
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Improving Methods for
Single-label Text Categorization

Ana Margarida de Jesus Cardoso Cachopo
(Mestre)

Dissertação para obtenção do Grau de Doutor em
Engenharia Informática e de Computadores

Orientador: Doutor Arlindo Manuel Limede de Oliveira
Co-Orientador: Doutor João Emílio Segurado Pavão Martins

Júri:

Presidente: Reitor da Universidade Técnica de Lisboa
Vogais: Doutor Pavel Bernard Brazdil

Doutor João Emílio Segurado Pavão Martins
Doutora Isabel Maria Martins Trancoso
Doutor Arlindo Manuel Limede de Oliveira
Doutor Mário Jorge Gaspar da Silva
Doutor Pável Pereira Calado

Julho de 2007

Resumo

Com o crescimento do volume de informação em forma digital, aumenta a ne-
cessidade de usar técnicas de classificação de texto para recuperar informação
relevante a partir de toda aquela que está disponível.

Para melhorar a qualidade do classificador, propõe-se a combinação de méto-
dos de classificação diferentes. Nesta dissertação, mostra-se que a média da qua-
lidade obtida pela combinação de k-NN com LSI, denominada k-NN-LSI, é supe-
rior à média da qualidade obtida por cada um dos métodos originais. Mostra-se
também que a combinação de SVM com LSI, denominada SVM-LSI, funciona
melhor do que qualquer dos métodos originais, para alguns dos conjuntos de
dados usados neste trabalho. Tendo em conta que o SVM é apontado como o me-
lhor método de classificação em vários estudos já publicados, é particularmente
interessante que o SVM-LSI produza resultados ainda melhores em algumas si-
tuações.

Para diminuir o número de documentos de treino necessários, propõe-se a
utilização de um classificador semi-supervisionado baseado em centróides que
combina informação acerca de pequenas quantidades de documentos etiqueta-
dos com outros documentos por etiquetar. Utilizando um conjunto de dados sin-
tético e três conjuntos de dados reais, mostra-se empiricamente que, se o modelo
que o classificador criou inicialmente com os dados for suficientemente preciso,
a utilização de documentos não-etiquetados melhora os resultados. Por outro
lado, se o modelo inicial dos dados não for suficientemente preciso, a utilização
de documentos não-etiquetados piora os resultados.

Apresenta-se também um estudo comparativo entre vários métodos de classi-
ficação bem conhecidos e as combinações de métodos propostas neste trabalho.

Abstract

As the volume of information in digital form increases, the use of Text Categoriza-
tion techniques aimed at finding relevant information becomes more necessary.

To improve the quality of the classification, I propose the combination of dif-
ferent classification methods. The results show that k-NN-LSI, the combination
of k-NN with LSI, presents an average Accuracy on the five datasets that is higher
than the average Accuracy of each original method. The results also show that
SVM-LSI, the combination of SVM with LSI, outperforms both original meth-
ods in some datasets. Having in mind that SVM is usually the best performing
method, it is particularly interesting that SVM-LSI performs even better in some
situations.

To reduce the number of labeled documents needed to train the classifier, I
propose the use of a semi-supervised centroid-based method that uses informa-
tion from small volumes of labeled data together with information from larger
volumes of unlabeled data for text categorization. Using one synthetic dataset
and three real-world datasets, I provide empirical evidence that, if the initial clas-
sifier for the data is sufficiently precise, using unlabeled data improves perfor-
mance. On the other hand, using unlabeled data actually degrades the results if
the initial classifier is not good enough.

The dissertation includes a comprehensive comparison between the classifi-
cation methods that are most frequently used in the Text Categorization area and
the combinations of methods proposed.

Palavras-chave
Classificação de Texto

Conjuntos de Dados

Medidas de Avaliação

Combinação de Métodos de Classificação

Classificação Semi-supervisionada

Classificação Incremental

Keywords
Text Categorization

Datasets

Evaluation Metrics

Combining Classification Methods

Semi-supervised Classification

Incremental Classification

Agradecimentos

First, I would like to thank Professor Arlindo Oliveira, my adviser, for the effort
he put into guiding me throughout this work.

I would also like to thank Professor João Pavão Martins, my co-adviser, for his
support during my work, in particular in these last months.

I would not have been able to endure these seven years without the love and
support from my family. I thank my parents Aníbal and Isabel, and my sister
Susana for always believing in me. Thanks also to my son Rui for postponing
so many fun things until I finished my dissertation, and for his understanding
when I was not able to give him the attention he deserves. And above all, I
lovingly thank my husband João for all his support, many insightful discussions,
comments on earlier versions of this dissertation, and help throughout this work.

Julho de 2007
Ana Margarida de Jesus Cardoso Cachopo

Contents

1 Introduction 1

1.1 Text Categorization . 1

1.2 Contributions . 4

1.3 Outline of the Dissertation . 7

2 Related Work 9

2.1 Text Categorization . 9

2.1.1 Single-Label vs Multi-label 10

2.2 Document Term Weighting . 11

2.2.1 Term Frequency / Inverse Document Frequency 13

2.2.2 Term Distributions . 14

2.2.3 Document Length Normalization 16

2.3 Classification Methods . 16

2.3.1 Vector Method . 17

2.3.2 k-Nearest Neighbors . 17

2.3.3 Naive Bayes . 18

2.3.4 Centroid-based Methods . 21

2.3.5 Latent Semantic Indexing . 23

ii CONTENTS

2.3.6 Support Vector Machines . 24

2.4 Evaluation Metrics . 27

2.4.1 Accuracy . 29

2.4.2 Mean Reciprocal Rank . 30

2.4.3 Micro and Macro Averaging 32

2.4.4 Statistical Significance . 32

2.5 Combinations of Methods for Text Categorization 33

2.6 Semi-supervised Text Categorization 36

2.7 Incremental Text Categorization . 38

2.8 Datasets . 39

2.8.1 The 20-Newsgroups Collection 40

2.8.2 The Reuters-21578 Collection 40

2.8.3 The Webkb Collection . 40

2.8.4 The Cade Collection . 41

2.8.5 Pre-Processing . 41

2.9 Summary and Conclusions . 42

3 Experimental Setup 45

3.1 Classification Methods . 45

3.2 Term Weighting . 47

3.3 Evaluation Metrics . 47

3.4 Datasets . 47

3.4.1 Creating a New Dataset from the Bank Collection 48

3.4.2 Providing Other Single-label Datasets 49

3.4.2.1 20-Newsgroups . 50

CONTENTS iii

3.4.2.2 Reuters-21578 . 50

3.4.2.3 Webkb . 52

3.4.2.4 Cade . 52

3.4.3 Statistics of the Datasets . 53

3.5 Computational Framework — IREP 54

4 Performance of Existing Text Classification Methods 57

4.1 Comparing Centroid-based Methods 57

4.2 Comparing Classification Methods 63

4.3 Comparing Execution Times for the Methods 69

4.4 Comparing Term Weighting Schemes 72

4.5 Summary of Experimental Results 75

5 Combinations Between Classification Methods 77

5.1 Document Representation and Classification Strategy 77

5.2 Combinations Between Methods . 80

5.3 Comparing k-NN-LSI with k-NN and LSI 81

5.4 Comparing SVM-LSI with SVM and LSI 84

5.5 Summary and Conclusions . 88

6 Incorporation of Unlabeled Data using Centroid-based Methods 91

6.1 Reasons to Choose a Centroid-based Method 91

6.2 Incorporating Unlabeled Data with EM 92

6.3 Incrementally Incorporating Unlabeled Data 92

6.4 Comparing Semi-Supervised and Incremental TC 96

6.4.1 Synthetic Dataset . 96

iv CONTENTS

6.4.2 Using Unlabeled Data with the Synthetic Dataset 97

6.4.3 Using Unlabeled Data with the Real World Datasets 102

6.5 Summary and Conclusions . 113

7 Conclusions and Future Work 115

7.1 Main Contributions . 115

7.2 Future Work . 117

A Datasets 119

A.1 Bank37 Dataset . 120

A.2 Web4 Dataset . 121

A.3 R8 and R52 Datasets . 122

A.4 20Ng Dataset . 124

A.5 Cade12 Dataset . 125

A.6 Pre-Processing the Data . 126

Bibliography 129

List of Figures

2.1 Example of a two class, linearly separable problem and two possi-
ble separation hyperplanes with corresponding margins. 26

4.1 MRR(1), MRR(5), and MRR(10) for the six datasets, for each of the
centroid-based methods. 59

4.2 MRR(1), MRR(5), and MRR(10) for the six datasets, for each of the
classification methods Vector, k-NN, LSI, SVM and Centroid. 64

4.3 Training and Test time spent by each method for each dataset, in
seconds, in a logarithmic scale. 70

4.4 MRR(1), MRR(5), and MRR(10) for each dataset and method, using
tfidf and td term weighting. 74

5.1 Graphical representation of the transformations applied to the ini-
tial term space representing the training documents and of the clas-
sification strategy used by each classification method. 78

5.2 Graphical representation of the transformations applied to the ini-
tial term space representing the training documents and of the clas-
sification strategy used by the combinations of methods. 81

5.3 MRR(1), MRR(5), and MRR(10) for the six datasets, for k-NN, LSI
and k-NN-LSI. 82

5.4 MRR(1), MRR(5), and MRR(10) for the six datasets, for SVM, LSI
and SVM-LSI. 86

6.1 Combinations of Gaussians used as the synthetic dataset. 98

vi LIST OF FIGURES

6.2 Accuracy for the Gaussians dataset, as a function of the number of
labeled documents per class that were used, for Centroid, C-EM
and C-Inc. 100

6.3 Accuracy for the four real world datasets, as a function of the num-
ber of labeled documents per class that were used, for Centroid,
C-EM and C-Inc. 104

6.4 Accuracy for R8 and 20Ng, as a function of the number of labeled
documents per class that were used, for Centroid, C-EM, C-Inc,
SVM, Naive Bayes, k-NN, LSI and Vector. 111

6.5 Accuracy for Web4 and Cade12, as a function of the number of
labeled documents per class that were used, for Centroid, C-EM,
C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector. 112

List of Tables

3.1 Usenet groups for the 20-Newsgroups collection. 50

3.2 Numbers of documents for the six datasets. 54

3.3 Values of MRR(1), MRR(5), and MRR(10) achieved by the Dumb
Classifier for the six datasets. 55

4.1 Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
each of the centroid-based methods. 60

4.2 Values of Accuracy for each of the six datasets, for the centroid-
based methods and average Accuracy over all the datasets for each
method. 60

4.3 Values of Accuracy for each of the six datasets, for the centroid-
based methods for each of the 5 folds, and average Accuracy over
all the datasets for each method. 62

4.4 Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
each of the classification methods Centroid, SVM, Naive Bayes,
k-NN, LSI, and Vector. 65

4.5 Values of Accuracy for each of the six datasets, for each of the clas-
sification methods Centroid, SVM, Naive Bayes, k-NN, LSI, and
Vector, and average Accuracy over all the datasets for each method. 65

4.6 Values of Accuracy for each of the six datasets, for each of the clas-
sification methods Centroid, SVM, Naive Bayes, k-NN, LSI, and
Vector, for each of the 5 folds, and average Accuracy over all the
datasets for each method. 68

viii LIST OF TABLES

4.7 Time spent by each method for each dataset. 71

4.8 Values of MRR(1), MRR(5), and MRR(10) for each dataset and each
method, using tfidf and td term weighting. 73

5.1 Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
k-NN, LSI and k-NN-LSI. 81

5.2 Values of Accuracy for each of the six datasets, for k-NN, LSI and
k-NN-LSI, and average Accuracy over all the datasets for each
method. 83

5.3 Values of Accuracy for each of the six datasets, for k-NN, LSI and
k-NN-LSI, for each of the five folds, and average Accuracy over all
the datasets for each method. 85

5.4 Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
SVM, LSI and SVM-LSI. 87

5.5 Values of Accuracy for each of the six datasets, for SVM, LSI, and
SVM-LSI, and average Accuracy over all the datasets for each method. 88

5.6 Values of Accuracy for each of the six datasets, for SVM, LSI, and
SVM-LSI, for each of the five folds, and average Accuracy over all
the datasets for each method. 89

6.1 Accuracy values for the R8 dataset, as a function of the number
of labeled documents per class that were used, and using all the
training documents, for Centroid, C-EM, C-Inc, SVM, Naive Bayes,
k-NN, LSI and Vector. 105

6.2 Accuracy values for the 20Ng dataset, as a function of the number
of labeled documents per class that were used, and using all the
training documents, for Centroid, C-EM, C-Inc, SVM, Naive Bayes,
k-NN, LSI and Vector. 105

6.3 Accuracy values for the Web4 dataset, as a function of the number
of labeled documents per class that were used, and using all the
training documents, for Centroid, C-EM, C-Inc, SVM, Naive Bayes,
k-NN, LSI and Vector. 106

LIST OF TABLES ix

6.4 Accuracy values for the Cade12 dataset, as a function of the num-
ber of labeled documents per class that were used, and using all the
training documents, for Centroid, C-EM, C-Inc, SVM, Naive Bayes,
k-NN, LSI and Vector. 107

A.1 Training, Test and Total number of documents for each of the 37
classes of the Bank collection, considering my random split — Bank37
dataset. 120

A.2 Training, Test and Total number of documents for each of the 4
classes of the Webkb collection, considering my random split —
Web4 dataset. 121

A.3 Training, Test, Other and Total number of documents having a cer-
tain number of topics for the Reuters-21578 collection, considering
the standard Mod Apté split. 122

A.4 Training, Test and Total number of documents per class for the 8
most frequent classes of the Reuters-21578 collection, considering
documents with a single topic and the standard Mod Apté split —
R8 dataset. 122

A.5 Training, Test and Total number of documents per class for the
52 classes with at least one training and one test document of the
Reuters-21578 collection, considering documents with a single topic
and the standard Mod Apté split — R52 dataset. 123

A.6 Training, Test and Total number of documents for each of the 20
classes of the 20-Newsgroups collection, considering the standard
Bydate split — 20Ng dataset. 124

A.7 Training, Test and Total number of documents for each of the 12
classes of the Cade collection, considering my random split —
Cade12 dataset. 125

x LIST OF TABLES

List of Algorithms

2.1 General algorithm for the incorporation of unlabeled data using EM. 37
2.2 General algorithm for the incremental incorporation of unlabeled

data. 39
6.1 Algorithm for the incorporation of unlabeled data combining EM

with a centroid-based method, C-EM. 93
6.2 Algorithm for the incremental incorporation of unlabeled data us-

ing a centroid-based method, C-Inc. 94
6.3 Algorithm for using unlabeled data with the synthetic dataset. . . . 99
6.4 Algorithm for using unlabeled data with the real-world datasets. . 103

xii LIST OF ALGORITHMS

Glossary

Notation Description Page

TC Text Categorization or Text Classification 1
IR Information Retrieval 1
ML Machine Learning 1
tfidf Term frequency/inverse document frequency 13
td Term distributions 14
Vector Vector Method 17
k-NN k-Nearest Neighbors 18
Naive Bayes Naive Bayes 18
Centroid Centroid-based Method 21
C-Rocchio Centroid-based Rocchio 21
C-Average Centroid-based Average 22
C-Sum Centroid-based Sum 22
C-NormSum Centroid-based Normalized Sum 22
LSI Latent Semantic Indexing 23
SVD Singular Value Decomposition 23
SVM Support Vector Machines 24
Accuracy Accuracy = MRR(1) 29
MRR Mean Reciprocal Rank 31
EM Expectation Maximization 36
Inc Incremental 38
IREP Information Retrieval Experimentation Package 54
k-NN-LSI Combination of k-NN with LSI 80
SVM-LSI Combination of SVM with LSI 80
C-EM Semi-supervised classification using EM and

a centroid-based method 92
C-Inc Incremental semi-supervised classification using

a centroid-based method 94

xiv GLOSSARY

Notation

Notation Description

ti Term i
T = {t1, ..., tp} Set of p terms
|T| Number of terms, generally p
d j Document j
D = {d1, ..., dr} Set of r documents
|D| Number of documents, generally r
−→
d j Vector representing a document
ck Class k
C = {c1, ..., cq} Set of q classes
|C| Number of classes, generally q
ck = C−{ck} All classes except ck
−→ck Vector representing the centroid of class ck

Dck Set of documents belonging to class ck

|Dck | Number of documents belonging to class ck

Dck = D− Dck Set of documents not belonging to class ck

xvi NOTATION

Chapter 1

Introduction

This chapter gives an introduction to the area of Text Categorization, presents the

contributions of this work, and describes the outline of this dissertation.

1.1 Text Categorization

Text Categorization (TC), also known as Text Classification, is the task of automat-

ically classifying a set of text documents into different categories from a prede-

fined set. If a document belongs to exactly one of the categories, it is a single-label

classification task; otherwise, it is a multi-label classification task.

TC uses several tools from Information Retrieval (IR) and Machine Learning

(ML) and has received much attention in the last years from both researchers in

the academia and industry developers.

TC uses tools developed by IR researchers because it is a content-based docu-

ment management task, sharing many characteristics with other IR tasks, such as

text search, where the goal is to find the set of documents (or document passages)

most relevant to a particular query. For example, documents used in classification

2 Introduction

tasks are indexed using the same techniques as in IR; moreover, documents are

compared and the similarity between them is measured using techniques origi-

nally developed for IR. The evaluation of classification tasks is often done using

the same effectiveness measures as in IR.

TC is of interest also for ML researchers, because applications of TC are a

challenging benchmark for their own techniques and methodologies. This is be-

cause TC applications use very high-dimensional feature spaces and very large

amounts of data.

For industry developers, TC is important because of the large quantity of doc-

uments that need to be properly processed and classified. But, even more impor-

tant, is the fact that automatic TC techniques have reached accuracy levels that

rival the performance of trained professionals.

TC techniques are used in a variety of tasks, such as finding answers to sim-

ilar questions, classifying news by subject or newsgroup, sorting spam from le-

gitimate e-mail messages, organizing documents in different folders, etc. In each

case, the goal of the categorization is to automatically assign the appropriate clas-

sification to each document that needs to be classified.

In general, in order to learn a classifier that is able to correctly classify un-

seen documents, it is necessary to train it with some pre-classified documents

from each category, in such a way that the classifier is then able to generalize

the model it has learned from the pre-classified documents and use that model

to correctly classify the unseen documents. Several different types of classifiers

have been studied in the IR field, and they can be used for TC by considering that

the class(es) of the document to classify is(are) the class(es) of the most similar

document(s) found. One important point is that the classifier should be effective,

independently of the domain of the documents to be classified.

1.1 Text Categorization 3

Performance evaluation can be done using training efficiency (how long it

takes to learn the classifier using the training data), classification efficiency (how

long it takes to classify a document using the classifier) and classification effec-

tiveness (average correctness of the classifier). In order to perform this evalua-

tion, a set of pre-classified documents is split into a training and a test set, that

are then used to train and to evaluate the classifier, respectively.

In many classification tasks, however, it is a lot easier to find unclassified (also

called unlabeled) than classified (also called labeled) documents, and often classi-

fication is a boring and time-consuming task that has to be done by humans. In

such cases, one can try to improve the results obtained by the classifier by us-

ing, not only the labeled documents, but also some unlabeled documents that

are available. Information about the unlabeled documents is generally incorpo-

rated into the classifier using a well-known statistical technique called Expecta-

tion Maximization (EM) and the task is then called semi-supervised classification.

Existing classifiers can be improved along different directions. They can be

better at classifying documents by making less mistakes; they can be faster at

learning the classifier or at classifying an unseen document; or they may need

smaller volumes of labeled data to be trained on.

This work aims at finding better single-label classifiers along two of these di-

rections: (1) by combining good classifiers in order to improve the quality of the

results that they could achieve individually, and (2) by finding computationally

efficient ways to use unlabeled documents to improve the classification model

that would be possible to build using only the labeled documents, and at dis-

tinguishing the situations when the unlabeled documents are useful from when

they are not.

4 Introduction

1.2 Contributions

Before starting to work in single-label TC, it was necessary to build a computa-

tional framework that implemented several of the already known classifiers, and

that could use some datasets to train and evaluate those classifiers. Afterwards,

it was possible to study the combination of different classification methods, and

ways of using unlabeled documents. I hope that future researchers can capitalize

on this work and further develop some of the areas involved in this research.

Some achievements of this work are the following, in chronological order.

• Provide single-label datasets.

I had access to a large volume of email messages sent to a bank’s help desk

and developed a classification scheme for these messages by manually clas-

sifying 1391 of them into 37 different categories.

