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Abstract—This brief presents an integrated optimization
framework for battery sizing, charging, and on-road power
management in plug-in hybrid electric vehicles (PHEVs). This
framework utilizes convex programming (CP) to assess inter-
actions between the three optimal design/control tasks. The
objective is to minimize carbon dioxide (CO2) emissions, from the
on-board internal combustion engine and grid generation plants
providing electrical recharge power. The impacts of varying daily
grid CO2 trajectories on both the optimal battery size and
charging/power management algorithms are analyzed. We find
that the level of grid CO2 emissions can significantly impact
the nature of emissions-optimal on-road power management.
We also find that the on-road power management is the most
important design task for minimizing emissions, through a variety
of comparative studies.

Index Terms—Component Sizing, Charging Control, Energy
Management, Convex Optimization, Plug-in Hybrid Electric
Vehicle, Sustainable Transportation.

I. INTRODUCTION

Plug-in hybrid electric vehicles (PHEVs) potentially reduce
fossil fuel dependence while enabling synergies between vehi-
cles and the electric grid [1], [2]. The performance, economics,
and environmental benefits of PHEVs are, however, consider-
ably influenced by their charging patterns, power management
strategies, and energy storage system sizes. These three aspects
are typically considered in isolation, as discussed next.

Researchers have examined PHEV charging schedule de-
signs for objectives such as load following/stabilization [3],
enhanced grid network efficiency [4], and battery health [5].
These dynamically updated charging schedules may use real-
time information on electricity price, green house gas (GHG)
emissions, and so forth. Many optimization methodologies
have been employed for this problem, such as convex pro-
gramming (CP) [6], dynamic programming (DP) [7], linear
programming (LP) [8], and game theory (GT) [9].

In parallel, researchers have examined on-road power man-
agement strategies that can be organized into two categories:
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charge depleting-charge sustaining (CD-CS) and blended ap-
proaches [10]. In the CD-CS strategy, PHEVs first operate in
a pure electric mode until a minimum battery State-of-Charge
(SOC) threshold is reached. Then the controller switches
to a charge sustenance mode. In the blended strategy, an
optimal control problem is typically solved, which results in
simultaneous operation of the on-board power sources over
time. Various optimization approaches have been studied to
generate optimal power split algorithms for HEVs/PHEVs,
such as DP [10], instantaneous optimization (e.g., Equiva-
lent Consumption Minimization Strategy (ECMS) [11], [12],
Pontryagins Minimum Principle (PMP) [13], [14]), model
predictive control (MPC) [15], [16], and CP [17].

All the foregoing studies focus on either charging control
or on-road power management. These two aspects, however,
are strongly coupled [18]. To fully investigate interactions
between the two optimal control problems, a simultaneous
optimization framework is needed. DP has been used to
implement such a framework, where global optimality is
achieved at the cost of tremendous computational complexity
[19]. Other studies perform the on-road power management
and charging schedule optimization sequentially [20]. Battery
size also substantially impacts the economic and environmen-
tal advantages of PHEVs. Most of previous work evaluated
combined on-road power management and component sizing
optimization in a bi-loop manner (the outer loop is for sizing,
and the inner loop for power management)[21], [22]. Diverse
heuristic optimization algorithms were used for the outer-loop
sizing optimization with heavy computational burden, such as
particle swarm optimization (PSO) [23] and DIRECT [24]. To
increase computational efficiency, simultaneous power man-
agement and sizing optimization was also reported, e.g., CP
[17]. A survey of optimal design strategies for HEVs/PHEVs
is given in [25].

The tradeoffs between battery sizing, charging control, and
the power management strategy remain insufficiently exam-
ined and merit further exploration. For example, what is the
optimal battery size to minimize PHEV GHG emissions?
How do dynamic grid emission profiles impact battery size,
charging schedule, and power management strategy?

This brief extends our previous work on combined PHEV
battery sizing/power management optimization [17] by incor-
porating charging schedule optimization to minimize the total
amount of daily CO2 emissions. Its overarching goal is to
enable a systematic evaluation of the interplay between the



three optimal design/control problems. Two key contributions
are added to the related literature. First, a CP framework is
formulated to enable rapid, globally optimal solutions. The
optimal battery size, charging patterns, and power management
strategy in a 24-hour horizon can be efficiently extracted
in seconds. This facilitates online updates of the control
strategies, given appropriate forecast information. Second, the
impact of variable daily grid CO2 profiles on the optimal de-
sign/control is analyzed. The optimality loss of the optimized
solution at a medium CO2 level is quantified when applied to
different CO2 levels.

