the feasibility of a certainset of DDPs.4.2 Proportional Loss Rate (PLR) droppersIn this section, we describe two dropping algorithms, called Proportional Loss Rate (PLR) drop-pers, that aim to meet the PLD model of x4.1 when the speci�ed LDPs are feasible. Both PLRdroppers follow a similar algorithm with the PAD scheduler of x3.2.Speci�cally, another way to state the PLD model is that the normalized loss rates, de�nedas ~li = �li=�i, must be equal in all classes, i.e.,~li = �li�i = �lj�j = ~lj 1 � i; j � N (4.11)The PLR droppers maintain a running estimate ~li(t) of the normalized loss rate in each class i.



77When the backlog controller requires a packet to be dropped, the PLR droppers select the back-logged class j with the minimum normalized loss ratio. Dropping a packet from class j increases�lj , and hence it reduces the di�erence of �lj=�j from the normalized loss rates of the other classes,tending to equalize them. The similarity with the PAD scheduler should now be obvious; PADselects for transmission the backlogged class with the maximumnormalized average delay, whilethe PLR droppers select for dropping the backlogged class with the minimum normalized lossrate. In both cases, the objective is to equalize the normalized performance metrics (average de-lay and loss rate) in the long run, and thus to meet the corresponding proportional di�erentiationconstraints.There is an important di�erence, however, between delay and loss rate di�erentiation.In the former, the fact that each packet encounters an individual queueing delay allows us todi�erentiate between the class delays even in the shortest timescales of a few packet departures.This motivated the study of WTP, as an appropriate scheduler for proportional delay di�eren-tiation between successive packet departures, and then the design of HPD, as a combination ofthe long-term di�erentiation of PAD with the short-term di�erentiation of WTP. In the case ofloss rate di�erentiation, the performance metric (loss rate) is de�ned in terms of a number ofpackets and not on a per-packet basis. Consequently, we do not design a dropper that attemptsto provide proportional loss rates between successive packet arrivals, corresponding to WTP. Theissue of loss di�erentiation in short timescales is reected, instead, on the interval over which theloss rates are de�ned and measured.The �rst PLR dropper, called PLR(1), measures the class loss rates based on all previouspacket arrivals, aiming to achieve proportional loss rates in the long run (`long-termPLD model').The second PLR dropper, called PLR(M), measures the class loss rates based on the lastM packetarrivals, aiming to meet the PLD model in a shorter timescale, with a duration determined byM .As will be shown in x4.3, this di�erence between the two PLR droppers reects on their accuracyin meeting the PLD model, on their implementation complexity, and on their adaptability tovarying class load distributions.



78B(t): Set of backlogged classes at time tAi: Count of packet arrivals in class i up to time tDi: Count of packet drops from class i up to time tPacket arrival in class i at time t:Ai = Ai + 1;Packet drop from class j at time t:j = argmini2B(t) DiAi�i ;Dj = Dj + 1;Figure 28: Description of the PLR(1) dropper.4.2.1 PLR(1): Proportional Loss Rate dropper with `in�nite' memoryIn this dropper, the loss rate estimate �li(t) is measured as the fraction of dropped packets inclass i up to time t. �li(t) can be measured using counters for the arrivals and drops in each class.Since the loss rate is estimated from the history of all previous arrivals and drops, we say thatPLR(1) has `in�nite' memory. The complete algorithm for this dropper is shown in Figure 28.An important issue about the PLR(1) dropper is the length of the counters Ai andDi, and how to deal with counter overows. One approach is to reset all counters, and enter a`cold-start' phase, when any of the arrival counters overow. With 32-bit counters, one of theAi's will overow after at least four billion packet arrivals. As will be shown in x4.3, however, itmay be bene�cial under certain tra�c conditions to reset the counters over shorter intervals, orto reduce the length of the counters so that the dropper is more adaptive to varying class loaddistributions.In terms of implementation complexity, the PLR(1) dropper requires N multiplications(for the Ai�i terms) and N divisions (for the DiAi�i terms) every time a packet needs to be dropped.These operations would be, in general, in oating-point arithmetic. An optimization that avoidsthe multiplications would be to increase Ai by �i every time a packet arrives in class i. If asingle-precision division takes 50 cycles, the calculation of the normalized loss rates for 8 classeswould require 400 cycles, and with a 500MHz processor the selection of the drop-target class



79would take about 0.8�s. This overhead would not be a major issue for network interfaces of upto 1Gbps, that transmit a (minimum-size) 40-byte packet in about 0.32�s, since a packet dropwould need less than three packet transmission times.4.2.2 PLR(M): Proportional Loss Rate dropper with memory MIn the PLR(M) dropper, the loss rate estimate �li(t) is measured as the fraction of dropped packetsfrom class i in the last M arrivals of the aggregate tra�c stream. So, if there are Ai(M ) class ipackets in the last M arrivals, and Di(M ) of those packets were dropped, the loss rate estimatefor class i is Di(M )=Ai(M ). If Ai(M )=0, the loss rate in class i is unde�ned.The implementation of PLR(M) is slightly more complex than the implementation ofPLR(1). PLR(M) requires a cyclic queue withM entries, called Loss History Table (LHT). TheLHT records the class index (LHT[i].class 2 f1; : : : ; Ng) and the drop status (LHT[i].loss: 1 ifpacket is dropped; 0 otherwise) for each packet in the last M arrivals. Based on the informationstored in the LHT, the dropper knows the number of arrivals Ai(M ) and the number of dropsDi(M ) from class i in the last M arrived packets. The complete algorithm is shown in Figure29. The PLR(M) dropper requires a packet tag, that is only used internally in the router,recording the LHT entry of the packet. This index is necessary so that the corresponding LHTentry is updated when that packet is dropped. The LHT tags, together with the overhead ofmaintaining the LHT, are the main additional implementation complexity of PLR(M) comparedto PLR(1). It is noted though, that such temporary tags that are attached to a packet whilethe packet is stored in the router are not uncommon in modern switch and router designs.Note that the PLR(M) dropper is di�erent from a PLR(1)-type of dropper in which thecounters are reset to zero after every M arrivals. The PLR(M) dropper attempts to meet theproportional loss rate di�erentiation model in every time window of M arrivals, while the latterdropper attempts to meet the proportional loss rate di�erentiation in successive time windowsof M arrivals.



80
B(t): Set of backlogged classes at time tAi(M ): Count of packet arrivals in class i in last M arrivalsDi(M ): Count of packet drops from class i in last M arrivalsLHT: Loss History Table (cyclical queue with M entries)LHT[j].class: Class index of packet in the j'th LHT entryLHT[j].loss: Drop status of packet in the j'th LHT entryI: Tail index of LHTPacket arrival in class i at time t:// Replace the packet at the LHT tail with the new packetk=LHT[I].class;Dk(M ) = Dk(M )� LHT[I].loss;Ak(M ) = Ak(M ) � 1;LHT[I].class=i;LHT[I].loss =0;Ai(M ) = Ai(M ) + 1;Tag g of arrived packet = I;I = (I + 1) modM ;Packet drop from class j at time t:j = argmini2B(t)^Ai(M)>0 Di(M)Ai(M)�i ;g = tag of dropped packet;LHT[g].loss=1;Dj(M ) = Dj(M ) + 1;Figure 29: Description of the PLR(M) dropper.



81The major question in PLR(M) is how large should M be. A larger value of M leadsto a closer approximation of the PLD constraints, but as will be shown in the next section, thedropper becomes less adaptive to a varying class load distribution. One constraint is that Mshould be large enough so that a dropped packet is always one of the last M arrived packets;otherwise, the drop will not be recorded in the LHT. This constraint is met in practice, even forsmall values of M , because the dropped packets are removed from the queue tails.Another constraint onM is that it should be large enough so that it is feasible to achievethe speci�ed LDPs in a time window of M packet arrivals. Intuitively, if M is not large enough,the PLR(M) dropper does not `remember' enough previous arrivals and drops in order to adjustthe loss rates in that time window based on the proportional constraints of (4.1). The followingresult gives a lower bound on the required LHT size M , under stationary conditions for theaggregate loss rate and class load distribution.Proposition 4.1: If the aggregate loss rate is �lag and the load distribution is f�1; �2; : : : ; �Ng,it is necessary that the LHT size is more than Mmin entries in order for PLR(M) to meet theLDPs f�1 = 1; �2; �3; : : : ; �Ng, whereMmin = PNi=1 �i�m �i�m�lag (4.12)and m = argmin1�i�Nf�i�ig.The proof of this result is given in x7.4.4.3 Evaluation of PLR droppersThis section presents simulation results for the two proposed droppers PLR(1) and PLR(M).The simulated model is described in detail in x7.1. We briey mention here that the backlogcontroller is Drop-Tail, while the scheduler is HPD with g=0.875. The number of bu�ers B andthe utilization u are adjusted so that the long-term aggregate loss rate does not exceed about



825%; this is a common operating regime in today's Internet. Other parameters, such as the loaddistribution f�ig, or the LDPs and DDPs, are given for each simulation in the correspondinggraph or text. A summary of the simulation results follows.Focusing �rst on long-term loss di�erentiation, it is shown that PLR(1) is able tomeet the speci�ed PLD constraints over a wide range of operating conditions and di�erentiationparameters. When this is not the case, the simulations show that the Strict Priorities (SP)dropper cannot meet the speci�ed PLD constraints either, meaning that the PLD model isinfeasible in those operating conditions. PLR(M) is less accurate in meeting the PLD constraintsthan PLR(1). The e�ect of the LHT size M is shown; the deviations of PLR(M) from the PLDmodel are less than 10% when M is more than 50-100 thousand packets.We then focus on loss di�erentiation in shorter timescales, namely in every K packetarrivals of the aggregate tra�c stream. When the class load distribution is stationary and K isin the order of 100,000 packets or more, PLR(1) approximates quite closely the speci�ed LDPsin almost every interval of K packet arrivals. PLR(M) performs similar with PLR(1), when Kand M are in the same range (100,000 packets or more). When the class load distribution isnonstationary (varying), however, PLR(1) deviates signi�cantly from the speci�ed LDPs, sinceit cannot adapt quickly to the changing arrival rates. PLR(M), on the other hand, approximatesclosely the speci�ed LDPs even with a nonstationary load distribution, as long as the timescalesin which the class loads vary are larger than M . Finally, we briey examine a `two-dimensional'di�erentiation framework in which some classes encounter lower delays but higher loss rates thanother classes, and illustrate some feasibility problems that appear in that framework.Feasible proportional loss rate di�erentiation: Figure 30 shows simulation results for theloss rate ratio between two classes with PLR(1) and PLR(M), in diverse operating conditions.The loss rate ratio shown is �l1=�l2. The aggregate loss rate is about 1.3% in the �rst threegraphs, and it varies between 0.6%-2.7% in the fourth graph. The parameters that we vary inthese simulations are the speci�ed LDP ratio �1=�2, the DDP ratio �1=�2, the load distribution(determined by �1=�), and the number of bu�ers B. The LDP ratio is the desired loss rate



83
0 8 16 24 32 40 48 56 64 72

LDP ratio     

0

8

16

24

32

40

48

56

64

72

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping versus LDP ratio

PLR(  )
PLR(M), M=64K

∞(a) B=150, (�1; �2)=(70,30), �1=�2=8 0 8 16 24 32 40 48 56 64 72
DDP ratio    

0

1

2

3

4

5

6

7

8

9

10

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping versus DDP ratio

PLR(  )
PLR(M), M=64K

∞(b) B=150, (�1; �2)=(70,30), �1=�2=8
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of Class−1 traffic

0

1

2

3

4

5

6

7

8

9

10

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping versus load distribution

PLR(  )
PLR(M), M=64K

∞(c) B=150, �1=�2=8, �1=�2=8 25 75 125 175 225 275
Number of buffers 

0

1

2

3

4

5

6

7

8

9

10

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping versus number of buffers

PLR(  )
PLR(M), M=64K

loss rate varies in [0.6%, 2.7%]

∞(d) (�1; �2)=(70,30), �1=�2=8, �1=�2=8Figure 30: Loss rate di�erentiation with PLR(1) and PLR(M) (feasible LDPs).



84between the two classes. The DDP ratio a�ects the service that each class receives, and thus thelikelihood that a class is idle at the drop time instants. A higher DDP ratio makes Class-2 morelikely to be empty. Similarly, the load distribution and the number of bu�ers a�ect the likelihoodthat a certain class is empty at the time of a packet drop, and thus they can a�ect the feasibilityof the PLR model.The major observation in these graphs is that PLR(1) achieves almost exactly thespeci�ed LDPs in all the diverse operating conditions shown. In the next paragraph, we showsome simulation results in which PLR(1) deviates from the PLD model, but as it turns out,the model is infeasible in those operating conditions. PLR(M), on the other hand, with an LHTsize of M=64K entries, approximates the PLD model with some deviations; these deviations arequanti�ed later in this section.Infeasible proportional loss rate di�erentiation: Recall from x4.1 that the LDP ratio �1=�2is feasible if and only if the corresponding loss rate ratio �l1=�l2 with the SP dropper is higher than�1=�2. Figure 31 shows simulation results for the loss rate ratio �l1=�l2 between two classes withPLR(1) and SP, in operating conditions that reside at the onset of infeasibility.In Figure 31-a, both droppers create a loss rate ratio that is lower than �1=�2=128. Theinfeasibility cause is that with this high LDP ratio and weak Class-1 load (�1=�=0.10), thereare not enough Class-1 packets to drop for the speci�ed loss rate ratio. In Figure 31-b, bothdroppers create a loss rate ratio that is lower than �1=�2=64 when there is no delay di�erentiationbetween the two classes (�1=�2=1). The cause of infeasibility is that when the DDP ratio is toolow, Class-2 is not discriminated in favor of Class-1, and so Class-1 does not accumulate enoughbacklog for the speci�ed loss rate ratio. In Figure 31-c, both droppers create a loss rate ratiothat is lower than �1=�2=64 when the load distribution is �1=�=0.05. The infeasibility cause isthat Class-1 is too weakly loaded, and so there are not enough Class-1 packets to drop for thespeci�ed loss rate ratio. In Figure 31-d, both droppers create a loss rate ratio that is lower than�1=�2=64 when B=150. The cause of infeasibility is that the low number of bu�ers leads to alow average backlog in Class-1, and so Class-1 is often idle when it should encounter a packet



85
0 16 32 48 64 80 96 112 128

LDP ratio     

0

16

32

48

64

80

96

112

128

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping (relative to SP)

SP dropper
PLR(  ) dropping∞

(a) B=200, (�1; �2)=(10,90), �1=�2=2 1 2 3 4 5
DDP ratio    

0

16

32

48

64

80

96

112

128

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping (relative to SP)

SP dropping
PLR(  ) dropping∞(b) B=200, (�1; �2)=(10,90), �1=�2=64

0.00 0.05 0.10 0.15 0.20 0.25
Fraction of Class−1 traffic

0

16

32

48

64

80

96

112

128

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping (relative to SP)

SP dropping
PLR(  ) dropping∞(c) B=200, �1=�2=64, �1=�2=2 100 150 200 250 300 350 400

Buffer size (packets)

0

16

32

48

64

80

96

112

128

Lo
ss

 r
at

e 
ra

tio
 

PLR dropping (relative to SP)

SP dropping
PLR(  ) dropping∞(d) (�1; �2)=(10,90), �1=�2=64, �1=�2=2Figure 31: Proportional loss rate di�erentiation at the onset of infeasibility.