There are several standard collections used for evaluating TC tasks, where

each document belongs to one or more categories. Because this work is con-

cerned with the classification of documents into a single category, I edited

existing standard multi-label datasets so that each document had exactly

one label, and made these datasets publicly available from my homepage.

• Propose the use of the Mean Reciprocal Rank to evaluate the performance

of classification methods on single-label classification tasks.

The Mean Reciprocal Rank (MRR) is an evaluation metric that was used to

evaluate the tasks in the “Question Answering” tracks of the TREC confer-

ences. I argue that, although the concern of this work is with single-label

classification tasks, the MRR is very well suited to evaluate the results pre-

sented, and propose its use as an extension to the commonly used Accuracy

measure.

• Comparison of two term weighting alternatives for the text in the docu-

1.2 Contributions 5

ments.

There are several ways to represent the importance of a particular term for a

particular document, the most widely used in IR being tfidf . A more recent

approach for weighting the terms in documents, that takes into account the

statistical distribution of terms within classes, will be referred to as td. I

compared these two term weighting alternatives for the text in the docu-

ments and showed that for six datasets and four classification methods, the

traditional tfidf outperforms td in 17 of the 24 possible cases.

• Comparison of several centroid-based classification methods.

Centroid-based methods are conceptually very simple: each class is repre-

sented by a “prototypical” document that summarizes the characteristics of

the class. This simplicity makes them very easy to implement and the re-

duced amount of information that they keep (one “prototypical” document

per class) makes them very fast, both in the training and in the test phases.

There are several ways of determining the centroid of a class of documents.

In this work I compared four of the most common and showed that the

classification method where the centroid of a class corresponds to the nor-

malized sum of the documents that belong to that class provides the best

results for the six datasets. Moreover, results have shown that this method

provides classification results very close to other state-of-the-art methods,

namely Support Vector Machines.

• Computational framework.

The Information Retrieval Experimentation Package, or IREP for short, is

the computational framework that resulted from this work. IREP provides

a good starting point for more developments, because it allows numerous

combinations between datasets, representation alternatives, and classifica-

tion methods.

6 Introduction

The innovative part of this work concerns both the combination of different

classification methods for improving the model of the data and the use of unla-

beled documents to improve the classifier:

• I propose the combination of different classification methods, namely k-

Nearest Neighbors and Support Vector Machines with Latent Semantic In-

dexing.

The results obtained with this work show that k-NN-LSI, the combination

of k-NN with LSI, usually shows a performance that is intermediate be-

tween the original two methods. Overall, k-NN-LSI presents an average

Accuracy over the six datasets that is higher than the average Accuracy of

each original method.

Results also show that SVM-LSI, the combination of SVM with LSI, outper-

forms both original methods in some datasets. Having in mind that SVM

usually is the best performing method in several published comparisons, it

is particularly interesting that SVM-LSI performs even better in three of the

six datasets.

• I propose the use of centroid-based methods for incorporating information

about unlabeled documents for semi-supervised and incremental single-

label text categorization. The results obtained using one synthetic dataset

and three real world datasets show that, if the initial model of the data is

good enough, using unlabeled data improves results, while it actually wors-

ens results if the initial model is not good enough.

• I provide a comprehensive comparison between the classification methods

that are most frequently used in the TC area and the combinations of meth-

ods proposed in this work.

1.3 Outline of the Dissertation 7

1.3 Outline of the Dissertation

The remainder of this dissertation is organized in six chapters.

Chapter 2 describes the work that was previously done in the several areas

of Text Categorization related to this research, namely Document Indexing, Clas-

sification Methods, Evaluation Metrics, Combinations Between Methods, Semi-

supervised Classification, Incremental Classification, and Datasets.

Chapter 3 describes the experimental setup that was used for this work.

Chapter 4 describes the experiments that were performed to compare existing

text classification methods and the results that were obtained.

Chapter 5 describes the combinations of methods that were proposed in this

work and the results that were obtained with them.

Chapter 6 describes how centroid-based methods can be used to perform

semi-supervised classification and how results improve by using them.

Finally, Chapter 7 concludes and mentions the work that I plan to do in the

future.

8 Introduction

Chapter 2

Related Work

This chapter describes previous work that was done in some areas related to Text

Categorization.

It starts by describing indexing techniques for the terms in documents and

some of the most widely used methods for classification. Then, it describes how

these methods are usually evaluated. Afterwards, it describes how these meth-

ods can be combined, and how unlabeled documents can be used to improve

evaluation results. Finally, it describes some data collections and why they are

important in this area.

2.1 Text Categorization

The main goal of Text Categorization or Text Classification (TC) is to derive meth-

ods for the classification of natural language text [Sebastiani, 2002]. The objec-

tive is to automatically derive methods that, given a set of training documents

D = {d1, . . . , dr} with known categories C = {c1, . . . , cq} and a new document q,

which is usually called the query, will predict the query’s category, that is, will

10 Related Work

associate with q one or more of the categories in C.

The methods that are used in TC are generally the same that are used in the

more general area of Information Retrieval (IR), where the goal is to find docu-

ments or passages within documents that are relevant, or related to, a particular

query. By considering the document to classify as the query and the classes of

the documents that are retrieved as the possible classes for the query, a method

developed for IR can be used for TC tasks.

TC techniques are necessary to find relevant information in many different

tasks that deal with large quantities of information in text form. Some of the

most common tasks where these techniques are applied are: finding answers to

similar questions that have been answered before; classifying news by subject

or newsgroup; sorting spam from legitimate e-mail messages; finding Internet

pages on a given subject, among othrs. In each case, the goal is to assign the

appropriate category or label to each document that needs to be classified.

2.1.1 Single-Label vs Multi-label

Depending on the application, documents can be classified into one or more

classes. For instance, a piece of news regarding how the Prime Minister spent his

vacations may be classified both as politics and in the social column. This kind of

classification is called multi-label classification, where any number 0 < n j ≤ |C| of

classes may be assigned to each document d j ∈ D.

In other situations, however, documents can have only one classification, for

example, when distinguishing between spam and legitimate e-mail messages.

This kind of classification is called single-label classification, where exactly one

class ck ∈ C must be assigned to each document d j ∈ D.

A special case of single-label classification is binary classification, in which,

2.2 Document Term Weighting 11

given a category ck , each d j ∈ D must be assigned either to ck or to its complement

ck. A problem of multi-label classification under C = {c1, . . . , cq} can be tackled

as |C| independent binary classification problems under {ck, ck}, for i = 1, . . . , |C|.

In this case, a classifier for C is thus actually composed of |C| binary classifiers.

The focus of this work is in the case where each document belongs to a single

class, that is, single-label classification.

2.2 Document Term Weighting

Document indexing is the process of mapping a document into a compact repre-

sentation of its content that can be interpreted by a classifier. The techniques used

to index documents in TC are borrowed from Information Retrieval, where text

documents are represented as a set of index terms which are weighted accord-

ing to their importance for a particular document and for the collection in gen-

eral [Salton and Lesk, 1968; Salton, 1971; Sebastiani, 2002; Yang and Liu, 1999].

That is, a text document d j is represented by an n-dimensional vector
−→
d j of index

terms or keywords, where each index term corresponds to a word that appears at

least once in the initial text and has a weight associated to it, which should reflect

how important this index term is.

For efficiency reasons, some of the classification methods used in TC make

simplifications that may not be totally justified but that have been experimentally

validated. Some of these simplifications are:

1. They ignore the natural language structure of text. They do not try to fully

“understand” a document, by semantically analyzing it, but they can use

the structure that is easy to find (like HTML tags, for instance), even when

they are processing large volumes of information. Besides being more effi-

12 Related Work

cient than Natural Language Understanding techniques, this approach also

has the advantage of not using domain-dependent techniques.

2. They assume that weights for the index terms are mutually independent.

Although this simplification allows for a much easier treatment of the doc-

uments, weights for the index terms usually are not independent, because

the fact that one of the index terms appears in the text may increase the

probability of finding another term that is usually related to it, as in “com-

puter network”, for instance.

3. They ignore the order of words. In this “bag-of-words” approach, all the

texts that are permutations of the same words are considered equal. This

simplification is not always justified, but is necessary for efficiency reasons.

Regarding the problem of how to choose the terms that should be used to

represent a document, several studies analyzed the effect of the representation

of text documents on the results obtained by text classifiers. These studies have

shown that structurally simple representations produced without linguistic or

domain knowledge are as effective as others which are more complex [Lewis,

1992b; Lewis and Jones, 1996]. Moreover, the use of larger indexing units, such as

frequently adjacent pairs or syntactically determined phrases, has not shown sys-

tematic patterns of improvement [Lewis, 1992a; Caropreso et al., 2001; Moschitti

and Basili, 2004], which means that terms are usually made to coincide with sin-

gle words, stemmed or not.

Regarding the problem of how to weight the terms in the documents, term

weights can be binary-valued, indicating presence or absence of the term in the

document; or real-valued, indicating the importance of the term in the document.

There are multiple approaches for how real-valued weights can be computed. For

example, Sable et al [Sable and Church, 2001] introduce a bin-based term weight-

ing method intended for tasks where there is insufficient training data to estimate

2.2 Document Term Weighting 13

a separate weight for each word. Debole et al [Debole and Sebastiani, 2004b]

propose supervised term weighting, where information on the membership of

training documents to categories be used to determine term weights. However,

none of the more recent approaches consistently outperforms the popular term

frequency / inverse document frequency [Salton and Buckley, 1988].

For the reasons explained above, text documents are usually represented as a

set of index terms which are weighted according to their importance for a partic-

ular document and for the collection in general, where the words in the document

correspond to the index terms. The importance of each term, that is, its weight,

can be computed in several ways, and the next sections describe the popular tfidf

and one more recent alternative.

2.2.1 Term Frequency / Inverse Document Frequency

In this case, which is the most usual in TC, the weight wi j of a term ti in a docu-

ment
−→
d j increases with the number of times that the term occurs in the document

and decreases with the number of times the term occurs in the collection. This

means that the importance of a term in a document is proportional to the num-

ber of times that the term appears in the document, while the importance of the

term is inversely proportional to the number of times that the term appears in the

entire collection.

This term-weighting approach is referred to as term frequency/inverse document

frequency (tfidf) [Salton and Buckley, 1988].

Formally, wi j, the weight of term ti for document
−→
d j , is defined as:

wi j =
f reqi j

maxl(f reql j)
× log

|D|
nti

(2.1)

14 Related Work

where f reqi j is the number of times that term ti appears in document
−→
d j , |D| is the

total number of documents in the collection, and nti is the number of documents

where term ti appears.

2.2.2 Term Distributions

A recent approach [Lertnattee and Theeramunkong, 2004] proposes a more so-

phisticated term weighting method than tfidf , based on term frequencies within

a particular class and within the collection of training documents. This approach

will be referred to as term distributions (td).

The weight of a term using term distributions is determined by combining

three different factors, that depend on the average term frequency of term ti in

the documents of class ck, represented as t f ik:

t f ik =
∑d j∈ck

t fi jk

|Dck |
(2.2)

where Dck represents the set of documents that belong to class ck, |Dck | the number

of documents belonging to class ck, t fi jk the frequency of term ti in document
−→
d j of

class ck, and |C|, which will be used in the next formulas, represents the number

of classes in a collection.

The inter-class standard deviation of a term ti is independent of class. Intuitively,

a term with a high icsd distributes differently among classes and should have

higher discriminating power for classification than the others. This factor pro-

motes a term that exists in almost all classes but its frequencies for those classes

are quite different. In this situation, the conventional factors tf and idf are not

helpful.

icsdi =

√√√√∑k

[
t f ik −

∑k t f ik
|C|

]2

|C| (2.3)

2.2 Document Term Weighting 15

The class standard deviation term ti in a class ck depends on the different fre-

quencies of the term in the documents of that class, and varies from class to class.

This factor is important because different terms may appear with quite different

frequencies among documents in the class. This difference can be compensated

by using this deviation. A term with a high csd will appear in most documents

in the class with quite different frequencies and should not be a good represen-

tative term of the class. A low csd of a term for a class may be triggered because

either the occurrences of the term are nearly equal for all documents in the class

or because the term rarely occurs in the class.

csdik =

√√√√∑d j∈ck

[
t fi jk − t f ik

]2

|Dck |
(2.4)

The standard deviation of a term ti depends on the frequency of that term in

the documents in the collection and is independent of classes. Different terms

may appear with quite different frequencies among documents in the collection.

This difference can also be compensated by using this deviation. A term with

a high sd will appear in several documents in the collection with quite different

frequencies. A low sd of a term may be caused either because the occurrences of

the term are nearly equal for all documents in the collection or because the term

rarely occurs in the collection.

sdi =

√√√√∑k ∑d j∈ck

[
t fi jk −

∑k ∑d j∈ck
t fi jk

∑k |Dck |

]2

∑k |Dck |
(2.5)

Considering term distributions, wtdi jk, the term distributional weight of term

ti for document
−→
d j in class ck is defined as:

wtdi jk = wi j× icsdα
i × csdβ

ik × sdγ
i (2.6)

16 Related Work

where α, β and γ are used to adjust the relative weight of each factor and to in-

dicate whether it is used as a multiplier or as a divisor for the term’s tfidf weight,

wi j. Lertnattee et al [Lertnattee and Theeramunkong, 2004] performed several ex-

periments and propose α = 0.5, β =−0.5 and γ =−0.5 as the better combination

of α, β and γ.

2.2.3 Document Length Normalization

Naturally, long documents contain more terms than short documents. Consider-

ing that the similarity between documents can be measured by how many terms

they have in common, long documents will have more terms in common with

other documents than short documents, so they will be more similar to other

documents than short documents. To contrast this tendency, weights of terms for

TC tasks are usually normalized so that document vectors have unitary length.

2.3 Classification Methods

This dissertation concerns methods for the classification of natural language text,

that is, methods that, given a set of training documents with known categories

and a new document, which is usually called the query, will predict the query’s

category.

In fact, what some of these methods do is to provide an ordering of the train-

ing documents by their similarity to the query. Based on the ordering of the train-

ing documents, it is possible to determine an ordered list of the classes that the

document belongs to (by determining the training document’s classes and remov-

ing duplicates). If it is a single-label problem, the class of the query is the first on

the list; if it is a multi-label problem, the query belongs to the classes above a

2.3 Classification Methods 17

certain similarity threshold, which needs to be tuned for each problem.

This section describes the methods that are compared in this dissertation.

Baeza-Yates and Ribeiro-Neto [Baeza-Yates and Ribeiro-Neto, 1999] provide a

description of most Information Retrieval methods, and Sebastiani [Sebastiani,

2002] contributed a more up-to-date survey of machine learning methods used

for TC.

2.3.1 Vector Method

Historically, the Vector method [Salton and Lesk, 1968; Salton, 1971] was one

of the first methods to be applied in Information retrieval tasks. In the Vector

method, documents and queries are represented as a set of weighted index terms,

that is, vectors in a p-dimensional space, where p is the total number of index

terms.

Based on the weights of its terms, each document can be ranked by decreasing

order of similarity to the query. The similarity of each document d j to the query q

is computed as the cosine of the angle formed by the vectors that represent each

of them

sim(
−→
d j ,
−→q) =

−→
d j · −→q

||−→d j || × ||−→q ||
(2.7)

The category of the query can be determined as the category of the most sim-

ilar document found.

2.3.2 k-Nearest Neighbors

The initial application of k-Nearest Neighbors (k-NN) to text categorization was

reported by Masand and colleagues [Creecy et al., 1996; Masand et al., 1992]. The

18 Related Work

basic idea is to determine the category of a given query based not only on the

document that is nearest to it in the document space, but on the categories of the

k documents that are nearest to it. Having this in mind, the Vector method can be

viewed as an instance on the k-NN method, where k = 1.

This work uses a vector-based, distance-weighted matching function, as did

Yang [Yang, 1994; Yang and Liu, 1999], by calculating document’s similarity like

the Vector method. Then, it uses a voting strategy to find the query’s class: each

retrieved document contributes a vote for its class, weighted by its similarity to

the query. The query’s possible classifications will be ranked according to the

votes they got in the previous step.

2.3.3 Naive Bayes

Bayesian or probabilistic classifiers [Lewis, 1998] have been widely used for text

categorization. They use the joint probabilities of words and classes to estimate

the probabilities of each class given a document.

Given a set of r document vectors D = {−→d1 , . . . ,
−→
dr }, classified along a set C of

q classes, C = {c1, . . . , cq}, Bayesian classifiers estimate the probabilities of each

class ck given a document d j as:

P(ck|
−→
d j) =

P(ck)P(
−→
d j |ck)

P(
−→
d j)

(2.8)

In this equation, P(
−→
d j) is the probability that a randomly picked document has

vector
−→
d j as its representation, and P(ck) the probability that a randomly picked

document belongs to ck. Because the number of possible documents
−→
d j is very

high, the estimation of P(
−→
d j |ck) is problematic.

2.3 Classification Methods 19

To simplify the estimation of P(
−→
d j |ck), Naive Bayes assumes that the proba-

bility of a given word or term is independent of other terms that appear in the

same document. While this may seem an over simplification, in fact Naive Bayes

presents results that are very competitive with those obtained by more elabo-

rate methods. Moreover, because only words and not combinations of words are

used as predictors, this naive simplification allows the computation of the model

of the data associated with this method to be far more efficient than other non-

naive Bayesian approaches. Using this simplification, it is possible to determine

P(
−→
d j |ck) as the product of the probabilities of each term that appears in the docu-

ment. So, P(
−→
d j |ck), where

−→
d j = (w1 j, . . . , w|T| j), may be estimated as:

P(
−→
d j |ck) =

|T|

∏
i=1

P(wi j|ck) (2.9)

One of the best-known approaches to Naive Bayes classification is the binary

independence classifier [Robertson and Jones, 1976], which uses binary-valued

vector representations for documents. In this case, by abbreviating P(wix = 1|ck)

by pik, the P(wi j|ck) of Equation (2.9) may be written as

P(wi j|ck) = pwi j

ik (1− pik)1−wi j =
(

pik

1− pik

)wi j

(1− pik) (2.10)

One may further observe that in TC the document space is partitioned into

two categories, ck and its complement ck, such that P(ck|
−→
d j) = 1− P(ck|

−→
d j). By

plugging Equations (2.9) and (2.10) into Equation (2.8) and taking logs:

logP(ck|
−→
d j) = logP(ck) +

|T|

∑
i=1

wi jlog
pik

1− pik
+
|T|

∑
i=1

log(1− pik)− logP(
−→
d j) (2.11)

20 Related Work

log(1− P(ck|
−→
d j)) = log(1− P(ck)) +

|T|

∑
i=1

wi jlog
pik

1− pik
+
|T|

∑
i=1

log(1− pik)− logP(
−→
d j)

(2.12)

where pik means P(wix = 1|ck). It is possible to convert Equations (2.11) and (2.12)

into a single equation by subtracting component-wise (2.12) from (2.11), thus ob-

taining

log
P(ck|
−→
d j)

1− P(ck|
−→
d j)

= log
P(ck)

1− P(ck)
+
|T|

∑
i=1

wi jlog
pik(1− pik)
pik(1− pik)

+
|T|

∑
i=1

log
1− pik

1− pik
(2.13)

Note that
P(ck|
−→
d j)

1−P(ck|
−→
d j)

increases monotonically with P(ck|
−→
d j). Also, log P(ck)

1−P(ck) and

∑
|T|
i=1 log 1−pik

1−pik
are constant for all documents and may thus be ignored. So, if the

goal of a classifier is to rank documents in order of their probability of belonging

to each class, then it is possible to approximate the value of P(ck|
−→
d j) as:

P(ck|
−→
d j) ≈

|T|

∑
i=1

wi jlog
Pik(1− Pik)
Pik(1− Pik)

(2.14)

where |T| is the number of terms that exist in D, wi j is the weight of term ti in

document d j, Pik is the probability that term ti appears in class ck, and Pik is the

probability that term ti appears in classes different from ck. The document be-

longs to the class which has the higher probability, argmaxck(P(ck|
−→
d j)).

Naive Bayes is a very popular method in the TC area, and several authors

have already presented results using it [Lewis and Ringuette, 1994; Joachims,

1998a; Koller and Sahami, 1997; Larkey and Croft, 1996; Robertson and Harding,

1984].

2.3 Classification Methods 21

2.3.4 Centroid-based Methods

Centroid-based methods combine documents represented using the well known

vector-space method [Salton, 1989], to find a representation for a “prototype”

document that summarizes all the known documents for a given class, which is

called the centroid.

