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Abstract

Bounded timed-arc Petri nets with read-arcs were recently proven equivalent to net-

works of timed automata, though the Petri net model cannot express urgent be-

haviour and the described mutual translations are rather inefficient. We propose

an extension of timed-arc Petri nets with invariants to enforce urgency and with

transport arcs to generalise the read-arcs. We also describe a novel translation from

the extended timed-arc Petri net model to networks of timed automata. The trans-

lation is implemented in the tool TAPAAL and it uses UPPAAL as the verification

engine. Our experiments confirm the efficiency of the translation and in some cases

the translated models verify significantly faster than the native UPPAAL models do.

1 Introduction

Time dependent models have been intensively studied because of the current needs in

software verification and development of embedded applications where several relia-
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bility and safety requirements depend, to a large extent, on the timing aspects. Among

the most studied time dependent models are timed automata [3] and different time ex-

tensions of Petri nets (see e.g. [14]). A recent overview comparing these models has

been given in [20].

We consider a particular extension of the Petri net model called Timed-Arc Petri Nets

(TAPN) [7, 11] where an age (a real number) is assigned to each token in the net and time

intervals on arcs restrict the ages of tokens that can be used to fire a transition. Recent

studies show that bounded TAPN (where the maximum number of tokens in the net is

a priori given) offer a similar expressive power as networks of timed automata, even

though the models are conceptually different and suitable for modelling of different

systems. Sifakis and Yovine [18] provided a translation of 1-safe timed-arc Petri nets into

timed automata which preserves strong timed bisimilarity but their translation causes

an exponential blow up in the size. Srba established in [19] a strong relationship (up

to isomorphism of timed transition systems) between networks of timed automata and

a superclass of 1-safe TAPN extended with read-arcs. For reachability questions the

reductions work in polynomial time. Recently Bouyer et al. [8] presented a reduction

from bounded TAPN (with read-arcs) to 1-safe TAPN (with read-arcs), which preserves

timed language equivalence (over finite words, infinite words and non-Zeno infinite

words). Nevertheless the translations described in these papers are inefficient from a

practical point of view as they either cause an exponential blow-up in the size or create

a new parallel component with a fresh local clock (or more if the net is not 1-safe) for

each place in the net, a situation where even most developed tools like UPPAAL [21]

show often a poor performance. One limitation of the TAPN model is the impossibility

to express urgent behaviour (a TAPN model can always in any marking delay for ever

without taking any discrete transitions). While on one side this makes some problems

like coverability and boundedness decidable even for unbounded nets [15, 2, 1, 8], it

considerably limits the modelling power.

In this paper we extend the TAPN model with two new features: invariants1 on

places to enforce urgent behaviour and transport arcs that generalise the previously stud-

ied read-arcs [19, 8]. We then suggest a novel translation of TAPN to networks of timed

automata where a fresh parallel component (with a local clock) is created for every token

in the net. This is a conceptually orthogonal approach to the ones discussed in the previ-

1Invariants in our setting are time bounds restricting the ages of tokens in certain places. They should

not be confused with transition/place invariant techniques studied in the theory of (untimed) Petri nets.

2



ous works and it relies on different reduction techniques. The proposed translation also

transforms safety and liveness logical formulae into equivalent formulae on networks

of timed automata. One of the main advantages of this approach is the ability to use the

active clock reduction and the symmetry reduction techniques available in the rich theory

of timed automata.

The theory described in this paper translates TAPN models to UPPAAL-style of

timed automata with handshake synchronization because UPPAAL is probably the

most frequently used industrial-strength tool for verification of timed automata. For

this reason, we chose at the moment not to use tools offering more general notions of

synchronization like e.g. KRONOS [9] and our experiments confirm that the transla-

tion to timed automata with handshake synchronization was indeed a good choice as

the verification using this approach is rather efficient. The suggested translations were

implemented in a new tool TAPAAL [10], freely available at www.tapaal.net, which

offers modelling, simulation and verification of timed-arc Petri nets with continuous

time. We report here on two experiments: verification of the Fischer’s mutual exclusion

algorithm and the alternating bit protocol. The results are promising and the trans-

lated timed automata models verify in fact considerably faster than the native UPPAAL

models do.

Related Tools. There is one related tool prototype for verification of timed-arc Petri

nets mentioned in [2] where the authors discuss a coverability algorithm for general

(unbounded) nets, though without any urgent behaviour. The tool does not seem to be

maintained anymore. Time features (time stamps) connected to tokens can be modelled

also in Coloured Petri Nets using CPN Tools [12], however, only discrete time semantics

is implemented in CPN Tools with a limited support for the automatic analysis.

2 Basic Definitions

A timed labelled transition system (TLTS) is a triple T = (S,Act,−→) where S is a set of

states,Act is a set of actions whereAct∩R≥0 = ∅ and R≥0 are nonnegative real numbers,

and −→⊆ S× (Act ∪ R≥0)× S is a transition relation.

We let a, a0, a1, . . . range over Act and d, d0, d1, . . . over R≥0. We write s a
−→ s ′

if (s, a, s ′) ∈−→ for the discrete transitions and s d
−→ s ′ if (s, d, s ′) ∈−→ for the delay

transitions. We use the notations s a
−→ and s d

−→ if there exists some state s ′ such that

s
a

−→ s ′ and s d
−→ s ′, respectively. By s −→ s ′ we mean that either s a

−→ s ′ for some
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a ∈ Act or s d
−→ s ′ for some delay d. Let s ∈ S and d ∈ R≥0. By s[d] we denote the

unique (here we impose the standard time-determinism assumption—see e.g. [5]) state s ′

such that s d
−→ s ′, provided that the delay d is possible from s.

The set I of time intervals is defined by the following abstract syntax where a and b

range over N and a < b:

I ::= [a, b] | [a, a] | (a, b] | [a, b) | (a, b) | [a,∞) | (a,∞) .

The set IInv of invariants is a subset of intervals that include 0.

2.1 Logics for Safety and Liveness Properties

We shall now define a subset of Computation Tree Logic (CTL) used in the tool

TAPAAL [10] (essentially mimicking the logic used in UPPAAL, except for the leads-

to operator). Let AP be the set of atomic propositions. The logical formulae are given

by the following abstract syntax

ψ ::= EFϕ | EGϕ | AFϕ | AGϕ

ϕ ::= p | ¬ϕ | ϕ∧ϕ

where p ∈ AP and EF, EG, AF and AG are the standard CTL temporal operators.