86
0.0 200.0 400.0 600.0 800.0 1000.0

LHT size M (packets)

12

13

14

15

16

17

Lo
ss

 r
at

e 
ra

tio

PLR dropping versus LHT size M

l=1.3%,           =(50,50), M_min=1308
l=0.4%,           =(50,50), M_min=4250
l=1.3%,           =(80,20), M_min=5000

32K

64K

128K
256K

512K

(λ1,λ2)
(λ1,λ2)
(λ1,λ2)

PLR(  )∞

σ1/σ2=16(a) �1=�2=16, �1=�2=8 0.0 200.0 400.0 600.0 800.0 1000.0
LHT size M (packets)

24

25

26

27

28

29

30

31

32

33

34

Lo
ss

 r
at

e 
ra

tio

PLR dropping versus LHT size M

l=1.3%,           =(50,50), M_min=2540
l=0.4%,           =(50,50), M_min=8250
l=1.3%,           =(80,20), M_min=9925

32K

64K

128K

256K
512K

(λ1,λ2)
(λ1,λ2)
(λ1,λ2)

PLR(  )∞

σ1/σ2=32(b) �1=�2=32, �1=�2=8Figure 32: The e�ect of the LHT size in PLR(M).drop. In all cases when the PLD model is infeasible, the PLR(1) and SP droppers lead tothe same loss rate ratio. This leads us to the conjecture that PLR(1) is the optimal dropperin the context of the PLD model, since it can meet the speci�ed LDPs when the PLR model isfeasible. This conjecture is similar to the optimality of the PAD scheduler in the context of thePDD model (x3.2).The e�ect of the LHT size M in PLR(M): Figure 32 shows the loss rate ratio between twoclasses for di�erent values of the LHT size M . The resulting loss rate ratio with PLR(1) is alsoshown, as the asymptotic case M !1, in order to compare the two droppers.The �rst observation is that as we increase M , the deviations of PLR(M) from the PLDmodel decrease, because PLR(M) maintains more accurate loss rate estimates. For the operatingconditions in these graphs, if the relative error from the PLD constraints is to be less than10%, the LHT should have at least 64K entries. The second observation is that the requiredLHT size for meeting the PLD model with a certain accuracy increases as the LDP ratio �1=�2



87
1000 10000 100000 1000000

Averaging timescale K (# of successive arrivals)

0

2

4

6

8

10

12

14

16

18

Lo
ss

 r
at

e 
ra

tio

PLR(  ) 

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile

∞

σ1/σ2=8(a) PLR(1) 1000 10000 100000 1000000
Averaging timescale K (# of successive arrivals)

0

2

4

6

8

10

12

14

16

18

Lo
ss

 r
at

e 
ra

tio

PLR(M), M=128K

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile

σ1/σ2=8(b) PLR(M), M=128000Figure 33: Percentiles of the loss rate ratios with PLR(1) and PLR(M) as a function of theaveraging timescale K.increases, as the aggregate loss rate �lag decreases, or as the load ratio �1=�2 increases. Thesedependencies of the required LHT size M are also predicted from (4.12). Third, the lower boundon M given in (4.12) is quite smaller than what is needed in practice for a close approximationof the PLD model. The reason is that the proof of Proposition 4.1 assumes that the class loaddistribution and the aggregate loss rate in any time window of M packet arrivals follow theirlong-term average values. In practice, though, the class load distribution and the aggregate lossrate vary signi�cantly around their average values, due to the burstiness in the arrival and packetloss random processes.Proportional loss rate di�erentiation in short timescales: Figure 33 examines the be-havior of PLR(1) and PLR(M) in short timescales. Speci�cally, the graphs in Figure 33 show�ve percentiles of the distribution of loss rate ratios between two classes, when the loss rates aremeasured in time windows of K successive packet arrivals. For more details about this type ofsimulation experiments, see also Figure 22 and the corresponding explanations given in x3.4. Thenumber of bu�ers in these simulations is B=80, and the aggregate loss rate is �l=3.7%. The DDP



88
6000 6500 7000 7500 8000 8500 9000 9500 10000

Time (/1000)

0

1

2

3

4

5

6

7

8

Lo
ss

 r
at

e 
ra

tio
s

PLR(  ), stationary load distribution

Class−1 / Class−3
Class−1 / Class−2

∞

σ1/σ2=2

σ1/σ3=4(a) PLR(1), 6000 6500 7000 7500 8000 8500 9000 9500 10000
Time (/1000)

0

1

2

3

4

5

6

7

8

Lo
ss

 r
at

e 
ra

tio
s

PLR(M), M=128K, stationary load distribution

Class−1 / Class−3
Class−1 / Class−2

σ1/σ2=2

σ1/σ3=4(b) PLR(M), M=128KFigure 34: Loss rate di�erentiation with PLR(1) and PLR(M) in a stationary class load distri-bution.ratio is �1=�2=8, the LDP ratio is �1=�2=8, and the load distribution is (�1; �2)=(70,30).As shown, the resulting distributions of loss rate ratios with PLR(1) are quite narrowand centered around the speci�ed LDP, when K is 100,000 packets or more. In these timescales,the desired loss rate ratio is achieved in almost all intervals of K packet arrivals. In shorttimescales, say every K=1,000 or 10,000 packets, the resulting distribution of loss rate ratiosbecomes signi�cantly more spread, but the loss di�erentiation is still predictable (i.e., the higherclass has a lower loss rate). The corresponding distributions in PLR(M) have a wider range thanin PLR(1), especially when K < M . For K > M , PLR(M) also provides narrow loss rate ratiodistributions, centered around the speci�ed LDPs. The PLR(1) dropper, though, provides moreaccurate and narrow distributions than PLR(M) in all timescales. As will be shown in the nextparagraph, the major advantage of PLR(M) over PLR(1) is when the load distribution betweenclasses is nonstationary.Stationary and nonstationary class load distributions: Figure 34 shows a sample path ofthe loss rate ratios between three classes with PLR(1) and PLR(M). The loss rates are measured



89
6000 6500 7000 7500 8000 8500 9000 9500 10000

Time (/1000)

0

1

2

3

4

5

6

7

8

Lo
ss

 r
at

e 
ra

tio
s

PLR(  ), nonstationary load distribution

Class−1 / Class−3
Class−1 / Class−2

σ1/σ2=2

σ1/σ3=4

from

∞

Load 
distribution

change to

(λ1,λ2,λ3)=(50,40,10)
(λ1,λ2,λ3)=(34,33,33)(a) PLR(1) 6000 6500 7000 7500 8000 8500 9000 9500 10000

Time (/1000)

0

1

2

3

4

5

6

7

8

Lo
ss

 r
at

e 
ra

tio
s

PLR(M), M=128K, nonstationary load distribution

Class−1 / Class−3
Class−1 / Class−2

σ1/σ2=2

σ1/σ3=4

from
Load 

distribution
change to

(λ1,λ2,λ3)=(50,40,10)
(λ1,λ2,λ3)=(34,33,33)(b) PLR(M), M=128KFigure 35: Loss rate di�erentiation with PLR(1) and PLR(M) in a nonstationary class loaddistribution.in every K=100,000 packet arrivals of the aggregate tra�c stream. In these graphs, the averagearrival rate in each class remains constant, i.e., the class load distribution is stationary. The majorobservation is that both droppers approximate quite closely the speci�ed LDPs (�i=�i+1=2) inalmost all time intervals of K packets. A more thorough inspection of these, as well as othersimilar sample paths, shows that PLR(1) meets the PLD constraints more accurately thanPLR(M); this observation also agrees with the results shown in Figure 33.Figure 35 also shows a sample path of the loss rate ratios between three classes, butthis time the class load distribution is nonstationary. Speci�cally, at the time instant 7000, theaverage class load distribution is modi�ed from (�1; �2; �3)=(50,40,10) to (�1; �2; �3)=(34,33,33).Such a change can occur in practice if some users switch between classes.The PLR(M) dropper is una�ected by the load distribution change, since it only `re-members' the arrivals from each class in the last M=128,000 packets. So, quickly after the loaddistribution change, it adapts to the new class arrival rates and delivers the desired loss rateratios. PLR(M) can deal e�ectively with continuous load distribution changes, as long as thetimescales in which they occur are larger than M .



90The PLR(1) dropper, on the other hand, is a�ected negatively by the load distributionchange, and the loss rate ratio, especially between classes 1 and 3, diverges signi�cantly fromthe speci�ed LDPs. The reason is that PLR(1) attempts to provide a certain loss rate ratioover the entire previous history of packet arrivals, which does not reect the new arrival rates ineach class. So, even though it manages to achieve the speci�ed LDPs over the long run, it failsto provide the desired loss rate ratio in short timescales after the load distribution change. Theduration of the erratic behavior depends on the size of the arrival counters and the time untiltheir next counter overow.This experiment shows that when the class load distribution is strongly nonstationary,perhaps due to users that switch between classes in order to dynamically select an acceptableclass, the preferred dropper should be PLR(M). Even though PLR(M) is not optimal in meetingthe PLD constraints when the LDPs are feasible, it is adaptive to varying class load distributionswhile PLR(1) is not. If the PLR(M) dropper is considered too hard to implement, the PLR(1)can be used instead, as long as the arrival and drop counters are reset to zero in relatively shorttimescales (e.g., every few millions of packets).Two-dimensional delay and loss rate di�erentiation: As discussed in x2.1, the contextof this dissertation is a `one-dimensional' di�erentiation framework (such as the IETF ClassSelectors) in which higher classes o�er better performance in terms of both queueing delays andpacket losses. The proposed PDD and PLD models, as well as the corresponding schedulers anddroppers, however, can also be applied in a `two-dimensional' di�erentiation framework in whichsome classes o�er lower delays but higher loss rates than other classes. Even though such atwo-dimensional framework is out of the scope of this thesis, we show here an example of thisapproach, illustrating also a feasibility issue that emerges.In the case of two classes, suppose that Class-2 o�ers a lower average delay but a higherloss rate than Class-1. The PDD model requires that the average delay ratio is �d2= �d1 = �2 < 1,while the PLD model requires that the loss rate ratio is �l2=�l1 = �2 > 1. Figure 36 shows theresulting loss rate ratio for two load distributions and two target delay ratios. The scheduler



91
0 8 16 24 32 40 48 56 64 72

Inverse LDP ratio (sigma−2/sigma−1)

0

8

16

24

32

40

48

56

64

72

Lo
ss

 r
at

e 
ra

tio
 (

C
la

ss
−

2/
C

la
ss

−
1)

Class−2: Lower delay & higher loss rate

(λ1,λ2)=(50,50)
(λ1,λ2)=(70,30)

δ1/δ2=32

(a) �1=�2=32 0 8 16 24 32 40 48 56 64 72
Inverse LDP ratio (sigma−2/sigma−1)

0

8

16

24

32

40

48

56

64

72

Lo
ss

 r
at

e 
ra

tio
 (

C
la

ss
−

2/
C

la
ss

−
1)

Class−2: Lower delay & higher loss rate

(λ1,λ2)=(50,50)
(λ1,λ2)=(70,30)

δ1/δ2=64

(b) �1=�2=64Figure 36: Example of two-dimensional di�erentiation.is HPD with g=0.875, and the dropper is PLR(1). When the load distribution is uniform,(�1; �2)=(50,50), the speci�ed loss rate ratio is achieved even when we require that Class-2 hasa 64 times lower average delay and a 64 times higher loss rate than Class-1. When the load inClass-2 is slightly less though, namely (�1; �2)=(70,30), the loss rate ratio is �l2=�l1 < 11 when�1=�2=32, and �l2=�l1 < 7 when �1=�2=64. The reason that the loss di�erentiation is not asspeci�ed is that the delay di�erentiation in favor of Class-2 increases the likelihood that Class-2is idle. Consequently, it becomes hard to introduce a high loss rate in Class-2, relative to theloss rate in Class-1. This e�ect becomes stronger as the Class-2 load decreases.In the `one-dimensional' di�erentiation framework, on the other hand, the fact thatclasses with higher delays also have a higher loss rate reduces the space of infeasible operat-ing conditions. The reason is that classes with higher delays are more likely to be backlogged,and so, it is simpler to also provide them with a higher loss rate. In summary, even though atwo-dimensional di�erentiation framework appears to be more exible than the one-dimensionalframework that we consider, it faces some harder feasibility problems that require further inves-tigation.



924.4 TCP throughput with proportional delay and loss dif-ferentiationMost of the Internet tra�c today uses TCP as the underlying transport protocol [112]. Con-sequently, it is interesting to examine the impact of per-hop proportional delay and loss ratedi�erentiation on the TCP throughput. In this section, we attempt a �rst-order investigation ofthis issue for the case of bulk-transfer TCP connections, which spend most of their lifetime inthe congestion avoidance phase of the TCP algorithm [65]. During that phase, TCP increasesthe sending window by a �xed amount of bytes every time it receives an acknowledgement [50].When a packet loss is detected, the sending window is halved in order to reduce the congestionin the network.The throughput of a bulk-transfer TCP connection in the congestion avoidance phasecan be approximated by R = 0:93MT pl (4.13)whereM is the connection's MaximumSegment Size, l is the average loss rate that the connectionencounters, and T is the round-trip delay in the connection's path, including queueing delays [65].We assume that the connection encounters the average delay and loss rate of the aggregate tra�cin each link along its path. The round-trip delay when the connection is in class i consists ofa �xed propagation delay � and an average queueing delay �di, i.e., Ti = � + �di. Also, let �li bethe end-to-end loss rate in class i. If �dki and �lki are the average queueing delay and the loss rate,respectively, in class i at the k'th hop of the connection's path, we have that �di = Pk �dki , and�li = 1�Qk(1� �lki ). If Pk �lki is less than 1% or so, then �li �Pk �lki .Suppose now that every hop along the connection's path o�ers proportional delay andloss rate di�erentiation with the same DDPs and LDPs. Then, �dkj = � �dki and �lkj = � �lki , where� = �j=�i and � = �j=�i; if i > j, � > 1 and � > 1. So, the ratio of the throughput that the



93TCP connection would get in class i over class j isRiRj = p� � + �= �di1 + �= �di (4.14)Note that the loss rate di�erentiation a�ects the TCP throughput ratio between classesin a square-root law. The e�ect of the delay di�erentiation, on the other hand, depends onthe relative magnitude of the queueing delays compared to the propagation delay of the path.If the propagation delay is small compared to the queueing delay ( ��di � 1 < �), the delaydi�erentiation a�ects the TCP throughput ratio linearly. When the connection's propagationdelay is large compared to the queueing delays, the impact of the delay di�erentiation can beminor. As an example, suppose that �=�=2, and that the the propagation delay is equal to theclass i average queueing delay (� � �di). The TCP throughput in class i will be approximately 2.1times higher than in class j, and the contribution of the loss rate di�erentiation on the throughputratio will be about the same with the contribution of the delay di�erentiation. If the propagationdelay is three times higher than the class i queueing delay though (say in an cross-continentalconnection), the TCP throughput in class i will be about 1.8 times higher than in class j, andthe contribution of the loss rate di�erentiation on the TCP throughput ratio will be about 80%.4.5 Related work on loss di�erentiationPrioritized bu�er management and dropping algorithms have received signi�cant attention in theliterature, especially in the ATM context. The reason is that the ATM cell header includes a `CellLoss Priority' bit which creates two levels of loss di�erentiation [2]. Detailed reviews of the earlyworks in this �eld can be found in [63, 55]. Several of those e�orts assumed that the pushoutprocedure (removing a backlogged packet) is hard to implement, and so they developed bu�ermanagement schemes that can o�er loss rate di�erentiation dropping only arriving packets. Suchschemes include the Complete Bu�er Partitioning (CBP) [63], Partial Bu�er Sharing (PBS) [55],



94and Dynamic Threshold [23] algorithms. As mentioned in x4.1, it has been shown recently withactual implementations of switches and routers that pushout can be supported in high-speedlinks when packets are removed only from the head or the tail of the class queues [19, 108].In the following, we �rst review some of the early bu�er management and droppingschemes, illustrating their limitations in the context of relative loss di�erentiation. Then, weexamine RIO and multiclass-RED, which have received signi�cant attention recently, especiallybecause of the active bu�er management features of RED [43]. Finally, we discuss a few otherdroppers in the context of proportional loss di�erentiation, which are similar to the PLR droppersthat we propose here.4.5.1 Early bu�er management schemesPushout or Strict Priority (SP): In this simple dropper, the packet removed is always fromthe lowest backlogged class [63, 55]. We call it Strict Priority (SP) dropper to show that itcorresponds to the SP scheduler in the delay di�erentiation context. As shown in x4.1, the SPdropper is directly related to the feasibility of the PLD model. Although SP provides predictablerelative di�erentiation, it does not provide any means of controlling the loss rates between classes,i.e., it is not a controllable di�erentiation mechanism. Additionally, SP can cause starvation inthe lower classes in the form of excessive packet drops.Complete Bu�er Partitioning (CBP): Another simple bu�er management scheme is tostatically partition the bu�er space between classes, i.e., to allocate bi packet bu�ers to eachclass i (with Pi bi = B). From Little's law, the ratio of aggregate backlogs between two classesi and j is �qi=�qj = �di= �dj �ai =�aj , where �ai is the input (accepted) rate in class i and �di is theaverage queueing delay of the serviced packets in class i. This relationship shows that the bu�erpartitions must be selected based on the class load distribution and the delay di�erentiationprovided by the scheduler. CBP increases the aggregate loss rate, compared to LIFO or SP forinstance, because packets drops occur even when there are available bu�ers.Another problem with CBP is that the selection of the bu�er partitions, in order to



95
6000 6500 7000 7500 8000 8500 9000 9500 10000

Time (/1000)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

 r
at

e 
(%

)

Complete Buffer Partitioning

Class−1
Class−2

(λ1,λ2)=(60,40)
b1=70, b2=30

(a) Well provisioned bu�er partitions 6000 6500 7000 7500 8000 8500 9000 9500 10000
Time (/1000)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

 r
at

e 
(%

)

Complete Buffer Partitioning

Class−1
Class−2

(λ1,λ2)=(55,45)
b1=70, b2=30

(b) Poorly provisioned bu�er partitionsFigure 37: Loss rates with a two-class CBP dropper.achieve a certain loss rate di�erentiation, is quite sensitive to variations in the load distribu-tion. This is shown with two sample paths in Figure 37. The loss rates are measured in everyK=100,000 packet arrivals. The HPD scheduler with g=0.875 and �1=�2=2 provides proportionaldelay di�erentiation between the two classes. The bu�er partitions in Figure 37-a are selectedso that, when the load distribution is (�1; �2)=(60,40), the loss rate is about 3% in Class-1 andabout 1% in Class-2. A slight change in the load distribution, however, from (�1; �2)=(60,40)to (�1; �2)=(55,45), makes the selected bu�er partitions totally inappropriate, since they causea larger loss rate in Class-2 than in Class-1 (Figure 37-b). This is an instance of unpredictableloss di�erentiation, which is common for static resource allocation mechanisms such as CBP.Partial Bu�er Sharing (PBS): In the PBS scheme [55], a packet from class i is acceptedin the corresponding queue if the aggregate backlog is less than a threshold bi (with bi < bj fori < j). So, higher classes are given more bu�er space than lower classes. The PBS scheme doesnot require pushout, and o�ers the operator with a set of adjusting parameters. A problem thatwe observed experimenting with PBS, is that the bu�er thresholds cannot adjust the loss ratedi�erentiation between classes with a �ne granularity. In other words, a slight change in thethresholds bi can lead to a dramatic change in the obtained loss rates.