Given a set of r document vectors D = {−→d1 , . . . ,
−→
dr }, classified in one of a set

C of q classes, C = {c1, . . . , cq}, Dck , for 1 ≤ k ≤ q, is used to represent the set of

document vectors belonging to class ck.

The centroid of a particular class ck is represented by a vector −→ck , which is a

combination of the document vectors
−→
d j belonging to that class, sometimes com-

bined with information about vectors of documents that are not in that class.

There are several ways to calculate this centroid during the training phase, and

several proposals for centroid-based methods exist in the literature. Each pro-

posal uses one possible way of calculating the centroids. The most common pro-

posals are:

• The Rocchio formula, where each centroid, −→ck , is represented by the aver-

age of all the document vectors for the positive training examples for class

ck, minus the average of all the vectors for the negative training examples,

weighted by control parameters β and γ1, respectively. This method will be

referred to as C-Rocchio and the centroid of class ck is determined as:

−→ck = β · 1
|Dck |

· ∑−→
d j ∈Dck

−→
d j − γ · 1

|D− Dck |
· ∑−→

d j /∈Dck

−→
d j (2.15)

The application of this method to TC was first proposed by Hull [Hull, 1994]

and it has been used in other works where the role of negative examples is

1I use β and γ here for consistency with previously published work, but these weights are
independent of the ones that appeared in the definition of term distributions in section 2.2.2.

22 Related Work

deemphasized, by setting β to a higher value than γ (usually β = 16 and

γ = 4) [Cohen and Singer, 1999; Ittner et al., 1995; Joachims, 1997].

• The average formula [Han and Karypis, 2000; Shankar and Karypis, 2000],

where each centroid, −→ck , is represented by the average of all the vectors for

the positive training examples for class ck. This method will be referred to

as C-Average and the centroid of class ck is determined as:

−→ck =
1
|Dck |

· ∑−→
d j ∈Dck

−→
d j (2.16)

• The sum formula [Chuang et al., 2000], where each centroid, −→ck , is repre-

sented by the sum of all the vectors for the positive training examples for

class ck. This method will be referred to as C-Sum and the centroid of class

ck is determined as:

−→ck = ∑−→
d j ∈Dck

−→
d j (2.17)

• The normalized sum formula [Lertnattee and Theeramunkong, 2004; Tan et al.,

2005a,b], where each centroid, −→ck , is represented by the sum of all the vec-

tors for the positive training examples for class ck, normalized so that it has

unitary length. This method will be referred to as C-NormSum and the

centroid of class ck is determined as:

−→ck =
1

‖ ∑−→
d j ∈Dck

−→
d j ‖
· ∑−→

d j ∈Dck

−→
d j (2.18)

It is fairly obvious that these ways of calculating each class’s centroid make

centroid-based methods very efficient during the training phase, because there is

little computation involved, unlike other methods, which build a more sophisti-

cated model of the data.

Centroid-based methods also have the advantage that they are very easy to

2.3 Classification Methods 23

modify in order to perform incremental learning during their training phase, as

shall be shown in Section 6.3.

During the classification phase, each test document (or query) is represented

by its vector,
−→
d j , and is compared to each of the class’s centroids −→ck . Like for the

Vector method, the document will be classified as belonging to the class to whose

centroid it has the greatest cosine similarity:

sim(
−→
d j ,
−→ck) =

−→
d j · −→ck

||−→d j || × ||−→ck ||
(2.19)

Centroid-based methods are very efficient during the classification phase be-

cause time and memory spent are proportional to the number of classes that ex-

ist, rather than to the number of training documents as is the case for the Vector

method and other related methods.

2.3.5 Latent Semantic Indexing

Matching documents and queries solely based on index terms can be misleading,

because a document can be relevant for a query without having any terms in

common with it.

The idea behind the Latent Semantic Indexing method (LSI) [Furnas et al.,

1988; Deerwester et al., 1990] is to map each document and query vector into a

lower dimensional space which is associated with concepts and retrieve the doc-

uments in this space. Arguably, retrieval effectiveness in this space will be better

and it will also be computationally less costly, because it is a lower dimensional

space.

LSI starts with a term-by-document rectangular matrix X which is decom-

posed by singular value decomposition (SVD) into the product of three other

24 Related Work

matrices: X = T0S0D0, such that T0 and D0 have orthonormal columns and S0 is

diagonal. T0 and D0 are the matrices of left and right singular vectors and S0 is the

diagonal matrix of singular values. If the singular values in S0 are ordered by size

(and the corresponding row and column permutations applied to T0 and D0), the

first largest k may be kept and the remaining ones set to zero. The product of the

resulting matrices is a matrix X̂ which is only approximately equal to X and is

of rank k. It can be shown that the new matrix X̂ is the matrix of rank k which

is closest in the least squares sense to X. Ideally, the value of k should be large

enough to fit all the real structure in the data, but small enough so that the data

is not overfit.

After these transformations, the result can still be represented geometrically

by a spatial configuration in which the cosine between vectors representing a

document and a query corresponds to their similarity.

As in the Vector method, documents can now be ranked according to their

similarity to the query, and the category of the query is the category of the most

similar document.

2.3.6 Support Vector Machines

The Support Vector Machines (SVM) method or large margin classifier was in-

troduced by Vapnik [Vapnik, 1995; Cortes and Vapnik, 1995] and was first ap-

plied for text categorization by Joachims [Joachims, 1998a, 1999a]. A thorough de-

scription can also be found in other sources [Cristianini and Shawe-Taylor, 2000;

Burges, 1998].

The SVM method is a method for efficiently training linear classifiers. This

technique is based on recent advances in statistical learning theory. They map

the documents into a high dimensional feature space, and try to learn a separat-

2.3 Classification Methods 25

ing hyperplane, that provides the widest margins between two different types

of documents. SVM use Lagrange multipliers to translate the problem of find-

ing this hyperplane into an equivalent quadratic optimization problem for which

efficient algorithms exist, and which are guaranteed to find the global optimum:

minimize −
n

∑
i=1

αi +
1
2

n

∑
i, j=1

αiα jyi y j
−→
di ·
−→
d j (2.20)

such that
n

∑
i=1

αi yi = 0 and ∀iαi ≥ 0 (2.21)

The set of coefficients α∗i resulting from the optimization process can then be

used to construct the hyperplane that correctly classifies all the training examples

with the maximum margin:

−→w · −→d =
n

∑
i=1

α∗i yi(
−→
di ·
−→
d) and b =

1
2

(−→w · −→d◦ +−→w · −→d•) (2.22)

This equation shows that the resulting weight vector of the hyperplane is con-

structed as a linear combination of the training examples. Only examples for

which the coefficient α∗i is grater than zero contribute. These are called the sup-

port vectors, because they have minimum distance to the hyperplane. Figure 2.1

illustrates these ideas.

For sets of documents that are not linearly separable, the SVM method uses

convolution functions (or kernels, K(di, d j)) instead of the internal product between

the two vectors. These kernels transform the initial feature space into another

one, by means of a non-linear mapping Φ, where the transformed documents are

linearly separable and the SVM method is able to find the hyperplane that sepa-

rates the documents with the widest margin. In fact, it is not necessary to explic-

itly calculate Φ(di) ·Φ(d j), if the kernel function can be used to directly calculate

this value. To use a kernel function, one simply substitutes every occurrence of

26 Related Work

Figure 2.1: Example of a two class, linearly separable problem and two possi-
ble separation hyperplanes with corresponding margins. The decision hyper-
plane chosen by the SVM method is the bold solid line, which corresponds to
the largest possible separation margins. The squares indicate the correspond-
ing support vectors.

the inner product in Equations (2.20) and (2.22) with the desired kernel function.

These now become:

minimize −
n

∑
i=1

αi +
1
2

n

∑
i, j=1

αiα jyi y j ∗ K(di, d j) (2.23)

such that
n

∑
i=1

αi yi = 0 and ∀iαi ≥ 0 (2.24)

and the resulting classifier is given by:

−→w · −→d =
n

∑
i=1

α∗i yiK(di, d) and b =
1
2

(K(w, d◦) + K(W,
−→
d•)) (2.25)

By including several classifiers, these ideas can easily be generalized for col-

lections with more than two classes of documents, which is usually done in a

one-against-one or one-against-all approach [B. Schölkopf, 1999]. In the one-

2.4 Evaluation Metrics 27

against-one approach, if there are q classes, build q(q− 1)/2 classifiers, using the

documents from each combination of two different classes; in the one-against-all

approach, build q classifiers, one for each class, using the examples from that class

and merging all the others to form the other “class”. In this second cases, use a

voting strategy to determine the class of a query document. The one-against-one

approach builds more classifiers, but each classifier has less examples to train

on than the one-against-all approach. The one-against-one approach has been

shown to be more suitable for practical use [Hsu and Lin, 2001].

As argued by Joachims [Joachims, 1998b], the SVM method presents two im-

portant advantages for TC: (1) term selection is often not needed, as SVM tend

to be fairly robust to overfitting and can scale up to large datasets; (2) there is no

need to perform parameter tuning on a validation set, because there is a theoreti-

cally motivated, default choice of parameter settings, which has also been shown

to provide the best effectiveness.

Extensive experimental comparisons [Joachims, 1998b; Yang and Liu, 1999;

Cardoso-Cachopo and Oliveira, 2003; Liu et al., 2005] are unanimous in reporting

that, among the several classification methods available today, the SVM method

is highly competitive in classification Accuracy and can therefore be considered

the state-of-the art in text categorization.

2.4 Evaluation Metrics

Evaluating the performance of computational systems is often done in terms of

the resources (time and space) they need to operate, assuming that they perform

the task that they are supposed to.

Text Classification systems are supposed to classify a query document, by as-

28 Related Work

sociating with it an ordered list of categories to which the query belongs. Obvi-

ously, it is not enough to classify a document as belonging to any set of categories

in a reasonable amount of time. The categories should also be the “right” ones,

that is, the ones that the document in fact belongs to. Measures based on Preci-

sion and Recall, which take into account if the predicted categories are the right

ones, like F1 or PRBP, have been widely used to compare the performance of TC

methods [Sebastiani, 2002].

Precision is defined as the fraction of the retrieved documents that are relevant,

and can be viewed as a measure of the system’s soundness, that is:

Precision =
#Relevant Retrieved Documents

#Retrieved Documents
(2.26)

Recall is defined as the fraction of the relevant documents that is actually re-

trieved, and can be viewed as a measure of the system’s completeness, that is:

Recall =
#Relevant Retrieved Documents

#Relevant Documents
(2.27)

As Berger et al [Berger et al., 2000] already pointed out, these measures are

not adequate for evaluating tasks where a single answer is required, in particular

because Recall does not make sense when considering only a single answer. The

point is that, if a document belongs to a class, it can be correctly classified or not,

which means that the contingency tables with False Positives and False Negatives

used to calculate Precision and Recall are not adequate. So, to evaluate single-

label TC tasks, these measures are not adequate.

2.4 Evaluation Metrics 29

2.4.1 Accuracy

Accuracy, which is defined as the percentage of correctly classified documents, is

generally used to evaluate single-label TC tasks (see, for instance, [Nigam et al.,

2000; Han and Karypis, 2000; Chuang et al., 2000; Han et al., 2001; Lertnattee and

Theeramunkong, 2004; Sebastiani, 2005]). Usually, Accuracy is represented as a

real value between 0 and 1.

Accuracy =
#Correctly classified documents

#Total documents
(2.28)

As Calado already pointed out [Calado, 2004], it can be shown that, in single-

label classification tasks,

Accuracy = microaveraged F1 = microaveraged Precision = microaveraged Recall

This is because each document can be correctly classified or not, so the number

of False Positives is the same as the number of False Negatives.

One of the problems of the Accuracy evaluation measure that is frequently

pointed out is that data collections are skewed and that, because of this, it is rela-

tively easy to find a good classifier that simply predicts the most frequent class in

the training set. It is possible to overcome this problem by providing, along with

each dataset, the results that this kind of dumb classifier would achieve, and by

evaluating other classifiers having this value in mind as a baseline.

Ling et al [Ling et al., 2003] proved that the evaluation measure Area Under

the ROC Curve (AUC) is statistically consistent and more discriminating than

Accuracy, but only for balanced two-class datasets. To the best of my knowledge,

there is no further work that extends these results to datasets with unbalanced

class distribution and multiple classes, as is the case for the datasets used in this

30 Related Work

dissertation.

2.4.2 Mean Reciprocal Rank

Text Categorization systems are supposed to classify a query document, by as-

sociating with it an ordered list of categories to which the query belongs. In

single-label TC tasks, the goal is to get the right category, and to get it as close to

the top of the list as possible. In this case, a measure that takes the rank of the first

correct answer in the list of possible categories into account will be more infor-

mative than simple Accuracy, which only takes into account if the first category

returned by the system was right or wrong.

The Mean Reciprocal Rank (MRR), is a measure that was used to evaluate sub-

missions to the “Question Answering Track” of the TREC conferences, originally

defined by Voorhees [Voorhees, 1999]. The idea is that its value is higher if the

rank of the first correct answer is lower. The MRR has several advantages:

1. It is closely related to the average precision measure used extensively in

Information Retrieval.

2. It is bounded between 0 (worst) and 1 (best), inclusive, and averages well.

3. A system is penalized for not retrieving any correct category for a query

document, but not unduly so.

4. It is intuitive and easy to calculate.

The MRR can be calculated for each individual query document as the recip-

rocal of the rank at which the first correct category was returned, or 0 if none

of the first n choices contained the correct category. The score for a sequence of

classification queries, considering the first n choices, is the mean of the individual

2.4 Evaluation Metrics 31

query´s reciprocal ranks. So:

MRR(n) =
∑

#Total queries
i=1 ((1

ranki
) or 0)

#Total queries
(2.29)

where ranki is the rank of the first correct category for query i, considering the

first n categories returned by the system.

By considering MRR(1), that is, by looking just at the first answer, the results

are the same as with Accuracy.

Accuracy =
#Correctly classified queries

#Total queries
= MRR(1) (2.30)

MRR(n) with n > 1 will increase as long as one is willing to be more per-

missive, that is, to analyze more answers given by the system. That is, if one is

willing to look not at only the first answer given by the classification system but

at the first five, how much will the results improve? And what if one looks at the

first ten?

So, MRR is in fact a generalization of Accuracy, where it is possible to decide

how “sloppy” a system can be. If “hard” classification is intended, use MRR(1),

which is Accuracy; if “soft” classification is intended, use MRR(n), where n ex-

presses how “soft” the classification can be. The “softness” to consider depends

on the application. For example, if one is building a system that helps a hu-

man operator answer new email messages based on answers previously given

to similar messages, one might expect the operator to be willing to look at some

additional answers besides the first, if the likelihood of finding a more similar

response is likely to improve. The point is that MRR provides a simple and in-

tuitive generalization of the standard Accuracy measure for single-label classifi-

cation tasks, and that additional information can be obtained by looking at more

32 Related Work

than one MRR(n) value.

Shah and Croft [Shah and Croft, 2004] have also argued that for some applica-

tions achieving high precision in the top document ranks is very important and

use as evaluation measure the Mean Reciprocal Rank of the first relevant result.

2.4.3 Micro and Macro Averaging

The measures above can be calculated over the entire collection, which is called

micro-averaging, or for each class and then across all the classes, which is called

macro-averaging.

In micro-averaging, each document counts the same for the average, and

small classes have a small impact on final results; in macro-averaging, first the

average for each class is determined, and then each class counts the same for the

final average.

This difference is particularly important when the collection is skewed, that

is, when there are classes with very different numbers of documents.

2.4.4 Statistical Significance

According to Hull [Hull, 1993], an evaluation study is not complete without some

measurement of the significance of the differences between retrieval methods,

and statistical significance tests provide this measurement. These tests can be ex-

tremely useful because they provide information about whether observed differ-

ences in evaluation scores are really meaningful or simply due to chance. It is not

possible to make such a distinction for an individual query, but when evaluation

measures are averaged over a number of queries, one can obtain an estimate of

the error associated with that measure and significance tests become applicable.

2.5 Combinations of Methods for Text Categorization 33

The preliminary assumption, or null hypothesis H0, will be that all the re-

trieval methods being tested are equivalent in terms of performance. The signif-

icance test will attempt to disprove this hypothesis by determining a p-value, a

measurement of the probability that the observed difference could have occurred

by chance. Prior to the experiment, a significance level α is chosen, and if the

p-value is less than α, one can conclude that the search methods are significantly

different. A smaller value of α (which is often set to 0.05) implies a more con-

servative test. Alternatively, the p-value can merely be viewed as an estimate of

the likelihood than two methods are different. All significance tests make the as-

sumption that the queries are independent (i.e. not obviously related). However,

slight violations of this assumption are generally not a problem.

Several alternatives exist for evaluating the statistical significance of the re-

sults obtained to compare several IR methods, but the most widely used is the

t-test. Sanderson and Zobel [Sanderson and Zobel, 2005] argue that the t-test

is highly reliable (more so than the sign or Wilcoxon test), and is far more reli-

able than simply showing a large percentage difference in effectiveness measures

between IR systems. They show that both a relative improvement in measured

effectiveness and statistical significance are required for confidence in results.

Cormack and Lynam [Cormack and Lynam, 2007] also examine the validity

and power of the t-test, Wilcoxon test, and sign test in determining whether or

not the difference in performance between two IR systems is significant. They

show that these tests have good power, with the t-test proving superior overall.

2.5 Combinations of Methods for Text Categorization

The fundamental idea behind the combination of different classifier methods is

the idea of creating a more accurate classifier via some combination of the outputs

34 Related Work

of the contributing classifiers. This idea is based on the intuition that, because

different methods classify data in different ways, the appropriate combination

might improve the results obtained by each individual method.

Classifiers can be combined in different ways, the most common of which will

be described in the next paragraphs, along with some of the research work that

was done regarding that type of combination.

The simplest way to create a combined classifier is to use several classifica-

tion methods and a procedure that selects the best method to use in different

situations. This can be viewed as a simplified instance of the next methodology,

where the best classifier for a particular situation weights 1 and the others 0.

The second way to create a combined classifier is to use several classification

methods and a procedure that takes into account the results from each method

and weights them to produce the final result.

Hull et al [Hull et al., 1996] compare combination strategies for document

filtering and find that simple averaging strategies improve performance.

Larkey and Croft [Larkey and Croft, 1996] combine k-NN, Relevance Feed-

back, and a Bayesian classifier and show that a combination of classifiers pro-

duced better results than any single classifier.

Lam and Lai [Lam and Lai, 2001] employ a meta-learning phase using doc-

ument feature characteristics, which are derived from the training document set

and capture some inherent category-specific properties of a particular category.

Their system can automatically recommend a suitable algorithm for each cate-

gory based on these characteristics. Their results show that their system demon-

strates a better performance than existing methods.

Al-Kofahi et al [Al-Kofahi et al., 2001] use various sources of information

2.5 Combinations of Methods for Text Categorization 35

about the documents to produce a combined classifier that improves the results

obtained by each individual classifier.

Tsay et al [Tsay et al., 2003] study the development of multiple classifier sys-

tems in Chinese TC by the strengths of well-known classifiers and show that their

approach significantly improves the classification accuracy of individual classi-

fiers for Chinese TC as well as for web page classification.

Bennett et al [Bennett et al., 2005, 2002] introduce a probabilistic method for

combining classifiers that considers the context-sensitive reliabilities of contribut-

ing classifiers, using variables that provide signals about the performance of clas-

sifiers in different situations. They show that their approach provides robust com-

bination schemes across a variety of performance measures.

Bi et al [Bi et al., 2007] and Bell et al [Bell et al., 2005] investigate the combina-

tion of four machine learning methods for TC using Dempster´s rule of combina-

tions and show that the best combined classifier can improve the performance of

the individual classifiers, and Dempster´s rule of combination outperforms ma-

jority voting in combining multiple classifiers.

Finally, a combined classifier can be generated by applying each classification

method to the results of the previous ones, such as in boosting procedures.

Weiss et al [Weiss et al., 1999] use the Reuters collection to show that adaptive

resampling techniques can improve decision-tree performance and that relatively

small, pooled local dictionaries are effective. They apply these techniques to on-

line banking applications to enhance automated e-mail routing.

Schapire and Singer [Schapire and Singer, 2000] introduce the use of a Ma-

chine Learning technique called boosting to TC. The main idea of boosting is

to combine many simple and moderately inaccurate categorization rules into a

single, highly accurate categorization rule. The simple rules are trained sequen-

36 Related Work

tially; conceptually, each rule is trained on the examples which were most diffi-

cult to classify by the preceding rules. They show, using a number of evaluation

measures, that their system´s performance is generally better than individual al-

gorithms, sometimes by a wide margin.