The semantics is defined with respect to a given TLTS T = (S,Act,−→) together

with a labelling function µ : S → 2AP which assigns a set of true atomic propositions to

each state. The satisfaction relation s |= ψ for a state s ∈ S and a formula ψ is defined

inductively as follows:

• s |= p iff p ∈ µ(s),

• s |= ¬ϕ iff s 6|= ϕ,

• s |= ϕ1 ∧ϕ2 iff s |= ϕ1 and s |= ϕ2,

• s |= EFϕ iff s −→∗ s ′ and s ′ |= ϕ

• s |= EGϕ iff there is a (finite or infinite) alternating run ρ of the form

s = s1
d1−→ s ′1

a1−→ s2
d2−→ s ′2

a2−→ s3
d3−→ s ′3

a3−→ s4
d4−→ s ′4

a4−→ . . .

such that for all i and for all d, 0 ≤ d ≤ di, we have si[d] |= ϕ and

(i) ρ is infinite, or
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(ii) ρ is finite and ends in sk where for all d ∈ R≥0 we have sk
d

−→ and sk[d] |= ϕ,

or

(iii) ρ is finite and ends in a state s ′ (where s ′ is either of the form sk or s ′k) such

that whenever s ′ d
−→ s ′[d] is possible for a d ∈ R≥0 then s ′[d] |= ϕ and there

is no state s ′′ such that s ′[d] a
−→ s ′′ for any a ∈ Act,

• s |= AFϕ iff s 6|= EG ¬ϕ, and

• s |= AGϕ iff s 6|= EF ¬ϕ.

Remark 2.1. The formula EGϕ means that there exists a maximal run such that at any point

the formula ϕ is satisfied. The conditions (i), (ii) and (iii) list the three possibilities for a run

to be maximal: (i) it consists of an infinite alternating sequence of actions and time delays, or

(ii) it ends in a state where time can diverge, or (iii) it ends in a state from which no discrete

transitions are possible after any time delay (this includes time-locks).

2.2 Timed-Arc Petri Nets

A Timed-Arc Petri Net with transport arcs and place invariants (TAPN) is a tuple N =

(P, T, F, c, Ftarc, ctarc, ι), where P is a finite set of places, T is a finite set of transitions such

that T ∩P = ∅, F ⊆ (P×T)∪ (T ×P) is a flow relation, c : F|P×T → I is a function assigning

a time interval to every arc from a place to a transition, Ftarc ⊆ (P × T × P) is the set of

transport arcs that satisfy for all (p, t, p ′) ∈ Ftarc and all r ∈ P:(
(p, t, r) ∈ Ftarc ⇒ p ′ = r

)
∧

(
(r, t, p ′) ∈ Ftarc ⇒ p = r

)
∧ (p, t) /∈ F∧ (t, p ′) /∈ F

ctarc : Ftarc → I is a function assigning a time interval to every transport arc, and ι : P →
IInv is an invariant assignment of invariants to places.

Remark 2.2. The conditions imposed on the transport arcs guarantee for any given p and t

that if there is a transport arc of the form (p, t, p ′) or (p ′′, t, p) then the places p ′ and p ′′ are

unique. Whenever the places p ′ or p ′′ are not relevant for the context, we shall simply denote the

transport arcs as (p, t, _) or (_, t, p).

The preset of a transition t in the net is defined as •t = {p ∈ P | (p, t) ∈ F∨ (p, t, _) ∈
Ftarc}, and the postset of a transition t is defined as t• = {p ∈ P | (t, p) ∈ F∨(_, t, p) ∈ Ftarc}.

Without loss of generality assume that |•t ∪ t•| > 0 for any t ∈ T . By B(R≥0) we denote

the set of finite multisets on R≥0. For B ∈ B(R≥0) and d ∈ R≥0 we let B + d
def
= {b + d |

b ∈ B}.
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Let N = (P, T, F, c, Ftarc, ctarc, ι) be a TAPN. A marking M on the net N is a function

M : P → B(R≥0) such that every p ∈ P and every x ∈ M(p) satisfy x ∈ ι(p). Each

place is thus assigned a certain number of tokens, and each token is annotated with

a real number (age). We moreover consider only markings such that all their tokens

satisfy the place invariants imposed by the invariant assignment ι. By |M| we denote

the total number of tokens in the marking M. The set of all markings on N is denoted

byM(N). For a finite marking M (where |M| < ∞) we also use an alternative multiset

notation M = {(p1, r1), (p2, r2), . . . , (pk, rk)} where pi ∈ P and ri ∈ R≥0, which lists

explicitly all tokens in the net by naming their positions and ages. A marked TAPN is

a pair (N,M0) where N is TAPN and M0 is an initial marking. As initial markings we

allow only markings with tokens of age 0.

Let us now outline the dynamics of TAPNs. We introduce two types of transition

rules: firing of a transition and time delay.

For a TAPN Nwe say that a transition t ∈ T is enabled in a markingM if

• in all places p ∈ •t there is a token x such that its age belongs to the time interval

on the arc from p to t, and

• if there is a transport arc of the form (p, t, p ′) then moreover the age of the token

in p satisfies the invariant imposed by p ′.

If a transition t is enabled then it can fire. It consumes one token (of an appropriate age)

from each place in •t, and produces one new token to every place in t•. The age of the

newly produced token is either 0 for the standard arcs, or it preserves the age of the

consumed token for transport arcs.

Another behaviour of the net is a so-called time delay where all tokens in the net grow

simultaneously older by a given time factor (a real number in general). A time delay is

allowed only as long as invariants in all places are satisfied.

Example 2.3. Consider the marked TAPN from Fig. 1. There are 8 places (drawn as circles) and

6 transitions (drawn as rectangles) that are connected either by standard arcs (such that every

arc from a place to a transition contains a time interval) or transport arcs like the one from p1

to p3 via t1. Transport arcs via a given transition are numbered (the symbol :1 after the interval

on the arc from p1 to t1 and the symbol 1 on the arc from t1 to p3) so that the routes for tokens

that do not change their age after transition firing are clearly identified. The initial marking

contains only one token in place p0 of age 0 time units. Clearly, before t0 can fire the net has to

delay between 1 to 3 time units and after its firing two new tokens of age 0 are produced into
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0.0p0
-

t0

p1 -
t1

p2
Inv: ≤ 2

p3

-
t5

p4

p5

-

t2
p6

-

testGoal

timedGoal

-
t4

[1,3]

[0,∞)

[5,6][0,∞)

[0,∞)
[0,∞)

[0,∞)

(2,∞):1

1

Figure 1: Example of a marked TAPN

p1 and p2. In fact, a longer delay of say 5 time units is also possible but then the transition t0
will not be enabled again and the token in p0 is sometimes referred to as a dead token. The

place p2 contains an invariant ensuring that tokens in that place cannot grow older than 2 time

units. The other places do not show any invariant information, which implicitly means that their

associated invariant is [0,∞). The transport arc between p1 and p3 ensures that when t1 is fired

the age of the token produced into p3 is equal to the age of the token consumed in p1 (the token

produced to p4 is of age 0).