96A general problem with both CBP and PBS is that they are static resource allocationmechanisms, and so they do not dynamically adjust the partitioning of bu�er resources amongclasses based on the actual class loads and on the desired loss rate di�erentiation. On thecontrary, the PLR droppers of x4.2 dynamically readjust the number of bu�ers that each classoccupies based on the deviation of the measured loss rate di�erentiation from the target loss ratedi�erentiation.4.5.2 Multiclass Random Early Detection (RED) schemesThe mRED [93] and RIO [24] mechanisms are priority extensions of the RED active bu�ermanager [43]. RIO was originally proposed for two classes, while mRED (or Weighted RED) isproposed for N classes. Both RIO and mRED are similar to PBS, since each class is given abu�er threshold bi, and arriving packets in that class are dropped when the aggregate backlog ismore than bi. The two algorithms di�er from PBS in certain bu�er management features thatthey borrow from RED, such as probabilistic dropping, gradual increase of the loss probability asthe backlog increases, and backlog estimation through run-time averages. These features are notrelated to the loss di�erentiation aspect though, that is the same as in PBS. Consequently, bothRIO and mRED have the same drawbacks as PBS in achieving a controllable and predictablerelative loss di�erentiation. These drawbacks, together with some other problems of mRED, arestudied in [12].4.5.3 Other proportional loss rate droppersA dropping algorithm that is essentially the same with PLR(1) has been also discussed in[119, 19], but from a di�erent perspective than ours. Speci�cally, [19] designed a self-calibratingpushout ATM dropper in which `the number of dropped cells is proportional to the loss weight ofdi�erent loss priorities', which is similar to the PLD model. [19] proposed a VLSI implementationthat does not require oating-point operations for this dropper, when the arrival rate in eachclass is policed and known. We cannot use that optimization, because the class loads are not



97known a priori in the context of relative di�erentiation.[119] studied a dropper that is essentially the same as PLR(1), in a more abstractmanner. Speci�cally, [119] showed that the PLR(1) dropper, jointly with a FCFS scheduler,is optimal because it requires the minimum capacity for a certain loss rate in each class. Thisresult is related to the class provisioning problem, in which the capacity of a link is adjustedbased on the expected class loads, so that each class provides a given absolute performance level.We study this problem in x5.4 in the context of average delay provisioning. The result of [119] isinteresting, since it implies that the proportional di�erentiation model is not only attractive forrelative di�erentiation, but it may also be optimal when it is considered in the context of classprovisioning.After our original work on the PLR droppers [34], other researchers have proposed vari-ations and improvements. The Joint Bu�er management and Scheduling (JoBS) algorithm [61],which is also discussed in x3.5, can o�er proportional loss rate di�erentiation between classes.An interesting feature of JoBS is that it uni�es the scheduling and dropping decisions in a singlestep. The loss rate metric that [61] uses is the fraction of lost tra�c since the beginning of thecurrent busy period. JoBS solves an optimization problem, taking into account both absoluteand relative di�erentiation constraints, in order to decide which packet to transmit or drop next.Because the solution of this optimization problem would make the algorithm prohibitively slow,the authors propose a more e�cient heuristic implementation.Recently, [11] proposed a variation of PLR(M) called Average Drop Distance (ADD)dropper. The main advantage of ADD over PLR(M) is that it avoids the division that is requiredfor calculating the fraction of dropped packets (i.e., the Di=Ai terms). ADD is based on a run-time estimator for the average drop distance, which is the average number of arrived packetsbetween two successive drops in a class. The estimation of this measure does not require adivision, and it can be e�ciently implemented in software or hardware. The authors of [11]implemented ADD in the FreeBSD kernel of a Pentium II system, and measured that selectingthe drop-target class takes 113 cycles and updating of the loss rate estimates takes 240 cycles for8 classes.



984.6 Summary and extensionsOur objective in this chapter was to apply the general model of proportional di�erentiation inthe context of packet losses. Packet losses have a signi�cant impact on many applications, andespecially in the throughput of TCP tra�c.In the �rst part of the chapter, we proposed and studied the Proportional Loss Di�er-entiation (PLD) model. According to PLD, the loss rate ratios between classes are �xed, basedon certain parameters (LDPs) that the network operator speci�es. The PLD model provides adi�erentiation invariant that does not depend on the aggregate load or on the class load distri-bution. The PLD model is similar in several aspects with the PDD model of Chapter 3. It turnsout that the PLD model cannot be feasible in all operating conditions either. The feasibilityconditions can be checked with the Strict Priorities dropper, using a similar procedure as in thecase of the PDD model.In the second part of the chapter, we focused on the design of two Proportional LossRate (PLR) droppers for the PLD model. PLR(1) appears to be the optimal dropper for thePLD model, because it can achieve the PLD constraints when the model is feasible. In addition,it approximates the PLD model quite well in short timescales when the loss rates are measuredin every 100,000 packets or more. PLR(M), on the other hand, is not as accurate as PLR(1) inmeeting the PLD model. PLR(M) also approximates the PLD model closely in short timescaleswhen the loss rates are measured in every 100,000 packets or more, given that M is also in thesame range. The PLR(1) dropper is simpler to implement than PLR(M), because the latterrequires a cyclical queue and a tag for each packet. PLR(M) should be preferred over PLR(1),however, when the class load distribution varies with time. In such conditions, PLR(1) candeviate for large time intervals from the PLD constraints. PLR(M), instead, adapts quickly tothe new load conditions.Our focus throughout this study was more on proposing the model of proportional lossdi�erentiation and on the design of dropping algorithms, rather than on the analysis of thesealgorithms. Consequently, as it was also the case in Chapter 3, our conclusions in several points



99are based on empirical results and simulations. A number of interesting issues that deservefurther investigation follow.� The feasibility conditions for the PLD model (4.8) were presented here as a conjecture,based on the corresponding Regnier conditions (3.7) for the feasibility of the PDD model.Even though our simulation results provide evidence that the conditions of (4.8) are correct,a mathematical treatment of the feasibility problem in the context of losses is still needed.� In most of the chapter, including the evaluation of the two PLR droppers (x4.3), we con-sidered only the Drop-Tail backlog controller. It is interesting to examine what changeswhen more sophisticated backlog controllers are used, both for the PLD model (conserva-tion law, feasibility, etc), and for the behavior of the two PLR droppers. Certain activebu�er management schemes, including RED, drop packets randomly, even when there areavailable packet bu�ers. For such backlog controllers the conservation law does not hold,because they are not `work-conserving' in terms of bu�er utilization.� Our claim that PLR(1) is optimal in stationary load conditions, in the sense that it canmeet the PLD model when the LDPs are feasible, is supported by simulations, but it lacksa mathematical proof.� Our study of TCP throughput di�erentiation under both delay and loss di�erentiation islimited to bulk-transfer connections in the congestion avoidance phase. An interesting prob-lem is to examine the impact of proportional di�erentiation on shorter TCP connections,which spend most of their lifetime in the `slow-start' TCP phase.



100Chapter 5Dynamic Class Selection andClass ProvisioningA central premise in the relative di�erentiation architecture is that users with an absolute QoSrequirement can dynamically search for a class which provides the desired QoS level. The �rstpart of this chapter investigates this Dynamic Class Selection (DCS) framework, in the contextof proportional delay di�erentiation. For a single link model, we give an algorithm that checkswhether it is feasible to satisfy all users, and if this is the case, computes the minimumacceptableclass selection for each user. Users converge in a distributed manner to this minimum acceptableclass, if the DCS equilibrium is unique. However, other suboptimal DCS equilibria may alsoexist. Simulations of an end-to-end DCS algorithm provide further insight in the dynamic be-havior of DCS, show the relation between DCS and the network DDPs, and demonstrate how tocontrol the trade-o� between a ow's performance and cost using DCS. In the second part of thischapter, we study the problem of class provisioning. In this case, the network provider has someknowledge about the tra�c types that a link carries (average rates and delay requirements). Theobjective is to compute the minimum required link capacity and the appropriate Delay Di�erenti-ation Parameters (DDPs) for these tra�c types. We give a methodology that �rst determines theoptimal mapping from tra�c types to service classes, and then computes the minimum capacityand the required DDPs. The class provisioning methodology is demonstrated with examples.The chapter closes with a review of related works on class selection and provisioning.



101
Selection

Class
Adjust Channel

Feedback

Performance?
End-to-End
Acceptable

Sender
Receiver

NetworkDifferentiation
Delay & Loss
Proportional

Per-HopFigure 38: Dynamic Class Selection (DCS) model.5.1 Dynamic Class Selection (DCS) and proportional dif-ferentiationThe mapping of tra�c to service classes (or tra�c classi�cation) can be performed at the ingressrouters or at the network end-points. By `end-points' we mean individual users, the operatingsystem at the end-hosts, or the applications1. A router-based classi�cation is preferable whenthe users cannot participate in the process, or when the network provider wants to map speci�ctra�c types to di�erent classes. A user-based classi�cation, on the other hand, is preferablewhen users have a speci�c QoS requirement from the network, such as a maximum Round-TripDelay (RTD) or loss rate. In that case, the users can dynamically search for a class that providesthem with the required QoS level. We refer to this user-based classi�cation approach as DynamicClass Selection (DCS).The DCS model is illustrated in Figure 38. The network o�ers per-hop relative delayand loss di�erentiation. A user that does not have absolute QoS requirements, can choose a classbased on the maximum tari� that she is willing to pay. That class will provide the best possibleQoS, given her cost constraints. A user that has absolute QoS requirements, on the other hand,has to dynamically choose a class in which the observed QoS is acceptable. If the user is also1In the following, these end-points are referred to as users.



102interested in minimizing the cost of the session, she would like to choose the least expensive, orminimum, class that is acceptable.In the model of Figure 38, it is the sender that makes the class selections, and thereceiver that monitors the end-to-end QoS. The receiver noti�es the sender about the observedQoS through a feedback channel, such as the one provided by the Real-Time Control Protocol(RTCP) [96]. Based on this feedback, the sender decides whether to stay in the same class, orswitch to the higher or lower class. There are several variations of this basic DCS model. Forinstance, a user can perform DCS aiming for a minimumTCP throughput, a maximum loss rate,or a maximum latency of Web transfers. Also, the magnitude of the class transitions can dependon the deviation between the desired and the measured performance. A complete DCS algorithmis described in x5.3.In the DCS model, users may experience transient performance degradations as theysearch for an acceptable class. Such transient performance degradations would be unaccept-able for unelastic applications that require strict performance guarantees. We consider suchapplications outside the scope of relative di�erentiation. If the application is adaptive, how-ever, the transient performance degradations can often be masked using a variety of techniques.For instance, playback-adaptation techniques can mask excessive delays in voice applications[87], while limited losses can be dealt with using retransmissions [91], loss concealment [36], orForward-Error-Correction (FEC) codes [83]. It is noted that most Internet applications todayare adaptive.The proportional di�erentiation model of x2.4 provides an appropriate per-hop behaviorfor DCS due to the following reasons. First, the proportional di�erentiation model is predictable(x2.3), meaning that higher classes provide better performance than lower classes, independentof the aggregate load or the class load distribution. This is particularly important in the contextof DCS, because the class load distribution can be strongly nonstationary as users move fromone class to another. Relative di�erentiation mechanisms that are based on static resourcepartitioning between classes are not predictable when the class load distribution varies. Thiswas shown in x2.3 for the case of Weighted-Fair-Queueing (WFQ) scheduling, and in x4.5.1 for



103the case of Complete-Bu�er-Partitioning (CBQ) dropping. Periodic adjustments of the resourcepartitioning, on the other hand, may cause instability e�ects (discussed in x5.5).The second reason is that the proportional di�erentiation model is controllable (x2.2),meaning that the network provider can adjust the performance spacing between classes basedon certain class di�erentiation parameters. These di�erentiation parameters allow the networkprovider to provision the performance spacing between classes based on the corresponding per-formance spacing in the requirements of di�erent tra�c types or user groups. As shown in x5.3,this type of `di�erentiation provisioning' can increase the number of DCS users that can �ndan acceptable class, leading to a more e�cient network operation. Other relative di�erentiationmechanisms, such as the strict prioritizationmodel (x2.2), cannot adjust the performance spacingbetween classes, and so the network provider has no means to provision the class di�erentiation.Finally, the proportional di�erentiation model can be applied in both queueing delays(x3.1) and packet losses (x4.1), and so it can support a number of DCS performance requirements,such as a maximum end-to-end or round-trip delay, a maximum loss rate, or combinations ofthese metrics, such as a minimumTCP throughput (x4.4).5.2 A single link DCS modelIn this section, we study an analytical model of DCS in the context of a single link. The linkprovides proportional delay di�erentiation, while the users search for the minimum class thatprovides them with an average queueing delay that is less than a certain threshold.5.2.1 Link and user modelsConsider a network link L. The o�ered rate in L is �, the capacity is C, and the utilizationis u = �=C < 1. We assume that the link has adequate bu�ers to avoid any packet losses. Lo�ers N classes of service, which are relatively di�erentiated based on the Proportional DelayDi�erentiation (PDD) model of x3.1. Speci�cally, if �di is the average queueing delay in class i,



104the PDD model requires that �di�dj = �i�j 1 � i; j � N (5.1)where �1 = 1 > �2 > : : : > �N > 0 are the Delay Di�erentiation Parameters (DDPs). Note thataccording to the PDD model, higher classes have lower average delays, independent of the classloads. As shown in x3.1.1, when the class load distribution f�ng is given, the average queueingdelay in class i under the PDD constraints is�di = �i �qagPNn=1 �n�n (5.2)where �qag =PNn=1 �n �dn is the average aggregate backlog in L. From the conservation law (3.3),the aggregate backlog �qag is independent of the class load distribution or the scheduling algorithm,when the latter is work-conserving and indi�erent to packet sizes. �qag only depends on the linkutilization and on the statistical properties (burstiness) of the tra�c.Suppose now that a population of users U = f1; : : : ; Ug create the tra�c of link L. Eachuser j generates a stationary ow with an average rate rj, and can tolerate a maximum averagequeueing delay �j in L. The total o�ered rate to L is � =PUj rj. Without loss of generality, Uis ordered so that �1 � �2 � : : : � �U > 0.Suppose that each user j in U selects a class cj 2 f1; : : :Ng. The corresponding ClassSelection Vector (CSV) c is de�ned as c = (c1; c2; : : : ; cU). Given a CSV c, the o�ered rate ineach class i is �i(c) = UXj:cj=i rj (5.3)From (5.2) and (5.3), we see that the CSV c determines the average delay �di(c) in each class i,when the DDPs and the average aggregate backlog are given. Note that the average aggregatebacklog does not depend on the CSV c.The objective of each user is to select the minimum class that meets the user's delayrequirement. A user j is said to be satis�ed with c if �dcj (c) � �j; otherwise, the user is said to



105be unsatis�ed with c. The CSV c is called acceptable, if all users in U are satis�ed with c. Whenc is acceptable, we also say that class cj is acceptable for user j. CSVs can be compared in thefollowing sense: c0 � c when c0j � cj for all j = 1 : : :U .Since U and N are �nite, we can examine all possible CSVs to see whether they areacceptable. The set of acceptable CSVs is denoted by CA. Note that CA may be the null set;this occurs when the user requirements cannot be met with the given link capacity and DDPs.If CA 6= ; and c 2 CA, we say that the user population U is satis�ed with c, or simply satis�able.Equivalently, the link L is said to be well-provisioned for U . If CA = ;, the user population issaid to be unsatis�able, and the link is said to be under-provisioned for U .The following result expresses an important property of the PDD model. When one oremore users move to a higher class, the delay of all classes increases. The class delays decrease,on the other hand, when one or more users move to a lower class. The proofs of all lemmas inthis section can be found in x7.5.Lemma 1: If c and c0 are two di�erent CSVs such that c � c0, the average delay in each classi is �di(c0) � �di(c).A second important property of the PDD model is that when a user moves from oneclass to another, while the rest of the users stay in the same class, the user observes a consistentclass ordering, i.e., the higher class provides a lower delay. In the following, the notation c0 = ciijmeans that the CSV c0 is identical to c, except that the j'th entry of c is replaced with class i(j 2 f1; : : : ; Ug and i 2 f1; : : : ; Ng).Lemma 2: Suppose that c0 = cikj with k 2 f1; : : : ; Ng. If k > cj then �dk(c0) � �dcj (c).Similarly, if k < cj then �dk(c0) � �dcj (c).5.2.2 The well-provisioned caseFirst consider the case when U is satis�able. We start with some important properties for theset of acceptable CSVs CA.



106A CSV is said to be ordered when users with more stringent delay requirements selecthigher classes. The following property shows that an acceptable CSV c can be always replacedwith a lower acceptable CSV c0 � c that is ordered. For example, if c = (1; 3; 2; 4; 3) is anacceptable CSV, we can construct the CSV c0 = (1; 2; 2; 3; 3) that is lower than c and ordered. Asshown in the proof of this property, the CSV c0 is such that c0j = mink=j;:::;Ufckg for j = 1; : : : ; U .Lemma 3: Given an acceptable CSV c we can always construct another acceptable CSV c0 � c,such that c0i � c0j for any i < j (i; j 2 f1; : : :Ug).The following property shows that given two acceptable CSVs, we can construct anotheracceptable CSV in which each user selects the minimum between the two acceptable classesfor that user. For example, if (1,2,2,3,4) and (1,1,3,4,4) are two acceptable CSVs, then theCSV (1,1,2,3,4) is also acceptable. To express this `per-user minimum class' operation, we writecm = minfc1; c2g, or more generally, cm = minfc1; : : : ; ckg.Lemma 4: Suppose that c1 and c2 are two acceptable CSVs. The CSV cm, with cmj =min(c1j ; c2j) (j = 1; : : : ; U ), is also acceptable.Feasibility test and minimum acceptable CSVWe examine whether there exists a CSV in which all users are satis�ed, i.e., whether the linkL is well-provisioned for U (CA 6= ;). If the link is well-provisioned, what is the CSV with theminimum acceptable class for each user? Such a CSV would be optimal for the user population,because all users would be satis�ed, and with the minimum cost for each user. Let ĉ be such anoptimal CSV. Formally, ĉ is de�ned as ĉ = minc2CAfcg (5.4)Based on Lemma 4, ĉ is also acceptable, and by de�nition, unique. We refer to ĉ as the minimumacceptable CSV.



107
min accept CSV (c1; c2; : : : ; cU)f// c = (c1; c2; : : : ; cU).// Initially, call min accept CSV (1; 1; : : : ; 1).compute class rates �(c); // From (5.3).compute class delays �d(c); // From (5.2).if (c 2 CA) // (i.e., �dcj (c) � �j for all j 2 U)return (ĉ = c);else fk = maxj=1:::U j such that cj < N ;if (k == 1 and c1==N-1)return (U : Unsatis�able);else if (k == 1)min accept CSV (c1 + 1; c1 + 1; : : : ; c1 + 1; c1 + 2);else min accept CSV (c1; c2; : : : ; ck�1; ck + 1; : : : ; ck + 1);ggFigure 39: Algorithm to compute the minimum acceptable CSV ĉ.