The remainder of the brief is arranged as follows. Section II
details the modeling of a PHEV propulsion system and briefly
introduces a grid emissions model. The CP framework is
described in Section III. The optimization results are discussed
in Section IV followed by conclusions presented in Section V.

II. PHEV AND GRID EMISSION MODELS

We consider a series plug-in hybrid electric powertrain
architecture shown in Fig. 1. In the following subsections, we
detail a convex model formulation of this drivetrain and grid
CO2 emissions. Then we formulate the optimization program,
which takes the form of the canonical nonlinear programming
problem,

min
x

f(x) (1)

subject to g(x) ≤ 0, (2)
h(x) = 0. (3)

A convex program is the special case where f(x) is convex,
g(x) is convex, and h(x) is affine with respect to the optimiza-
tion variable x, over the feasible set [26]. Consequently, the
model equations and constraints are derived to satisfy these
properties. As will become evident in the model formulation,
the optimization variables are Pb,k, Pbt,k, Eb,k, n, Pegu,k, Tk,
which represent the electrochemical battery power, electri-
cal battery power, battery energy, number of cells, engine-
generator unit (EGU) power, and electric motor (EM) torque,
respectively. Note that n is a design variable, and the re-
maining optimization variables are controls. Therefore, we
formulate a combined design/control optimization problem as
a convex programming problem such that both design and
controls can be simultaneously solved. This is different from
DP and PMP where only controls are solved sequentially
in time. To consider design optimization, an outer loop is
required. A contrast between CP and bi-loop scenario is
sketched in Fig. 2. Symbol k ∈ {0, · · · , N} indexes discrete
time, and is herein dropped to reduce notational clutter, except
to emphasize dynamics. We consider a ∆td = 1 sec. time step
when the vehicle is driving td ∈Md, and ∆tc = 1 min when
it is charging tc ∈ Mc. Here, Md and Mc are the sets of
discrete time steps for driving and charging, respectively.

A. PHEV Model

The PHEV consists of a lithium-ion battery pack, 35 kW
permanent-magnet synchronous electric motor (EM), and an
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Fig. 1. Plug-in hybrid propulsion system.
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Fig. 2. Contrast between convex programming and bi-loop scenario for the
combined design/control optimization in PHEVs.

engine-generator unit (EGU) with a power rating of 35 kW.
Convex modeling formulations of these components are pro-
vided next.

1) Battery Pack: The lithium-ion battery pack comprises
strings connected in parallel. Each battery cell is modeled as an
open circuit voltage (OCV), U(soc), in series with a resistor,
R, and the power at the terminals is given by

Pbt = Pb − nRi2, (4)

where Pb = nU(soc)i, and i is the cell current. The discharge
power is positive and charge power is negative. An affine
approximation of the OCV function given by

U(soc) =
Q

C
soc+ U0, (5)

is employed [27], where Q and C have the interpretation
of charge capacity and capacitance (their values are listed in
Table II). This affine approximation is determined by fitting
experimental LiFePO4 cell data and is reasonably accurate
within the 20%-80% SOC window. One may express the
battery pack energy as

Eb = nQ

∫ soc

0

U(σ)dσ = nQ

∫ soc

0

[
Q

C
σ + U0

]
dσ

= nQ

[
Q

2C
soc2 + U0soc

]
=
nC

2

[
U2(soc)− U2

0

]
. (6)

By solving for U(soc) as a function of Eb in (6) and plugging
this expression into the electrochemical pack power Pb, we



attain i as a function of Pb and Eb, which is ultimately
substituted into (4), yielding equality constraint

Pbt − Pb +
RCP 2

b

2Eb + U2
0Cn

= 0. (7)

Using the properties of convex functions (§3.2 [26]), it is easy
to verify the left-hand side of (7) is convex w.r.t. Pbt, Pb, Eb, n
for non-negative Eb, n. When dimensioning the battery pack,
the optimal energy capacity is assumed to take non-quantized
values, which is fulfilled by relaxing n to a continuously
valued variable. We assume battery cells can be fabricated
in accordance with the optimized pack power and energy
[27]. The convex battery model constraints representing parked
charging and propulsion during driving are given by