Transition Firing. In a markingM, we can fire a transition t if it is enabled, i.e.

∀p ∈ •t. ∃x ∈M(p). [x ∈ c(p, t) ∨ (x ∈ ctarc(p, t, p
′) ∧ x ∈ ι(p ′))] .

Before firing t, we fix the setsC−
t (p) andC+

t (p) for all places p ∈ P so that they satisfy the

following equations (note that all operations are on multisets, and there may be several

options for fixing these sets):

• for every p ∈ P such that (p, t) ∈ F
C−

t (p) = {x} where x ∈M(p) and x ∈ c(p, t),

• for every p ∈ P such that (t, p) ∈ F
C+

t (p) = {0}, and

• for every p, p ′ ∈ P such that (p, t, p ′) ∈ Ftarc

C−
t (p) = {x} = C+

t (p ′) where x ∈M(p), x ∈ ctarc(p, t, p
′) and x ∈ ι(p ′);

• in all other cases (when the place in the argument is unrelated to the firing of the

transition t) we set the above sets to ∅.

Firing a transition t in the markingM yields a new markingM ′ defined as

∀p ∈ P. M ′(p)
def
=

(
M(p) \ C−

t (p)
)
∪ C+

t (p) .
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Time Delays. In a markingMwe can let time pass by d ∈ R≥0 time units if

∀p ∈ P. ∀x ∈M(p). (x+ d) ∈ ι(p)

and this time delay then yields a markingM ′ defined as

∀p ∈ P. M ′(p)
def
= M(p) + d .

A given TAPNN = (P, T, F, c, Ftarc, ctarc, ι) generates a TLTS T(N)
def
= (M(N), T,−→) where

states are markings onN, the set of actions is T , and the transition relation −→ is defined

byM t
−→ M ′ whenever the firing of a transition t in a markingM yields a markingM ′,

and M d
−→ M ′ whenever a time delay of d time units in a marking M yields a marking

M ′.

In a marked TAPN (N,M0) we say that a marking M is reachable iff M0 −→∗ M.

The set of all reachable markings from marked TAPN (N,M0) is denotedM(N,M0). A

marked netN is k-bounded if the total number of tokens in any of its reachable markings

is less or equal to k. A marked net is called bounded if it is k-bounded for some k. A net

N is of degree k if every transition t ∈ T has exactly k incoming and exactly k outgoing

arcs, formally |•t| = |t•| = k.

In order to argue about the validity of logical formulae on transition systems gener-

ated by timed-arc Petri nets, we also have to define the set of atomic propositions AP
and the labelling function µ :M(N) → 2AP . We let AP def

= {p ./ n | p ∈ P, n ∈ N and ./

∈ {<,≤,=,≥, >}}. The interpretation is that a proposition (p ./ n) is true in marking

M iff the number of tokens in the place p satisfies the proposition in question with re-

spect to n, formally µ(M)
def
= {(p ./ n) | |M(p)| ./ n}, where ./ is one of the (standard

mathematical) operators in the above definition.

Given a marked TAPN (N,M0) and a formula ψ, we shall write M0 |=N ψ (or M0 |=

ψ ifN is clear from the context) whenever the markingM0 satisfies the formula ψ in the

TLTS T(N).

Consider again the marked TAPN from Fig. 1. It is easy to verify that it satisfies e.g.

the formula EF (p6 = 1) as the place p6 can be easily marked. In our logic we do not

consider queries that involve any timing information of tokens but such formulae can

be still verified with the presented logic by adding new testing transitions like the one

called testGoal moving tokens of the specified age from the place p6 to timedGoal. Now

the property whether p6 can become marked with a token of age between 5 and 6 time

units can be expressed as the formula EF (timedGoal = 1). Similarly, by introducing a
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new place with a token and resetting its age when a certain transition is fired, one can

measure the duration before some other transition is fired.

Remark 2.4. In standard P/T Petri nets there is a construction to ensure that a transition can

be fired only if a token is present in a certain place, without removing the token. This is done by

adding two arcs: one from the place to the transition and one in the opposite direction. A similar

construction, however, does not work in TAPN with only standard arcs as consuming a (timed)

token and returning it back resets its age. Hence an extension of the model with read-arcs was

suggested in [19, 8]. A read-arc in TAPN setting is a special arc from a place to a transition

which is labelled by a time interval. The semantics is that the transition can fire only if a token

with its age in the given interval is present in the input place of the read-arc, however, the token

is not consumed nor reset when the transition is fired. It is shown in [19, 8] that timed automata

and bounded TAPN with read-arcs are equally expressive. Transport arcs, newly introduced in

this paper, generalize the notion of read-arcs because a read-arc can be simulated by a pair of

transport arcs which consume a token and return it back without resetting its age (the same

trick as in P/T nets). Transport arcs do not add any expressive power as we show in this paper

that bounded TAPN with transport arcs can be also translated to timed automata. On the other

hand, transport arcs are convenient for the modelling purposes because the encoding tricks used

in simulating transport arcs by read-arcs are complex and they double the number of tokens in

the net (as one token is used to simulate the token position and the other one to remember its

age).

2.3 Networks of Timed Automata

LetC be a finite set of clocks. A (time) valuation of clocks fromC is a function v : C → R≥0.

Let v be a valuation and d ∈ R≥0. We define a valuation v+d : C → R≥0 by (v+d)(x)
def
=

v(x) + d for every x ∈ C. For every set R ⊆ C we define a valuation v[R := 0] : C → R≥0

by v[R := 0](x)
def
= v(x) for x ∈ Cr R and v[R := 0](x)

def
= 0 for x ∈ R.

A clock guard is a partial function g : C ↪→ I assigning a time interval to selected

clocks. We denote the set of all clock guards as G(C). An invariant is a clock guard

g where for every x ∈ C holds g(x) ∈ IInv whenever g(x) is defined. The set of all

invariants is denoted by GInv(C). We say that a valuation v satisfies a guard g ∈ G(C)

(written v |= g) iff v(x) ∈ g(x) for all x ∈ dom(g). To specify a guard g that only

constrains the values of one clock x, we often use the notation x ∈ Iwhere I = g(x).
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A timed automaton (TA) is a tuple A = (L,Act, C,−→, ι, `0) where L is a finite set of

locations, Act is a finite set actions such that L ∩ Act = ∅, C is a finite set of clocks, −→⊆
L×G(C)×Act×2C×L is a finite transition relation written ` g,a,R

−→ ` ′ for (`, g, a, R, ` ′) ∈−→,

ι : L → GInv(C) is an invariant assignment of clock guards to the locations, and `0 ∈ L is

an initial location.