108A bruteforce approach to compute ĉ is to search through all CSVs. A more e�cientalgorithm is shown in Figure 39. The algorithm determines the minimum acceptable CSV ĉ,given the rates and delay requirements of the users in U , the average aggregate backlog �qag(which is an invariant given U and L), and the DDPs. The algorithm generates the sequence ofordered CSVs in increasing order2. For each CSV, it is examined whether it is acceptable. Ifthis is the case, we can show (based on Lemma 3) that this is the minimum acceptable CSV ĉ,and the algorithm terminates. If there is no acceptable CSV in the sequence of ordered CSVs,then the user population U is unsatis�able, and the link L is under-provisioned for U (CA = ;).Note that CSVs of the form (ci; ci; : : : ; ci) with ci 6= 1 are not examined, because if they areacceptable, then the lower CSV (1; 1; : : : ; 1) is also acceptable.This `well-provisioning' of the link L for the user population U depends on the user rates,the user delay requirements, the speci�ed DDPs, and the average aggregate backlog. The latterdepends on the tra�c burstiness, the aggregate user rate �, and the link capacity C. Note thatthe `inverse' network-design problem is to determine the optimal DDPs and the minimum linkcapacity that can satisfy a user population U ; we study this problem in x5.4.Distributed DCS modelThe algorithm of Figure 39 computes the minimum acceptable CSV in a centralized manner.In practice, users would act independently to select the minimum class that satis�es their delayrequirement, without knowing the class selections and delay requirements of other users. Whatis the resulting CSV in this distributed DCS model?Users perform the following class transitions in the distributed DCS model. Note that auser j is supposed to only know the queueing delay �dcj = �dcj (c) in the class cj that she uses. If�dcj > �j and cj < N the user moves to the higher class cj + 1, expecting to get a lower averagedelay (Lemma 2). If the user is already in the highest class N and �dcj > �j , the user staysunsatis�ed in class N . Also, if �dcj � �j and cj > 1, the user moves to the lower class cj � 1, in2By increasing order, we mean that if ck is generated before cl, ck � cl.



109order to examine whether the higher delay of that class is also acceptable (Lemma 2). If classcj � 1 is not acceptable, the user returns to class cj . Note that the occasional transitions to alower class are necessary in order for users to search for the minimum acceptable class.It is important to note that in this distributed DCS model a user does not stay in anacceptable class inde�nitely. So, strictly speaking, the user population does not converge to acertain CSV, even when U is satis�able. We can de�ne, though, a distributed DCS equilibrium ~cas a CSV such thata) all unsatis�ed users are in the highest class, andb) when a satis�ed user unilaterally moves to the lower class, while all other users remain in thesame class, that user becomes unsatis�ed.Formally, let Us(c) and Uu(c), respectively, be the set of satis�ed and unsatis�ed usersfor a CSV c. We say that a CSV ~c is a distributed DCS equilibrium if it meets the following twoconditions: ~cj = N for all j 2 Uu(~c) (5.5)and for any j 2 Us(~c) (with ~cj > 1); j =2 Us(c0) where c0 = ~ci~cj�1j (5.6)If ~c 2 CA, we say that it is an acceptable DCS equilibrium; otherwise, it is an unacceptable DCSequilibrium.Ren and Park considered a game theoretic model of DCS in [89]. Speci�cally, [89]showed that the users converge to a distributed DCS equilibrium (Nash equilibrium), under eithersequential or concurrent class transitions, when three `per-hop control' properties are met. ThePDD model satis�es these properties because of Equation 5.1, Lemma 1, and Lemma 2. So, theresults of [89] regarding the existence and stability of the DCS equilibria are applicable to ourPDD-based link model. The major result of [89] is that there can be no persistent cycles in asequence of CSVs that results from DCS class transitions. Cycles can occur with concurrent classtransitions, but they are only transient, in the sense that from any CSV on the cycle there existclass transitions (sequential or concurrent) that lead to a distributed DCS equilibrium.



110It is easy to see that the minimum acceptable CSV ĉ is an acceptable DCS equilibrium.So, if there is only one DCS equilibrium, it has to be ĉ. Additionally, it can be shown that ifall users start from the lowest class, i.e., if the initial CSV is c = (1; 1; : : : ; 1), then the resultingDCS equilibrium is ĉ.Other DCS equilibria can also exist however. For example, consider the case of twousers and two classes in a well-provisioned link. Suppose that the minimum acceptable CSVis ĉ = (1; 1), and that the CSVs (1; 2) and (2; 1) are unacceptable. Since (1; 1) is acceptable,the CSV (2; 2) is also acceptable (the users encounter the same average delays in both CSVs).Consequently, the CSV (2; 2) is also an acceptable DCS equilibrium. Such acceptable equilibriaare suboptimal for the users, because the users need to pay for a higher class than the minimumacceptable class that exists for them. On the other hand, such equilibria may be more preferablefor the network provider, since they can lead to higher network revenues.The resulting DCS equilibria can also be unacceptable, even when the link is well-provisioned. For example, consider a well-provisioned link with three users and three classes,and let ĉ = (1; 2; 2). It is possible that the CSVs (1; 2; 3), (1; 3; 2), and (1; 3; 3) are unacceptable.In that case, the CSV (1; 3; 3) is an unacceptable DCS equilibrium, even though the link is well-provisioned. Unacceptable DCS equilibria are of course suboptimal both for the users and thenetwork provider.5.2.3 The under-provisioned caseSuppose now that U is unsatis�able (CA = ;). By de�nition, there are some users that cannotmeet their delay requirement in any class. Based on the distributed DCS model of the previousparagraph, these users remain unsatis�ed in the highest class. As in the well-provisioned case, itcan be shown that the population of users converges to a distributed DCS equilibrium, that isalways unacceptable in this case.



111The following result shows that, in the under-provisioned case, a distributed DCS equi-librium ~c is such that the unsatis�ed users have the most stringent (i.e., smallest) delay require-ments.Lemma 5: If U is unsatis�able, a distributed DCS equilibrium ~c is always of the form~c = (c1; : : : ; cS ; N; : : : ; N ) (5.7)where S is the number of satis�ed users (0 � S < U ) in ~c.So, when U is unsatis�able, S users with the largest delay requirements are satis�ed, while therest U � S users with the smallest delay requirements are unsatis�ed in the highest class.The maximum value of S and the minimum acceptable class for those S satis�ed userscan be determined using the following centralized algorithm. The algorithm starts with S = U�1.Given that the U 'th user selects class N and is unsatis�ed, the algorithm of Figure 39 examineswhether there exists an acceptable CSV for the lower S users (including the rate rU in �N ). Ifthis the case, the algorithm terminates, returning the minimum class selection for the S lowerusers. Otherwise, S is decreased to U � 2, and the process repeats.In practice, the unsatis�ed users may leave the network, or change their rates and/ordelays requirement. Such user behavior leads to a network load relaxation, and to a new userpopulation U 0 that may be satis�able. Unsatis�ed users, in practice, also introduce some cost forthe network provider (in the form of loosing customers for example).5.3 Simulation study of an end-to-end DCS algorithmThe model of Section 5.2 considers only a single link, and assumes that users know the exactaverage queueing delay in the class that they use. Also, the model does not specify the timescalesin which users measure the average delays and adjust their class selections. In this section, wefocus on an end-to-end DCS algorithm that takes into account all these issues. The behavior



112of this DCS algorithm in a multi-hop network that is loaded with heavy tailed cross-tra�c isstudied with simulations. The results of this section provide further insight into the factors thatdetermine the well-provisioning of a network, and in the dynamic behavior of the DCS algorithm.A complete DCS algorithm: As noted in x5.1, there can be several variations of DCS algo-rithms, depending on the performance metrics that users are interested in and measure. In thefollowing DCS algorithm, the user speci�es a requirement Dmax on the maximum Round-TripDelay (RTD) in the ow's path. Users measure the RTD as follows. The sender timestamps eachpacket k before transmitting it, while the receiver returns the timestamps back to the sender inthe same class that they are received in. The sender measures the RTD Dk of the k'th packet,subtracting the packet's timestamp from the current time. In a bi-directional ow, such as atelephony session, the ow of timestamps back to the sender can be piggybacked with the reversedata ow. The minimumRTD Dmin is also measured, in order to estimate the total propagationand transmission delays in the path; obviously, the user cannot ask for Dmax < Dmin.After the k'th timestamp is received, the DCS sender estimates the average RTD ~D usingan exponential running-average of the form~Dk+1 = (1� w) ~Dk +wDk (5.8)where 0 < w � 1 is the averaging weight. ~D expresses the performance timescales that the useris interested in. For instance, if w = 1 the user cares about per-packet RTDs, which may be thecase in a highly interactive application. If w = 0:1, the last 50 RTDs contribute 99% to ~Dk,while the last 10 RTDs contribute 65% to ~Dk. If w = 0:01, the last 500 RTDs contribute 99%to ~Dk, while the last 100 RTDs contribute 63% to ~Dk. Unless stated otherwise, w is set to 0.01(one of the following experiments, though, also considers per-packet RTD constraints).The Dynamic Class Selection (DCS) algorithm is shown in detail in Figure 40. The classthat the user selects is denoted by c, with c 2 f1; : : : ; Ng. When the measured RTD Dk is largerthan Dmax, the class selection is increased. This decision is based on the last RTDDk, instead of



113DCS algorithm:f Dk= k'th RTD measurement;if (Dk > Dmax) fc = minfc+ dlog2 Dk�DminDmax�Dmin e; Ng;Do not increase class in next fIDk time units;gif (Dk < �Dmax) fc = maxfc� 1; 0g;Do not decrease class in next fDDk time units;gg Figure 40: DCS algorithm.the average ~Dk, in order to react faster to excessive delays in the current class. The class increaseis based on the deviation of the measured queueing delay Dk�Dmin from the maximum allowedqueueing delay Dmax�Dmin. In this particular case, the DCS algorithm assumes that the DDPsin each hop are ratioed as �1=�i = 2i�1, and so the appropriate class increase is given by thelogarithmic formula shown. The DDPs can be estimated measuring the queueing delay ratiosbetween successive classes. A DDP-based class increase can move the user to the appropriateclass faster. We emphasize, though, that it is not required that the sender knows the actual DDPsin the network, and that a simpler class increase formula can be used instead. After the classincrease, the sender waits for some time fIDk before a further class increase. This adaptationdelay is needed in order to measure the resulting RTD in the new class selection. A typical valuefor the adaptation delay factor would be fI=1 (i.e., wait for one RTD), but a more delay-sensitiveuser can set fI to less than one assuming that the class increase will cause a lower RTD. Unlessstated otherwise, fI=1.The class is decreased, on the other hand, when the RTD is lower than �Dmax (� < 1).� is a tolerance factor for the maximum RTD that triggers a class decrease. A user that is notso interested to minimize the cost of her ow can reduce �. The class is only decremented byone, since the reaction latency is not as critical in the class decrease as in the class increase case.



114
75 75

75

75

7575

2525 2525

75

75

. . . . . .. . .

CT

CT

H H H HK2 31

Per-hop

Cross-Traffic
Senders/Receivers

Cross-Traffic
Receivers/Senders

Per-hop

(Senders) (Receivers)

Monitored 
DCS
Flows

Monitored 
DCS
Flows Figure 41: Simulation topology.A class decrease is also followed by an adaptation delay fDDk. Cost-sensitive users can set fDclose to one, while delay-sensitive users can set fD to a higher value. Unless stated otherwise,fD = 4 and �=0.9. Note that when � < 1, it is possible that a user settles in a class that isnot the minimum acceptable class. This is a trade-o� for the user, since a lower � reduces the`annoyance' of lower class transitions, but it can also lead to a suboptimal class.Simulation topology and parameters: Figure 41 shows the multi-hop simulation topology.The monitored DCS ows go through K=5 backbone hops in the horizontal direction. The Cross-Tra�c (CT) in the path is generated from bi-directional ows that go through the topology inthe vertical direction. CT=50 such ows are created in each hop. The K backbone links havea 25Mbps capacity, while the rest of the links (access links) have a 75Mbps capacity. Thepropagation delay in each link is �=5msec. The monitored DCS ows have a minimum RTDDmin = 2(K + 2)�=70 msec due to propagation delays. The CT ows go through 3 links, andso their minimum RTD is 6�=30msec.The class adjustments are performed at the DCS nodes labeled as `Senders'. The CTsources are either DCS ows themselves, or they generate packets with a given, average classload distribution (non-DCS ows). Notice that both directions in the backbone path are equallyloaded from the CT sources. Both the monitored and CT sources generate packets based on aPareto distribution with in�nite variance (�=1.5). The packet size is �xed to 500 bytes for all



115sources. The monitored DCS ows have an average rate of 400kbps, or 100 packets per second.The rate of the CT sources is adjusted to cause a certain utilization u in the backbone links; uis set to 90% in the following experiments.The backbone links use the WTP scheduler (x3.3) to provide proportional delay di�eren-tiation3. The network o�ers N=8 classes with DDPs �1=�i = f1; 2; 4; 8; 12; 16;24;32g (i = 1 : : :8),unless stated otherwise. Notice that these DDPs are not entirely consistent with the `power-of-two' DDPs that the algorithm of Figure 40 assumes. When the CT is created from non-DCSows, the average class load distribution is (10,20,20,15,15,10,5,5)4. When the CT is createdfrom DCS ows, the class load distribution is determined from the delay requirements of thoseows. The number of bu�ers in the links is adequately large to avoid losses.Performance metrics: The performance of a DCS ow is measured with the fraction P ofRTD values ~Dk that are lower than the speci�ed maximumRTD Dmax. For K RTD values,P = PKk I(Dmax � ~Dk)K (5.9)where I(x) is zero if x < 0 and one otherwise. We refer to P as the acceptable delay ratio. Notethat the acceptable delay ratio is based on the running average ~Dk, and not on the individualRTD measurements, because ~Dk expresses the performance timescales that the user cares about.The cost of a DCS ow is measured with the average class metric C. If the k'th packetwas sent in class ck, the average class of a DCS ow that transferred K packets isC = Pk ckK (5.10)A lower value of C causes a lower cost for the user, since higher classes are assumed to be moreexpensive (in a monetary or other sense).3In the high utilization range that we simulate here, the di�erences between WTP and HPD (x3.4) are minor.4Each CT source generates tra�c with this class load distribution.



116
5 10 15 20 25 30 35 40

Time (sec)

0

20

40

60

80

100

120

140

160

180

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

Static class selections

Class−1
Class−3
Class−8(a) Static class selection 5 10 15 20 25 30 35 40

Time (sec)

0

20

40

60

80

100

120

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

Dynamic class selection

DCS delay
DCS class (x10)(b) Dynamic class selectionFigure 42: Static versus dynamic class selection for a ow with Dmax=100msec.The DCS framework introduces a trade-o� between the performance and cost of a ow.Higher classes lead to lower delays, but they also cost more. The objective of the DCS algorithmis to achieve a high acceptable delay ratio P and a low average class C. The exact point in thistrade-o� can be chosen from the user, based on her performance/cost sensitivity. The algorithmof Figure 40 allows the control of this trade-o�, through the parameters fI , fD, and �.Static versus dynamic class selection: We �rst compare the DCS algorithm with a simplestatic class selection scheme. Amonitored ow has a maximumRTD requirementDmax=100msec.Figure 42-a shows a sample path of the RTD average ~D in the case of three static class selections.Class-1 provides excessive delays, and the acceptable delay ratio is only P=0.12. Class-8, on theother extreme, leads to much lower delays than needed, and P=1.00. Class-3 turns out to be theminimum class that leads to an acceptable RTD for almost all packets (P=0.99). So, Class-3 isthe minimum acceptable class for this ow.Figure 42-b shows what happens when the monitored ow uses DCS instead of a staticclass selection. The class selection variations are also shown (scaled by a factor of ten). Note that



117DCS meets the speci�ed RTD constraint, and the acceptable delay ratio is P=1.00. The averageclass metric is C=2.92, and so the ow uses mainly Class-3, at least in an average sense. Thisis also shown from the class selection variations in the graph. In other words, in the resultingDCS equilibrium of this experiment, the DCS ow selects (in an average sense) the minimumacceptable class for that ow, namely Class-3. The oscillations around Class-3 are caused byattempts to �nd a lower acceptable class, and by some excessive RTDs, due to tra�c bursts, thatcause temporary class increases.Satis�ed and unsatis�ed DCS ows: In this experiment, we focus on four monitored DCSows with diverse maximum RTD requirements. The value of Dmax for these ows is 300, 150,100, and 75msec. The �rst three ows �nd a class in which the acceptable delay ratio is P=1.00,and so they are satis�ed. The average class for these ows is C=1.06, 2.13, and 4.17, respectively.The fourth ow, on the other hand, requires that Dmax=75msec, which is only 5msec more thanthe propagation delays. The ow moves to Class-8, but still cannot meet its RTD requirement.The acceptable delay ratio for this ow is only C=0.13, which implies that it is unsatis�ed.In other words, the unsatis�ed users, if they exist, are ows with the most stringentrequirements, they move to the highest class, and they remain unsatis�ed there. The satis�edusers, on the other hand, converge to an acceptable class, oscillating around that DCS equilibrium.The performance versus cost tradeo� in DCS: As noted earlier, there is a trade-o� betweenthe performance and cost of a ow. The DCS algorithm allows the user to control the operatingpoint in this trade-o� through the parameters fI and fD (the adaptation-delay parameters), and� (the RTD tolerance factor). These parameters control how often the DCS algorithm checksfor a required class increase (fI), for a possible class decrease (fD), and when is a class decreaseallowed (�).To illustrate the performance versus cost trade-o�, consider a ow that has a stringentrequirement on the individual RTDs of each packet. Such a constraint means that w=1 in



118
5 10 15 20 25 30 35 40

Time (sec)

0

50

100

150

200

250

300

350

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DCS flow #1 (maximum RTD: 300msec)

DCS delay
DCS class (x10)(a) Flow-1: Dmax=300msec 5 10 15 20 25 30 35 40

Time (sec)

0

20

40

60

80

100

120

140

160

180

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DCS flow #2 (maximum RTD: 150msec)

DCS delay
DCS class (x10)(b) Flow-2: Dmax=150msec

5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DCS flow #3 (maximum RTD: 100msec)

DCS delay
DCS class (x10)(c) Flow-3: Dmax=100msec 5 10 15 20 25 30 35 40

Time (sec)

0

10

20

30

40

50

60

70

80

90

100

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DCS flow #4 (maximum RTD: 75msec)

DCS delay
DCS class (x10)(d) Flow-4: Dmax=75msecFigure 43: Three satis�ed and one unsatis�ed DCS ows.