2.6 Semi-supervised Text Categorization

A characteristic common to many TC applications is that it is expensive to classify

data for the training phase, while it is relatively inexpensive to find unlabeled

data. In other situations, only a small portion of the document space is available

initially, and new documents arrive incrementally. A paradigmatic example of

this is the classification of web pages: while it is very easy to find unclassified

pages in the web, it is slow and labor intensive to get a set of classified pages;

moreover, pages in the web are always changing.

It has been shown that the use of large volumes on unlabeled data in conjunc-

tion with small volumes of labeled data can greatly improve the performance of

some TC methods [Nigam et al., 2000]. The combination of the information con-

tained in the labeled and unlabeled data is done using Expectation-Maximization

(EM) [Dempster et al., 1977].

EM is a class of iterative algorithms for maximum likelihood estimation of

hidden parameters in problems with incomplete data. In TC, the labels of the

unlabeled documents are considered as unknown and EM is used to estimate

these (unknown) labels. The general algorithm for the incorporation of unlabeled

data using EM is presented in Algorithm 2.1.

EM has been used to combine labeled and unlabeled data for classification in

conjunction with several different methods: Shahshahani and Landgrebe [Shahsha-

2.6 Semi-supervised Text Categorization 37

Inputs: A set of labeled documents, and a set of unlabeled documents.

Initialization step:

• Build an initial classifier from the labeled documents only.

Estimation step:

• Use the current classifier to estimate the class of each unlabeled doc-
ument.

Maximization step:

• Re-estimate the classifier, given the class predicted for each unla-
beled document in the previous step.

Iterate:

• Iterate the estimation and maximization steps until convergence.

Outputs: A classifier that takes the unlabeled documents into account
and that, given a new document, predicts its class.

Algorithm 2.1: General algorithm for the incorporation of unlabeled data us-
ing EM.

38 Related Work

hani and Landgrebe, 1994] use a mixture of Gaussians; Miller and Uyar [Miller

and Uyar, 1997] use mixtures of experts; McCallum and Nigam [McCallum and

Nigam, 1998] use pool-based active learning; and Nigam [Nigam et al., 2000]

uses Naive Bayes. EM has also been used with k-means [MacQueen, 1967], but

for clustering rather than for classification, under the name of constrained k-

means [Banerjee et al., 2005; Bilenko et al., 2004].

An alternative approach to semi-supervised classification that does not use

EM is Transductive Support Vector Machines [Joachims, 1999b], where the SVM

method is extended with the ability to use unlabeled documents to improve the

results that would be achieved using only the labeled documents. Several authors

have reported that this is also a very promising technique [Fung and Mangasar-

ian, 2001; Sindhwani and Keerthi, 2006].

2.7 Incremental Text Categorization

Incremental learning is used in situations where only a small portion of the doc-

ument space is available initially, or where the documents are expected to evolve

over time. According to Sebastiani [Sebastiani, 2002, page 24], “online (a.k.a. in-

cremental) methods build a classifier soon after examining the first training doc-

ument, and incrementally refine it as they examine new ones. This may be an

advantage in the applications where the training set is not available in its entirety

from the start, or in which the meaning of the category may change in time.”

Algorithm 2.2 details the general algorithm for the incremental incorporation

of unlabeled data.

The incremental approach is very suited for tasks that require continuous

learning, because the available data changes over time. Once more, a paradig-

2.8 Datasets 39

Inputs: A set of labeled documents, and a set of unlabeled documents U.

Initialization step:

• Build an initial classifier from the labeled documents only.

Iterate:
For each unlabeled document d j ∈ U:

• Use the current classifier to classify d j.
• Update the model of the data obtained using this classifier with the

new document d j classified in the previous step.

Outputs: A classifier that takes the unlabeled documents into account
and that, given a new document, predicts its class.

Algorithm 2.2: General algorithm for the incremental incorporation of unla-
beled data.

matic example of this is the classification of web pages, because new web pages

appear on a daily basis and the ones that already exist are constantly being up-

dated.

2.8 Datasets

Datasets are collections of pre-classified documents. They are essential to develop

and evaluate a TC system, that is, to train the system and then to test how well it

behaves, when given a new document to classify.

A dataset consists of a set of documents, along with the category or categories

that each document belongs to. In a first step, called the training phase, some of

these documents (called the training documents) are used to train the TC system,

by allowing it to learn a model of the data. Afterwards, in a step called the test

phase, the rest of the documents (called the test documents) are used to test the TC

system, to see how well the system behaves when classifying previously unseen

documents.

40 Related Work

To allow a fair comparison between several TC systems, it is desirable that

they are tested in equivalent settings. With this goal in mind, several data collec-

tions were created and made public, generally with a standard train/test split, so

that the results obtained by the different systems can be correctly compared.

Some of the publicly available collections are more used than others. In the

TC field, and in the single-label sub-field in particular, the most commonly used

collections are the 20-Newsgroups collection, the Reuters-21578 collection, and

the Webkb collection.

2.8.1 The 20-Newsgroups Collection

The 20-Newsgroups collection is a set of approximately 20,000 newsgroup docu-

ments, partitioned (nearly) evenly across the 20 different newsgroups. The arti-

cles are typical postings and thus have headers including subject lines, signature

files, and quoted portions of other articles.

2.8.2 The Reuters-21578 Collection

All the documents contained in the Reuters-21578 collection appeared on the

Reuters newswire and were manually classified by personnel from Reuters Ltd.

This collection is very skewed, with documents very unevenly distributed among

different classes. The Mod Apté train/test split is generally used for classification

tasks [Sebastiani, 2002].

2.8.3 The Webkb Collection

The Webkb collection contains webpages from computer science departments

collected by the World Wide Knowledge Base (Web->Kb) project of the CMU text

2.8 Datasets 41

learning group in 1997. For each of the different classes, the collection contains

pages from four universities (Cornell, Texas, Washington and Wisconsin), and

other miscellaneous pages collected from other universities.

2.8.4 The Cade Collection

The documents in the Cade collection correspond to web pages extracted from

the CADÊ Web Directory, which points to Brazilian web pages classified by hu-

man experts.

2.8.5 Pre-Processing

It is widely accepted that the way that documents and queries are represented

influences the quality of the results that can be achieved. With this fact in mind,

there are several proposals that aim at improving retrieval results.

The main aim of pre-processing the data is to reduce the problem’s dimen-

sionality by controlling the size of the system’s vocabulary (the number of differ-

ent index terms). In some situations, aside from reducing the complexity of the

problem, this pre-processing will also make the data more uniform in a way that

improves performance.

Some of the pre-processing techniques routinely used in TC are:

• Discard words too short or too long, based on the assumption that they

probably will not be meaningful.

• Remove numbers and non-letter characters, or substitute them for a special

token.

• Case and special character unification. Special character unification is needed

42 Related Work

in some languages which contain special characters, because some people

use them as they type and some do not.

• Stemming, that is, reducing words to their morphological root, so that the

number of different terms in the documents is reduced.

2.9 Summary and Conclusions

Text Categorization is a research area that has provided efficient, effective, and

working solutions that have been used in a variety of application domains.

Two of the reasons for this success have been the involvement of the Machine

Learning community in TC, which has resulted in the use of the very latest Ma-

chine Learning technology in TC applications, and the availability of standard

data collections, which has encouraged research by providing a setting in which

different research efforts can be compared to each other, so that the best methods

can be discovered.

Currently, TC research is pointing in several interesting directions. One of

them is to try to improve existing classifiers, by improving their effectiveness, or

by making them faster to train or to test.

Another is the attempt to find better representations for text. While the bag

of words model is still the most widely used text representation model, some

researchers still think that a text is something more than a mere collection of to-

kens, and that it is worth to continue trying to find more sophisticated models to

represent text in the documents [Koster and Seutter, 2003].

A further direction is investigating the scalability properties of TC systems,

that is, understanding whether the systems that have proven the best in terms of

effectiveness alone can deal with very large numbers of categories [Yang et al.,

2.9 Summary and Conclusions 43

2003].

Finally, researchers are realizing that labeling examples for training a text clas-

sifier when labeled examples do not previously exist is expensive. As a result,

there is increasing attention in TC to semi-supervised Machine Learning meth-

ods, that is, methods that can train with a small set of labeled examples and use

unlabeled examples to improve their model of the data [Nigam et al., 2000].

This dissertation is concerned with the first (improving the effectiveness of

existing classifiers) and last (requiring less labeled documents) of these directions.

44 Related Work

Chapter 3

Experimental Setup

This chapter presents the experimental setup used for the experiments performed

during this work, namely the classification methods, the evaluation metrics and

the datasets that were used.

3.1 Classification Methods

These experiments used existing implementations for some of the Text Classifi-

cation methods that were compared. These implementations are freely available,

and can be obtained from the authors.

A Sourceforge project called IGLU1 was used for the Vector method described

in Section 2.3.1. IGLU aims at being a software platform suitable for testing In-

formation Retrieval methods. At the time of this writing, only the Vector method

is implemented.

FAQO — Frequently Asked Questions Organizer [Caron, 2000] was used for

the LSI method described in section 2.3.5. FAQO is an application that was de-

1Available at http://sourceforge.net/projects/iglu-java.

http://sourceforge.net/projects/iglu-java

46 Experimental Setup

signed to help the technical support team at Unidata (University Corporation for

Atmospheric Research) in the task of answering questions posed by the users of

their software. It uses LSI to find similarities between the user’s questions and

questions that were previously answered by Unidata’s personnel. As a result,

FAQO shows a ranked list of previous questions and answers that are most sim-

ilar to the present one. FAQO is an open source project released under the GPL

license.

A library called LIBSVM [Chang and Lin, 2001] was used for the SVM method

described in Section 2.3.6. LIBSVM, which is an integrated software for Support

Vector classification, already supports classification over several different classes,

returning, for each document, the (one) class that it belongs to. To calculate the

MRR used in this work, however, a ranked list of possible classes for each doc-

ument is needed, as the one that is returned by the other methods used in this

work. So, to determine the class of a given document, a “voting strategy” was

implemented, where a document’s possible classes are ranked according to the

number of votes that they had in a one-against-one approach, as Chang and Lin

did [Chang and Lin, 2001]. In this work, a linear kernel was used.

The Naive Bayes method was implemented as described in Section 2.3.3.

For the k-NN method described in Section 2.3.2, I implemented a “voting

strategy”, where the possible classes of a document are voted on by the docu-

ments that belong to that class. Cosine similarity was used as the weight for each

vote, and only the 10 nearest documents were considered.

The implementation of the four different centroid-based methods was based

on the implementation of the Vector method, and each centroid was determined

as described in Section 2.3.4.

3.2 Term Weighting 47

3.2 Term Weighting

The tfidf term weighting approach described in Section 2.2.1 was already imple-

mented in IGLU, so it was used directly.

The td term weighting approach was implemented according to the descrip-

tion in Section 2.2.2, and used exponent factors α = 0.5, β = −0.5, and γ = −0.5

in the experiments presented in this dissertation. In previous experiments, I com-

bined different values for α, β, and γ and concluded that the ones that provided

the best results were the ones used here.

3.3 Evaluation Metrics

As already explained in Section 2.4.2, MRR(1) is the same as Accuracy, the stan-

dard evaluation measure for single-label classification tasks. Results are usually

reported using three values for MRR (MRR(1), MRR(5), and MRR(10)) instead

of only Accuracy because this way it is possible to convey more information.

Namely, if one is willing to look not only at the first answer given by the classifi-

cation system but at the first five, how much will the results improve? And what

if one looks at the first ten? For this reason, results are reported using MRR(1),

MRR(5), and MRR(10) for the six datasets.

3.4 Datasets

This section describes the work regarding datasets for single-label TC and pro-

vides a complete description of the datasets used for these experiments. Except

for the Bank collection, all datasets are publicly available from my homepage.2

2Available at http://www.gia.ist.utl.pt/~acardoso/datasets/.

http://www.gia.ist.utl.pt/~acardoso/datasets/

48 Experimental Setup

The creation of these datasets was necessary in order to have different settings

to test the rest of this work. It also benefits other researchers in the single-label TC

field because it provides easy access to several preprocessed and different-sized

datasets for their own experiments.

These experiments use the six datasets that are described here and the stan-

dard train/test split for each dataset, so that results can be directly compared to

other works that use the same datasets and splits, and because this option allows

for more combinations of the numbers of labeled and unlabeled documents, that

will be necessary in Chapter 6. When possible, I also use 5-fold cross-validation

to test whether the differences observed in the results are statistically significant.

Except where explicitly stated otherwise, tfidf term weighting is used.

In order to check the validity of the results obtained, 5-fold cross-validation is

also performed for most of the methods comparisons.

3.4.1 Creating a New Dataset from the Bank Collection

The Bank collection consists of messages sent by the clients of a financial insti-

tution to their help-desk and the answers that the clients got from the help desk

assistants. All these documents are in Portuguese.

I had access to the collection of answered messages under a non-disclosure

agreement, developed a classification that allows the separation of messages ac-

cording to the type of request that was made by the client, and classified the mes-

sages according to it. This collection contains one class for each type of message

that can be answered automatically and one class that comprises all the messages

that need human intervention. The complete collection has 1391 classified mes-

sages and their respective answers. There are 37 different classes, containing from

5 to 346 messages each. This collection was randomly split into two thirds of the

3.4 Datasets 49

documents for training and the remaining third for testing. The distribution of

documents per class for this particular split, which shall be referred to as Bank37,

is presented in Table A.1.

3.4.2 Providing Other Single-label Datasets

Several works on single-label TC used the 20-Newsgroups, the Reuters-21578,

and the Webkb standard collections as single-label, by ignoring documents that

are crossposted to different newsgroups (in 20-Newsgroups), or that have more

than one topic (in Reuters-21578), or considering only some of the available

classes (in Webkb). The problem with this approach is that different authors

have slightly different datasets, and so comparisons will not be completely accu-

rate [Shankar and Karypis, 2000; Han and Karypis, 2000; Han et al., 2001; Nigam

et al., 2000; Lertnattee and Theeramunkong, 2004; Ramakrishnan et al., 2005;

Nigam et al., 1999].

Having this in mind, I made available on the web a set of datasets for single-

label text categorization. The website contains files with the terms obtained by

pre-processing these collections, and was made available for three main reasons:

• To allow an easier comparison among different algorithms. Many papers in

this area use these collections but report slightly different numbers of terms

for each of them. By having exactly the same terms, the comparisons made

using these files will be more reliable.

• To ease the work of people starting out in this field. Because these files

contain less information than the original ones, they can have a simpler

format and thus will be easier to process. The most common pre-processing

steps are also provided for some datasets.

• To provide single-label datasets, which the original collections were not.

50 Experimental Setup

Group Group
alt.atheism rec.sport.hockey
comp.graphics sci.crypt
comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med
comp.sys.mac.hardware sci.space
comp.windows.x soc.religion.christian
misc.forsale talk.politics.guns
rec.autos talk.politics.mideast
rec.motorcycles talk.politics.misc
rec.sport.baseball talk.religion.misc

Table 3.1: Usenet groups for the 20-Newsgroups collection.

3.4.2.1 20-Newsgroups

The 20-Newsgroups collection was downloaded from Jason Rennie’s page and

the "Bydate" version was used, because it already had a standard train/test split.

This is a collection of approximately 20,000 newsgroup messages, partitioned

(nearly) evenly across the 20 different newsgroups mentioned in Table 3.1. Al-

though already cleaned-up, this collection still had several attachments, many

PGP keys and approximately 4% of the articles are cross-posted. After removing

them and the messages that became empty because of it, the distribution of train-

ing and test messages for each newsgroup is presented in Table A.6. From now

on, this particular version of the 20-Newsgroups collection shall be referred to as

the 20Ng dataset.

3.4.2.2 Reuters-21578

The Reuters-21578 collection was downloaded from David Lewis’s page and the

standard "Mod Apté" train/test split was used. The documents in this collec-

tion appeared on the Reuters newswire in 1987 and were manually classified by

personnel from Reuters Ltd.

Due to the fact that the class distribution for these documents is very skewed,

3.4 Datasets 51

two sub-collections are usually considered for text categorization tasks [Debole

and Sebastiani, 2004a]:

• R10 – The set of documents belonging to the 10 classes with the highest

number of positive training examples.

• R90 – The set of documents belonging to the 90 classes with at least one

positive training and testing example.

Besides being very skewed, many of the documents in this collection are clas-

sified as having no topic at all or with more than one topic. Table A.3 shows

the distribution of the documents per number of topics. The separation between

training, test, and other documents is done considering the standard Mod Apté

split.

Because the goal of this work is to consider single-label datasets, all the doc-

uments with less than or with more than one topic were eliminated. After this,

some of the classes in R10 and R90 were left with no training or test documents.

Considering only the documents with a single topic and the classes which still

have at least one training and one test example, there are 8 of the 10 most fre-

quent classes and 52 of the original 90. Following Sebastiani´s convention, these

sets will be called R8 and R52. From R10 to R8 the classes “corn” and “wheat”,

which are intimately related to the class “grain”, disapeared and this last class

lost many of its documents. Similar transformations occurred from R90 to R52.

The distribution of training and test documents per class for R8 is presented

in Table A.4 and the distribution of training and test documents per class for R52

is presented in Table A.5.

52 Experimental Setup

3.4.2.3 Webkb

The Webkb collection (also called 4 Universities Data Set) was downloaded from

the homepage of the World Wide Knowledge Base (WebKb) project of the CMU

Text Learning Group.

This collection contains webpages collected from computer science depart-

ments of various universities in 1997. The webpages were manually classified

into seven categories and contain pages from four universities plus some miscel-

laneous pages collected from other universities.

As Nigam et Al. [Nigam et al., 2000], the classes “Department” and “Staff”

were discarded because there were only a few pages from each university. The

class “Other” was also discarded, because pages were very different among the

examples for this class.

Because there is no standard train/test split for this collection, and in order

to be consistent with the previous collections, two thirds of the documents were

randomly chosen for training and the remaining third for testing. The distribu-

tion of training and test webpages for each class is presented in Table A.2. From

now on, this particular version of the Webkb collection shall be referred to as he

Web4 dataset.

3.4.2.4 Cade

The documents in the Cade collection correspond to a subset of web pages ex-

tracted from the CADÊ Web Directory, which points to Brazilian web pages classi-

fied by human experts. This directory is available at Cade’s Homepage, in Brazil-

ian Portuguese.

A preprocessed version of this collection, which is part of project Gerindo, was

3.4 Datasets 53

made available by Marco Cristo, from Universidade Federal de Minas Gerais, in

Brazil.

Two thirds of the documents were randomly chosen for training and the re-

maining third for testing. The distribution of training and test documents per

class for this particular split, which shall be referred to as the Cade12 dataset, is

presented in Table A.7.

3.4.3 Statistics of the Datasets

This work uses six different datasets, Bank37, 20Ng, R8, R52, Web4 and Cade12,

that originated in five different collections with different kinds of contents, Bank,

20-Newsgroups, Reuters-21578, Webkb and Cade. Both R8 and R52 originated

from Reuters-21578.

The datasets have different sizes, ranging from 1391 documents for Bank37, to

40983 documents for Cade12. Also, even though 20Ng is relatively well balanced

in the number of documents per class, all the others are very skewed. For exam-

ple, R52 has classes with as little as three documents, whereas the class “earn”,

with 3923 documents, contains almost half the total number of documents. Ta-

ble 3.2 presents the numbers of documents for the six datasets: number of train-

ing documents, number of test documents, total number of documents, number

of documents in the smallest class, and number of documents in the largest class.

The detailed distribution of training and test documents per class for each dataset

can be found in Appendix A.

Furthermore, different collections use different languages: 20-Newsgroups,

Reuters-21578, and Webkb are in English; Bank is in Portuguese; and Cade is in

Brazilian Portuguese. This is important because, if a result holds for all the col-

lections, it probably is language-independent (considering these two languages).

54 Experimental Setup

Dataset Train Docs Test Docs Total Docs Smallest Class Largest Class
Bank37 928 463 1391 5 346
20Ng 11293 7528 18821 628 999
R8 5485 2189 7674 51 3923
R52 6532 2568 9100 3 3923
Web4 2803 1396 4199 504 1641
Cade12 27322 13661 40983 625 8473

Table 3.2: Numbers of documents for the six datasets: number of training
documents, number of test documents, total number of documents, number
of documents in the smallest class, and number of documents in the largest
class.