A configuration of a timed automaton A is a pair (`, v) where ` ∈ L is a location

and v : C → R≥0 is a clock valuation on C such that the location ` satisfies the respective

invariant, i.e., v |= ι(`). We denote the set of all configurations ofA by Conf (A). An initial

configuration of A is (`0, v0) such that v0(x)
def
= 0 for all x ∈ C. We assume that the initial

configuration always satisfies the invariant of the location `0, i.e., (`0, v0) ∈ Conf (A).

A timed automaton A = (L,Act, C,−→, ι, `0) determines a TLTS T(A)
def
=

(Conf (A),Act,−→) where states are configuration of A and the transition relation −→
is defined by

(`, v)
a

−→ (` ′, v[R := 0]) if ` g,a,R
−→ ` ′ in A s.t. v |= g and v[R := 0] |= ι(` ′)

(`, v)
d

−→ (`, v+ d) if d ∈ R≥0 and for all d ′ ∈ [0, d] we have v+ d ′ |= ι(`).

We shall adopt the handshake communication scheme as it is used in the tool UP-

PAAL [21] for defining a parallel composition of automata. In the semantics, we con-

sider only synchronization moves as independent moves of single components are not

necessary for the reduction.

Let A1, . . . , An be timed automata where (for all i, 1 ≤ i ≤ n) Ai = (Li,Act, C,−→i,

ιi, `
0
i ) and where Act and C are fixed sets of actions and clocks, respectively. We more-

over require that Act is of the form Act = Act! ∪ Act? where Act!
def
= {a! | a ∈ Chan}

andAct?
def
= {a? | a ∈ Chan} for a given nonempty set of channel names Chan. A network of

timed automata (NTA) is a parallel composition ofA1, . . . , An denoted by P = A1|| · · · ||An.

Note that it is allowed to share the names of locations in different parallel components.

A configuration is a tuple (`1, . . . , `n, v) where `i ∈ Li for all 1 ≤ i ≤ n and v : C → R≥0

is a clock valuation on C such that for every i, 1 ≤ i ≤ n, we have v |= ιi(`i). We denote

the set of all configurations of P by Conf (P). An initial configuration of P is (`01, . . . , `
0
n, v

0)

such that v0(x)
def
= 0 for all x ∈ C. As before we assume that (`01, . . . , `

0
n, v

0) ∈ Conf (P).

An NTA P determines a TLTS T(P) def
= (Conf (P),Chan,−→) where states are the con-

figurations of P, the discrete transitions are labelled by channel names, and the transi-

tion relation −→ is defined by

• (s1, . . . , sj, . . . , sk, . . . sn, v)
a

−→ (s1, . . . , s
′
j, . . . , s

′
k, . . . , sn, v

′)

for 1 ≤ j 6= k ≤ nwhenever
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p0
A

x < 4

p1
A

p2
A

x ≤ 6

2 ≤ x

g!

h?

p0
B

y < 6

p1
B

1 ≤ y ≤ 6

h!

y := 0

p0
C

p1
C

z ≤ 4

g?

z := 0

Figure 2: Example of an NTA

– sj
gj,a!,Rj
−−−−→j s

′
j and v |= gj,

– sk
gk,a?,Rk
−−−−−→k s

′
k and v |= gk,

– v ′ = v[Rj ∪ Rk := 0], and (s1, . . . , s
′
j, . . . , s

′
k, . . . , sn, v

′) ∈ Conf (P)

• (s1, . . . , sn, v)
d

−→ (s1, . . . , sn, v+ d)

if d ∈ R≥0 and (si, v)
d

−→i (si, v+ d) for all i, 1 ≤ i ≤ n.

Example 2.5. Consider the NTA in Fig. 2 with three parallel componentsA, B and C. We draw

the parallel components as graphs where nodes represent locations together with their invari-

ants and edges decorated by guards, synchronisation channels and clock updates represent the

transition relation. The initial location of each component is marked with a double circle. In the

following example of a computation in the network

(p0
A, p

0
B, p

0
C, [x = 0, y = 0, z = 0])

3
−→ (p0

A, p
0
B, p

0
C, [x = 3, y = 3, z = 3])

g
−→

(p1
A, p

0
B, p

1
C, [x = 3, y = 3, z = 0])

2.4
−→ (p1

A, p
0
B, p

1
C, [x = 5.4, y = 5.4, z = 2.4])

h
−→

(p2
A, p

1
B, p

1
C, [x = 5.4, y = 0, z = 2.4])

0.6
−→ (p2

A, p
1
B, p

1
C, [x = 6, y = 0.6, z = 3])

we notice that in the last configuration the network is stuck as no further synchronization is

possible and because of the invariant x ≤ 6 in place p2
A time cannot delay either.

In order to argue about validity of logical formulae on transition systems generated

by networks of timed automata P, we have to define the set of atomic proposition AP
and the labelling function µ : Conf (P) → 2AP . We let AP def

= {(#` ./ n) | ` ∈ ∪n
i=1Li, n ∈

N and ./ ∈ {<,≤,=,≥, >}}. The interpretation is that a proposition (#` ./ n) is true

in a given configuration iff the number of parallel components that are currently in the

location ` respects the given proposition with respect to n.

11



-

p0 p1

p2 p3

t

0.0 0.0

[3,7) [0,9]:1

1

-

-

-

-

-

plock

pcapacity

p0 p1

p2 p3

ph(t1) ph(t2)

p(t1
in)

Inv: ≤0

p(t2
in)

Inv: ≤0

p(t2
out)

Inv: ≤0
p(t1out)

Inv: ≤0

t1
in

t1
out

t2
in

t2
out

t3

[3,7) [0,9]:1

1

[0,∞)[0,∞)

[0,∞)

[0,∞)[0,∞)

[0,∞)

[0,∞) [0,∞):1

1

0.0 0.0

0.0

0.0

Figure 3: An example of a 3-bounded net and the corresponding net of degree 2

3 From Bounded TAPN to NTA

In this section we shall describe a reduction from bounded timed-arc Petri nets with in-

variants and transport arcs to networks of timed automata. We first describe a reduction

from bounded nets to nets where each transition has exactly two input and two output

places. In the second step this reduction is followed by a reduction to networks of timed

automata.

3.1 From k-bounded TAPN to TAPN of Degree 2

To translate a given k-bounded TAPN with transitions that have more than two input or

output places into a TAPN of degree 2 we have to simulate a single transition firing in

the original net by a series of transitions in the net of degree 2. The problem is that when

firing a given transition in a number of steps, other transition firings may interleave—

thus some extra behaviour can be introduced. To prevent this from happening, we

introduce a new mutex-like place called plock, which contains a token that is consumed

before the sequence of transition firings begins and the token is returned back after the

simulation of the selected transition is ended.