119
5 10 15 20 25 30 35 40

Time (sec)

0

20

40

60

80

100

120

140

160

P
er

−
pa

ck
et

 R
T

D
 v

al
ue

s

Typical DCS parameters

DCS per−packet delays
DCS class (x10)

(a) fI = 1; fD = 4; � = 0:9 5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

140

160

P
er

−
pa

ck
et

 R
T

D
 v

al
ue

s

Special DCS parameters

DCS per−packet delays
DCS class (x10)

(b) fI = 0:9;fD = 20; � = 0:8Figure 44: Controlling the DCS parameters to meet a per-packet RTD requirement.(5.8). The maximum RTD requirement is Dmax=100msec. Figure 44-a shows a sample path ofthe per-packet RTDs with the `typical' DCS parameters that we mentioned earlier (fI=1, fD=4,�=0.9). The acceptable delay ratio is only P=0.81, and the average class is C=2.92. Violating theRTD bound in about 20% of the packets would probably be unacceptable for several interactiveapplications.Figure 44-b shows the resulting sample path of per-packet RTDs, when the DCS param-eters are selected as fI=0.9, fD=20, and �=0.8. The acceptable delay ratio now is signi�cantlyimproved to P=0.97, and only 3% of the packets miss their deadlines. The average class C isincreased from 2.92 to 4.21, though, which shows the price that has to be paid for the morestringent QoS. This experiment illustrates two important points. First, the DCS framework canbe used to meet absolute RTD requirements not only in terms of averages, but also for individualpackets. Second, meeting a more strict performance requirement requires normally the use ofhigher classes, and thus a larger cost. A practical DCS algorithm has to provide the exibilityto control this trade-o�.



120
5 10 15 20 25 30 35 40

Time (sec)

60

80

100

120

140

160

180

200

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DDPs: {1,2,4,8}

Flow−1 (Dmax=195msec)
Flow−2 (Dmax=135msec)
Flow−3 (Dmax=105msec)
Flow−4 (Dmax=90msec)

(a) Well provisioned DDPs 5 10 15 20 25 30 35 40
Time (sec)

60

80

100

120

140

160

180

200

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

DDPs: {1,2,3,4}

Flow−1 (Dmax=195msec)
Flow−2 (Dmax=135msec)
Flow−3 (Dmax=105msec)
Flow−4 (Dmax=90msec)

(b) Poorly provisioned DDPsFigure 45: The e�ect of the DDPs on DCS ows.Class provisioning and the selection of DDPs: This experiment illustrates the importanceof selecting appropriate DDPs for a given DCS tra�c mix. Four DCS monitored ows have aDmax requirement of 195, 135, 105, and 90msec, respectively. The network o�ers four classes.How is the selection of DDPs important in satisfying these DCS ows?Suppose �rst that �1=�i = f1; 2; 4; 8g (i = 1 : : :4). Figure 45-a shows that with theseDDPs each DCS ow gets an almost perfect acceptable delay ratio P � 1.00. The average classC for the four ows is 1.28, 1.97, 2,87, and 3.59, respectively. The given DDPs were not selectedrandomly in this experiment. On the contrary, they were chosen based on the queueing delayrequirements of the DCS ows. To see how, note that the minimum RTD in the path (due topropagation and transmission delays) is about Dmin=75msec. So, the four ows can tolerate upto 120, 60, 30, and 15msec of queueing delays in the round-trip path. These maximum queueingdelays are ratioed as: 120/15=8, 60/15=4, and 30/15=2. So, the DDPs in this case are ratioedbased on the corresponding ratios of the queueing delay requirements of the DCS ows.Figure 45-b, on the other hand, shows what happens if the network operator choosesthe DDPs �1=�i = f1; 2; 3; 4g (i = 1 : : :4). These DDPs do not match well the queueing delay



121
5 10 15 20 25 30 35 40

Time (sec)

0

10

20

30

40

50

60

70

80

90

100

110

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

Cross−traffic delay requirement: 30 to 50msec

DCS delay 
DCS class (x10)

(a) More demanding CT ows 5 10 15 20 25 30 35 40
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

110

R
T

D
 r

un
ni

ng
−

av
er

ag
e 

(m
se

c)

Cross−traffic delay requirement: 40 to 60msec

DCS delay
DCS class (x10)

(b) Less demanding CT owsFigure 46: The e�ect of the CT delay requirements on a DCS ow.requirements of the DCS ows. Speci�cally, these DDPs only provide a maximum delay ratio offour between the highest and the lowest class, while the DCS ows require a maximum ratio ofeight. The result of this mismatch is that the ow with the tightest delay requirement (Flow-4)remains unsatis�ed in the highest class with an acceptable delay ratio P=0.29. It is importantto note that the network utilization is the same in both cases; the only di�erence is the speci�edDDPs. This experiment illustrates the importance of selecting DDPs that are appropriate forthe delay requirements of DCS ows. The problem of computing the optimal DDPs and theminimum link capacity that are required for a certain user population is studied in x5.4.The e�ect of the Cross-Tra�c (CT) performance requirements: In the experiment ofthis paragraph, all sources, both monitored and CT, generate DCS ows. In this scenario, animportant parameter is the delay requirements of the CT ows. Since they also perform DCS,the more stringent delay requirements they have, the higher classes they use, and so the harderit becomes for any DCS ow to �nd an acceptable class. Figure 46 shows what happens to a



122monitored DCS ow with a maximumRTD requirement Dmax=90msec, in two di�erent cases ofCT delay requirements.In Figure 46-a, the CT ows ask for a maximum RTD that is uniformly distributed inthe range 30-50msec. Note that the minimum RTD in the CT path is about 30msec. So, someof the CT ows in this case ask for practically zero queueing delays. Such a demanding CT loadcauses a relatively low acceptable delay ratio to the monitored ow (P=0.86), while its averageclass is C=3.69. In Figure 46-b, on the other hand, the CT ows are less demanding, asking for amaximum RTD in the range 40-70msec. Even though the aggregate load and the DDPs remainthe same, the monitored DCS ow is able now to get a perfect acceptable delay ratio (P=1.00)with a lower cost (C=1.94).To summarize the experiments of this section, the satis�ed DCS ows converge to anacceptable class, and oscillate around that DCS equilibrium. Unsatis�ed DCS ows move to thehighest class and remain unsatis�ed there. The trade-o� between a ow's performance and costcan be controlled using certain parameters of the DCS algorithm. Finally, the `well-provisioning'of a network for a given tra�c workload depends on the link utilization, on the delay requirements(or static class selection) of the cross-tra�c, and on the provisioned delay di�erentiation betweenclasses.5.4 Class provisioningA central point in the relative di�erentiation architecture (x2.1) is that the network provider doesnot control the aggregate load or the class load distribution in a network link. This is because thearchitecture does not use admission control, or any other similar mechanisms. Additionally, theclass loads can vary dramatically in an IP network due to routing changes, tra�c burstiness, oras shown in the previous sections, due to dynamic class selections at the end-points. Obviously,if the class loads are not known a priori, the QoS level of each class cannot be controlled, and sothe provider can only o�er some kind of relative di�erentiation.In this section, we examine this issue from a di�erent perspective. We consider the



123case that the network provider has at least a rough estimate of the tra�c workload in a link.By `workload estimate', we mean that the provider knows the major `tra�c types' that the linkcarries, as well as an average rate for each tra�c type in di�erent times of day and/or daysof week. Such information is often available, based on operational data and statistics, in stablenetworks that are well monitored [17]. In this section, we show that a network provider can usethis workload estimate, when it is available, to provide an absolute QoS level to each tra�c type.We refer to this methodology as class provisioning.The exact form of class provisioning we consider here provides an upper bound on theaverage queueing delay of each tra�c type. For example, a network provider can provision amaximum average delay of 50msec for the E-mail, Network-News (NNTP), and other `bulk'tra�c, 20msec for the WWW tra�c, and 10 msec for the IP telephony and video conferencingtra�c. The objective in the proposed provisioning methodology is to compute the minimumrequired link capacity that meets the delay requirements of the supported tra�c types. This isimportant, especially when the network bandwidth is a scarce resource.The proposed class provisioning methodology is based on the PDD model (x3.1). ThePDD model provides a simple way to adjust the queueing delay spacing (i.e., ratios) between theo�ered classes, based on the delay requirements of the given tra�c types. Before expanding moreon the class provisioning methodology, let us �rst note how the provisioning problem relates tothe Dynamic Class Selection (DCS) framework of x5.1. In DCS, the users aim for an absoluteend-to-end performance in a network that only o�ers relative di�erentiation between classes, andso they have to dynamically search for an acceptable class. The capacity and the DDPs of eachlink, in that framework, are given and �xed. In class provisioning, on the other hand, the networkprovider determines the link capacity and the DDPs, so that the link provides a desired absoluteQoS level to each tra�c type.



1245.4.1 Problem description and formulationConsider a network link L. Suppose that L carries M tra�c types. A tra�c type is an aggregationof ows that have the same performance requirements. In our model, all ows in a tra�c typehave the same average delay requirement in L. Speci�cally, a tra�c type j is characterized bya maximum average queueing delay requirement �j, and an average rate �j. Without loss ofgenerality, the tra�c types are ordered based on their delay requirement, as �1 > �2 > : : : >�M > 0.Our model for L is that of a lossless PFE with N classes of service, as presented in x3.1.The link capacity is denoted by C, the o�ered rate in class i is �i, and the aggregate o�ered rateis � = Pi �i. The PFE uses a work-conserving, non-preemptive, proportional delay schedulerS, such as HPD, that can achieve (or approximate) the PDD model when the speci�ed DDPsare feasible (x3.1). We assume that the utilization is u = �=C < 1, and that the PFE has anadequate number of bu�ers for lossless operation.The class provisioningmethodology consists of two parts. First, we determine the optimalaverage delay v̂i and the corresponding optimal o�ered rate ĥi for each class i = 1 : : :N . Theobjective in the selection of the N pairs f(v̂i; ĥi); i = 1 : : :Ng is that L meets the average delayrequirements f�j; j = 1; : : : ;Mg of the M tra�c types with the minimum capacity requirement.Second, we determine this minimum link capacity Ĉ, as well as the DDPs f�̂i; i = 2 : : :Ngrequired to meet the previous objective.In summary, the class provisioning methodology has the following outcomes:1. The optimal average delay v̂i and the optimal o�ered rate ĥi in each class i.2. The nominal mapping from each tra�c type to the corresponding service class.3. The minimum capacity Ĉ in L.4. The required Delay Di�erentiation Parameters (DDPs) f�̂ig.



1255.4.2 Optimal Class Operating Point (COP) selectionWe de�ne a Class Operating Point (COP) as a vector v = fv1; : : : ; vNg, such that v1 � v2 �: : : � vN > 0, where vi is the desired (target) average delay in class i. A COP v is acceptablewhen for each tra�c type j there exists at least one class i such that vi � �j. Let V be the setof acceptable COPs. If v 2 V , then for each tra�c type j there exists a class n(j) 2 f1 : : :Ngsuch that vn(j) � �j < vn(j)�1 (v0 =1).Given an acceptable COP v, each tra�c type j is supposed to use class n(j), since thatis the minimum class that satis�es the delay requirement of j. We say that tra�c type j mapsto class n(j), or that n(j) is the nominal class for tra�c type j. Note that when M > N , whichwould probably be the case in practice, there will be more than one tra�c types mapping tocertain classes. Some classes, that are referred to as void, may not be nominal for any tra�ctype. To denote the inverse mapping, from classes to tra�c types, t(i) is the maximum tra�ctype that maps to class i; if class i is void, then t(i)=0.The expected rate hi in class i is the aggregate rate of all tra�c types that map to classi. Since an acceptable COP v uniquely determines the nominal class for each tra�c type, theexpected rates are a function of v,h(v) = fh1(v); h2(v); : : : ; hN (v)g with hi(v) = MXj:n(j)=i �j � 0 (5.11)When the particular v that we consider is obvious, we write h or hi, instead of h(v) or hi(v),respectively. The total expected rate in the link ish = NXi=1 hi = MXj=1 �j (5.12)that is independent of v.We say that an acceptable COP is realized if the average delay in each class i becomes�di=vi when the class average rates are �k=hk for k = 1 : : :N . The link capacity that is requiredfor realizing v is called the capacity requirement of v and is denoted by C(v). When v is realized,



126the aggregate backlog in the PFE becomes�qag(v) = NXi=1 �di�i = NXi=1 vihi (5.13)Recall from x3.1 that the average backlog �qag depends on the link utilization and the statisticalcharacteristics of the tra�c, and not on the scheduler or the class load distribution.In order to compute the capacity requirement of a COP v, we need to know the averagebacklog �qag as a function of the link utilization u. In the following, we assume that the averagebacklog is given by a backlog function �qag = �(u) of the link utilization u. �(u) is a strictlyincreasing and convex function for u 2 (0; 1), that becomes unbounded as u tends to one. �(u) isinvertible, meaning that the link utilization u can be computed from the average backlog throughthe inverse backlog function ��1(�qag). The problem of estimating the average backlog function inpractice is discussed in x5.4.4. Given the inverse backlog function, we can determine the capacityrequirement of v from C(v) = hu(v) = h��1(�qag(v)) (5.14)where u(v) is the link utilization that creates an average backlog of �qag(v).An important part of the class provisioning methodology is to select the optimal COP v̂among all acceptable COPs. The optimality constraint in the selection of v̂ is that it has to bethe acceptable COP with the minimum capacity requirement,v̂ = argminv2V C(v) (5.15)Since the average backlog function �qag = �(u) = �(�=C), though, is strictly increasing, it is easyto see that the COP with the minimum capacity requirement is the COP with the maximum av-erage backlog. So, the optimal COP is the acceptable COP with the maximum average aggregatebacklog, v̂ = argmaxv2V �qag(v) (5.16)



127
ζ1

ζ2

ζ3

χ1

χ
2

h2h1

ζ4

4
χ

χ3

v

v1

2

Average
Rate

A
ve

ra
ge

 D
el

ay

(a) An acceptable COP
ζ1

ζ2

ζ3

χ1

χ
2

h2h1

ζ4

4
χ

χ3

v1

v2

Average
Rate

A
ve

ra
ge

 D
el

ay

(b) The optimal COPFigure 47: An acceptable COP and the optimal COP for a link with N=2 classes and M=4tra�c types.To determine v̂ in practice, we only need to consider a �nite set of acceptable COPs. Tosee why, consider the example of Figure 47. The example refers to a link with N=2 classes andM=4 tra�c types, and it shows two acceptable COPs. In the COP of Figure 47-a, the �rst tra�ctype and a large part of the second tra�c type are mapped to Class-1; the rest of the tra�c ismapped to Class-2. Notice that the four tra�c types meet their delay requirements with thisclass mapping, but there is some `waste' of resources since the two classes provide lower delaysthan what the tra�c types need.In the COP of Figure 47-b, on the other hand, the average delay in each class is equalto the delay requirement of one of the tra�c types. Speci�cally, the �rst two tra�c types mapto Class-1, which o�ers the delay requirement �2 of the second tra�c type, while the two highertra�c types map to Class-4, which o�ers the delay requirement �4 of the fourth tra�c type.Note that the shaded area in each COP represents the average backlog �qag(v) =PNi=1 vihi. Theoptimal COP has to maximize the average backlog, and thus, to maximize the shaded area inFigure 47. In the previous example, the COP of Figure 47-b can be shown to be optimal.Based on the graphical insight from the previous example, we can see that the optimalCOP v̂ satis�es the following properties. First, each optimal class delay v̂i should be equal to the



128optimal cop (t1; t2; : : : ; tN�1; i;max q; best cop)f// ti: maximum tra�c type (2 f1 : : :Mg) that maps to class i.// max q and best cop are call-by-reference arguments.// Initially, call optimal cop (0; 0; : : :; 0; 1; 0; ;).// The optimal COP v̂ is returned in the best cop argument.// avg backlog() computes the backlog of a COP as in (5.13).// Note: tN=M and t0 = 0.if (i � N � 1) ffor ti = (ti�1 + 1) to (M � N + i)optimal cop (t1; t2; : : : ; tN�1; i + 1;max q; best cop);gelse fq = avg backlog (�t1 ; �t2 ; : : : ; �tN�1 ; �tN );if (q > max q) fmax q = q;best cop = (�t1 ; �t2; : : : ; �tN�1 ; �tN );ggg Figure 48: Algorithm to determine the optimal COP v̂.delay requirement of a tra�c type, i.e., for each i = 1 : : :N there is a j 2 f1 : : :Mg such thatv̂i = �j . Second, the optimal COP should not have void classes , because void classes always leadto an average backlog that is less than maximum. So, if v̂i = �j, then there should be no otherclass k with v̂k = �j . Third, following from the previous two properties, the target delay for thehighest class should be the most stringent tra�c type delay requirement, i.e., v̂N = �M .Putting the previous three properties together, we see that the �nite set of acceptableCOPs that should be examined in order to determine the optimal COP v̂ isfv 2 V : v1 > v2 > : : :vN ; 8i = 1 : : :N; 9j 2 f1 : : :Mg such that vi = �j (vN = �M )g (5.17)Note that the strict inequalities between the vi's prevent the existence of void classes.



129A recursive algorithm for selecting the optimal COP is shown in Figure 48. The run-timecomplexity of the algorithm is O�(M �N )N�1�. For instance, in the case of N=3 classes andM � 3 tra�c types, the algorithm examines (M � N + 1)(M � N + 2)=2 COPs. Since theprovisioning methodology is performed o�-line, and the number of classes and tra�c types isexpected to be relatively small (e.g., N=8, M=16), the run-time complexity of the algorithm isnot prohibitive.Example of optimal COP selection:Suppose that a certain link supports N=2 classes and M=3 tra�c types. We need to considertwo COPs, depending on whether the maximum tra�c type that maps to Class-1 is tra�c type1 or 2. Speci�cally, the two COPs are:v1 = (�1; �3) with h1 = (�1; �2 + �3) and v2 = (�2; �3) with h2 = (�1 + �2; �3)The average backlog in the two COPs is:�qag(v1) = �1�1 + �3(�2 + �3) and �qag(v2) = �2(�1 + �2) + �3�3Which COP has the maximum average backlog depends on the relation between the tra�c typerates and average delay requirements. If �1(�1 � �2) > �2(�2 � �3), then �qag(v1) � �qag(v2) andthe optimal COP is v1; otherwise, the optimal COP is v2.5.4.3 Minimum link capacity and optimal Delay Di�erentiation Pa-rameters (DDPs)In the �rst part of the class provisioning methodology, the goal was to determine the acceptablemapping from tra�c types to classes that leads to the minimumcapacity requirement. Given thegiven COP v̂ and the corresponding expected rate vector h(v̂), the second part of the provisioningmethodology determines the minimum capacity requirement and the required DDPs.