Eb,k+1 = Eb,k −∆t · Pb,k, (8)

Pbt − Pb +
RCP 2

b

2Eb + U2
0Cn

≤ 0, (9)

n Ecell,min ≤ Eb ≤ n Ecell,max, (10)
n ≥ 0, (11)

where Ecell,min and Ecell,max represent the min/max allowable
cell energy levels. Equation (8) encodes the battery energy
storage dynamics and clearly produces an affine equality
constraint w.r.t. all optimization variables [27]. Inequality (9)
is a relaxed form of equality constraint (7), and is necessary to
preserve convexity. One can analytically show this constraint
is active at the optimal solution [27], thus incurring zero
error. The battery energy limits (10) also produce convex
inequality constraints (as proved in Lemma 1 and Remark
1), and the number of cells (11) must be nonnegative. In
addition, the battery cell current is limited during both driving
and recharging [19]. Consequently, battery power constraints
are formulated for the driving and charging modes as
imin

√
n
(
2
CEb,k + U2

0n
)
≤ Pb,k ≤ imax

√
n
(
2
CEb,k + U2

0n
)
,

for k ∈Md,

Pbt,min ≤ Pbt,k ≤ 0, for k ∈Mc,
(12)

where imin, imax are the cell current limits for power man-
agement during driving, and Pbt,min is the charging power
limit while parked. Again, (12) produces convex inequality
constraint functions with respect to Pb, n, Eb, as proved in
Lemma 1 and Remark 1.

Lemma 1 (§3.1 [26]): The inequality constraint H(x) ≤ 0
is convex if and only if the domain of H(x) is a convex set,
and its Hessian ∇2H(x) is positive semidefinite.

Remark 1: For nEcell,min − Eb and Eb − nEcell,max,
Lemma 1 clearly holds, and thus the convexity of (10) is
guaranteed. Similarly, Lemma 1 clearly holds for the battery
power constraints during charging. According to Lemma 1,√
n( 2

CEb,k + U2
0n) is concave with respect to n and Eb.

Since imin < 0 and imax > 0, imin

√
n( 2

CEb,k + U2
0n) and

−imax

√
n( 2

CEb,k + U2
0n) are convex (as per basic operations
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Fig. 3. Original EM power data and approximate model with power loss as
a quadratic function of torque.

preserving convexity of functions (§3.2 [26])). Eventually,
Lemma 1 holds for (12), and its convexity is thereby satisfied.

As in [19], we enforce net zero energy transfer over the 24
hour period, so that today’s optimal control does not sacrifice
performance tomorrow by depleting the battery,

Eb,0 = Eb,N , (13)

where k = 0 and k = N represent the initial and final time
steps of the 24-hour PHEV operation.

2) Electric Motor (EM): The electrical power balance
equation during driving is given by

Pem + Ploss,em + Pau = Pbt + Pegu (14)

where Pem is the EM power, Ploss,em denotes parasitic losses
in the EM, and Pau represents vehicle auxiliary loads (e.g.
HVAC). The required EM power depends on the drive cycle
velocity and vehicle mass (i.e. battery size) according to

Pem = Tω ≥ Tvω = (A(ω)n+B(ω))ω (15)

where Tv is the torque demand on the shaft between the EM
and the final drive, which is an affine function of the battery
size n, as detailed in the Appendix. Symbol ω is the EM
angular shaft speed and is proportional to wheel speed. EM
torque may be less than the required torque for deceleration,
since the difference can be provided by frictional brake torque.
The EM losses Ploss,em are modeled by a convex quadratic
function of EM torque T ,

Ploss,em = a2(ω)T 2 + a1(ω)T + a0(ω), (16)

where a2, a1, a0 are coefficients that depend on ω. Note
a2(ω) ≥ 0 uniformly in ω to preserve convexity. EM power
loss data and the convex regression are shown in Fig. 3.
Additionally, the EM torque is limited by angular speed
dependent bounds given by

Tmin(ω) ≤ T ≤ Tmax(ω). (17)