The translation is demonstrated in Fig. 3 where a simple 3-bounded TAPN is trans-

lated into a TAPN of degree 2. The idea is that the token in the place plock will travel

through intermediate places p(t1in), p(t2in), p(t2out), p(t1out) and finally return to plock.

When the first transition p(t1in) is fired, a token of a suitable age from p0 is consumed

12



and placed in the holding place ph(t1), then a token from p1 is consumed and placed

in ph(t2). Because |•t| < |t•| a special place called pcapacity (used as a repository of the

presently unused tokens) is created. By firing the transition t3 a new token of age 0 is

produced in p3. And finally the tokens placed in ph(t2) and ph(t1) are moved to the ap-

propriate output places by firing the transitions t2out and t1out. Note that because of the

invariants on the intermediate places, time cannot elapse during such a series of tran-

sition firing and so the age of the token in p1 that is moved via the two transport arcs

into p2 is preserved. Notice that the use of holding places is essential as without them a

token from p0 can be consumed by t1in while creating a new token in p1. This may allow

firing of t2in even if there were no tokens in p1 in the original net. Also notice that by

this construction we may introduce extra deadlocks (e.g. if there is no token present in

p1 and the transition t1in is fired). Nevertheless, for the verification of safety properties

we can detect such situations as demonstrated in what follows.

Let us introduce some notation for a transition t ∈ T . We fix a set

Pairing(t) ={(p, I, p ′, tarc) | (p, t, p ′) ∈ Ftarc, I = ctarc(p, t, p
′)} ∪

{(p1, I1, p
′
1,normal), . . . , (pm, Im, p

′
m,normal) |

{p1, . . . , p`} = {p | (p, t) ∈ F}, {p ′1, . . . , p
′
` ′} = {p | (t, p) ∈ F},

m = max(`, ` ′), Ii = c(pi, t) if 1 ≤ i ≤ ` else Ii = [0,∞),

pi = pcapacity if ` < i ≤ m, p ′i = pcapacity if ` ′ < i ≤ m}

and we define max(t)
def
= max(|•t|, |t•|). Note that the max operator with two arguments

is the classical maximum of two numbers.

The intuition is that Pairing(t) fixes the paths from input to output places on which

the tokens travel when firing the transition t, and it also remembers the associated

time intervals and the type of the path (tarc for transport arcs and normal for the stan-

dard arcs that reset the ages of produced tokens). Observe that for the example net

in Fig. 3 where max(t) = 3 a possible pairing operator (used in the reduction) looks

like Pairing(t) = {(p0, [3, 7), p1,normal), (p1, [0, 9], p2, tarc), (pcapacity, [0,∞), p3,normal)}.

Moreover, by p I
−→ t −→ p ′ we shall abbreviate the presence of an arc from p to t

with the time interval I and an arc from t to p ′; the type of the arcs (normal or transport)

will be clear from the context. The translation is given in Alg. 1.

Notice that Alg. 1 for an input net N = (P, T, F, c, Ftarc, ctarc, ι) creates an output net

N ′ = (P ′, T ′, F ′, c ′, Ftarc
′, ctarc

′, ι ′) such that

• |P ′| ≤ |P| + 2+ 4(|F| + 2|Ftarc|),

13



Algorithm 1: Translation from k-bounded TAPN to TAPN of degree 2
Input: A k-bounded TAPN N = (P, T, F, c, Ftarc, ctarc, ι) with markingM0.

Output: A TAPN N ′ = (P ′, T ′, F ′, c ′, Ftarc
′, ctarc

′, ι ′) of degree 2 andM ′
0.

begin

P ′ := P ∪ {plock, pcapacity} ∪ {ph(ti) | t ∈ T, 1 ≤ i < max(t)}

∪ {p(tiin), p(tiout) | t ∈ T, 1 ≤ i < max(t)}

T ′ := {tiin, t
i
out | t ∈ T, 1 ≤ i < max(t)} ∪ {tmax(t)}

ι ′(p) :=


ι(p) if p ∈ P

[0, 0] if p ∈ {p(tiin), p(tiout) | t ∈ T, 1 ≤ i < max(t)}

[0,∞) otherwise

forall t ∈ T do
i := 1

while |Pairing(t)| > 1 do
Remove some (p, I, p ′, type) from Pairing(t) and add arcs

p
I
−→ tiin −→ ph(ti) and ph(ti)

[0,∞)
−−−→ tiout −→ p ′ of type type.

i := i+ 1

Let {(p, I, p ′, type)} := Pairing(t); add arcs p I
−→ ti −→ p ′ of type type.

Add normal arcs plock
[0,∞)
−→ t1in −→ p(t1in) and p(t1out)

[0,∞)
−→ t1out −→ plock.

Add normal arcs p(tiin)
[0,∞)
−→ ti+1

in −→ p(ti+1
in ) for 1 ≤ i < max(t) − 1.

Add normal arcs p(tmax(t)−1
in )

[0,∞)
−→ tmax(t) −→ p(t

max(t)−1
out ).

Add normal arcs p(ti+1
out)

[0,∞)
−→ ti+1

out −→ p(tiout) for 1 ≤ i < max(t) − 1.

M ′
0(p) =



M0(p) if p ∈ P

{0} if p = plock

{0, . . . , 0︸ ︷︷ ︸
k−|M0|

} if p = pcapacity

∅ otherwise

end

• |T ′| ≤ 2(|F| + 2|Ftarc|), and

• |F ′| + |Ftarc
′| ≤ 8(|F| + 2|Ftarc|).

Hence the translation causes only a linear growth in the size.

We shall now introduce a precise relationship between markings in a given marked

k-bounded TAPN (N,M0) and markings in the TAPN (N ′,M ′
0) constructed by Alg. 1.
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A marking M ′ ∈ M(N ′,M ′
0) is called stable iff |M ′(plock)| = 1. Let M ∈ M(N,M0) and

M ′ ∈ M(N ′,M ′
0). We say that M and M ′ correspond to each other, written M ≡M ′, if

and only if

M ′(p) =



M(p) if p ∈ P

{x} if p = plock

{x1, . . . , xk−|M|} if p = pcapacity

∅ otherwise

for some x, x1, . . . , xk−|M| ∈ R≥0 .

Remark 3.1. Note that for a given marking M there may be many markings M ′ such that

M ≡ M ′, but whenever M ≡ M ′ then M ′ is stable. Intuitively, the age of the token x in the

place plock represents the time that has elapsed since the last transition firing.

Lemma 3.2. Let (N,M0) be a marked k-bounded TAPN and let (N ′,M ′
0) be the marked TAPN

of degree 2 constructed by Alg. 1. Let M ∈ M(N,M0) and M ′ ∈ M(N ′,M ′
0) such that

M ≡M ′.