130The minimum capacity requirement Ĉ can be computed using the inverse backlog func-tion, as Ĉ = C(v̂) = h��1 (�qag(v̂)) = h��1 �PNi=1 v̂iĥi� (5.18)where h is the total expected rate given in (5.12). The required DDPs, on the other hand, aresimply the ratios of the corresponding optimal average class delays, i.e.,�̂î�1 = v̂iv̂1 i = 2 : : :N (5.19)with �̂1=1.Note that the proportional delay di�erentiation adjusts the ratio between the class aver-age delays, based on the corresponding delay ratios in the optimal COP. Without an appropriatecapacity though, even though the delay ratios will be as in the optimal COP, the actual averageclass delays will not. If the capacity is C > Ĉ, it is easy to see that all class delays will be lowerthan the optimal COP delays, i.e., �di < v̂i for all i. We refer to such an operating region asover-provisioning. On the other hand, if the capacity is C < Ĉ, all class delays will be higherthan the optimal COP delays, i.e., �di > v̂i for all i. We refer to such an operating region asunder-provisioning. In practice, of course, there will also be a well-provisioning operating regionin which the capacity is C 2 (Ĉ�; Ĉ+) where Ĉ+ = Ĉ and Ĉ� = fĈ , with f being a tolerancefactor (f < 1).Example of DDP and capacity selection:Suppose that a certain link o�ers N=4 classes, and that we are given an acceptable COP thatthe link has to meet:v = (40; 20; 10; 5)msec and h = (0:5; 0:5; 2:0;1:0)kppswhere kpps stands for `kilo-packets-per-second'. If the average packet size is 1000 bytes, the totalexpected rate is h = Pi hi=4kpps, or about 32Mbps. The problem is to determine the DDPs



131
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Utilization

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

A
ve

ra
ge

 b
ac

kl
og

 (
M

bi
ts

)

Backlog function

(a) qag = �(u) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Average backlog (Mbits)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

U
til

iz
at

io
n

Inverse backlog function

(b) u = ��1(qag)Figure 49: The backlog and the inverse backlog functions for Pareto tra�c with �=1.5.and the minimum link capacity required to realize this COP.From (5.19), the required DDPs are�2 = 2040 = 0:5 �3 = 1040 = 0:25 �4 = 540 = 0:125With this optimal COP, the average backlog is�qag =Xi vihi = 40� 0:5 + 20� 0:5 + 10� 2:0 + 5� 1:0 = 55 packetsWe can now use the inverse backlog function u = ��1(�qag) to compute the required utilizationu. In this example, suppose that the average backlog function (and its inverse) are as in Figure49 (these curves are generated from simulating Pareto interarrivals with �=1.5). For �qag=55packets we �nd that the utilization is u = ��1(55) �92.0%, and so the capacity requirement isC=h=u=4444pps, or about 35.6Mbps.Simulating the link with the previous DDPs and with u=92.0%, we get that the classaverage delays are ( �d1; �d2; �d3; �d4) = (35:1; 17:5; 8:8;4:4)msec, that are slighly less than the given



132maximum average delays speci�ed in the given COP. Because the backlog curve is quite steep inthe heavy load range, however, slight variations in the utilization or in the expected class rates canviolate the average delay requirements. For example, if the utilization is increased to u=94.0%,the average class delays become ( �d1; �d2; �d3; �d4) = (68:2; 34:1; 17:1; 8:6)msec, which violate themaximum average delay requirements. The large sensitivity of the capacity computation in theheavy load range implies that the network operator should use some tolerance in the computationof C. Even if the network provider provisions the link with a higher capacity than Ĉ, in order toprovide this tolerance and deal with uncertainties in the load estimates, it is still useful to knowĈ as a lower bound on the required link capacity.5.4.4 Other issues in class provisioningAn important requirement for computing the capacity requirement of a COP v is to know theaverage backlog �qag as a function of the link utilization u. For simple queueing models, thefunction �(u) is analytically known. For instance, in the M jM j1 system �(u) = u21�u packets,while in the M jGj1 system �(u) = u21�u 1+c2L2 , where cL is the coe�cient of variation of the packetsize distribution [13]. In the more general GjGj1 system, the average backlog can be approximatedby the Allen-Cunneen formula �(u) � u21�u c2A+c2L2 [1], where cA is the coe�cient of variationof the distribution of interarrivals. If the tra�c interarrivals exhibit Long Range Dependency(LRD), cA may not be well-de�ned (i.e., theoretically in�nite) [58]. Recent measurement studies,however, have shown that in links with high ow aggregation, despite the fact that the tra�c isstill non-Poisson, the variance increases with the square root (i.e., sub-linearly) of the averagebandwidth [71]. Such experimental results imply that even with the complex behavior of Internettra�c, tractable queueing models may still be applicable for an accurate estimation of statisticalmeasures such as the average backlog in a PFE. A practical alternative, instead of relying onqueueing models, is to measure the function �(u) directly on the router, by monitoring the actualbacklog in the PFE in di�erent utilizations.The backlog function may not only depend on the utilization u, but also on the capacityC. This can occur when the statistical properties of the tra�c (burstiness) depend on C. For



133instance, with the same utilization, an OC-3 link (155Mbps) may have a larger backlog than aT-1 link (1.5Mbps), because higher-capacity links attract in general more bursty tra�c. In arelatively narrow range of C though, we can assume that the tra�c burstiness remains invariant,and that the backlog function depends on u but not on C.The class provisioning methodology can be performed over relatively long timescales(say weeks or months), depending on how simple it is to adjust the link capacity. It is notedthough that it gradually becomes simpler to adjust the capacity of a link even in a few minutesor seconds, through the use of Wavelength-Division-Multiplexing (WDM) and optical switches[85]. Using such technologies, an ISP can lease the capacity of an additional `wavelength' fromthe backbone provider that owns the network �bers, when a larger tra�c demand is anticipatedor encountered. There are several backbone providers today that lease capacity in the range1Mbps-1Gbps in increments of 1Mbps. Also, if the characterization of tra�c types on a certainlink follows di�erent patterns through the day (e.g., many IP-telephony sessions through the dayand mostly WWW sessions in the evening), the network operator can perform class provisioningfor the di�erent tra�c patterns, and operate the link with a schedule of di�erent capacities andDDPs during the day.The proposed class provisioning methodology remains e�ective as long as the workloadestimate is valid. If the tra�c types have di�erent average rates than what was assumed duringprovisioning, or if the average backlog function is not accurately known, the optimal averageclass delays will not be met. Similar problems can arise due to dynamic routing changes, linkor router failures, or unexpected increases in the tra�c demand. In such cases, only relativedi�erentiation can be provided.5.5 Related work on class selection and provisioningA brief investigation of DCS in the context of proportional delay di�erentiation appeared in [72].That work considered a class selection algorithm that routers can perform in order to provide amaximumdelay to each ow. With a continuous-time model, and assuming a continuous range of



134class choices, [72] showed that when the set of user requirements is feasible, each ow convergesto a class that provides the requested delay.Orda and Shimkin considered multi-class networks with users that dynamically choosea class based on performance and pricing constraints [77]. The users select, in a distributed andsel�sh manner, the class that provides them with the maximum di�erence between utility andcost. The problem then is to compute the optimal class prices that will cause users to select thenominal service class that the network has provisioned for them. Even though there are somesimilarities between such an `incentive pricing' framework and DCS, the problem formulation, theproposed mechanisms, and the �nal results are quire di�erent. It is also likely that in practice theclass prices would depend on marketing and competition, rather than on network provisioningmechanisms.Chen and Park considered individual ows with absolute performance requirements in astateless network [22]. The class selection is formulated as an optimization problem in which theoverall resource usage cost is to be minimized, subject to the constraint that the performancerequirement of each ow has to be met. Interestingly, there is a distributed algorithm that solvesthis problem.Ren and Park considered the Di�Serv model of per-hop priority mechanisms and tra�caggregation from individual ows to service classes [89]. [89] derived an optimal classi�er (min-imizing the resource usage in a mean-square sense) for mapping a ow to a class, subject toeach ow's performance requirements. The model and results of [89] are based on game theory.Even though the DCS problem can be formulated as a non-cooperative game, with users thatact independently and sel�shly to meet their requirements given a �nite resource, we chose inthis work to take a di�erent approach that only uses basic queueing concepts. The underlyingconcepts, though, are common in both approaches. For instance, the DCS equilibria are calledNash equilibria in game theoretic terms, while the minimum acceptable CSV ĉ can be shown tobe Pareto and system optimal for the user population.[89] assumed that the underlying per-hop mechanism is GPS scheduling with periodic



135GPS weight adjustments. Such adjustments create a feedback loop that modi�es the GPS weightsbased on the measured class loads. Changing the GPS weights, however, a�ects the per-classdelays and losses, and in the DCS context, this leads to new class transitions and modi�edclass loads. So, there is another feedback loop in the system that modi�es the class loadsbased on the GPS weights. The previous two feedback loops can interact, causing races orinstabilities, if they operate in about the same timescales. For this reason, we argue that theproportional di�erentiation model is a more appropriate per-hop behavior for DCS, as comparedto GPS-like schedulers (or other static resource partitioning schemes) that perform periodicweight adjustments.The rest of this section reviews some related works on the problem of class and QoSprovisioning. Our class provisioning model follows the framework of [77]. In that framework, anumber of tra�c types with diverse QoS requirements are mapped to a normally smaller numberof classes, while the network provider provisions a nominal service class for each tra�c type.As mentioned earlier though, [77] uses this framework in the problem of computing of optimalclass prices, while we focus on computing the optimal class di�erentiation parameters and theminimum link capacity.[94] considers the problem of sharing the bandwidth and bu�ers of a link between anumber of classes of service. The objective is to �nd the optimal resource partitioning betweenclasses so that the utility of each class is maximized, given the `wealth' of that class, and theaverage o�ered rate in that class. One of the utility functions considered is an upper bound on theloss rate in each class. A di�erence between that work and our class provisioning methodology isthat [94] is based on static resource partitioning mechanisms (Weighted-Round-Robin schedul-ing and Complete-Bu�er-Partitioning dropping), while we focus on proportional di�erentiationmechanisms.As also discussed in x4.5, [119] studied the provisioning problem in the context of provid-ing a certain loss rate to each class. [119] showed that the PLR(1) dropper, jointly with a FCFSscheduler, is optimal because it requires the minimum capacity for the given loss rates, comparedto any other work-conserving dropping scheme. It is interesting to examine if a proportional



136delay scheduler has the same property, i.e., whether it can provide a certain average delay ineach class with the minimum capacity among all work-conserving schedulers.5.6 Summary and extensionsA central premise in the framework of relative di�erentiation is that users and applications withan absolute QoS requirement can dynamically search for a class which provides the desired QoSlevel. In the �rst part of this chapter we investigated this DynamicClass Selection (DCS) premise.The proportional di�erentiation model provides an appropriate per-hop behavior for DCS for tworeasons. First, it maintains a predictable class ordering even when the class load distributionis constantly changing due to DCS tra�c. Second, it allows the network provider to adjust theclass spacing based on the corresponding spacing in the QoS requirements of the DCS workload.For a single link model, we gave an algorithm that computes the minimum acceptableclass selection for each user, when it is feasible to satisfy all users (well-provisioned case). Usersconverge to this minimum acceptable class when the distributed DCS equilibrium is unique.Other DCS equilibria can also exist, however, that are suboptimal for either only the users, orfor both the users and the network provider. In the under-provisioned case, some users (withthe most stringent requirements) converge to the highest class and remain unsatis�ed there.The simulation study of an end-to-end DCS algorithm provided further insight into the dynamicbehavior of DCS. We showed that a user can control the trade-o� between the performance andcost of a ow using certain parameters of the DCS algorithm. Finally, it was demonstrated thatthe `well-provisioning' of a network for a given tra�c workload depends on the link utilization,on the delay requirements (or static class selection) of the cross-tra�c, and on the provisioneddelay di�erentiation between classes.In the second part of this chapter, we studied the related problem of class provisioning.In class provisioning, the network provider has some knowledge about the tra�c types that use alink (rates and average delay requirements). The objective is to compute the minimum requiredlink capacity and the appropriate Delay Di�erentiation Parameters (DDPs) that can meet the



137given average delay for each tra�c type. We gave a methodology that �rst determines theoptimal mapping from tra�c types to service classes, and then computes the minimum requiredcapacity and the corresponding DDPs. The class provisioning methodology was demonstratedwith examples.There are several interesting open issues in the context of DCS and class provisioning.� DCS should be evaluated in the context of other performance requirements, such as a maxi-mum loss rate or a minimumTCP throughput. The dynamic properties of the proportionaldi�erentiation model also hold for these performance measures (see x4.1.2 for the loss ratedynamics in the PLD model), and so we expect similar DCS equilibrium results.� Related to the class provisioning problem, it is important to examine whether static par-titioning mechanisms (such as GPS) with periodic adjustments of the class partitions canactually cause race conditions and instability e�ects. We made this claim in x5.5, but wedid not demonstrate that such e�ects actually occur in practice.� A discouraging result about DCS is that, even when the network is well-provisioned, theremay be DCS equilibria in which some users do not converge to the minimumacceptable classthat exists for them. Even worse, the resulting DCS equilibria may be unacceptable. Howcan we improve the DCS algorithm to avoid such equilibria? We examined the followingsolution: when a DCS user is unsatis�ed, she `loops down' to the lowest class, insteadof staying in the highest class. Such a class transition eliminates the unacceptable DCSequilibria (in the well-provisioned case), but it can lead to persistent CSV cycles.An important point, from a more practical perspective, is that the burstiness of the tra�cand the variations in the queueing delays forces the DCS users to adapt their class selectionsin short timescales. Consequently, the concept of `DCS equilibrium' is not well de�ned inshort timescales. So, the stability and the e�ciency of the resulting DCS equilibria may belargely of theoretical importance only.



138Chapter 6Summary and Future Work6.1 Summary and retrospectiveOur original goal in this dissertation was to develop a service di�erentiation architecture for theInternet that is scalable and simple to implement, deploy, and manage. The only way to prove,however, that an architecture meets these goals is to actually implement and use it in a `real-world' wide-area internetwork, which is a task beyond our capabilities and constraints. So, wehad to follow the conventional wisdom and the published literature about which components ofa network architecture are not scalable, or hard to implement, deploy, and manage.We chose to not follow the framework of per-ow end-to-end resource reservations thatthe IntServ architecture is based on, because of its non-scalability and complexity issues. Addi-tionally, we chose to not follow the framework of absolute di�erentiation, that schemes such as theVirtual-Leased-Line or Assured service o�er, because they also require some type of admissioncontrol and inter-domain resource reservations or careful provisioning.The architecture that met our requirements for scalability and simplicity is the relativedi�erentiation model. The only guarantee that the network provides in this case is that higherclasses provide better service than lower classes. If users and applications have absolute QoSrequirements, then they have to dynamically search for a class that provides that QoS. This modelfollows the end-to-end principle that the Internet architecture is based on: keep the network assimple as possible and move the complexity to the end-points.The �rst question raised was which requirements should a relative di�erentiation scheme



139meet? Simple mechanisms, such as strict prioritization or static resource partitioning betweenclasses, are not satisfactory either because they do not provide any `knobs' for controlling theQoS spacing between classes, or because they do not maintain a predictable class ordering undervarying load conditions. These two requirements, controllability and predictability, led us to theproportional di�erentiation model. The main strength of this model is that it can adjust the QoSratio between two classes independent of the load conditions.Given that our objective is to achieve proportional di�erentiation, the next goal was todesign appropriate router mechanisms for the di�erentiation of the queueing delays and packetlosses. We designed three packet schedulers for proportional delay di�erentiation. They di�erin how closely they can approximate the proportional constraints, and in their behavior in shorttimescales. One of these schedulers, the Hybrid Proportional Delay (HPD) scheduler, performssu�ciently well in both these aspects, and it is the scheduling algorithm that we propose. Ourstudy of the proportional delay di�erentiation model revealed that the model may not be al-ways feasible. We derived the conditions that determine whether a set of Delay Di�erentiationParameters (DDPs) is feasible in given load conditions.We then focused on proportional loss di�erentiation and in the related packet droppingalgorithms. We designed two droppers, that di�er in the loss rate estimation horizon. Thisdi�erence causes trade-o�s between the two droppers in terms of their implementation complexity,accuracy, and adaptability to varying class load distributions. This last factor is quite important,leading us to propose the PLR(M) dropper as the appropriate algorithm for proportional lossdi�erentiation. Our analytical study of the proportional loss di�erentiation model showed thatthis model may not be always feasible either, and we conjectured on the corresponding feasibilityconditions.A central premise in the relative di�erentiation architecture is that users with an absoluteQoS requirement can dynamically search for a class which provides the desired QoS level. Weinvestigated this Dynamic Class Selection (DCS) framework in the context of proportional delaydi�erentiation. We examined whether it is feasible to satisfy all users, and if this is the case,computed the minimum acceptable class selection for each user. Users converge in a distributed



140manner to this minimum acceptable class, when the DCS equilibrium is unique. Other DCSequilibria, that are suboptimal for the users, may also exist however.Finally, we considered the case that the network provider has some additional informationabout the tra�c workload. Speci�cally, we assumed that the network provider knows the tra�ctypes that use a link (rate and average delay requirement). When this is the case, the networkprovider can compute the minimum required link capacity and the appropriate DDPs for meetingthe given average delay of each tra�c type, based on a class provisioning methodology that weproposed.In retrospective, the proportional di�erentiation architecture cannot o�er the strict per-ow service guarantees that IntServ achieves. Also, the proposed architecture lacks mechanisms,such as admission control, that can prevent tra�c from overloading the network. Additionally, thefact that the proportional di�erentiation model is not always feasible complicates the selection ofthe appropriate class di�erentiation parameters (DDPs and LDPs). Another discouraging resultis that there can be suboptimal DCS equilibria, even when the network is well-provisioned.On the other hand, this dissertation has shown that a relative di�erentiation architecturecan provide controllable and predictable di�erentiation, when it follows the proportional di�er-entiation model. Additionally, the proposed architecture can provide absolute QoS requirementsto the users and applications that perform Dynamic Class Selection, and furthermore, it can beused to provision an absolute QoS level in each class.Whether or not the proportional di�erentiation architecture is a satisfactory solutionfor providing service di�erentiation in the Internet depends on many factors, some of which arenon-technical. We hope, however, that this dissertation has made a useful contribution to therange of possible solutions for this problem.