3) Engine-Generator Unit (EGU): The rate of gasoline
energy consumption, i.e., “gasoline power” Pf , along the EGU
optimal operating line (OOL) is described by

Pf = b2P
2
egu + b1Pegu + b0 (18)

where b2 ≥ 0 to preserve convexity. The regression fit is
displayed in Fig. 4. The EGU power Pegu is also bounded
by limits

0 ≤ Pegu ≤ Pmax,egu. (19)
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Fig. 4. Original gasoline consumption data and approximate model with
power loss as a quadratic function of EGU net power.
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Fig. 5. Grid CO2 emission trajectories, i.e, cc,k in (23) for optimization
(data is taken from [28]).

Finally, a heuristic engine on/off control signal is determined
by a threshold policy

e =

{
1, for Tvω ≥ P ∗on,
0, otherwise.

(20)

That is, the engine shuts off when vehicle power demand
is smaller than a threshold P ∗on. The best threshold value
P ∗on is achieved by iteratively solving the convex optimization
problem ((24)-(26) in Section III), over different P ∗on values in
an outer loop. We observe from simulations that this heuristic
could give a solution close to the global optimum from DP
(see Table III).

B. Grid CO2 Model

We adopt an economic grid dispatch model for power plants
in Michigan [28] to generate marginal grid CO2 emissions
associated with PHEV charging. This provides the appropriate
coefficients for the objective function, to be defined in Section
III. Given a total load demand, the model performs grid
dispatch and calculates generation costs and CO2 emissions.
The resultant CO2 emissions per unit energy are within a
range from 0.55 to 0.85 [kg/kWh], which is independent of
the grid load (the inclusion of PHEVs). The reason is that
the underlying power plants are assumed to remain the same,
inducing the same range of average CO2. Three 24-hour CO2

traces reflecting days of high, medium, and low CO2 emissions
caused by different generation mixes (see Fig. 5) are chosen
for the subsequent integrated optimization problem (Section
III). More details on the grid model are given in [19], [28].

III. INTEGRATED OPTIMIZATION FRAMEWORK

We consider daily PHEV operation composed of two iden-
tical driving trips (at 8 a.m. and at 5 p.m.) and parking, which
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Fig. 6. FTP-75 driving cycle and timing of the daily PHEV operation: (a)
FTP-75 cycle; (b) Timing of the 24-hour PHEV usage.

is representative of workday commutes. The Federal Test
Procedure (FTP-75) is chosen to simulate city driving patterns.
The FTP-75 driving cycle and commute times over 24-hour
operation are indicated in Fig. 6. Although specific routes
from Fig. 6 are employed here, the integrated optimization
framework is equally applicable to other velocity profiles, trip
lengths, and commute times. The impact of trip profiles and
traffic conditions on PHEV energy consumption is elaborated
in [29], [30].

The objective function F is formulated to minimize the
total amount of daily CO2 emissions associated with gasoline
consumption and recharging the PHEV from the grid.

F = Fgas + Fgrid, (21)

where Fgas =
cg∆td
Lgρg

∑
k∈Md

Pf (Pegu,k), (22)

Fgrid =
∆tc
ηc

∑
k∈Mc

cc,kPbt,k, (23)

where cg is the CO2 produced by combusting gasoline in
[kg/L], Lg is the lower heating value of gasoline in [J/g], and
ρg is the gasoline density in [g/L]. The time-varying grid CO2

in [kg/kWh] is represented by cc,k, and ηc denotes average
charger efficiency.

The optimization variables are Pb,k, Pbt,k, Eb,k, n, Pegu,k,
Tk, where k ∈ Md ∪Mc indexes time. The time indices are
grouped into the set of driving time Md and charging time
Mc index sets. Consequently, we summarize the optimization
problem as

min
Pb,Pbt,Eb,n,Pegu,T

F = Fgas + Fgrid (24)

subject to: (8)− (13), (15)− (20), (25)
Pem + Ploss,em + Pau ≤ Pbt + Pegu.