1. If M t
−→ M1 then M ′ −→∗ M ′

1 such that M1 ≡ M ′
1 and the sequence by which M ′

1 is

reached fromM ′ contains only discrete transitions.

2. IfM d
−→ M1 thenM ′ d

−→ M ′
1 such thatM1 ≡M ′

1.

3. If M ′ −→∗ M ′
1, M ′

1 is stable, none of the intermediate markings between M ′ and M ′
1 are

stable, and the first transition is not a time delay, then M t
−→ M1 for some t ∈ T such

thatM1 ≡M ′
1.

4. IfM ′ d
−→ M ′

1 thenM d
−→ M1 such thatM1 ≡M ′

1.

Proof. We shall argue for the four cases while implicitly assumingM ≡M ′.

1. LetM t
−→ M1. We have to show thatM ′ −→∗ M ′

1 via a series of discrete transition

firings such that M1 ≡ M ′
1. Clearly the tokens consumed in N when t is fired in

the marking M are also present in M ′ in identically named places of the net N ′.

By definition of ≡ their ages are moreover the same. From the construction of the

net N ′ we can see that firing the series of transitions t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t),

t
max(t)−1
out , t

max(t)−2
out , . . . , t1out will bring the netN ′ into a stable markingM ′

1 such that

M1 ≡ M ′
1. Notice that during this firing sequence we may consume tokens from

the capacity place (if |•t| < |t•|), or deposit tokens to the capacity place (if |•t| > |t•|),
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however, the total number of tokens in N ′ remains constant and ages of tokens in

the capacity place do not influence the firing of the above mentioned sequence

because all arcs from pcapacity have the interval [0,∞) associated to them.

2. Let M d
−→ M1. We know that M ′ is a stable marking hence there are no tokens

in any of the newly added places except for plock. Because plock has the invariant

[0,∞), all time delays allowed in M are allowed in M ′ and by M ′ d
−→ M ′

1 we

clearly getM1 ≡M ′
1.

3. Let M ′ −→∗ M ′
1 such that M ′

1 is the first stable marking in the firing sequence.

Clearly, in any unstable marking during this sequence, there is exactly one token

in some of the newly added places of the form p(tiin) or p(tiout). These places have

an associated invariant [0, 0] which means no time delays are possible. Hence

any such sequence consists of exclusively discrete transition firings. We want to

show that M t
−→ M1 for some t such that M1 ≡ M ′

1. By the construction of

N ′ we observe that any firing sequence ending in a stable marking has the form:

t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t), tmax(t)−1

out , t
max(t)−2
out , . . . , t1out. Notice that such a sequence

cannot interleave with a transition sequence corresponding to any other transition

because there is no token in the place plock in all the intermediate markings. From

the construction of the net we can now easily see that M t
−→ M1 such that M1 ≡

M ′
1 by selecting the same ages of tokens in places from •t as those consumed in

the firing of the transitions t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t).

4. Let M ′ d
−→ M ′

1. By the construction the same time delay is possible also from M

such thatM d
−→ M1 (all invariants inN are present also inN ′). Clearly,M1 ≡M ′

1.

We now describe how to translate queries. Formulae of the form ψ = EFϕ are

translated intoψ ′ = EF(ϕ∧plock = 1), and formulae of the formψ = AGϕ are translated

into ψ ′ = AG(ϕ∨ plock = 0).

Theorem 3.3. Let (N,M0) be a marked k-bounded TAPN and let ψ be a formula of the form

EFϕ or AGϕ. Let (N ′,M ′
0) be the marked TAPN of degree 2 constructed by Alg. 1 and let ψ ′

be the formula defined above. ThenM0 |=N ψ ⇐⇒ M ′
0 |=N ′ ψ

′.

Proof. Notice that the translation returns M ′
0 such that M0 ≡ M ′

0. We will use this fact

implicitly in the arguments to follow. First, we prove the theorem for the EF operator.
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p0
Inv: < 3

p1

p2 p3
Inv: ≤ 5

t

0.0 0.0

[1,4] (5,∞):1

1

p0
x1 < 3

p1

p2 p3
x1 ≤ 5

1 ≤ x1 ≤ 4

t!

x1 := 0

5 < x1

t?

p0
x2 < 3

p1

p2 p3
x2 ≤ 5

1 ≤ x2 ≤ 4

t!

x2 := 0

5 < x2

t?

Figure 4: An example of the translation from TAPN to NTA.

"⇒" (EF): Let M0 |= EFϕ, which means that M0 −→∗ M such that M |= ϕ. By re-

peatedly using Lemma 3.2 we get that M ′
0 −→∗ M ′ such that M ≡ M ′, which gives

that M ′ |= ϕ. Because M ′ is stable we get M ′ |= ϕ ∧ plock = 1 and this implies that

M ′
0 |= EF(ϕ∧ plock = 1).

"⇐" (EF): Let M ′
0 |= EF(ϕ ∧ plock = 1). This means that M ′

0 −→∗ M ′ such that M ′ is

stable and M ′ |= ϕ. By repeatedly using Lemma 3.2 we get that M0 −→∗ M such that

M ≡M ′, which means thatM |= ϕ and henceM0 |= EFϕ.

The validity of the theorem for the AG operator follows for the definition and the

above proved facts about EF as follows: M0 |= AGϕ ⇐⇒ M0 6|= EF ¬ϕ ⇐⇒ M ′
0 6|=

EF(¬ϕ∧ plock = 1) ⇐⇒ M ′
0 6|= EF ¬(ϕ∨ plock 6= 1) ⇐⇒ M ′

0 6|= EF ¬(ϕ∨ plock = 0) ⇐⇒
M ′

0 |= AG(ϕ∨ plock = 0).

3.2 From TAPN of Degree 2 to Networks of Timed Automata

We can now assume a given net of degree 2 produced by our previous translation and

we will continue with a construction of a network of timed automata. The idea of the

translation is to represent each token in the net by a single timed automaton with one

local clock, and to simulate a transition firing by a handshake synchronisation on a

channel named after the transition.

The intuition is described on an example in Fig. 4. We can see that every place in the

net gives rise to an identically named location in the parallel component corresponding

to a given token, while all invariants are carried over. Time intervals on arcs are natu-

rally transformed into guards and the local clocks of each parallel component are reset

if and only if the transitions correspond to normal arcs. In fact, the timed automata for
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all tokens in the net are identical, except for their initial locations that are determined

by the placement of tokens in the initial marking and the names of local clocks. The full

translation is given in Alg. 2. For a TAPN of degree 2 with k tokens we hence create k

parallel components, each of them of a proportional size to the input net.