1416.2 Suggestions for future workThroughout the thesis, we pointed out speci�c issues that deserve further research. Here, we givetwo more suggestions for future work.� A valuable experimental study would be to test an interactive application with absolute QoSrequirements, such as IP-telephony, over a network that o�ers proportional delay and lossdi�erentiation. Can the application meet its QoS requirements when it performs DynamicClass Selection? How does the observed QoS compare to the QoS that results with aguaranteed bandwidth ATM virtual-circuit, or with some other `IntServ'-like scheme?� DCS can also be performed at the edge routers of a network. The end-points in that servicemodel do not have to be DCS-capable, which is important for legacy applications. The edgerouters can monitor the QoS level of each class in the various edge-to-edge network pathsthrough active measurements. For instance, the packet dispersion methodologies studiedin [35] can be used for bandwidth measurements. The users, in this model, negotiate withthe network a certain edge-to-edge QoS. It is then up to the edge routers to dynamicallyselect the class for the tra�c of each user, in order to deliver the contracted QoS.



142Chapter 7Appendix7.1 Simulation setup and parametersIn the evaluation of packet scheduling and dropping mechanisms, we simulated the followingmodel (see Figure 50). A scheduler services N logical queues, one for each class. The capacity(service rate) of the scheduler is normalized to C=1 average-size packet per time unit. Theutilization of the scheduler is u = �=C, where � is the average rate of packet arrivals. The classload distribution is speci�ed in terms of packets. For example, when we say that Class-1 is 70%of the aggregate tra�c, we mean that 70% of the packets belong to Class-1.All queues share the same pool of bu�ers. In the lossless simulations, there is no con-straint on the number of available bu�ers. In the lossy simulations, the number of bu�ers islimited to B. A packet requires one packet bu�er, independent of the packet size. When thenumber of bu�ers is exceeded, a packet is dropped from the tail of one of the backlogged queues;
Dropper

Scheduler

1

3

N

2

Sources
Pareto

Output

Total number of buffers: B
(one buffer per packet)

(One average-size packet per time unit)

Class Queues

Figure 50: The simulation model for a Packet Forwarding Engine.



143that queue is determined by the packet dropper.The tra�c in each class is generated from a random source. The interarrivals betweenpackets of the same class follow a Pareto distribution with shape parameter � = 1:5. Thecumulative distribution function of this distribution is F (x) = 1 � x��, the mean is �=(� � 1)(for � > 1), and the variance is �=[(�� 1)2(� � 2)] (for � > 2). The distribution has in�nitevariance when � < 2, leading to very bursty interarrivals. The aggregation of many Paretosources with � < 2 has been shown to produce Long Range Dependent (LRD) tra�c [109].We have experimented with several distributions for the packet sizes, including the ex-ponential distribution, multimodal distributions around certain common values (e.g., 40, 550,and 1500 bytes), and also with �xed-size packets. In the case of variable-size packets, all classeshave the same packet size distribution. In this dissertation, we only include simulation results for�xed-size packets; we did not observe any qualitative di�erences in the results when simulatingvariable-size packets.The time unit in all graphs is the time it takes to transmit an average-size packet. Thereported delays in all graphs are in these time units. In the case of �xed-size packets, when wesay that the queueing delay of a packet is 10 units, we mean that the packet waited in the queuefor the transmission of ten other packets.



1447.2 Proofs of Properties (1)-(5) in x3.1.2In the following proofs, S =PNn=1 �n�n.Proof of Property (1).Since the DDPs are positive, an increase in the average delay of one class causes an increase inthe average delays of all classes. Since an increase in the aggregate input rate cannot cause adecrease in all class delays, we have that@ �di@�j � 0 1 � i; j � N (7.1)�Proof of Property (2).From Equation (3.5) we have that@ �di@�j � @ �di@�k = �iS2 �S �@�qag@�j � @�qag@�k �+ �qag(�k � �j)� (7.2)The average backlog �qag, however, does not depend on the class that the tra�c belongs to, andso @�qag=@�j = @�qag=@�k. If k < j, �k > �j , and so@ �di@�j > @ �di@�k when k < j (7.3)�Proof of Property (3).From Equation (3.5) we have that@ �di@�j = ��qag�i�jS2 � 0 i 6= j (7.4)



145and @ �di@�i = �qagS � �qag�i�iS2 � 0 (7.5)The equalities are necessary for the case �j = 0 and �i = �, respectively.�Proof of Property (4).Let �0k be the rate and �d0k be the average delay of a class k after the load transition from class ito class j. We have that �0i = �i � � (0 < � � �i), �0j = �j + �, and �0k = �k for all k 6= i; j. So,S0 = NXn=1 �n�0n = S + �(�j � �i) (7.6)When i > j, �j > �i, and so S0 � S. Note that S0 = S when �i = �0j = �. Thus, from Equation(3.5), �d0k � �dk for all k = 1 : : :N . Similarly, when i < j, it follows that �d0k � �dk. Note that bothload distributions have the same average aggregate backlog �qag.�Proof of Property (5).As in the proof of the previous property, S0 = S+�(�j��i). Suppose that i > j and thus �j > �i.It is easy to see that �jS � �iS0, because S � ��i. Consequently,�d0j = �j �qag=S0 � �i�qag=S = �di (7.7)Similarly, when i < j, it follows that �d0j � �di.



1467.3 Proof of Proposition 3.1 in x3.3Kleinrock derived the average queueing delays with WTP [54] in the special case of Poissonarrivals. Assuming that all classes have the same average packet size, and normalizing theservice rate to C=1, Kleinrock's result states that:�dWTPi = �di = �d0=(1� �)�Pi�1k=1 �k�k (1� �i=�k)1�PNk=i+1(1 � �k=�i) i = 1 : : :N (7.8)where �d0 is the average remaining service time for the packet that is being transmitted upon thearrival of a new packet. Recall that �1 = 1 > �2 > : : : > �N > 0. We prove Equation (3.17) usinginduction in the followingmanner: after showing that �d2= �d1 = �2, we will assume that �dk= �d1 = �kfor all k = 2 : : :m < N with m 2 f2; : : : ; N � 1g, and then show that �dm+1= �d1 = �m+1.For the initial induction step, it is easy to show from (7.8) that�d2�d1 = 1�PNk=2 �k(1� �k) � �1(1� �2)1�PNk=3 �k(1� �k=�2) (7.9)and so, �d2�d1 = (1� �) +PNk=1 �k�k + �1(�2 � 1)(1� �) +PNk=1 �k�k=�2 + �1(1� 1=�2) (7.10)As �! 1, and thus, u! 100%, �d2�d1 = ~S + �1(�2 � 1)~S=�2 + �1(1� 1=�2) = �2 (7.11)where ~S = lim�!1PNk=1 �k�k. This completes the proof for N=2.For N >2, the inductive assumption is that, as �! 1,�dk�d1 ! �k for all k = 2 : : :m < N (7.12)



147with m 2 f2; : : : ; N � 1g. Then, the average delay of the (m + 1)'th class is�dm+1 = �d0=(1� �)�Pmk=1 �k�k �d1(1� �m+1=�k)1�PNk=m+2 �k(1� �k=�m+1) (7.13)and the ratio of �dm+1 and �d1 becomes�dm+1�d1 = 1�PNk=1 �k(1� �k)�Pmk=1 �k�k(1� �m+1=�k)1�PNk=1 �k(1� �k=�m+1) +Pmk=1 �k(1� �k=�m+1) (7.14)As � ! 1, let ~S = lim�!1PNk=1 �k�k, ~Sm = lim�!1Pmk=1 �k�k, and ~�m = lim�!1Pmk=1 �k.Using this notation, we have that as �! 1,�dm+1�d1 ! ~S � ~Sm + �m+1~�m~S=�m+1 � ~Sm=�m+1 + ~�m = �m+1 (7.15)which completes the proof.



1487.4 Proof of Proposition 4.1 in x4.2Suppose that the PLD constraints of (4.1) are met. If Ai and Di are the number of arrivals anddrops, respectively, in class i, the ratio of packet drops between any pair of classes i and j isDiDj = �i�j AiAj (7.16)Under stationary conditions, the ratio of arrivals is equal to the ratio of the corresponding arrivalrates, and so, DiDj = �i�j �i�j (7.17)Consequently, the class with the minimum number of drops is class m, wherem = arg min1�i�Nf�i�ig (7.18)Let us now derive the minimum required number of arrivals, given a class load distribu-tion f�1; �2; : : : ; �Ng and an aggregate average loss rate �lag, so that the N � 1 PLD constraintsof (4.1) are met. The minimumnumber of arrivals causes the minimumnumber of drops. If classm, which has the minimum number of drops, gets only one packet drop (Dm = 1), class i willget Di = Dm �i�m AiAm = �i�m �i�m (7.19)drops, and so the total number of drops from all classes will beD = NXi=1Di = NXi=1 �i�m �i�m (7.20)Since the aggregate loss rate is �lag , the required number of arrivals isA = PNi=1 �i�m �i�m�lag (7.21)This is the minimumnumber of arrivals that the PLR(M) should remember, in order for the N�1



149proportional loss rate constraints of (4.1) to hold. So, this is also the minimum requirement onthe LHT size Mmin, M �Mmin = PNi=1 �i�m �i�m�lag (7.22)We emphasize that Mmin is a lower bound on the required LHT size M . The reason is that theprevious proof assumes that the class load distribution and the aggregate loss rate are given bytheir average values, namely f�1; �2; : : : ; �Ng and �lag , in any time window of M packet arrivals.In practice though, the class load distribution and the aggregate loss rate vary signi�cantlyaround their average values, even when M is many thousands of packets, due to the burstinessof the tra�c arrivals and of the packet loss process.



1507.5 Proofs of Lemmas in x5.2Proof of Lemma 1.Since cj � c0j for all j (and c 6= c0), there exists a class k 2 f1; : : :N � 1g such thatkXi=1 �i < kXi=1 �0i = kXi=1 �i + � (7.23)with � > 0, and NXi=k+1�i > NXi=k+1�0i = NXi=k+1�i � � (7.24)Since �1 = 1 > �2 > : : : > �N > 0, we have thatkXi=1 �i�0i + NXi=k+1 �i�0i > kXi=1 �i�i + ��k + NXi=k+1 �i�i � ��k+1 (7.25)and thus NXi=1 �i�0i > NXi=1 �i�i + �(�k � �k+1) > NXi=1 �i�i (7.26)It follows that the average delay in each class with c0 is lower (in the wide sense) than with c,because �di(c0) = �i �qagPNn=1 �n�0n � �i �qagPNn=1 �n�n = �di(c) (7.27)�Proof of Lemma 2.The proof of this result follows directly from Property 5 in x3.1.2.�Proof of Lemma 3.Suppose that c is such that ci > cj for two users i and j > i (so, �j � �i). Let us construct the



151CSV c0 = ciki , which results if user i moves to the same class k = cj as user j. Since c � c0, fromLemma 1 we have that �dk(c0) = �dk(c0) � �dk(c) � �j � �i, which means that user i is satis�edwith c0. The rest of the users are also satis�ed with c0 because the average delay in each class islower with c0 than with c. So, c0 is also acceptable.Applying the above procedure iteratively, we can construct an acceptable CSV c0 thatis ordered, in the sense that for any i; j 2 f1; : : :Ug, c0i � c0j when i < j. The order of applyingthe above iteration does not a�ect the ordered CSV that results at the end. From the way c0 isconstructed, we have that c0j = mink=j;:::;Ufckg; j = 1; : : : ; U (7.28)�Proof of Lemma 4.From the de�nition of cm, we have that c1 � cm. If these two CSVs are equal, the proof iscomplete. Otherwise, from Lemma 1, we have that �di(cm) � �di(c1) for each class i. Similarly,�di(cm) � �di(c2). For each user j 2 U , however, �dc1j (c1) � �j and �dc2j (c2) � �j . So, �dcmj (cm) � �j.Since this is true for all users, cm 2 CA.�Proof of Lemma 5.Based on the DCS algorithm, all unsatis�ed users move to the N 'th class, while the rest of theusers are satis�ed in a class, which may also be class N . Let ~c be the corresponding distributedequilibrium CSV. We prove that any satis�ed user must have a larger average delay requirementthan any unsatis�ed user.For any unsatis�ed user, say j, we have that ~cj = N and that �d~cj (~c) > �j. If there areno satis�ed users, there is nothing to prove. Let i be a satis�ed user in a class ~ci � N . Supposethat user i has a lower or equal average delay requirement than user j, i.e., �i � �j. User i is



152satis�ed, and so �d~ci(~c) � �i � �j. So, �d~ci(~c) < �d~cj (~c) (7.29)Since ~ci � ~cj, however, the PDD model requires that �d~ci(~c) � �d~cj (~c) which contradicts (7.29).So, it must be that �i > �j for any satis�ed user i and unsatis�ed user j. Since the satis�edusers have larger delay requirements than the unsatis�ed users, the resulting DCS equilibriummust be of the form ~c = (c1; : : : ; cS ; N; : : : ; N ) (7.30)where S is the number of satis�ed users (0 � S < U ).



153Bibliography[1] O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications,Academic Press, 2nd edition, 1990.[2] ATM Forum. ATM Tra�c Management Speci�cation, Version 4.0, April 1996. Availableat ftp://ftp.atmforum.com/pub.[3] F. Baker, R. Guerin, and D. Kandlur. Speci�cation of Committed Rate Quality of Service,June 1996. draft-ietf-intserv-commit-rate-svc-00.txt.[4] A. Banchs and R. Denda, \A Scalable Share Di�erentiation Architecture for Elastic andReal-Time Tra�c," In IEEE/IFIP International Workshop on Quality of Service (IWQoS),June 2000.[5] A. Banerjea, D. Ferrari, B. A. Mah, M. Moran, D. C. Verma, and H. Zhang, \The TenetReal-Time Protocol Suite: Design, Implementation, and Experiences," IEEE/ACM Trans-actions on Networking, vol. 4, no. 1, pp. 1{10, February 1996.[6] A. Begel, S.McCanne, and S.L.Graham, \BPF+: Exploiting Global Data-ow Optimiza-tion in a Generalized Packet Filter Architecture," In Proceedings ACM SIGCOMM, Septem-ber 1999.[7] J. Bennett and H.Zhang, \Hierarchical Packet Fair Queueing Algorithms," IEEE/ACMTransactions on Networking, vol. 5, no. 5, pp. 675{689, October 1997.[8] N. Bhatti and R.Friedrich, \Web Server Support for Tiered Services," IEEE Network, pp.64{71, September 1999.[9] S. Blake, D.Black, M.Carlson, E.Davies, Z.Wang, and W.Weiss. An Architecture for Dif-ferentiated Services, December 1998. IETF RFC 2475.



154[10] S. Bodamer, \A Scheduling Algorithm for Relative Delay Di�erentiation," In Proceedingsof the IEEE Conference on High Performance Switching and Routing (ATM 2000), June2000.[11] U. Bodin, A. Jonsson, and O. Schelen, \On Creating Proportional Loss Di�erentiation:Predictability and Performance," Technical report, Department of Computer Science andElectrical Engineering, Lulea University of Technology, Sweden, July 2000.[12] U. Bodin, O. Schelen, and S. Pink, \Load-Tolerant Di�erentiation with Active QueueManagement," ACM Computer Communication Review (CCR), July 2000.[13] G. Bolch, S.Greiner, H.Meer, and K.S.Trivedi, Queueing Networks and Markov Chains,John Wiley and Sons, 1999.[14] J. L. Boudec, M. Hamdi, L. Blazevic, and P.Thiran, \Asymmetric Best E�ort Service forPacket Networks," In Proceedings Global Internet Symposium, December 1999.[15] R. Braden, D.Clark, and S. Shenker. Integrated Services in the Internet Architecture: anOverview, July 1994. RFC 1633.[16] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol(RSVP) - Version 1, Functional Speci�cication, September 1997. RFC 2205.[17] R. Caceres, N.Du�eld, and A.Feldmann, \Measurement and Analysis of IP Network Usageand Behavior," IEEE Communications Magazine, pp. 144{152, May 2000.[18] C. Cetinkaya and E.W.Knightly, \Egress Admission Control," In Proceedings INFOCOM,March 2000.[19] H. Chao, H.Cheng, Y-R.Jeng, and D.Jeong, \Design of a Generalized Priority Queue Man-ager for ATM Switches," IEEE Journal on Selected Areas in Communications, vol. 15, no.5, pp. 867{879, June 1997.[20] H. Chao and N.Uzun, \A VLSI Sequencer Chip for ATM Tra�c Shaper and Queue Man-ager," IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1634{1643, November1992.