(26)

Since convex equality constraints (14), (16) do not produce
convex feasible sets, we relax this equality to an inequality
in (26). One can analytically show this constraint is active at
the optimal solution, uniformly in time [27]. Additionally, we
remark that it is possible to eliminate optimization variables
via the equality constraints. This, however, destroys the convex
structure that we desire. The tradeoff is added dimensions to
the decision space. This is worthwhile, however, due to the
efficiency of numerical CP solvers relative to general purpose
nonlinear programming algorithms [27]. Finally, we note that



the objective function (24) is not explicitly dependent on all
optimization variables. However, all variables are coupled via
constraints.

The CVX solver [26], is applied to parse the problem,
yielding a general semi-definite program (SDP) that can be
efficiently solved by SeDuMi [31]. Theoretical and algorithmic
details of convex programming are discussed in [26]. The
key parameters of the small-size PHEV are listed in Table I,
while the main specifications of the on-board power sources
are given in Table II. The additional mass resulting from
packaging and circuitry is assumed to account for 12.3% of
the total mass of the battery pack [27].

IV. RESULTS & DISCUSSION

The optimal trajectories under a high grid CO2 scenario
are showcased in Fig. 7. The PHEV effectively operates in
charge-sustaining mode during the two trips, and there is no
use of electrical grid energy (i.e. the PHEV operates as a
series HEV). As demonstrated in Fig. 8, the EGU operates
near the maximum efficiency point such that gasoline usage
is less carbon intensive per unit power. The optimal trajectory
under the low CO2 level is shown in Fig. 9. In this case,
the PHEV exerts pure electric mode for driving and recharges
when grid CO2 is lowest. Reduced grid CO2 relative to engine
CO2 discourages gasoline consumption. The result under the
medium CO2 level is similar to the case of the low CO2 level.

The optimized battery sizes, CO2 emissions, and computa-
tional times under the three grid CO2 levels are summarized
in Table III, where DP results are also provided for bench-
marking purposes. Given the same battery size optimized by
CP, DP guarantees the globally optimal charging and power
management strategy and incorporates binary engine on/off
control. The CP and DP results are comparable. In particular,
the greatest loss of optimality is 0.6% under the high grid CO2

case, which is attributed to the convex modeling assumptions
and sub-optimal engine-off control designed in Section II. Due
to pure electric-mode driving under both the medium and low
grid CO2 levels, the associated losses are about 0.3%. CP
requires 2-3 orders of magnitude less computational time than
DP. DP requires more than 2 hours to solve, even without
including the battery sizing task.

Additionally, the optimal battery size does not necessarily
increase, as CO2 levels decrease. In order to further explore
the coupling between battery sizing and CO2 emissions, the
optimization results with respect to different battery sizes

TABLE I
KEY VEHICLE PARAMETERS

Parameter Value Parameter Value
Frontal area Af [m2] 2.000 Vehicle mass excluding

battery pack mv [kg]
1155

Aerodynamic drag coef-
ficient cd

0.300 EM inertia Iem [kgm2] 0.100

Air density ρ [kg/m3] 1.184 Inertia of final drive and
wheels I [kgm2]

1.086

Rolling resistance coef-
ficient cr

0.010 Vehicular auxiliary
power, Pau [kW]

0.800

Wheel radius r [m] 0.308 Final gear λ 4.000
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Fig. 7. Optimal trajectories under the high grid CO2 level: (a) Grid CO2;
(b) Cumulative CO2; (c) SOC trajectory; (d) Recharging power; (e) power
split in the first trip.

under the high grid CO2 case are exhibited in Fig. 10. The
dependency of CO2 emissions on battery size is nonlinear.
Furthermore, the globally optimal solution corresponds to
high EGU efficiency. Enlarging the battery past a critical
point will increase gasoline consumption and consequently
CO2 emissions, since the PHEV mass increase outweighs the
marginal improvement of the average EGU efficiency. The
PHEV does not recharge in this case, for any battery size.
The optimal battery sizing under the low grid CO2 case is
depicted in Fig. 11. When the battery is less than 3 kWh, the
PHEV blends battery and engine power, whereas the resultant
CO2 emissions are not minimized with respect to battery size.
On the other hand, overly large batteries lead to unnecessary
electricity consumption as a consequence of increased mass.