In order to complete the evaluations based on the Accuracy and MRR mea-

sures, Table 3.3 contains the values of MRR(1), MRR(5), and MRR(10) for each of

the datasets that can be achieved by a dumb classifier, that is, a classifier that to-

tally disregards the test documents and always predicts that the class of the query

is the most frequent class in the training set. Observe that, because R8 and R52

are very skewed, the Dumb Classifier achieves relatively high values. Having

this in mind, it is to be expected that a good classifier for these datasets achieves

significantly higher values. Also, note that, because Web4 only has four different

classes, MRR(5), and MRR(10) are the same for this dataset.

3.5 Computational Framework — IREP

IREP —Information Retrieval Experimentation Package— is a computational frame-

work that integrates the implementations of several classification methods, term

weighting schemes, and evaluation measures and uses them with the datasets

that are provided.

IREP was built in Java and has a number of features:

• It is able to read and pre-process the documents and pass them on to the dif-

ferent classification methods. IREP adapts the format of the documents to

3.5 Computational Framework — IREP 55

Dataset MRR Dumb Classifier
1 0.2505

Bank37 5 0.3116
10 0.3336
1 0.0530

20Ng 5 0.1208
10 0.1546
1 0.4947

R8 5 0.6887
10 0.6978
1 0.4217

R52 5 0.5870
10 0.5975
1 0.3897

Web4 5 0.6277
10 0.6277
1 0.2083

Cade12 5 0.3869
10 0.4205

Table 3.3: Values of MRR(1), MRR(5), and MRR(10) achieved by the Dumb
Classifier for the six datasets.

the format required by each method implementation, guaranteeing that all

the methods use exactly the same data. IREP also has filters that implement

the pre-processing steps described in Appendix A.6 and the term-weighting

schemes described in Section 2.2.

• It is able to use the same evaluation measures with all the classification

methods. The results provided by each method are analyzed by IREP,

which then computes the evaluation measures required.

• It is easy to incorporate new classification methods. Each classifier must

provide two Java methods, one that builds the classifier based on the train-

ing data and one that, given the classifier and a document to classify, returns

a list with the document´s possible classes. Based on these two Java meth-

ods, IREP is able to train, to test, and to evaluate any new classifier.

• It is possible to combine the results obtained by different classifiers. IREP

can be used to combine different classifiers by creating a new classifier that

56 Experimental Setup

calls the Java methods of each original classifier in a specific order.

• It is easy to change the parameters used by each classifier. IREP has a top-

level method that reads and interprets the parameters that can be used by

each classification method, and passes them on to the respective method at

run time.

• It is able to repeatedly train and test the classifiers and provide the results in

an understandable manner. IREP can be called from (for example) a UNIX

shell with the required parameters and the results are written to a text file.

IREP is thus a very configurable computational tool that can be used to exper-

iment with existing classifiers and easily extended to include new ones.

Chapter 4

Performance of Existing Text

Classification Methods

This chapter presents the results obtained in experimental tests that were con-

ducted in order to access the efficiency of different Text Categorization (TC) meth-

ods.

4.1 Comparing Centroid-based Methods

This section reports the results of some experiments, which show that, of the

several centroid-based methods that are generally used in the literature, the one

that calculates the centroid of a class as the normalized sum of the documents

that belong to the class is the one that provides the best results.

A thorough comparison between several centroid-based methods and term

weighting schemes is available [Cardoso-Cachopo and Oliveira, 2006], but this

work uses more datasets (Bank37, Web4 and Cade12 were not used in previous

experiments) and the results are reported in a different way.

58 Performance of Existing Text Classification Methods

The centroid-based methods used in this comparison are the ones described

in Section 2.3.4, and the correspondence between the names and respective equa-

tions is obvious:

• In C-Rocchio the centroid of a class is the centroid of the positive examples

minus the centroid for the negative examples, weighted by control parame-

ters β and γ, respectively (see Equation (2.15)).

• In C-Average the centroid of a class is the average of all the positive exam-

ples for that class (see Equation (2.16)).

• In C-Sum the centroid of a class is the sum of all the positive examples for

that class (see Equation (2.17)).

• In C-NormSum the centroid of a class is the sum of all the positive train-

ing examples for that class, normalized so that it has unitary length (see

Equation (2.18)).

Figure 4.1 shows six charts with the values of MRR(1), MRR(5), and MRR(10)

for the six datasets, for each of the centroid-based methods. Table 4.1 contains

the values that were used to plot the charts. Table 4.2 contains average Accuracy

values for the centroid-based methods.

By looking at the charts, it is easy to see that, for all datasets, C-NormSum is

the centroid-based method that provides the best results. For the R8 dataset, for

example, Accuracy is 0.7172 for the C-Sum method, but it improves to 0.9356 for

the C-NormSum method. Table 4.2 supports the same conclusion, showing that

the average Accuracy over all the datasets is significantly higher for C-NormSum

than for the other centroid-based methods.

Except for the R52 dataset, C-Sum is the worst performing centroid-based

method.

4.1 Comparing Centroid-based Methods 59

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Bank37

C-NormSum
C-Average
C-Rocchio

C-Sum
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

20Ng

C-NormSum
C-Average
C-Rocchio

C-Sum

0.7

0.75

0.8

0.85

0.9

0.95

1

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

R8

C-NormSum
C-Average
C-Rocchio

C-Sum
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k
R52

C-NormSum
C-Average
C-Rocchio

C-Sum

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Web4

C-NormSum
C-Average
C-Rocchio

C-Sum
0.4

0.45

0.5

0.55

0.6

0.65

0.7

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Cade12

C-NormSum
C-Average
C-Rocchio

C-Sum

Figure 4.1: MRR(1), MRR(5), and MRR(10) for the six datasets, for each of the
centroid-based methods C-NormSum, C-Rocchio, C-Average and C-Sum.

60 Performance of Existing Text Classification Methods

Dataset MRR C-NormSum C-Average C-Rocchio C-Sum Dumb
1 0.8639 0.7063 0.7063 0.6479 0.2505

Bank37 5 0.9231 0.7293 0.7297 0.7870 0.3116
10 0.9234 0.7404 0.7412 0.7896 0.3336
1 0.7885 0.7608 0.7610 0.7495 0.0530

20Ng 5 0.8685 0.8460 0.8462 0.8374 0.1208
10 0.8708 0.8496 0.8498 0.8416 0.1546
1 0.9356 0.8552 0.8588 0.7172 0.4947

R8 5 0.9635 0.9127 0.9151 0.8402 0.6887
10 0.9639 0.9140 0.9165 0.8409 0.6978
1 0.8719 0.5888 0.6009 0.6164 0.4217

R52 5 0.9192 0.6902 0.7019 0.7470 0.5870
10 0.9207 0.7003 0.7111 0.7534 0.5975
1 0.8266 0.7693 0.7787 0.7550 0.3897

Web4 5 0.9034 0.8662 0.8706 0.8481 0.6277
10 0.9034 0.8662 0.8706 0.8481 0.6277
1 0.5148 0.4637 0.4691 0.4155 0.2083

Cade12 5 0.6405 0.5956 0.5988 0.5653 0.3869
10 0.6580 0.6164 0.6195 0.5839 0.4205

Table 4.1: Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
each of the centroid-based methods C-NormSum, C-Rocchio, C-Average and
C-Sum. The values obtained by the Dumb Classifier are also included for
comparison purposes.

Accuracy
Dataset C-NormSum C-Average C-Rocchio C-Sum Dumb
Bank37 0.8639 0.7063 0.7063 0.6479 0.2505
20Ng 0.7885 0.7608 0.7610 0.7495 0.0530
R8 0.9356 0.8552 0.8588 0.7172 0.4947
R52 0.8719 0.5888 0.6009 0.6164 0.4217
Web4 0.8266 0.7693 0.7787 0.7550 0.3897
Cade12 0.5148 0.4637 0.4691 0.4155 0.2083
Average 0.8002 0.6907 0.6958 0.6503 0.3030

Table 4.2: Values of Accuracy for each of the six datasets, for the centroid-
based methods C-NormSum, C-Average, C-Rocchio, C-Sum, and average Ac-
curacy over all the datasets for each method. Values for the Dumb Classifier
are included for comparison purposes.

4.1 Comparing Centroid-based Methods 61

For all datasets, the results obtained with C-Average are very similar to those

obtained with C-Rocchio, because the lines representing their results are always

very close together. This result can be verified by comparing average Accuracy

for both these methods in Table 4.2. This means that incorporating in the centroid

that represents a given class information about all the documents that do not

belong to that class does not improve results.

In all cases, results improve significantly between MRR(1) and MRR(5), but

they show a small improvement from MRR(5) to MRR(10). This means that, if one

is interested in building a system that can suggest more than one classification for

each document, it is worth looking at the first five answers given by the system,

but looking at the first ten will not provide a significant improvement.

Note also that the range in the Y axis representing MRR is quite different for

the different datasets. While for Bank37, 20Ng, R8, R52 and Web4 it is possi-

ble to achieve relatively high Accuracy results, for Cade12 classification Accu-

racy barely reaches 0.5148. Nevertheless, all these centroid-based methods pro-

vide significant improvements in Accuracy relatively to the ones obtained by the

Dumb Classifier, as can be easily observed in Tables 4.1 and 4.2.

In order to verify if the results obtained previously are statistically signifi-

cant, 5-fold cross-validation tests were performed using all the datasets and the

results were compared with the results obtained by each method, using paired

t-tests. Table 4.3 contains the values of Accuracy for each of the six datasets, for

the centroid-based methods, for each of the 5 folds, and average Accuracy over

all the folds for each dataset and method.

Because the differences in the results across all the datasets were statistically

significant (p < 0.05), it is possible to conclude that, for the four centroid-based

methods that were used,

C-NormSum 6= C-Average (p = 0.0000002)

62 Performance of Existing Text Classification Methods

Accuracy
Dataset Fold C-NormSum C-Average C-Rocchio C-Sum

1 0.8705 0.7014 0.7014 0.6439
2 0.8705 0.7122 0.7122 0.6295

Bank37 3 0.8022 0.6835 0.6835 0.5827
4 0.8705 0.6799 0.6799 0.6079
5 0.8495 0.6559 0.6559 0.6344

mean 0.8526 0.6866 0.6866 0.6197
1 0.8568 0.8262 0.8262 0.8002
2 0.8488 0.8116 0.8114 0.7936

20Ng 3 0.8387 0.8172 0.8170 0.8002
4 0.8385 0.8135 0.8130 0.7978
5 0.8470 0.8197 0.8186 0.8011

mean 0.8460 0.8177 0.8172 0.7986
1 0.8963 0.8318 0.8416 0.7458
2 0.9036 0.8384 0.8469 0.7355

R8 3 0.9055 0.8248 0.8339 0.7674
4 0.9114 0.8306 0.8404 0.7349
5 0.9075 0.8371 0.8450 0.7550

mean 0.9049 0.8326 0.8415 0.7477
1 0.8495 0.5659 0.5846 0.6335
2 0.8571 0.6121 0.6258 0.6429

R52 3 0.8489 0.6038 0.6203 0.6533
4 0.8401 0.5835 0.5956 0.6165
5 0.8456 0.5967 0.6088 0.6396

mean 0.8482 0.5924 0.6070 0.6371
1 0.8486 0.7902 0.7914 0.7330
2 0.8250 0.7964 0.7976 0.7548

Web4 3 0.8071 0.7810 0.7869 0.7607
4 0.8393 0.7905 0.7929 0.7512
5 0.8298 0.7821 0.7857 0.7726

mean 0.8300 0.7880 0.7909 0.7545
1 0.5192 0.4786 0.4813 0.4269
2 0.5008 0.4569 0.4592 0.4119

Cade12 3 0.5034 0.4602 0.4640 0.4042
4 0.5154 0.4663 0.4710 0.4136
5 0.4965 0.4460 0.4500 0.4044

mean 0.5071 0.4616 0.4651 0.4122
Average mean 0.7981 0.6965 0.7014 0.6616

Table 4.3: Values of Accuracy for each of the six datasets, for the centroid-
based methods C-NormSum, C-Average, C-Rocchio, C-Sum, for each of the 5
folds, and average Accuracy over all the datasets for each method.

4.2 Comparing Classification Methods 63

C-NormSum 6= C-Rocchio (p = 0.0000002)

C-NormSum 6= C-Sum (p = 0.0000000)

C-Average 6= C-Rocchio (p = 0.0000204)

C-Average 6= C-Sum (p = 0.0001051)

C-Rocchio 6= C-Sum (p = 0.0000093)

Using the inequalities above, the average across all the datasets in Table 4.3,

and the fact that all the inequalities are statistically significant, it is possible to

find a total ordering for the quality of the centroid-based methods:

C-NormSum > C-Rocchio > C-Average > C-Sum.

Because the C-NormSum is the best centroid-based method, I shall consider

this one from now on, whenever I refer to a centroid-based method.

4.2 Comparing Classification Methods

This section reports the results of the experiments that have shown that the centroid-

based method C-NormSum provides results that are almost as good as those ob-

tained by the state-of-the-art SVM method.

Figure 4.2 shows six charts with the values of MRR(1), MRR(5), and MRR(10)

for the six datasets, for each of the classification methods. Table 4.4 contains the

values that were used to plot the charts. Table 4.5 contains average Accuracy

values for the various methods.

From the charts, it is obvious that for all datasets except Cade12, the best

method is SVM. This means that the algorithms underlying the SVM method

generally work very well on very different datasets, except for the webpages in

the Cade12 dataset.

64 Performance of Existing Text Classification Methods

0.65

0.7

0.75

0.8

0.85

0.9

0.95

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Bank37

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

20Ng

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

R8

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k
R52

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Web4

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Cade12

SVM
k-NN

LSI
Vector

Centroid
Naive Bayes

Figure 4.2: MRR(1), MRR(5), and MRR(10) for the six datasets, for each of the
classification methods Vector, k-NN, LSI, SVM and Centroid.

4.2 Comparing Classification Methods 65

Dataset MRR Centroid SVM N-Bayes k-NN LSI Vector Dumb
1 0.8639 0.9071 0.6803 0.8423 0.8531 0.8359 0.2505

Bank37 5 0.9231 0.9479 0.7985 0.9116 0.9123 0.9033 0.3116
10 0.9234 0.9479 0.8011 0.9116 0.9133 0.9054 0.3336
1 0.7885 0.8284 0.8103 0.7593 0.7491 0.7240 0.0530

20Ng 5 0.8685 0.8910 0.8774 0.8351 0.8308 0.8164 0.1208
10 0.8708 0.8933 0.8801 0.8363 0.8353 0.8209 0.1546
1 0.9356 0.9698 0.9607 0.8524 0.9411 0.7889 0.4947

R8 5 0.9635 0.9831 0.9781 0.9189 0.9681 0.8868 0.6887
10 0.9639 0.9831 0.9781 0.9190 0.9681 0.8870 0.6978
1 0.8719 0.9377 0.8692 0.8322 0.9093 0.7687 0.4217

R52 5 0.9192 0.9542 0.8990 0.8981 0.9387 0.8641 0.5870
10 0.9207 0.9555 0.9013 0.8985 0.9400 0.8654 0.5975
1 0.8266 0.8582 0.8352 0.7256 0.7357 0.6447 0.3897

Web4 5 0.9034 0.9218 0.9099 0.8331 0.8523 0.7966 0.6277
10 0.9034 0.9218 0.9099 0.8331 0.8523 0.7966 0.6277
1 0.5148 0.5284 0.5727 0.5120 0.4328 0.4142 0.2083

Cade12 5 0.6405 0.6609 0.6965 0.6234 0.5656 0.5617 0.3869
10 0.6580 0.6754 0.7092 0.6289 0.5892 0.5831 0.4205

Table 4.4: Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
each of the classification methods Centroid, SVM, Naive Bayes, k-NN, LSI,
and Vector. The values obtained by the Dumb Classifier are also included for
comparison purposes.

Accuracy
Dataset Centroid SVM N-Bayes k-NN LSI Vector Dumb
Bank37 0.8639 0.9071 0.6803 0.8423 0.8531 0.8359 0.2505
20Ng 0.7885 0.8284 0.8103 0.7593 0.7491 0.7240 0.0530
R8 0.9356 0.9698 0.9607 0.8524 0.9411 0.7889 0.4947
R52 0.8719 0.9377 0.8692 0.8322 0.9093 0.7687 0.4217
Web4 0.8266 0.8582 0.8352 0.7256 0.7357 0.6447 0.3897
Cade12 0.5148 0.5284 0.5727 0.5120 0.4328 0.4142 0.2083
Average 0.8002 0.8383 0.7881 0.7540 0.7702 0.6961 0.3030

Table 4.5: Values of Accuracy for each of the six datasets, for each of the clas-
sification methods Centroid, SVM, Naive Bayes, k-NN, LSI, and Vector, and
average Accuracy over all the datasets for each method. The values obtained
by the Dumb Classifier are also included for comparison purposes.

66 Performance of Existing Text Classification Methods

For the Cade12 dataset, the best method is Naive Bayes.

The centroid-based method is usually second or third best, and it is always on

the “top half” of the chart. This means that, independently of the subject of the

dataset, it is expected to show a good performance.

The LSI method performs quite well for the datasets based on the Reuters-21578

collection, R8 and R52, and also for Bank37.

The k-NN method shows a bad performance for all datasets, always among

the two or three worst methods.

As expected, the simple Vector method provides a base-line performance for

almost all the datasets. The only dataset for which it is not the worst performing

method is the Bank37 dataset, where Naive Bayes performs even worse.

By considering average Accuracy values over all the datasets, one can see

that the Centroid method is the second best, following the state-of-the-art SVM

method. After considering that the Centroid method is very fast, in both training

and test phases, as I shall show in the next section, I decided to investigate this

method further. Another important advantage of the centroid-based methods

is that they require a very small amount of memory to build the model of the

data (only one vector to represent each class) during the training and test phases,

while others need to have all the training documents in memory at the same time

to build the model of the data.

Once more, results improve significantly between MRR(1) and MRR(5), but

they show a small improvement from MRR(5) to MRR(10). While for Bank37,

R8, R52 and 20Ng it is possible to achieve relatively high Accuracy results, for

Cade12 the maximum achievable Accuracy is 0.5727. All these methods pro-

vide significant improvements in Accuracy relatively to the ones obtained by the

4.2 Comparing Classification Methods 67

Dumb Classifier, as can be easily observed in Table 4.41.

In order to verify if the results obtained previously are statistically significant,

I performed 5-fold cross-validation tests using all the datasets and compared the

results obtained by each method using paired t-tests. Table 4.6 contains the values

of Accuracy for each of the classification methods Centroid, SVM, Naive Bayes,

k-NN, LSI, and Vector, for each of the 5 folds, and average Accuracy over all

the folds for each dataset and method. It was not possible to use 5-fold cross-

validation for LSI with the Cade12 dataset because FAQO, the tool that was used

to implement LSI did not support the required amount of training documents.

For comparisons involving LSI only the other five datasets were used.

This time not all results were statistically significant (p < 0.05):

C-NormSum 6= SVM (p = 0.0000000)

C-NormSum 6= Naive Bayes (p = 0.3969039)

C-NormSum 6= k-NN (p = 0.1473818)

C-NormSum 6= LSI (p = 0.0619330)

C-NormSum 6= Vector (p = 0.0000000)

SVM 6= Naive Bayes (p = 0.0006746)

SVM 6= k-NN (p = 0.0000000)

SVM 6= LSI (p = 0.0000000)

SVM 6= Vector (p = 0.0000000)

Naive Bayes 6= k-NN (p = 0.2245246)

Naive Bayes 6= LSI (p = 0.0619624)

Naive Bayes 6= Vector (p = 0.0032988)

k-NN 6= LSI (p = 0.0000343)

k-NN 6= Vector (p = 0.0000001)

1I include the values of MRR(1), MRR(5), and MRR(10) obtained by the Dumb Classifier in
the table to make comparisons easier. I do not include them in the charts because they are too
low, compared to the others, and that would cause the lines for the other methods to be too close
together.