Algorithm 2: Algorithm for translation of TAPN of degree 2 to NTA
Input: A TAPN N = (P, T, F, c, Ftarc, ctarc, ι) of degree 2 and a markingM0.

Output: An NTA PTA = A1||A2|| . . . ||A|M0| where Ai = (L,Act, C,−→i, ιi, `
0
i ).

begin
L := P; Act := {t!, t? | t ∈ T }; C := {x1, x2, . . . , x|M0|}

forall t ∈ T do
Let {(p1, I1, p

′
1, type1), (p2, I2, p

′
2, type2)} := Pairing(t).

for i := 1 to |M0| do

Add p1
xi∈I1,t!,R
−−−−−−→i p

′
1 s.t. R = {xi} if type1 = normal else R = ∅.

Add p2
xi∈I2,t?,R
−−−−−−→i p

′
2 s.t. R = {xi} if type2 = normal else R = ∅.

i := 1; forall p ∈ P, forall Token ∈M0(p) do `0i := p; i := i+ 1;

for i := 1 to |M0| do forall p ∈ P do ιi(p)(xi) := ι(p)

end

As for the first translation, we shall define a correspondence relation ≡ between

markings in the net and configurations of the constructed network of timed automata.

Let M = {(p1, r1), (p2, r2), · · · , (pk, rk)} be a marking a TAPN of degree 2 and let s =

(l1, · · · , lk, v) be a configuration of the constructed NTA. We write M ≡ s if and only if

for some permutation {j1, j2, · · · , jk} = {1, 2, · · · , k} we have pi = lji and v(xji) = ri for

all i, 1 ≤ i ≤ k.

Lemma 3.4. Let (N,M0) be a marked TAPN of degree 2. Let PTA be the NTA constructed from

(N,M0). LetM ∈M(N,M0) and let s be a reachable configuration of PTA such thatM ≡ s.

1. IfM t
−→ M ′ then s t

−→ s ′ andM ′ ≡ s ′.

2. IfM d
−→ M ′ then s d

−→ s ′ andM ′ ≡ s ′.

3. If s t
−→ s ′ thenM t

−→ M ′ andM ′ ≡ s ′.

4. If s d
−→ s ′ thenM d

−→ M ′ andM ′ ≡ s ′.

Proof. Let s ∈ Conf (PTA) and M ∈ M(N,M0) such that M ≡ s. This means that for

each token in place p of age r (in the markingM) there is a parallel component Ai in the
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network of timed automata such that its current location is p and the value of the clock

xi is r, and vice versa.

1. Let M t
−→ M ′. Because t has exactly two input places, say p0 and p1, which

contain tokens with ages that satisfy the invariants on arcs and M ≡ s, we can

find two parallel components Aj and Ak in PTA such that their current locations

in s are p0 and p1, and their local clocks xj and xk represent the ages of the two

tokens in p0 and p1 consumed when firing t. Because these components share the

same time constraints as are the time intervals on the arcs in the Petri net, they can

synchronize on the channel t and produce a state s ′ where clearlyM ′ ≡ s ′.

2.,4. Due to the construction of PTA (all invariants are simply overtaken) any time delays

allowed inM are also allowed in s and vice versa.

3. Let s t
−→ s ′ via a synchronization of two parallel components Aj and Ak on a

channel t. Due to the construction of PTA we can see that this can happen only if the

transition t can be fired inM. Now letM t
−→ M ′ such that the firing of t involves

tokens in •t that correspond to the parallel components Aj and Ak. Clearly, M ′ ≡
s ′.

Let ψ be a formula of our logic. By ψ ′ we denote a formula where atomic Petri net

propositions of the form (p ./ n) are replaced with propositions (#p ./ n) in the network

of timed automata.

Theorem 3.5. Let (N,M0) be a marked TAPN of degree 2 and let ψ be a formula of the

form EFϕ, AGϕ, EGϕ or AFϕ. Let PTA be an NTA constructed by Alg. 2 with the ini-

tial configuration s0 = (`01, `
0
2, . . . , `

0
|M0|, v0) and let ψ ′ be the formula defined above. Then

M0 |=N ψ ⇐⇒ s0 |=PTA ψ
′.

Proof. Notice that the correspondence relation ≡ is in fact a timed bisimulation and

moreover M ≡ s means that M |=N ϕ iff s |=PTA ϕ
′ for every ϕ which is a Boolean

combination of atomic propositions in the Petri net and ϕ ′ is the translated formula

where every occurrence of (p ./ n) is replaced with (#p ./ n). Because timed bisimilarity

preserves TCTL model checking (and hence also our logic) and the atomic propositions

do not distinguish between configurations related by the correspondence relation≡, we

have established the validity of the theorem.
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3.3 Final Remarks

In a summary, for safety properties (EF and AG) we provided a translation from

bounded timed-arc Petri nets to networks of timed automata by combining Theorem 3.3

and Theorem 3.5. For liveness properties we achieved such a translation for nets of de-

gree 2 by using Theorem 3.5. Even though many net models of real-systems are already

of degree 2 or can be easily modified so that Theorem 3.5 becomes applicable, for the

nets where it is necessary to have transitions with more than two input places other

translations have to be designed. The main obstacle is that the translation presented in

Alg. 1 introduces new time-locks which cannot be distinguished from the time-locks in

the original net.

4 Experiments

We shall now report on two experiments testing the efficiency of the translations from

Section 3. The translations were implemented in the tool TAPAAL [10] and the models

used in the experiments can be downloaded at www.tapaal.net. The reported running

times were measured on a Dell PowerEdge 2950, with a 2.5 GHz, Dual Core Intel Xeon

5420 processor and 32GB ram. Notice, however, that UPPAAL utilises only one core

and addresses at most 4GB of RAM.

4.1 Fischer’s Protocol for Mutual Exclusion

Fischer’s protocol [13] for ensuring mutual exclusion for a number of timed processes

is a well-known protocol used for testing performances of tools. It is an easily scal-

able algorithm and provides a suitable case study for our translation because it requires

that every process has its own independent clock. In other tools for Petri nets, such as

TINA [6] and ROMEO [17], it is inconvenient to model Fischer’s protocol as here clocks

are usually associated to transitions and hence the number of processes is a priory fixed.