Using the established optimization framework, different
TABLE II

MAIN SPECIFICATIONS OF THE ONBOARD POWER SOURCES

Parameter Value Parameter Value
Gasoline-related CO2

cg [kg/l]
2.320 Maximum cell discharge

current imax [A]
70

Gasoline lower heating
value Lg [J/g]

42600 Maximum cell charge
current, imin [A]

-35

Gasoline density ρg [g/l] 749 Initial cell SOC soc0
[%]

70

Maximum EGU power
Pmax,egu [W]

35000 Maximum cell SOC
socmax [%]

90

Nominal cell capacity Q
[As]

8280 Minimum cell SOC
socmin [%]

30

Cell equivalent capaci-
tance C [F]

51782 Maximum pack recharg-
ing power Pbt,min [W]

-1000

Cell resistance R [ohm] 0.01 Average charger
efficiency ηc [%]

98

Cell mass mb [kg] 0.07 Nominal cell voltage [V] 3.3
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Fig. 9. Optimal trajectories under the low grid CO2 level: (a) Grid CO2; (b)
Cumulative CO2; (c) SOC trajectory; (d) recharging power; (e) power split
in the first trip.

charging/power management strategies can be conveniently as-
sessed by changing the optimization constraints. For instance,
a comparison is conducted between the optimal solution and
three heuristic charging/power management strategies under
the high grid CO2 level (see Fig. 12). In this case, note
that optimizing on-road power management (i.e., high EGU
efficiency) is critical to reducing CO2 emissions, while intu-
itive full charging before each trip is a non-optimal decision.
Analogous analysis can be made for the medium and low CO2

levels.
In practice, one cannot optimize PHEV design & control for

varying daily grid CO2 traces. Namely, adjusting battery pack
size is often difficult, particularly for traditional integrated
battery pack designs. One alternative is to obtain the optimal
solution under the medium grid CO2 trace, and then evaluate
its performance on other traces. This approach, nevertheless,
results in loss of optimality with respect to CO2 minimization,
which is quantified in Fig. 13. The approach incurs about 14%
CO2 increase in the case of high grid CO2 level. Since the CP
framework enables rapid updates of charging/power manage-

TABLE III
OPTIMIZATION RESULTS UNDER VARIOUS GRID CO2 EMISSION

SCENARIOS.

High Medium Low

CO2
DP 2.51 kg 2.36 kg 2.16 kg
CP 2.53 kg 2.37 kg 2.17 kg

Time∗ DP 2.48 h 2.32 h 2.16 h
CP 17.60 s 13.91 s 12.42 s

Battery size CP & DP 3.78 kWh 5.17 kWh 5.07 kWh
∗2.9 GHz processor with 4 GB RAM was used.
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Fig. 10. Optimization results with respect to different battery sizes under the
high grid CO2 level: (a) Total amount of daily CO2 emissions; (b) Average
EGU efficiency.

ment when day-ahead predictions of grid CO2 is available,
we consider updated control policies with fixed battery size.
As illustrated in Fig. 13, the updated control policies recover
nearly all of the optimality loss (<1%), which underscores the
importance of on-road power management.

V. CONCLUSION

This brief develops an integrated optimization framework
for battery dimensioning, charging, and on-road power man-
agement of PHEVs that minimizes the total amount of daily
CO2 emissions. A convex programming problem is formulated
to unify the three important optimal design/control problems
for systematically evaluating their interactions.

Three cases with high, medium, and low grid CO2 levels are
studied for a small-size PHEV. The results reveal that as grid
CO2 decreases, the PHEV increasingly depends on electricity
usage, and its recharging occurs in the vicinity of lowest-
carbon time. The loss of CO2 reduction caused by simulating
the optimal solution in the medium CO2 case for the high
CO2 case is up to approximately 14%. The computational
advantages of the framework permit a rapid and efficient
day-ahead update of charging/power management control law,
which noticeably mitigates such loss.
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APPENDIX

Given the bus velocity v and the road slope β, the angular
speed ω and the torque demand Tv on the shaft between the
EM and the final drive are determined by

ω =
λv

r
,

Tv =
gr

λ
(mv + 1.123mbn)(cr cosβ + sinβ) +

ρAfcdr
3ω2

2λ3

+

(
Iem +

I + (mv + 1.123mbn)r2

λ2

)
dω

dt
,

= A(ω)n+B(ω),

for appropriately defined coefficients A(ω), B(ω), where the
parameters are defined in Table I and Table II.