68 Performance of Existing Text Classification Methods

Accuracy
Dataset Fold Centroid SVM N-Bayes k-NN LSI Vector

1 0.8705 0.9245 0.7050 0.8741 0.8597 0.8489
2 0.8705 0.8921 0.6727 0.8561 0.8381 0.8525

Bank37 3 0.8022 0.8669 0.6439 0.8309 0.8273 0.7878
4 0.8705 0.9137 0.6691 0.8669 0.8741 0.8525
5 0.8495 0.9104 0.7025 0.7957 0.8423 0.8100

mean 0.8526 0.9015 0.6786 0.8448 0.8483 0.8304
1 0.8568 0.9139 0.8916 0.8818 0.8701 0.8778
2 0.8488 0.9187 0.8789 0.8677 0.8624 0.8791

20Ng 3 0.8387 0.9152 0.8831 0.8714 0.8696 0.8738
4 0.8385 0.9083 0.8786 0.8642 0.8608 0.8632
5 0.8470 0.9201 0.8903 0.8707 0.8704 0.8714

mean 0.8460 0.9153 0.8845 0.8712 0.8666 0.8731
1 0.8963 0.9681 0.9511 0.8957 0.9557 0.8383
2 0.9036 0.9700 0.9440 0.8847 0.9550 0.8371

R8 3 0.9055 0.9759 0.9557 0.9134 0.9603 0.8397
4 0.9114 0.9661 0.9459 0.8853 0.9505 0.8515
5 0.9075 0.9739 0.9531 0.8899 0.9492 0.8450

mean 0.9049 0.9708 0.9500 0.8938 0.9541 0.8423
1 0.8495 0.9456 0.8769 0.8709 0.9115 0.8165
2 0.8571 0.9505 0.8780 0.8681 0.9159 0.8379

R52 3 0.8489 0.9544 0.8797 0.8797 0.9275 0.8335
4 0.8401 0.9593 0.8885 0.8874 0.9286 0.8363
5 0.8456 0.9440 0.8736 0.8610 0.9143 0.8132

mean 0.8482 0.9508 0.8793 0.8734 0.9196 0.8275
1 0.8486 0.8772 0.8355 0.7294 0.7723 0.6508
2 0.8250 0.8619 0.8488 0.7321 0.7702 0.6690

Web4 3 0.8071 0.8619 0.8083 0.7595 0.7726 0.6702
4 0.8393 0.8750 0.8464 0.7321 0.7690 0.6440
5 0.8298 0.8726 0.8369 0.7476 0.7655 0.6464

mean 0.8300 0.8697 0.8352 0.7402 0.7699 0.6561
1 0.5192 0.5487 0.5961 0.5264 0.4306
2 0.5008 0.5312 0.5827 0.5106 0.4043

Cade12 3 0.5034 0.5388 0.5910 0.5137 0.4118
4 0.5154 0.5380 0.5858 0.5160 0.4145
5 0.4965 0.5220 0.5724 0.5080 0.3994

mean 0.5071 0.5357 0.5856 0.5149 0.4121
Average mean 0.7981 0.8573 0.8022 0.7897 0.8717 0.7402

Table 4.6: Values of Accuracy for each of the six datasets, for each of the
classification methods Centroid, SVM, Naive Bayes, k-NN, LSI, and Vector,
for each of the 5 folds, and average Accuracy over all the datasets for each
method.

4.3 Comparing Execution Times for the Methods 69

LSI 6= Vector (p = 0.0000009)

Using the inequalities above, the average across all the datasets in Table 4.6,

and the fact that only some of the inequalities are statistically significant, it is

possible to find a partial ordering for the quality of the classification methods:

SVM > Centroid ≈Naive Bayes ≈ k-NN ≈ LSI> Vector.

4.3 Comparing Execution Times for the Methods

This section reports the results of the experiments that have shown that centroid-

based methods are very fast, both in the training and in the test phase.

Besides the quality of the results that a TC method yields, another important

aspect to consider when evaluating TC methods is the time and memory they

require to execute.

Figure 4.3 shows six charts, representing the time that each method takes to

execute, in both the training and the test phases, for each dataset. The X axis rep-

resents the time spent for training, while the Y axis represents the time spent for

tests, both in seconds, in logarithmic scales. These times are the average obtained

over five runs for each method and each dataset. Table 4.7 contains the values that

were used to plot the charts. The values reported for the centroid-based method

are for C-NormSum, but they are very similar for all the other centroid-based

methods.

By looking at the X axis of Figure 4.3, it is possible to compare the time that

each method takes for training. As expected, Naive Bayes is the fastest method.

Following this method are Vector and k-NN, because they simply read the train-

ing documents and save the term/document matrix for future use. The other

70 Performance of Existing Text Classification Methods

1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

Bank37

SVM

k-NN LSI
Vector

Centroid
Naive Bayes

1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

20Ng

SVM

k-NN LSI
Vector

CentroidNaive Bayes

1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

R8

SVM

k-NN LSI

Vector

Centroid
Naive Bayes 1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

R52

SVM

k-NN LSI
Vector

CentroidNaive Bayes

1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

Web4

SVM

k-NN
LSI

Vector

Centroid
Naive Bayes 1

10

100

1000

10000

1 10 100 1000 10000

Te
st

ti
m

e
(s

)

Train time (s)

Cade12

SVM

k-NN LSI

Vector

CentroidNaive Bayes

Figure 4.3: Training and Test time spent by each method for each dataset, in
seconds, in a logarithmic scale.

4.3 Comparing Execution Times for the Methods 71

Dataset Time (s) Centroid SVM N-Bayes k-NN LSI Vector
Train 2 6 1 2 13 2

Bank37 Test 1 2 2 19 19 19
Total 3 8 3 21 32 21
Train 25 276 3 18 161 18

20Ng Test 21 141 16 5049 4002 5016
Total 47 417 19 5067 4163 5034
Train 7 29 1 5 52 5

R8 Test 2 9 1 313 405 317
Total 9 38 2 318 456 322
Train 8 86 1 6 55 6

R52 Test 6 19 6 474 580 504
Total 14 105 7 479 635 510
Train 5 16 1 4 32 4

Web4 Test 2 7 1 202 118 178
Total 7 23 1 206 150 182
Train 51 3644 5 35 396 36

Cade12 Test 20 350 15 15188 19898 15088
Total 71 3994 20 15223 20294 15124

Table 4.7: Training, Test, and Total time spent by each method for each
dataset, in seconds.

methods need to build this matrix and then determine a new model of the data.

The simplest transformation is done by the Centroid method, because it only cal-

culates the centroid for each class, which is why it is only slightly slower than the

other two methods in the training phase. The methods that take longer for train-

ing are SVM and LSI, because they are the ones that apply the most complicated

transformation to the training documents.

To compare the time that each method takes during the test phase, observe

the Y axis of Figure 4.3. Once more, the fastest method is Naive Bayes, very

closely followed by the Centroid method. This should be expected, because in

the Naive Bayes case it is necessary to calculate a probability for each class and

each training document, while in the Centroid case the operation that is required

for each test document is a cosine similarity with each class’s centroid. The third

fastest is SVM. The slowest are Vector and k-NN, because they have to compare

each test document to each training document, making test time proportional to

72 Performance of Existing Text Classification Methods

the number of documents in the training set. Using an index structure would

speed up these last two methods, but they would still be considerably slower

than the Naive Bayes and the centroid-based methods.

Overall, the centroid-based method provides a significant reduction in time

and memory required during the test phase relatively to SVM, k-NN and LSI,

because these requirements are proportional to the number of classes instead of

the number of documents.

Note that none of the methods was particularly optimized for speed, and that

probably it is possible to find faster implementations for these classification meth-

ods. From this section, however, it is obvious that centroid-based methods are or-

ders of magnitude faster than other classification methods (except Naive Bayes).

This was to be expected, not only because the representation of each class is very

simple (a single vector), which leads to the use of very small amounts of mem-

ory, but also because the operations required to determine each centroid are very

simple, and, hence very fast.

4.4 Comparing Term Weighting Schemes

This section reports the results of the experiments that have shown that the tra-

ditional tfidf term weighting scheme is in general better than the more recently

proposed term distributions td [Lertnattee and Theeramunkong, 2004].

Figure 4.4 shows six charts with the values of MRR(1), MRR(5), and MRR(10)

for the six datasets, for each of the methods, using tfidf and td term weighting.

Table 4.8 contains the values that were used to plot the charts.

By looking at Figure 4.4 it is easy to see that, except for the Centroid method,

td term weighting always worsens results. The only exception is k-NN for the

4.4 Comparing Term Weighting Schemes 73

Dataset/weighting MRR Centroid SVM k-NN Vector
1 0.8639 0.9071 0.8423 0.8359

Bank37/tfidf 5 0.9231 0.9479 0.9116 0.9033
10 0.9234 0.9479 0.9116 0.9054
1 0.8704 0.9028 0.8445 0.8164

Bank37/td 5 0.9268 0.9419 0.9105 0.8915
10 0.9271 0.9430 0.9109 0.8932
1 0.7885 0.8284 0.7593 0.7240

20Ng/tfidf 5 0.8685 0.8910 0.8351 0.8164
10 0.8708 0.8933 0.8363 0.8209
1 0.8038 0.8203 0.7487 0.6603

20Ng/td 5 0.8779 0.8848 0.8236 0.7682
10 0.8799 0.8875 0.8263 0.7747
1 0.9356 0.9698 0.8524 0.7889

R8/tfidf 5 0.9635 0.9831 0.9189 0.8868
10 0.9639 0.9831 0.9190 0.8870
1 0.9351 0.9534 0.7853 0.7346

R8/td 5 0.9645 0.9739 0.8819 0.8557
10 0.9646 0.9740 0.8819 0.8562
1 0.8719 0.9377 0.8322 0.7687

R52/tfidf 5 0.9192 0.9542 0.8981 0.8641
10 0.9207 0.9555 0.8985 0.8654
1 0.8843 0.9167 0.7574 0.7029

R52/td 5 0.9290 0.9405 0.8504 0.8225
10 0.9297 0.9415 0.8512 0.8249
1 0.8266 0.8582 0.7256 0.6447

Web4/tfidf 5 0.9034 0.9218 0.8331 0.7966
10 0.9034 0.9218 0.8331 0.7966
1 0.8474 0.8281 0.7364 0.6282

Web4/td 5 0.9164 0.9027 0.8420 0.7851
10 0.9164 0.9027 0.8420 0.7851
1 0.5148 0.5284 0.5120 0.4142

Cade12/tfidf 5 0.6405 0.6609 0.6234 0.5617
10 0.6580 0.6754 0.6289 0.5831
1 0.4545 0.3899 0.3695 0.2874

Cade12/td 5 0.5891 0.5347 0.5037 0.4567
10 0.6104 0.5597 0.5107 0.4847

Table 4.8: Values of MRR(1), MRR(5), and MRR(10) for each dataset and each
method, using tfidf and td term weighting.

Bank37 and Web4 datasets, where MRR(1) shows a very small improvement

from 0.8423 to 0.8445 and from 0.7256 to 0.7364, respectively.

The only classification method for which td usually improves results is the

Centroid method, exactly the one that was used to propose this term weighting

scheme [Lertnattee and Theeramunkong, 2004]. Even for the Centroid method,

td worsens results for the Cade12 and R8 datasets. This is probably due to the

74 Performance of Existing Text Classification Methods
M

R
R

Bank37

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

M
R

R

20Ng

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

M
R

R

R8

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

M
R

R
R52

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

M
R

R

Web4

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

M
R

R

Cade12

0.0

0.2

0.4

0.6

0.8

1.0
tfidf

td

Vector k-NN SVM Centroid

Figure 4.4: MRR(1), MRR(5), and MRR(10) for each dataset and method, us-
ing tfidf and td term weighting.

4.5 Summary of Experimental Results 75

fact that these collections are skewed and so term distributions, which depend on

the classes, are bad predictors.

Besides the fact that the td term weighting scheme only marginally improves

results for one method and for some datasets relatively to the traditional tfidf

term weighting scheme, the td approach also has the disadvantage that there are

three different weights that can be combined and that need to be optimized. I

performed extensive testing combining different values for α, β and γ for the

different classification methods and determined that, on average, the best results

were obtained when the three weights were set to zero, that is, when tfidf term

weighting was used. Based on my previous experiments and on the results pre-

sented in this section, I conclude that the traditional tfidf term weighting scheme

is in general better than the more recently proposed term distributions td and will

use tfidf in the rest of my work.

Once more, it is easy to observe that: Accuracy or MRR(1) accounts for a good

part of the correct answers given by the system, independently of the classifica-

tion method and of the dataset that is considered; that results improve signifi-

cantly between MRR(1) and MRR(5); and that they show a very small improve-

ment from MRR(5) to MRR(10).

4.5 Summary of Experimental Results

Regarding the different centroid-based methods, it was shown that C-NormSum

always outperforms other centroid-based approaches for these datasets. Average

Accuracy over the six datasets improves from 0.6958 for C-Rocchio, the second

best centroid-based method, to 0.8002 when using C-NormSum.

Compared to the Vector and k-NN methods, C-NormSum significantly im-

76 Performance of Existing Text Classification Methods

proves Accuracy for these six datasets, while at the same time approximately

maintaining training time and reducing test time by several orders of magnitude.

The results of this work also showed that C-NormSum, a computationally

simple and fast method, can obtain results similar to the more sophisticated and

computationally expensive state-of-the-art SVM method. This makes the centroid-

based method a promising method to perform further research. The difference in

average Accuracy over the six datasets is from 0.8002 using C-NormSum to 0.8383

using SVM.

Overall, the C-NormSum method presents a good trade-off between time spent

during the training and test phases and the quality of the results obtained. This

method also has the advantage of being amenable to changes in the training set,

unlike the SVM method.

It was also shown that the traditional tfidf term weighting approach remains

very effective, even when compared to td, a more recent and computationally

demanding term weighting approach, because over the six datasets and the four

methods that were tested, tfidf provided better results in 17 of the 24 possible

combinations. Both term weighting approaches achieved similar results in 2

cases.

Chapter 5

Combinations Between Classification

Methods

This chapter describes the underlying ideas regarding the combination of classi-

fication methods and the experiments that were performed with them.

The combination of k-NN with LSI was first proposed in 2003 [Cardoso-Cachopo

and Oliveira, 2003]. The combination of SVM with LSI was first proposed in

2007 [Cardoso-Cachopo and Oliveira, 2007a].

5.1 Document Representation and Classification

Strategy

This section describes how different classification methods use different represen-

tations for the training documents of a dataset and different classification strate-

gies in order to classify the test documents.

Figure 5.1 shows a graphical representation of the transformations applied to

78 Combinations Between Classification Methods

p dimensional
term space

s << p
dimensional

concept space

SVM

Centroid

k-NN

Vector

LSI

Cosine similarity

k-NN + Cosine similarity

Centroid + Cosine similarity

Kernel Voting strategy

SVD Cosine similarity

Figure 5.1: Graphical representation of the transformations applied to the ini-
tial term space representing the training documents and of the classification
strategy used by each classification method.

the initial term space representing the training documents and the classification

strategy used by each classification method.

Starting at the left, there is the initial representation of the r training docu-

ments of the dataset as p-dimensional vectors in a p-dimensional space, where r

is the number of training documents of the dataset and p is the number of dif-

ferent terms considered for the dataset. This is usually represented by a p × r

term/document matrix.

Given another p-dimensional vector representing the query document—that

is, the document that needs to be classified—there are several options:

• Apply cosine similarity directly to the query and each of the training doc-

5.1 Document Representation and Classification Strategy 79

uments; the class of the query is the class of the most similar document —

Vector method.

• Apply cosine similarity directly to the query and each of the training docu-

ments, select the k most similar documents, apply a voting strategy, where

each document “votes” for its class weighted by its similarity to the query;

the class of the query is the most voted class — k-NN method.

• Determine the centroid of the documents belonging to each class; the class

of the query is determined as the class of the most similar centroid — centroid-

based method.

• Apply a kernel function so that training documents are represented in a

high dimensional feature space, where each class is linearly separable from

the others; apply a voting strategy, where possible classes are ranked ac-

cording to the number of votes that they had in a one-against-one classifi-

cation approach; the class of the query is the class which got more votes —

SVM method.

• Apply singular value decomposition to the original term/document matrix,

transforming the original space into a much smaller concept space; apply

to the query document the same transformation applied to the matrix; the

class of the transformed query is the class of the most similar transformed

document — LSI method.

By considering these representations and classification strategies, I propose

the combinations between methods described in the following section.

80 Combinations Between Classification Methods

5.2 Combinations Between Methods

This section describes the rationale behind the combination of the different repre-

sentations and classification strategies in order to obtain new classification meth-

ods, that ideally will perform better than the original ones.

Figure 5.2 shows a graphical representation of the transformations applied to

the initial term space representing the training documents and the classification

strategy used by the combinations of methods, corresponding to the combination

of k-NN and SVM with LSI.

The difference to the previous approaches is that now, instead of applying

their transformations to the initial term/document matrix, the methods to com-

bine with LSI apply their transformations to the concept space that was pre-

viously obtained using Singular Value Decomposition. Then, given another p-

dimensional vector representing the query document, choose one of the options:

• Apply to the query document the same transformation as the one applied

to the initial term/document matrix; apply cosine similarity to the trans-

formed query and to each of the transformed training documents; select the

k most similar documents; apply a voting strategy, where each transformed

document “votes” for its class, weighted by its similarity to the transformed

query; the class of the query is the most voted class — k-NN-LSI method.

• Apply a kernel function to the transformed concept matrix, so that concepts

are represented in a high dimensional feature space, where each class is

linearly separable from the others; apply to the query document the same

transformation applied to the initial term/document matrix; apply a voting

strategy, where possible classes are ranked according to the number of votes

that they had in a one-against-one classification approach; the class of the

query is the class which got more votes — SVM-LSI method.

5.3 Comparing k-NN-LSI with k-NN and LSI 81

p dimensional
term space

s << p
dimensional

concept space

k-NN-LSI

SVM-LSI

k-NN + Cosine similarity

Kernel + Voting strategy

SVD

Figure 5.2: Graphical representation of the transformations applied to the ini-
tial term space representing the training documents and of the classification
strategy used by the combinations of methods.

Dataset MRR k-NN LSI k-NN-LSI
1 0.8423 0.8531 0.8488

Bank37 5 0.9116 0.9123 0.9099
10 0.9116 0.9133 0.9106
1 0.7593 0.7491 0.7557

20Ng 5 0.8351 0.8308 0.8263
10 0.8363 0.8353 0.8271
1 0.8524 0.9411 0.9488

R8 5 0.9189 0.9681 0.9691
10 0.9190 0.9681 0.9691
1 0.8322 0.9093 0.9100

R52 5 0.8981 0.9387 0.9365
10 0.8985 0.9400 0.9367
1 0.7256 0.7357 0.7908

Web4 5 0.8331 0.8523 0.8744
10 0.8331 0.8523 0.8744
1 0.5120 0.4328 0.4881

Cade12 5 0.6234 0.5656 0.5962
10 0.6289 0.5892 0.6019

Table 5.1: Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
k-NN, LSI and k-NN-LSI.

5.3 Comparing k-NN-LSI with k-NN and LSI

This section reports the results of the experiments performed to analyze the com-

bination of k-NN with LSI.

Figure 5.3 shows six charts with the values of MRR(1), MRR(5), and MRR(10)

for the six datasets, for the LSI, k-NN and k-NN-LSI methods. Table 5.1 contains

82 Combinations Between Classification Methods

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Bank37

k-NN
LSI

k-NN-LSI
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

20Ng

k-NN
LSI

k-NN-LSI

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

R8

k-NN
LSI

k-NN-LSI
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k
R52

k-NN
LSI

k-NN-LSI

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Web4

k-NN
LSI

k-NN-LSI
0.42
0.44
0.46
0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62
0.64

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Cade12

k-NN
LSI

k-NN-LSI

Figure 5.3: MRR(1), MRR(5), and MRR(10) for the six datasets, for k-NN, LSI
and k-NN-LSI.

5.3 Comparing k-NN-LSI with k-NN and LSI 83

Accuracy
Dataset k-NN LSI k-NN-LSI
Bank37 0.8423 0.8531 0.8488
20Ng 0.7593 0.7491 0.7557
R8 0.8524 0.9411 0.9488
R52 0.8322 0.9093 0.9100
Web4 0.7256 0.7357 0.7908
Cade12 0.5120 0.4328 0.4881
Average 0.7540 0.7702 0.7904

Table 5.2: Values of Accuracy for each of the six datasets, for k-NN, LSI and
k-NN-LSI, and average Accuracy over all the datasets for each method.

the values that were used to plot the charts.

First, it is important to note that, from the two original methods, there is not

one that always outperforms the other. For the four smaller datasets, Bank37, R8,

R52 and Web4, LSI performs better than k-NN, whereas for 20Ng and Cade12 it

is k-NN that provides better results. This is probably because LSI is very effective

at finding the “concepts” in the smaller datasets, but, for the other datasets, which

consist in newsgroup messages (that can quote others) and web pages (that can

be copies of others), finding the most similar document is more effective.

For R8 and Web4, the combination of k-NN with LSI is the best performing

method. For all the other datasets, it is second best, independently of which of

the original methods shows a better performance, and its performance is closer

to the one achieved by the best method.