One has to necessarily modify the static structure of the net when more processes need

to be considered. In our approach we only need to add extra tokens to the same under-

lying net in order to increase the number of processes. The timed-arc Petri net model

of Fischer’s protocol is taken from [2] and it is available as an example in the TAPAAL

distribution.
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# Processes

Time in seconds

Speed-upUPPAAL TAPAAL

Default Standard Optimised

50 7.8 9.8 4.5 73 %

60 18.7 21.1 8.9 110 %

70 40.5 42.0 17.0 138 %

80 78.2 75.7 30.4 157 %

90 138.7 136.1 49.7 179 %

100 235.9 206.4 77.3 205 %

150 31m 22m 8m 293 %

200 2h 22m 1h 25m 29m 393 %

300 22h 7m 10h 6m 3h 24m 549 %

400 – – 14h 9m –

Figure 5: Fischer’s Protocol with Symmetry Reduction Turned On

We verified the correctness of the Fischer’s protocol for a different number of pro-

cesses. The results were compared with the verification times of the UPPAAL model

of Fischer’s protocol from the UPPAAL demo folder. The experiments were run with

symmetry reduction turned on, both in TAPAAL and UPPAAL, and with the default

search options. The verification results are presented in Fig. 5. Here TAPAAL stan-

dard reduction is the one from Section 3 and TAPAAL optimised reduction replaces the

locking token in the net with a global Boolean variable in order to reduce the size of

the produced UPPAAL templates. Details of the optimised translation are given in the

appendix. The speed-up column compares the running times between the UPPAAL

model and the model produced by the TAPAAL optimised reduction. Even though the

number of explored states in the network produced by TAPAAL is about two times as

many as the ones in the native UPPAAL model, the verification times are significantly

shorter. The reason for this seems to be the fact that the sizes of zones in the TAPAAL

produced model are smaller and hence the expensive operation of zone inclusion check-

ing is faster in our approach.
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# Messages

Time in seconds

UPPAAL TAPAAL

Default Standard Optimised

12 7.7 2.4 8.9

13 17.6 3.6 21.8

14 19.4 5.1 62.6

15 136 7.3 192.2

16 10m 10.1 11m

17 32m 13.7 35m

20 18h 37m 32.5 19h 34m

30 – 5m –

40 – 29m –

50 – 1h 52m –

Figure 6: Alternating Bit Protocol with Symmetry Reduction Turned On

4.2 Alternating Bit Protocol

Alternating Bit Protocol (ABP) [4] is a simple instance of a sliding window protocol with

windows of size one. ABP is an unbounded protocol, since in communication between

a sender and a receiver, an arbitrary number of messages (each with an individual time-

stamp) can be in transfer via a lossy communication media. Details of the model are

given in the appendix.

In Fig. 6 we present the verification results for a fixed number of messages in the

system. The translation described in Section 3 allows us to verify the protocol for up

to 50 messages in less than two hours. For comparison we created a UPPAAL model

of ABP where all messages in the system are symmetric (see the appendix). Notice that

the standard translation, contrary to the results from Fischer’s protocol, is considerately

faster than the optimised translation, described in the appendix, which is comparable

with the native UPPAAL model we created. The reason seems to be the same as in

Fischer’s protocol: even though the number of stored and explored states is about twice

as large, the zones are less complex and hence the inclusion check is faster.

In the future work we plan to study in detail this phenomenon and optimise the

reductions (perhaps depending on the analysis of the concrete net) in order to achieve a

further improvement in verification of TAPN models.
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5 Conclusion

We studied timed-arc Petri nets extended with invariants on places and with transport

arcs—new features that allow for a more convenient modelling of systems. The ex-

tended Petri net model with a bounded number of tokens was translated to networks

of timed automata, preserving logical queries formulated in a subset of CTL. We em-

ployed a novel translation where a new component in the timed automata network was

created for each token in the net.

The presented approach for verification of bounded timed-arc Petri nets is efficient

as documented on two case studies modelled in the tool TAPAAL and in fact we outper-

form in the verification times of native UPPAAL models. We kept the considered logic

simple and it is essentially identical with the presently implemented logical queries in

UPPAAL. Nevertheless, we sketched that verification of TCTL queries and reasoning

about the exact ages of tokens can be done by simple encoding tricks.

One cannot hope for a fully automatic verification of unbounded timed-arc Petri nets

as, for example, the reachability problem becomes already undecidable [16]. On the

other hand, the chosen reduction strategy enables one to further extend the bounded

model with e.g. urgent transitions, priorities, cost, probability and game semantics,

requiring only minor changes in the proposed reductions. In the future work we shall

address these issues.
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Appendix: Alternating Bit Protocol Modelling

The model of the alternating bit protocol as a TAPN with invariants is provided below.

The number of extra tokens in the place pcapacity (created during the translation) deter-

mines the largest number of messages that can at the same time appear in the protocol.

The query that checks for violation of the synchronization between Sender and Re-

ceiver is: EF (Sender_A=1 and Receiver_B=1) or (Sender_A=1 and Receiver_C=1)

or (Sender_C=1 and Receiver_A=1) or (Sender_C=1 and Receiver_D=1). As the

protocol is correct, the query returns false.

The UPPAAL model of the alternating bit protocol (that we manually created in

order to compare the performance with respect to the automated translation provided

in TAPAAL), consists of three templates of Sender (upper left template), Receiver

(upper right template) and Message (the template at the bottom). Each template

has its private local clock x. The number of occurrences of the last template Mes-

sage (all of them defined as symmetric ones) in the network determines the largest
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number of messages that can at the same time appear in the protocol. The ver-

ified query is: E<> (Sender.SendA and Receiver.ReceiverB) or (Sender.SendA

and Receiver.ReceiverC) or (Sender.SendC and Receiver.ReceiverA) or

(Sender.SendC and Receiver.ReceiverD). The query returns false as the protocol

is correct.
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Appendix: Implementation of the Optimised Reduction

In this section we describe the ideas behind the implementation of the optimised reduc-

tion in the tool TAPAAL.
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Recall the approach introduced in Section 3. Here the locking token takes care of

two tasks: preventing the interleaving of different transition firings and determining

the order of the firing of intermediate transitions.

In UPPAAL we can use a Boolean variable (let us call it lock), to prevent the inter-

leaving. By applying this, we can in the cases where the input and output degree of

a transition is less or equal to two eliminate the locking token. In this situation, one

transition firing is simulated by a single synchronization between two templates. The

optimised translation is shown in Figure 7 where the clock x is local to both templates.

Clearly, the unreachable parts in the UPPAAL templates can be removed, we present

them only for the clarity reasons.

Figure 7: A Net of Degree 2 and the Produced UPPAAL Templates

When the net contains also transitions of degree-3 or higher, we still use the lock-

ing token in order to synchronize stepwise among several parallel components. The

translation for this situation is shown on the TAPN in Figure 8 resulting in the NTA

in Figure 9. As before, the unreachable parts in the UPPAAL templates can be easily

removed and the clock x is local in all templates where it occurs.
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Figure 8: A Net of Degree 3

Figure 9: Four UPPAAL Templates Produced for the Net in Figure 8
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