155[21] A. Charny and J. L. Boudec, \Delay Bounds in a Network with Aggregate Scheduling," InProceedings QOFIS, October 2000.[22] S. Chen and K. Park, \An Architecture for Noncooperative QoS Provision in Many-SwitchSystems," In Proceedings IEEE INFOCOM, 1999.[23] A. Choudhury and E.L.Hahne, \Dynamic Queue Length Thresholds for Multipriority Traf-�c," In 15th International Teletra�c Congress, June 1997.[24] D. D. Clark and W. Fang, \Explicit Allocation of Best E�ort Packet Delivery Service,"IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 362{373, August 1998.[25] D. Clark, \Adding Service Discrimination to the Internet," In Internet Economics,L.W.McKnight and J.P.Bailey, editors, The MIT Press, 1997.[26] E. Co�man and I.Mitrani, \A Characterization of Waiting Time Performance Realizableby Single-Server Queues," Operations Research, vol. 28, no. 3, pp. 810{821, May 1980.[27] R. L. Cruz, \A Calculus for Network Delay, Part I: Network Elements in Isolation," IEEETransactions on Information Theory, vol. 37, no. 1, pp. 114{131, January 1991.[28] R. L. Cruz, \A Calculus for Network Delay, Part II: Network Analysis," IEEE Transactionson Information Theory, vol. 37, no. 1, pp. 132{141, January 1991.[29] A. Demers, S.Keshav, and S.Shenker, \Analysis and Simulation of a Fair Queueing Algo-rithm," In Internetworking: Research and Experience, pp. 3{26, 1990.[30] C. Dovrolis and D.Stiliadis, \Relative Di�erentiated Services in the Internet: Issues andMechanisms," In ACM SIGMETRICS, May 1999. Extended abstract.[31] C. Dovrolis, D.Stiliadis, and P.Ramanathan, \Proportional Di�erentiated Services: DelayDi�erentiation and Packet Scheduling," In ACM SIGCOMM, September 1999.[32] C. Dovrolis and P.Ramanathan, \RAFT: Resource Aggregation for Fault Tolerance inIntegrated Services Packet Networks," ACM Computer Communication Review (CCR),April 1998.



156[33] C. Dovrolis and P.Ramanathan, \A Case for Relative Di�erentiated Services and the Pro-portional Di�erentiation Model," IEEE Network, October 1999.[34] C. Dovrolis and P.Ramanathan, \Proportional Di�erentiated Services, Part II: Loss RateDi�erentiation and Packet Dropping," In IEEE/IFIP International Workshop on Qualityof Service (IWQoS), June 2000.[35] C. Dovrolis, P. Ramanathan, and D. Moore, \What do Packet Dispersion Techniques Mea-sure?," In Proceedings of IEEE INFOCOM, April 2001.[36] C. Dovrolis, D. Tull, and P. Ramanathan, \Hybrid Spatial/Temporal Loss Concealmentfor Packet Video," In 9th International Packet Video Workshop, May 1999.[37] R. Edell and P.Varaiya, \Providing Internet Access: What we Learn from INDEX," IEEENetwork, pp. 18{25, September 1999.[38] A. Enwalid, D.Heyman, T.V.Lakshman, D.Mitra, and A.Weiss, \Fundamental Bounds andApproximations for ATMMultiplexers with Applications to Video Teleconferencing," IEEEJournal on Selected Areas in Communications, vol. 13, no. 6, pp. 1004{1016, August 1995.[39] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, \A Self-Con�guring RED Gateway,"In Proceedings IEEE INFOCOM, April 1999.[40] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, \Adaptive Packet Marking for Main-taining End-to-End Throughput in a Di�erentiated-Services Internet," IEEE/ACM Trans-actions on Networking, vol. 7, no. 5, pp. 685{697, October 1999.[41] P. Ferguson and G.Huston, Quality of Service: Delivering QoS on the Internet and inCorporate Networks, John Wiley and Sons, January 1998.[42] T. Ferrari and P.F.Chimento, \A Measurement-based Analysis of Expedited ForwardingPHB Mechanisms," In Proceedings International Workshop on QoS (IWQoS), June 2000.[43] S. Floyd and V. Jacobson, \RandomEarly Detection Gateways for Congestion Avoidance,"IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397{413, August 1993.



157[44] S. Floyd and V. Jacobson, \Link-Sharing and Resource Management Models for PacketNetworks," IEEE/ACM Transactions on Networking, vol. 3, no. 4, pp. 365{386, August1995.[45] R. Gopalakrishnan and G.M.Parulkar, \E�cient User-Space Protocol Implementationswith QoS Guarantees Using Real-Time Upcalls," IEEE Transactions on Networking, vol.6, no. 4, pp. 374{388, August 1998.[46] R. Guerin, S. Kamat, and S. Herzog. QoS Path Management with RSVP, March 1997.Internet Draft: draft-qos-path-mgmt-rsvp-00.txt.[47] R. Guerin and V.Pla, \Aggregation and Conformance in Di�erentiated Service Networks: ACase Study," In Proceedings ITC Specialist Seminar on IP Tra�c Modeling, Measurement,and Management, September 2000.[48] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB Group,June 1999. RFC 2597.[49] IETF. Internet Engineering Task Force. www.ietf.org.[50] V. Jacobson, \Congestion Avoidance and Control," In Proceedings ACM SIGCOMM, pp.314{329, September 1988.[51] V. Jacobson, K. Nichols, and K.Poduri. An Expedited Forwarding PHB, June 1999. RFC2598.[52] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, \A Measurement-Based AdmissionControl Algorithm for Integrated Service Packet Networks," IEEE/ACM Transactions onNetworking, vol. 5, no. 1, pp. 56{70, February 1997.[53] S. Keshav and R.Sharma, \Issues and Trends in Router Design," IEEE CommunicationsMagazine, pp. 144{151, May 1998.[54] L. Kleinrock, Queueing Systems, Volume II, John Wiley and Sons, 1976.



158[55] H. Kroner, G.Hebuterne, P.Boyer, and A.Gravey, \Priority Management in ATM SwitchingNodes," IEEE Journal on Selected Areas in Communications, vol. 9, no. 3, pp. 418{427,April 1991.[56] V. Kumar, T.V.Lakshman, and D.Stiliadis, \Beyond Best E�ort: Router Architectures forthe Di�erentiated Services of Tomorrow's Internet," IEEE Communications Magazine, pp.152{164, May 1998.[57] T. V. Lakshman and D.Stiliadis, \High-Speed Policy-Based Packet Forwarding Using E�-cient Multi-Dimensional Range Matching," In Proceedings ACM SIGCOMM, 1998.[58] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, \On the Self-Similar Natureof Ethernet Tra�c (Extended Version)," IEEE/ACM Transactions on Networking, vol. 2,no. 1, pp. 1{15, February 1994.[59] M. K. H. Leung, J. Lui, and D. Yau, \Characterization and Performance Evaluation forProportional Delay Di�erentiated Services," In Proceedings International Conference onNetwork Protocols (ICNP), October 2000.[60] C. C. Li, S.-L. Tsao, M. C. Chen, Y. Sun, and Y.-M. Huang, \Proportional Delay Di�er-entiation Service Based on Weighted Fair Queueing," In Proceedings IEEE InternationalConference on Computer Communications and Networks (ICCCN), October 2000.[61] J. Liebeherr and N.Christin, \Bu�er Management and Scheduling for Enhanced Di�eren-tiated Services," Technical Report CS-2000-24, University of Virginia, August 2000.[62] J. Liebeherr, D. E. Wrege, and D. Ferrari, \Exact Admission Control for Networks witha Bounded Delay Service," IEEE/ACM Transactions on Networking, vol. 4, no. 6, pp.885{901, December 1996.[63] A. Y.-M. Lin and J.A.Silvester, \Priority Queueing Strategies and Bu�er Allocation Proto-cols for Tra�c Control at an ATM Integrated Broadband Switching System," IEEE Journalon Selected Areas in Communications, vol. 9, no. 9, pp. 1524{1536, December 1991.



159[64] A. Mankin, F.Baker, B.Braden, S.Bradner, M.O'Dell, A.Romanow, A.Weinrib, andL.Zhang. RSVP Version 1: Applicability Statement, Some Guidelines on Deployment,September 1997. IETF RFC 2208.[65] M. Mathis, J. Semke, and J. Madhavi, \The Macroscopic Behavior of the TCP CongestionAvoidance Algorithm,"ACM Computer Communications Review, vol. 27, no. 3, pp. 67{82,July 1997.[66] M. May, J.C.Bolot, C.Diot, and A.Jean-Marie, \Simple Performance Models of Di�erenti-ated Services Schemes for the Internet," In Proceedings IEEE INFOCOM, March 1999.[67] D. L. Mills, \The Fuzzball," In Proceedings ACM SIGCOMM, pp. 115{122, August 1988.[68] V. Misra, W. B. Gong, and D. Towsley, \Fluid-based Analysis of a Network of AQMRoutersSupporting TCP Flows with an Application to RED," In Proceedings ACM SIGCOMM,September 2000.[69] I. Mitrani and J.H.Hine, \Complete Parameterized Families of Job Scheduling Strategies,"Acta Informatica, vol. 8, pp. 61{73, 1977.[70] Y. Moret and S.Fdida, \A Proportional Queue Control Mechanism to Provide Di�erenti-ated Services," In International Symposium on Computer and Information Systems (IS-CIS), October 1998.[71] R. Morris and D. Lin, \Variance of Aggregated Web Tra�c," In Proceedings IEEE INFO-COM, April 2000.[72] T. Nandagopal, N.Venkitaraman, R.Sivakumar, and V.Bharghavan, \Delay Di�erentiationand Adaptation in Core Stateless Networks," In Proceedings IEEE INFOCOM, March 2000.[73] A. Neogi, T.Chiueh, and P.Stirpe, \Performance Analysis of an RSVP-Capable Router,"IEEE Network, pp. 56{63, September 1999.[74] K. Nichols, S.Blake, F. Baker, and D.L.Black. De�nition of the Di�erentiated ServicesField (DS Field) in the IPv4 and IPv6 Headers, December 1998. IETF RFC 2474.



160[75] K. Nichols, V.Jacobson, and L.Zhang. A Two-Bit Di�erentiated Services Architecture forthe Internet, July 1999. IETF RFC 2638.[76] A. M. Odlyzko, \Paris Metro Pricing: The Minimalist Di�erentiated Services Solution," InProceedings IEEE/IFIP International Workshop on Quality of Service, June 1999.[77] A. Orda and N. Shimkin, \Incentive Pricing in Multi-Class Communication Networks," InProceedings IEEE INFOCOM, 1997.[78] T. J. Ott, T. V. Lakshman, and L. H. Wong, \SRED: Stabilized RED," In ProceedingsIEEE INFOCOM, April 1999.[79] A. K. Parekh, A Generalized Processor Sharing Approach to Flow Control in IntegratedServices Networks, PhD thesis, Massachusetts Institute of Technology, 1992. LIDS-TH-2089.[80] C. Partridge, Gigabit Networking, Addison-Wesley, 1994.[81] V. Paxson, \End-to-End Routing Behavior in the Internet," In Proceedings SIGCOMMSymposium, pp. 25{38, August 1996.[82] V. Paxson and S.Floyd, \Wide Area Tra�c: The Failure of Poisson Modeling," IEEE/ACMTransactions on Networking, vol. 3, no. 3, pp. 226{244, June 1995.[83] M. Podolsky, C. Romer, and S. McCanne, \Simulation of FEC-Based Error Control forPacket Audio on the Internet," In Proceedings IEEE INFOCOM, April 1998.[84] J. Postel. Internet Protocol, September 1981. IETF RFC 791.[85] B. Rajagopalan, D. Pendarakis, D. Saha, R. Ramamoorthy, and K. Bala, \IP over OpticalNetworks: Architectural Aspects," IEEE Communications Magazine, pp. 94{102, Septem-ber 2000.[86] R. Rajan, D.Verma, S.Kamat, E.Felstaine, and S.Herzog, \A Policy Framework for Inte-grated and Di�erentiated Services in the Internet," IEEE Network, pp. 36{41, September1999.



161[87] R. Ramjee, J.Kurose, D.Towsley, and H.Schulzrinne, \Adaptive Playout Mechanisms forPacketized Audio Applications in Wide-Area Networks," In Proceedings IEEE INFOCOM,pp. 680{688, 1994.[88] J. Regnier, \Priority Assignment in Integrated Services Networks," Technical Report LIDS-TH-1565, LIDS-MIT, December 1986.[89] H. Ren and K. Park, \Toward a Theory of Di�erentiated Services," In Proceedings IWQoS,June 2000.[90] B. Reynolds, \REDAnalysis for Congested Network Core and Customer Egress," Technicalreport, QualNet, January 1999. North American Network Operators' Group (NANOG)meeting.[91] I. Rhee, \Error Control Techniques for Interactive Low-Bit Rate Video Transmission overthe Internet," In Proceedings ACM SIGCOMM, 1998.[92] J. S. Sahu, D.Towsley, \A Quantitative Study of Di�erentiated Services for the Internet,"In Proceedings Global Internet Symposium, December 1999.[93] S. Sahu, P.Nain, D.Towsley, C.Diot, and V.Firoiu, \On Achievable Service Di�erentiationwith Token Bucket Marking for TCP," In Proceedings ACM SIGMETRICS, June 2000.[94] J. Sairamesh, D. F. Ferguson, and Y. Yemini, \An Approach to Pricing, Optimal Allocationand Quality of Service Provisioning in High-Speed Packet Networks," In Proceedings IEEEINFOCOM, pp. 1111{1119, 1995.[95] H. Saito, C. Lukovszki, and I. Moldovan, \Local Optimal Proportional Di�erentiated Ser-vices Scheduler for Relative Di�erentiated Services," In Proceedings IEEE InternationalConference on Computer Communications and Networks (ICCCN), November 2000.[96] H. Schulzrinne, S.Casner, R.Frederick, and V.Jacobson. RTP: A Transport Protocol forReal-Time Applications, January 1996. RFC 1889.[97] U. Schwantag, \An analysis of the applicability of RSVP," Technical report, Institute ofTelematics, University of Karlsruhe, July 1997.



162[98] S. Shenker and J. Wroclawski. General Characterization Parameters for Integrated ServiceNetwork Elements, September 1997. RFC 2215.[99] M. Shreedhar and G.Varghese, \E�cient Fair Queuing using De�cit Round Robin," InProceedings ACM SIGCOMM, pp. 231{242, 1995.[100] V. Srinivasan, S.Suri, and G.Varghese, \Packet Classi�cation using Tuple Space Search,"In Proceedings ACM SIGCOMM, September 1999.[101] D. C. Stephens, J.C.R.Bennett, and H.Zhang, \Implementing Scheduling Algorthms inHigh-Speed Networks," IEEE Journal on Selected Areas of Communications, September1999.[102] D. Stiliadis and A.Varma, \Latency-Rate Servers: A General Model for Analysis of Tra�cScheduling Algorithms," IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 611{625, October 1998.[103] D. Stiliadis and A.Varma, \Rate-Proportional Servers: A Design Methodology for FairQueueing Algorithms," IEEE/ACM Transactions on Networking, vol. 6, no. 2, pp. 164{174, April 1998.[104] I. Stoika and H.Zhang, \LIRA: An Approach for Service Di�erentiation in the Internet,"In Proceedings NOSSDAV, 1998.[105] I. Stoika and H.Zhang, \Providing Guaranteed Services Without Per Flow Management,"In Proceedings ACM SIGCOMM, September 1999.[106] I. Stoika, S.Shenker, and H.Zhang, \Core-Stateless Fair Queueing: Achieving Approxi-mately Fair Bandwidth Allocations in High Speed Networks," In Proceedings ACM SIG-COMM, September 1998.[107] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury, \Design Considerations for Sup-porting TCP with Per-Flow Queueing," In Proceedings IEEE INFOCOM, 1998.



163[108] B. Suter, T.V.Lakshman, D.Stiliadis, and A.K.Choudhury, \Bu�er Management Schemesfor Supporting TCP in Gigabit Routers with Per-Flow Queueuing," IEEE Journal onSelected Areas of Communications, September 1999.[109] M. S. Taqqu, W.Willinger, and R.Sherman, \Proof of a Fundamental Result in Self-SimilarTra�c Modeling," ACM Computer Communications Review, pp. 5{23, April 1997.[110] B. Teitelbaum, S.Hares, L.Dunn, R.Neilson, V.Narayan, and F.Reichmeyer, \Internet2QBone: Building a Testbed for Di�erentiated Services," IEEE Network, pp. 8{16, Septem-ber 1999.[111] A. Terzis, L.Wang, J.Ogawa, and L.Zhang, \A Two-Tier Resource Management Model forthe Internet," In Proceedings Global Internet Symposium, December 1999.[112] K. Thompson, G. J. Miller, and R. Wilder, \Wide-Area Internet Tra�c Patterns andCharacteristics," IEEE Network, pp. 10{23, November 1997.[113] A. Viswanathan, N. Feldman, Z. Wang, and R. Callon, \Evolution of Multiprotocol LabelSwitching," IEEE Communications Magazine, May 1998.[114] Z. Wang, \A Case for Proportional Fair Sharing," In International Workshop on QoS, May1998.[115] P. P. White, \RSVP and Integrated Services in the Internet: A Tutorial," IEEE Commu-nications Magazine, pp. 100{106, May 1997.[116] W. Willinger, M.S.Taqqu, R.Sherman, and D.V.Wilson, \Self-Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Tra�c at the Source Level," In Proceed-ings SIGCOMM Symposium, pp. 100{113, September 1995.[117] J. Wroclawski. Speci�cation of the Controlled-Load Network Element Service, September1997. RFC 2211.[118] J. Wroclawski. The Use of RSVP with IETF Integrated Services, September 1997. RFC2210.



164[119] T. Yang and J.Pan, \A Measurement-Based Loss Scheduling Scheme," In Proceedings IN-FOCOM, 1996.[120] D. K. Y. Yau and S.S.Lam, \Adaptive Rate-Controlled Scheduling for Multimedia Ap-plications," IEEE/ACM Transactions on Networking, vol. 5, no. 4, pp. 475{488, August1997.[121] I. Yeom and A. N. Reddy, \Modeling TCP Behavior in a Di�erentiated Services Network,"Technical report, Texas A&M University, February 2000.[122] N. Yin and M.G.Hluchyj, \Implication of Dropping Packets from the Front of a Queue,"IEEE Transactions on Communications, vol. 41, no. 6, pp. 846{851, June 1993.[123] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, \RSVP: A New ResourceReservation Protocol," IEEE Network, pp. 8{18, September 1993.