As can be seen in Table 5.2, when considering average Accuracy over the six

datasets, k-NN-LSI is the best performing method.

In order to verify if the results obtained previously are statistically significant,

I performed 5-fold cross-validation tests using all the datasets and compared the

results obtained by each method using paired t-tests. Table 5.3 contains the values

of Accuracy for each of the classification methods k-NN, LSI, and k-NN-LSI, for

each of the 5 folds, and average Accuracy over the five folds and five datasets for

84 Combinations Between Classification Methods

each method. It was not possible to use 5-fold cross-validation for LSI with the

Cade12 dataset because FAQO, the tool that was used to implement LSI, did not

support the required amount of training documents.

This time, not all results were statistically significant:

k-NN-LSI 6= k-NN (p = 0.0003036)

k-NN-LSI 6= LSI (p = 0.2345841)

Using the inequalities above, the average across the datasets in Table 5.3, and

the fact that only some of the inequalities are statistically significant, it is possible

to find a partial ordering for the quality of the classification methods:

k-NN-LSI ≈ LSI and

k-NN-LSI > k-NN.

However, for 20Ng and Web4, k-NN-LSI > LSI, p = 0.0004887 and p = 0.0012195,

respectively.

5.4 Comparing SVM-LSI with SVM and LSI

This section reports the results of my experiments regarding the combination of

SVM with LSI. The results show that, for some datasets, this combination outper-

forms the SVM method.

Figure 5.4 shows six charts with the values of MRR(1), MRR(5), and MRR(10)

for the six datasets, for the LSI, SVM and SVM-LSI methods. Table 5.4 contains

the values that were used to plot the charts.

For all datasets, the worst performing method is LSI. One should note that,

except for the Cade12 dataset, even LSI has high Accuracy values. SVM is the

best for the datasets in English, R8, R52 and 20Ng. SVM-LSI is the best for

5.4 Comparing SVM-LSI with SVM and LSI 85

Accuracy
Dataset Fold k-NN LSI k-NN-LSI

1 0.8741 0.8597 0.8633
2 0.8561 0.8381 0.8669

Bank37 3 0.8309 0.8273 0.8237
4 0.8669 0.8741 0.8813
5 0.7957 0.8423 0.8100

mean 0.8448 0.8483 0.8491
1 0.8818 0.8701 0.8544
2 0.8677 0.8624 0.8409

20Ng 3 0.8714 0.8696 0.8443
4 0.8642 0.8608 0.8411
5 0.8707 0.8704 0.8393

mean 0.8712 0.8666 0.8440
1 0.8957 0.9557 0.9635
2 0.8847 0.9550 0.9524

R8 3 0.9134 0.9603 0.9616
4 0.8853 0.9505 0.9537
5 0.8899 0.9492 0.9531

mean 0.8938 0.9541 0.9569
1 0.8709 0.9115 0.9203
2 0.8681 0.9159 0.9209

R52 3 0.8797 0.9275 0.9231
4 0.8874 0.9286 0.9291
5 0.8610 0.9143 0.9154

mean 0.8734 0.9196 0.9218
1 0.7294 0.7723 0.8200
2 0.7321 0.7702 0.8071

Web4 3 0.7595 0.7726 0.7929
4 0.7321 0.7690 0.7952
5 0.7476 0.7655 0.7952

mean 0.7402 0.7699 0.8021
Average mean 0.8447 0.8717 0.8748

Table 5.3: Values of Accuracy for each of the six datasets, for k-NN, LSI
and k-NN-LSI, for each of the five folds, and average Accuracy over all the
datasets for each method.

86 Combinations Between Classification Methods

0.84

0.86

0.88

0.9

0.92

0.94

0.96

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Bank37

SVM
LSI

SVM-LSI
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

20Ng

SVM
LSI

SVM-LSI

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

R8

SVM
LSI

SVM-LSI
0.905
0.91

0.915
0.92

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k
R52

SVM
LSI

SVM-LSI

0.7

0.75

0.8

0.85

0.9

0.95

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Web4

SVM
LSI

SVM-LSI
0.4

0.45

0.5

0.55

0.6

0.65

0.7

MRR(10)MRR(5)MRR(1)

M
ea

n
R

ec
ip

ro
ca

lR
an

k

Cade12

SVM
LSI

SVM-LSI

Figure 5.4: MRR(1), MRR(5), and MRR(10) for the six datasets, for SVM, LSI
and SVM-LSI.

5.4 Comparing SVM-LSI with SVM and LSI 87

Dataset MRR SVM LSI SVM-LSI
1 0.9071 0.8531 0.9222

Bank37 5 0.9479 0.9123 0.9568
10 0.9479 0.9133 0.9571
1 0.8284 0.7491 0.7775

20Ng 5 0.8910 0.8308 0.8570
10 0.8933 0.8353 0.8602
1 0.9698 0.9411 0.9680

R8 5 0.9831 0.9681 0.9835
10 0.9831 0.9681 0.9835
1 0.9377 0.9093 0.9311

R52 5 0.9542 0.9387 0.9549
10 0.9555 0.9400 0.9556
1 0.8582 0.7357 0.8897

Web4 5 0.9218 0.8523 0.9407
10 0.9218 0.8523 0.9407
1 0.5284 0.4328 0.5459

Cade12 5 0.6609 0.5656 0.6727
10 0.6754 0.5892 0.6866

Table 5.4: Values of MRR(1), MRR(5), and MRR(10) for the six datasets, for
SVM, LSI and SVM-LSI.

the datasets in Portuguese, Bank37 and Cade12, and also for the English web-

pages of computer science departments, Web4 . Considering that SVM was the

best performing method in my previous comparison of classification methods, it

is particularly interesting that its combination with LSI performs even better in

some situations.

As can be seen in Table 5.5, considering average Accuracy over the six datasets,

SVM-LSI is slightly better than SVM.

In order to verify if the results obtained previously are statistically significant,

I performed 5-fold cross-validation tests using all the datasets and compared the

results obtained by each method using paired t-tests. Table 5.6 contains the values

of Accuracy for each of the classification methods SVM, LSI, and SVM-LSI, for

each of the 5 folds, and average Accuracy over the five folds and five datasets for

each method. It was not possible to use 5-fold cross-validation for LSI with the

Cade12 dataset because FAQO, the tool that was used to implement LSI, did not

88 Combinations Between Classification Methods

Accuracy
Dataset SVM LSI SVM-LSI
Bank37 0.9071 0.8531 0.9222
20Ng 0.8284 0.7491 0.7775
R8 0.9698 0.9411 0.9680
R52 0.9377 0.9093 0.9311
Web4 0.8582 0.7357 0.8897
Cade12 0.5284 0.4328 0.5459
Average 0.8383 0.7702 0.8385

Table 5.5: Values of Accuracy for each of the six datasets, for SVM, LSI, and
SVM-LSI, and average Accuracy over all the datasets for each method.

support the required amount of training documents.

Not all results were statistically significant:

SVM-LSI 6= SVM (p = 0.1867986)

SVM-LSI 6= LSI (p = 0.0001911)

Using the inequalities above, the average across the datasets in Table 5.6, and

the fact that only some of the inequalities are statistically significant, it is possible

to find a partial ordering for the quality of the classification methods:

SVM-LSI ≈ SVM and

SVM-LSI > LSI.

However, once more for 20Ng and Web4, SVM-LSI > SVM, p = 0.0000032

and p = 0.0.0007549, respectively.

5.5 Summary and Conclusions

The results of the experiments with the combinations of methods have shown

that:

• k-NN-LSI, the combination of k-NN with LSI, usually shows a performance

5.5 Summary and Conclusions 89

Accuracy
Dataset Fold SVM LSI SVM-LSI

1 0.9245 0.8597 0.9353
2 0.8921 0.8381 0.9101

Bank37 3 0.8669 0.8273 0.9029
4 0.9137 0.8741 0.9281
5 0.9104 0.8423 0.8996

mean 0.9015 0.8483 0.9152
1 0.9139 0.8701 0.8544
2 0.9187 0.8624 0.8467

20Ng 3 0.9152 0.8696 0.8526
4 0.9083 0.8608 0.8451
5 0.9201 0.8704 0.8547

mean 0.9153 0.8666 0.8507
1 0.9681 0.9557 0.9654
2 0.9700 0.9550 0.9603

R8 3 0.9759 0.9603 0.9668
4 0.9661 0.9505 0.9655
5 0.9739 0.9492 0.9713

mean 0.9708 0.9541 0.9659
1 0.9456 0.9115 0.9297
2 0.9505 0.9159 0.9484

R52 3 0.9544 0.9275 0.9484
4 0.9593 0.9286 0.9577
5 0.9440 0.9143 0.9374

mean 0.9508 0.9196 0.9443
1 0.8772 0.7723 0.9142
2 0.8619 0.7702 0.9000

Web4 3 0.8619 0.7726 0.8798
4 0.8750 0.7690 0.9012
5 0.8726 0.7655 0.9107

mean 0.8697 0.7699 0.9012
Average mean 0.9216 0.8717 0.9154

Table 5.6: Values of Accuracy for each of the six datasets, for SVM, LSI, and
SVM-LSI, for each of the five folds, and average Accuracy over all the datasets
for each method.

90 Combinations Between Classification Methods

that is intermediate between the performances of the two original methods.

Overall, k-NN-LSI presents an average Accuracy over the six datasets that

is higher than the average Accuracy of each original method.

• SVM-LSI, the combination of SVM with LSI, outperforms both original meth-

ods SVM and LSI in some datasets. Since SVM is usually the best perform-

ing method, it is particularly interesting that its combination with LSI per-

forms even better in some situations.

Considering the present results obtained by the combinations of methods, it

is worth to continue exploring this line of research, namely regarding the combi-

nations between the number of dimensions that is considered in the LSI method

and the kernel function that is used by the SVM method.

Chapter 6

Incorporation of Unlabeled Data

using Centroid-based Methods

This chapter describes how a centroid-based method can be used to combine

large volumes of unlabeled data with small volumes of labeled data, in order

to improve Accuracy, while at the same time needing less labeled documents for

the training phase [Cardoso-Cachopo and Oliveira, 2007b].

6.1 Reasons to Choose a Centroid-based Method

The choice to use a centroid-based method to combine large volumes of unlabeled

data with small volumes of labeled data was done for the following reasons:

• Centroid-based methods provide a very good Accuracy, even when com-

pared to the state-of-the-art method in text classification, SVM.

• Centroid-based methods are very fast, both for training and for testing.

• Centroid-based methods require very small amounts of memory to build

92 Incorporation of Unlabeled Data using Centroid-based Methods

the model of the data.

• Centroid-based methods allow for the comparison of batch and incremental

updates of the model of the data.

• Centroid-based methods are easy to implement and to modify in order to

incorporate information about the unlabeled data.

6.2 Incorporating Unlabeled Data with EM

It has been shown that the use of large volumes of unlabeled data in conjunction

with small volumes of labeled data can greatly improve the performance of some

TC methods [Nigam et al., 2000]. The combination of the information contained

in the labeled and unlabeled data is done using Expectation-Maximization (EM).

EM is a class of iterative algorithms for maximum likelihood estimation of

hidden parameters in problems with incomplete data. In this case, I consider that

the labels of the unlabeled documents are unknown and use EM to estimate these

(unknown) labels.

I propose the combination of EM with a centroid-based method for TC, which

works according to the algorithm detailed in Algorithm 6.1, after choosing one of

the Equations (2.15) to (2.18) to calculate each class’s centroid. This classification

method will be referred to as C-EM.

6.3 Incrementally Incorporating Unlabeled Data

The incremental approach is well suited for tasks that require continuous learn-

ing, because the available data changes over time. Centroid-based methods are

6.3 Incrementally Incorporating Unlabeled Data 93

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.

Initialization step:

• For each class c j appearing in L, set Dc j to the set of documents in L
belonging to class c j.
• For each class c j, calculate the class’s centroid −→c j , using one of the

Equations (2.15) to (2.18).

Estimation step:

• For each class c j appearing in L, set Uc j to the empty set.

• For each document vector
−→
di ∈ U:

– Let ck be the class to whose centroid
−→
di has the greatest cosine

similarity, calculated using Equation (2.7).
– Add

−→
di to the set of document vectors labeled as ck, i.e., set Uck

to Uck ∪ {
−→
di }.

Maximization step:

• For each class c j, calculate −→c jnew , using Dck ∪Uck as the set of docu-
ments labeled as ck, for each class ck.

Iterate:

• If, for some j, −→c j 6= −→c jnew , then set −→c j to −→c jnew and repeat from the
“Estimation step” forward.

Outputs: For each class c j, the centroid −→c j .

Algorithm 6.1: Algorithm for the incorporation of unlabeled data combining
EM with a centroid-based method, C-EM.

particularly suitable for this kind of approach because they are very fast, both for

training and for testing, and can be applied to very large domains like the web.

Unlike the traditionally used perceptron-based method [Schütze et al., 1995;

Wiener et al., 1995], centroid-based methods trivially generalize to multiple classes.

In the case of single-label TC, there is no need to fine tune a threshold for de-

ciding when a document belongs to a class, because it will belong to the class

represented by the most similar centroid.

94 Incorporation of Unlabeled Data using Centroid-based Methods

In terms of computational efficiency, centroid-based methods are very fast,

because updating a centroid-based method can be easily achieved, provided that

some additional information is kept in the model for each centroid.

Algorithm 6.2 details the algorithm for the incremental update of a general

centroid-based method. This classification method will be referred to as C-Inc.

The next paragraphs describe how the model is updated for each of the centroid-

based methods presented in Section 2.3.4. In each case, the goal is to update the

model with a new document,
−−→
dnew, classified as belonging to class c j.

The simplest case is for the sum method (Equation (2.17)), where the method

is updated by calculating a new value for centroid −→c j using the following attri-

bution:

−→c j ←[−→c j +
−−→
dnew (6.1)

To simplify the incremental update of the average method (Equation (2.16)),

I maintain in the model also the number of documents, n j, which were used to

Inputs: A set of labeled document vectors, L, and a set of unlabeled
document vectors U.

Initialization step:

• For each class ck appearing in L, determine the class´s centroid −→ck ,
using one of the Equations for the centroids and considering only
the labeled documents.

Iterate: For each unlabeled document d j ∈ U:

• Classify d j according to its similarity to each of the centroids.
• Update the centroids with the new document d j classified in the

previous step.

Outputs: For each class ck, the centroid −→ck .

Algorithm 6.2: Algorithm for the incremental incorporation of unlabeled data
using a centroid-based method, C-Inc.

6.3 Incrementally Incorporating Unlabeled Data 95

calculate each centroid−→c j . With this information, the model is updated according

to the following attributions:

−→c j ←[
(−→c j .n j) +

−−→
dnew

n j + 1
and then n j←[n j + 1 (6.2)

For the normalized sum method (Equation (2.18)), I maintain, with each nor-

malized centroid−→c j , also the non-normalized centroid,−−→nnc j, so that updating the

model can be performed by the following attributions:

−−→nnc j←[−−→nnc j +
−−→
dnew and then −→c j ← [

−−→nnc j

‖ −−→nnc j ‖
(6.3)

Finally, the most complex case is for the Rocchio method (Equation (2.15)),

because each new document forces the update of every centroid in the model. In

this case, I maintain, for each centroid, −→c j , two vectors: the sum of the positive

examples, −−→pos j, and the sum of the negative examples, −−→neg j. Using these two

vectors, Equation (2.15) can be rewritten as

−→c j = β · −−→pos j− γ · −−→neg j (6.4)

Updating the model can be achieved by first updating the appropriate vectors:

−−→pos j←[−−→pos j +
−−→
dnew (6.5)

for each i 6= j, −−→negi ←[−−→negi +
−−→
dnew (6.6)

and then, calculating all the new centroids according to Equation (6.4).

In this work I experimentally show how incrementally updating the model

(that is, the centroids) with the unlabeled documents during the training phase

96 Incorporation of Unlabeled Data using Centroid-based Methods

influences the Accuracy of a centroid-based method.

6.4 Comparing Semi-Supervised and Incremental TC

This section provides empirical evidence that, when using centroid-based meth-

ods to perform single-label TC, incorporating information about unlabeled data

improves results if the initial model of the data is good enough, while it may

actually worsen results if the initial model was not good enough.

This is done, first using one synthetic dataset, and then using four real-world

datasets to confirm the results obtained previously.

This chapter reports results using Accuracy and not several values for MRR

because it is necessary to vary the number of labeled documents per class, and

using only Accuracy the charts are easier to understand.

6.4.1 Synthetic Dataset

The synthetic dataset was created with several goals in mind. First, it had to be

a dataset that was simple, and whose properties were well known. It was also

supposed to allow the generation of as many “documents” as were needed for

the experiments. Ultimately, it was necessary to prove that the effect of using

unlabeled data depends not only on the classification method that is used, but

also on the quality of the dataset.

What will be called the synthetic dataset corresponds to four different mix-

tures of Gaussians, in one dimension, thus representing, in fact, four different

datasets.1 The data points belonging to each Gaussian distribution are randomly

1Similar experiments were performed with Gaussians of up to 5000 dimensions. Because all
the Gaussians corresponded to high-dimensional spheres in the n-dimensional space, the results

6.4 Comparing Semi-Supervised and Incremental TC 97

generated according to the well known Gaussian probability distribution func-

tion:

g(x) =
e−(x−µ)2/2σ2

σ
√

2π
(6.7)

In each mixture of Gaussians, each Gaussian distribution corresponds to a dif-

ferent class. I used different ratios between parameters µ (mean) and σ (standard

deviation or width of the Gaussian) to simulate problems with varying difficul-

ties. Figure 6.1 depicts the four different mixtures of Gaussians, that is, the four

datasets with varying difficulties, that were used.

Is is easy to see that, as the ratio µ
σ decreases, the problem is more difficult,

because the overlap between the Gaussian distributions increases. This means

that it is more difficult to decide which of the two distributions originated a ran-

domly generated point. In particular, the limit for the Accuracy of the optimal

classifier can be obtained as the value of the cumulative distribution function of

the Gaussian at the point of intersection.

6.4.2 Using Unlabeled Data with the Synthetic Dataset

To prove that the effect of using unlabeled data depends not only on the classi-

fication method that is used, but also on the quality of the dataset, I randomly

generated four different two-class datasets, each according to two different one-

dimensional Gaussian distributions, so that each dataset posed a different diffi-

culty level, known in advance. With each dataset, I used the same classification

methods, and in the end I compared the results.

So that the experiments would not depend on one particular ordering of the

that were obtained were similar to the ones reported here.

98 Incorporation of Unlabeled Data using Centroid-based Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Gaussian Distributions
µ1 = 1.0, σ1 = 0.5

µ2 = −1.0, σ2 = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Gaussian Distributions
µ1 = 1.0, σ1 = 1.0

µ2 = −1.0, σ2 = 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Gaussian Distributions
µ1 = 1.0, σ1 = 2.0

µ2 = −1.0, σ2 = 2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Gaussian Distributions
µ1 = 1.0, σ1 = 4.0

µ2 = −1.0, σ2 = 4.0

Figure 6.1: Combinations of Gaussians used as the synthetic dataset.

6.4 Comparing Semi-Supervised and Incremental TC 99

dataset, I repeated the following steps 500 times for each dataset:

1. Randomly generate from 1 to 20 labeled training documents per class (in

this case, per Gaussian Distribution).

2. Based on the training documents alone, calculate each class’s centroid, that

is, the average of the numbers corresponding to the training documents.

3. Randomly generate 5000 test documents. These should be approximately

half from each class.

4. Determine Accuracy for the centroid-based method.

5. Randomly generate 5000 unlabeled documents.

6. Using C-EM / C-Inc, update each class’s centroid.

7. Determine Accuracy for C-EM / C-Inc, using the same test documents as

for the centroid-based method alone.

This can be summed-up in Algorithm 6.3.

For each dataset, repeat 500 times

For i = 1 to 20

Randomly generate i training docs per class

Calculate each class’s centroid

Randomly generate 5000 test docs

Determine Accuracy for the centroid-based method

Randomly generate 5000 unlabeled docs

Using EM / Inc, update the centroids

Determine Accuracy for EM / Inc

Algorithm 6.3: Algorithm for using unlabeled data with the synthetic dataset.

100 Incorporation of Unlabeled Data using Centroid-based Methods

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 5 10 15 20

A
cc

ur
ac

y

Labeled documents per class

µ1 = 1.0, σ1 = 0.5, µ2 = −1.0, σ2 = 0.5

Centroid
C-EM
C-Inc

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0 5 10 15 20

A
cc

ur
ac

y

Labeled documents per class

µ1 = 1.0, σ1 = 1.0, µ2 = −1.0, σ2 = 1.0

Centroid
C-EM
C-Inc

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0 5 10 15 20

A
cc

ur
ac

y

Labeled documents per class

µ1 = 1.0, σ1 = 2.0, µ2 = −1.0, σ2 = 2.0

Centroid
C-EM
C-Inc

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0 5 10 15 20

A
cc

ur
ac

y

Labeled documents per class

µ1 = 1.0, σ1 = 4.0, µ2 = −1.0, σ2 = 4.0

Centroid
C-EM
C-Inc

Figure 6.2: Accuracy for the Gaussians dataset, as a function of the number
of labeled documents per class that were used, for Centroid, C-EM and C-Inc.

Figure 6.2 presents the mean Accuracy values for the 500 tests for each dataset,

as a function of the number of labeled documents per class that were used.

Observe that there are some features that are common, independently of the

difficulty level of the dataset:

• As expected, more labeled training documents per class improve results.

This observed improvement, however, decreases as the number of labeled

documents increases.

6.4 Comparing Semi-Supervised and Incremental TC 101

• As the number of labeled training documents per class increases, the effect

of using unlabeled documents decreases. This means that, having unla-

beled data is always good, and it is better when there is less labeled data.

• Both methods (C-EM and C-Inc) of updating the centroids of the classes give

the same results, because both lines are the same. This happens in this case

because there are many unlabeled documents and their structure is very

simple (they are real numbers), so the order by which they are incorporated

in the model does not make a difference in the results obtained. In this

setting, it is better to incrementally update the centroids, because the results

are the same and this method is computationally faster.

As for the features that depend on the difficulty level of the dataset:

• As the difficulty level of the dataset increases, the Accuracy that can be

achieved decreases (note the different ranges in the Y axis).

• As the difficulty level of the dataset increases, the difference between the

lower and higher Accuracy level that can be achieved (the lower and higher

values in the Y axis) decreases. This means that the advantage of having

unlabeled data decreases.

• When only one labeled document per class is available, 5000 unlabeled doc-

uments led to an improvement in Accuracy from 0.9196 to 0.9771, for the

easier dataset, while for the most difficult dataset improvement is much

smaller, only from 0.5252 to 0.5331.

• As a general rule, the effect of using 5000 unlabeled documents to update

the model of the data decreases as the difficulty level of the dataset in-

creases.

All these observations lead to the conclusion that the effect of using unlabeled

102 Incorporation of Unlabeled Data using Centroid-based Methods

data depends not only on the classification method that is used, but also on the

quality of the dataset that is considered. If the initial model of the labeled data

was already able to achieve a high Accuracy, using unlabeled data will help im-

prove the results, and it will help more if the initial model was better.

6.4.3 Using Unlabeled Data with the Real World Datasets

To analyze the effect of using information from unlabeled data with the real-

world datasets, I used the R8, 20Ng, Web4 and Cade12 datasets. As already

pointed out, it was possible to find good classifiers for the first three datasets, but

not for the fourth. The Bank37 and the R52 datasets were not used in these ex-

periments because the number of labeled documents for some of the classes was

too low.

The steps followed for testing these datasets were similar to the ones followed

in the previous section, and can be summed-up in Algorithm 6.4. Due to their

reduced size, for the R8 and Web4 datasets I could only use 1000 unlabeled doc-

uments. For the R8 dataset, it was possible to select a maximum of 40 labeled

documents per class.

6.4 Comparing Semi-Supervised and Incremental TC 103

For each dataset, consider its train/test split

For each dataset, repeat 5 times

For i in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70}

Randomly select i labeled training docs per class

Calculate each class’s centroid using Equation (2.18)

Determine Accuracy for the centroid-based method

Randomly select 5000 (or 1000) unlabeled docs

from the remaining training docs

Using EM / Inc, update the centroids

Determine Accuracy for EM / Inc

Algorithm 6.4: Algorithm for using unlabeled data with the real-world

datasets.

Figure 6.3 presents the charts for the mean Accuracy values for the 5 runs for

each dataset. Tables 6.1, 6.2, 6.3, and 6.4 contain the values that were used to

plot the charts. These tables also contain values for other methods using small

numbers of labeled documents per class, which will be discussed afterwards.

Observe that, independently of the dataset that is used, the lines are steeper on

the left side (where there are less labeled documents per class) than they are in the

right side. This means that more labeled training documents per class improve

results, and that this improvement decreases as the number of labeled documents

per class increases.

The rest of the observations depend on the dataset that is used:

• For R8, which allowed the achievement of a high Accuracy using all 5485

training documents with Centroid and SVM, Accuracy varies from 0.5530

with one labeled document per class to 0.9375 with 40 labeled documents

per class for the Centroid method. It is worth noting that Accuracy starts

over 0.67 with a single labeled document per class for both C-EM and C-Inc,

104 Incorporation of Unlabeled Data using Centroid-based Methods

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Labeled documents per class

R8

Centroid
C-EM
C-Inc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

20Ng

Centroid
C-EM
C-Inc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

Web4

Centroid
C-EM
C-Inc

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

Cade12

Centroid
C-EM
C-Inc

Figure 6.3: Accuracy for the four real world datasets, as a function of the
number of labeled documents per class that were used, for Centroid, C-EM
and C-Inc.

6.4 Comparing Semi-Supervised and Incremental TC 105

R8
Lab/class Centroid C-EM C-Inc SVM N-Bayes k-NN LSI Vector
1 0.5530 0.6777 0.6701 0.5536 0.5033 0.5533 0.5433 0.5530
2 0.6483 0.7571 0.6118 0.6796 0.5866 0.6437 0.6597 0.6222
3 0.6899 0.9082 0.8859 0.7556 0.6386 0.6775 0.6980 0.6368
4 0.7662 0.9211 0.9074 0.8312 0.7103 0.7422 0.7596 0.6949
5 0.7790 0.9027 0.9025 0.8439 0.7314 0.7543 0.7741 0.7060
6 0.8026 0.9180 0.9059 0.8500 0.7648 0.7718 0.7854 0.7087
7 0.8267 0.9141 0.9061 0.8763 0.7924 0.7944 0.8018 0.7386
8 0.8388 0.9188 0.9113 0.8930 0.8099 0.8027 0.8153 0.7381
9 0.8547 0.9172 0.9163 0.9047 0.8270 0.8135 0.8234 0.7434
10 0.8707 0.9149 0.9044 0.9098 0.8531 0.8234 0.8261 0.7432
15 0.9014 0.9226 0.9087 0.9235 0.8949 0.8344 0.8364 0.7604
20 0.9138 0.9152 0.9108 0.9320 0.9126 0.8438 0.8405 0.7612
30 0.9304 0.9214 0.9166 0.9391 0.9261 0.8410 0.8514 0.7641
40 0.9375 0.9220 0.9231 0.9461 0.9365 0.8463 0.8645 0.7646
All 0.9356 — — 0.9698 0.9607 0.8524 0.9411 0.7889

Table 6.1: Accuracy values for the R8 dataset, as a function of the number of
labeled documents per class that were used, and using all the training docu-
ments, for Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector.

20Ng
Lab/class Centroid C-EM C-Inc SVM N-Bayes k-NN LSI Vector
1 0.2383 0.5090 0.2873 0.2383 0.1139 0.2382 0.2448 0.2383
2 0.3236 0.5949 0.3742 0.3231 0.1413 0.3222 0.3083 0.3037
3 0.3840 0.6199 0.4626 0.3775 0.1882 0.3765 0.3553 0.3387
4 0.4290 0.6367 0.5379 0.4186 0.2135 0.4150 0.3852 0.3681
5 0.4642 0.6695 0.5614 0.4535 0.2368 0.4481 0.4080 0.3855
6 0.4910 0.6718 0.5979 0.4820 0.2709 0.4709 0.4303 0.4042
7 0.5151 0.6652 0.6059 0.5040 0.3031 0.4944 0.4500 0.4228
8 0.5304 0.6779 0.6329 0.5158 0.3104 0.5053 0.4585 0.4283
9 0.5464 0.6841 0.6442 0.5298 0.3261 0.5175 0.4713 0.4386
10 0.5634 0.6846 0.6294 0.5436 0.3547 0.5291 0.4812 0.4487
15 0.6102 0.7052 0.6833 0.5924 0.4254 0.5621 0.5168 0.4715
20 0.6463 0.7156 0.7045 0.6302 0.4656 0.5933 0.5507 0.4994
30 0.6909 0.7268 0.7186 0.6772 0.5423 0.6277 0.5917 0.5346
40 0.7143 0.7322 0.7258 0.7036 0.5766 0.6510 0.6162 0.5557
50 0.7272 0.7306 0.7282 0.7149 0.6150 0.6633 0.6380 0.5704
60 0.7393 0.7393 0.7358 0.7290 0.6410 0.6721 0.6443 0.5823
70 0.7474 0.7424 0.7383 0.7392 0.6546 0.6779 0.6506 0.5928
All 0.7885 — — 0.8284 0.8103 0.7593 0.7491 0.7240

Table 6.2: Accuracy values for the 20Ng dataset, as a function of the number
of labeled documents per class that were used, and using all the training doc-
uments, for Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector.

106 Incorporation of Unlabeled Data using Centroid-based Methods

Web4
Lab/class Centroid C-EM C-Inc SVM N-Bayes k-NN LSI Vector
1 0.3457 0.3520 0.2582 0.3487 0.3649 0.3437 0.3517 0.3457
2 0.4070 0.5666 0.3351 0.4284 0.4665 0.4007 0.4322 0.4039
3 0.4499 0.5642 0.3961 0.4756 0.4582 0.4437 0.4466 0.4248
4 0.4759 0.5536 0.4388 0.4681 0.5123 0.4719 0.4769 0.4486
5 0.5029 0.6302 0.4122 0.4954 0.5540 0.4920 0.4903 0.4617
6 0.5239 0.6284 0.4901 0.5285 0.5633 0.5030 0.4928 0.4643
7 0.5357 0.6334 0.4652 0.5298 0.5685 0.5201 0.4964 0.4655
8 0.5457 0.6287 0.5592 0.5421 0.5834 0.5281 0.5074 0.4712
9 0.5605 0.6662 0.5981 0.5537 0.5977 0.5334 0.5117 0.4732
10 0.5868 0.6765 0.5380 0.5795 0.6183 0.5586 0.5215 0.4877
15 0.6404 0.6898 0.6142 0.6221 0.6632 0.5971 0.5398 0.5030
20 0.6622 0.7064 0.6650 0.6493 0.6923 0.6076 0.5554 0.5085
30 0.7107 0.7278 0.7155 0.7016 0.7231 0.6284 0.5679 0.5212
40 0.7377 0.7380 0.7156 0.7330 0.7477 0.6513 0.5840 0.5474
50 0.7540 0.7493 0.7354 0.7520 0.7580 0.6619 0.5970 0.5514
60 0.7626 0.7533 0.7446 0.7229 0.7688 0.6676 0.6086 0.5683
70 0.7715 0.7593 0.7474 0.7398 0.7784 0.6754 0.6285 0.5781
All 0.8266 — — 0.8582 0.8352 0.7256 0.7357 0.6447

Table 6.3: Accuracy values for the Web4 dataset, as a function of the number
of labeled documents per class that were used, and using all the training doc-
uments, for Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector.

6.4 Comparing Semi-Supervised and Incremental TC 107

Cade12
Lab/class Centroid C-EM C-Inc SVM N-Bayes k-NN LSI Vector
1 0.1212 0.1232 0.1212 0.1233 0.1372 0.1327 0.1325 0.1212
2 0.1562 0.1498 0.1063 0.1588 0.1501 0.1607 0.1561 0.1534
3 0.1719 0.1560 0.1280 0.1752 0.1559 0.1707 0.1655 0.1722
4 0.1843 0.1592 0.1232 0.1807 0.1575 0.1840 0.1665 0.1775
5 0.1932 0.1595 0.1341 0.1869 0.1633 0.1934 0.1745 0.1809
6 0.1957 0.1683 0.1381 0.1945 0.1683 0.1931 0.1755 0.1806
7 0.2121 0.1646 0.1384 0.2014 0.1738 0.2044 0.1846 0.1853
8 0.2152 0.1773 0.1334 0.2061 0.1728 0.2074 0.1873 0.1855
9 0.2222 0.1808 0.1657 0.2127 0.1831 0.2155 0.1925 0.1904
10 0.2283 0.1829 0.1692 0.2198 0.1930 0.2194 0.1951 0.1955
15 0.2571 0.2057 0.1720 0.2455 0.2084 0.2395 0.2062 0.2055
20 0.2735 0.1937 0.1893 0.2684 0.2220 0.2511 0.2174 0.2136
30 0.3165 0.2099 0.2289 0.3101 0.2504 0.2734 0.2332 0.2278
40 0.3339 0.2271 0.2437 0.3310 0.2589 0.2926 0.2402 0.2387
50 0.3533 0.2247 0.2232 0.3455 0.2736 0.3086 0.2496 0.2464
60 0.3670 0.2333 0.2482 0.3602 0.2708 0.3156 0.2632 0.2572
70 0.3782 0.2408 0.2511 0.3683 0.2875 0.3264 0.2679 0.2604
All 0.5148 — — 0.5284 0.5727 0.5120 0.4329 0.4142

Table 6.4: Accuracy values for the Cade12 dataset, as a function of the num-
ber of labeled documents per class that were used, and using all the training
documents, for Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and
Vector.

108 Incorporation of Unlabeled Data using Centroid-based Methods

and stays over 0.9 with as little as 4 labeled documents per class for both

these methods. In fact, for Centroid, Accuracy is higher using 40 labeled

documents per class than it was using all training documents as labeled.

This is probably because this dataset is very skewed.

• For 20Ng, which also allowed high Accuracy values using all 11293 training

documents with Centroid and SVM, Accuracy varies from 0.2383 with one

labeled document per class to 0.7474 with 70 labeled documents per class.

Using C-EM, Accuracy starts at 0.5 with a single labeled document per class,

and 15 labeled documents per class are enough to achieve 0.7 Accuracy. For

this dataset, C-EM consistently outperforms C-Inc, and both these methods

perform better than Centroid for small numbers of labeled documents per

class.

• For Web4, the Accuracy of the Centroid method steadyly improves from

0.35 to 0.77 as the number of labeled documents per class goes from 1 to

70. For this dataset, using C-EM to incorporate the unlabeled documents

improves performance for small numbers of labeled documents per class,

but using C-Inc has the opposite effect.

• For Cade12, which already had poor Accuracy values using all 27322 train-

ing documents with Centroid and SVM, Accuracy varies from 0.1212 with

one labeled document per class to 0.3782 with 70 labeled documents per

class (note the different ranges in the Y axis). For this dataset, using unla-

beled data worsens results, whether C-EM or C-Inc is used.

• For R8, 20Ng, and Web4, using unlabeled data improves results, and the

improvement is larger for smaller numbers of labeled documents per class,

while for Cade12, using unlabeled data worsens results. This observation

allows me to experimentally confirm my initial intuition that it is only worth

it to use unlabeled data if the initial model for the labeled data already pro-

6.4 Comparing Semi-Supervised and Incremental TC 109

vided good results.

• For R8, 20Ng, and Web4, as the number of labeled training documents per

class increases, the effect of using unlabeled documents decreases. Like for

the synthetic dataset, having unlabeled data is good, and it is better when

there is less labeled data.

• For all datasets, the two methods (C-EM and C-Inc) of updating the cen-

troids of the classes using unlabeled documents give different results, be-

cause now the order by which the centroids are updated is different. More-

over, the difference in the results decreases as the number of labeled doc-

uments increases. This happens because when more labeled documents

are available, the initial model is better, and therefore the centroids are less

moved by either one of the updating techniques. Generally, using C-EM to

update the centroids yields better results than using C-Inc.

All these observations confirm the previous conclusion that the effect of using

unlabeled data depends not only on the classification method that is used, but

also on the difficulty of the dataset that is considered. For the datasets for which

it is possible to achieve a good classification Accuracy (R8, 20Ng, and Web4),

using unlabeled data helped improve results, while for the dataset for which the

initial results were not so good (Cade12), using unlabeled data actually made the

results even worse.

I should note that the results presented here cannot be directly compared to

those in [Nigam et al., 2000] because the test settings were very different: (1) the

partition that was done to the 20Ng dataset was different, (2) the Reuters dataset

here is treated as single-labeled and in [Nigam et al., 2000] was treated as multi-

labeled, and (3) I use the standard mod Apté train/test partitions for this dataset

and that work does not.

110 Incorporation of Unlabeled Data using Centroid-based Methods

Another aspect that should be considered is how other methods, aside from

Centroid, behave with very small numbers of labeled documents per class. In

order to allow such a comparison, Figures 6.4 and 6.5 present the charts for the

mean Accuracy values for the 5 runs for each dataset and each method. The val-

ues used to plot the charts were already presented in Tables 6.1, 6.2, 6.3, and 6.4.

By observing these figures and tables, it is possible to draw some conclusions:

• As expected, for all datasets and all methods, performance increases as the

number of labeled documents per class increases.

• For R8, 20Ng, and Web4 the best performing method when there are small

numbers of labeled documents available is C-EM, which means that, in

these cases, it is worth using unlabeled data. Under the same circumstances,

the best performing method for Cade12 is Centroid, largely outperforming

Naive Bayes, which is the best performing method when all the training

documents are used for this dataset.

• Of the methods that do not make use of the unlabeled documents, there

is not one that always outperforms the others: for R8, the best method is

SVM; for 20Ng (and Cade12!), the best is Centroid; and for Web4, the best

is Naive Bayes.

Nigam [Nigam et al., 2000] already showed that unlabeled documents can be

used to improve the performance of a classifier based on the Naive Bayes method

when there are small portions of labeled documents available. Here, I showed

that the unlabeled documents can also be used to improve a Centroid based clas-

sifier, and that the obtained classifier provided the best results for small numbers

of labeled documents, on three of the four datasets analyzed.

6.4 Comparing Semi-Supervised and Incremental TC 111

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

Labeled documents per class

R8

Centroid
C-EM
C-Inc
SVM

Naive Bayes
k-NN

LSI
Vector

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

20Ng

Centroid
C-EM
C-Inc
SVM

Naive Bayes
k-NN

LSI
Vector

Figure 6.4: Accuracy for two of the real world datasets, R8 and 20Ng, as a
function of the number of labeled documents per class that were used, for
Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector.

112 Incorporation of Unlabeled Data using Centroid-based Methods

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

Web4

Centroid
C-EM
C-Inc
SVM

Naive Bayes
k-NN

LSI
Vector

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

A
cc

ur
ac

y

Labeled documents per class

Cade12

Centroid
C-EM
C-Inc
SVM

Naive Bayes
k-NN

LSI
Vector

Figure 6.5: Accuracy for two of the real world datasets, Web4 and Cade12,
as a function of the number of labeled documents per class that were used,
for Centroid, C-EM, C-Inc, SVM, Naive Bayes, k-NN, LSI and Vector.

6.5 Summary and Conclusions 113

6.5 Summary and Conclusions

This chapter described how it is possible incorporate information about unla-

beled documents during the training phase to complement the information con-

veyed by labeled documents, and hence improve classification Accuracy. It used

a centroid-based method and explained how to incorporate information about

the unlabeled documents in batch mode using EM, and incrementally, by updat-

ing the centroids every time a new unlabeled document arrives.

Using one synthetic dataset and four real-world datasets, it provided empir-

ical evidence that, if the initial model of the data is reasonable, using unlabeled

documents improves performance. On the other hand, using unlabeled data can

actually hurt performance if the initial model of the data is not good enough.

The results presented in this Chapter lead to the following conclusions:

• For the three datasets for which it is possible to find good classifiers using

all the training documents (R8, 20Ng, and Web4), it is worth to incorporate

information about the unlabeled documents when there are only a few la-

beled documents available. And in this case it is better to incorporate that

information using C-EM.

• For the dataset for which it was not possible to find a good classifier (Cade12),

it is better to ignore the information about the unlabeled documents, be-

cause it will worsen the results. For this dataset, when there are only a few

labeled documents available, it is better to use the simple centroid-based

method, even when considering all the classification methods compared in

this work.

114 Incorporation of Unlabeled Data using Centroid-based Methods

Chapter 7

Conclusions and Future Work

This chapter presents the main contributions of this work, as well as a description

of possible developments that can be pursued as future work.

7.1 Main Contributions

The work described in this dissertation explored several state-of-the-art methods

for Text Categorization (TC), and how some of them can be combined in order to

improve their performance.

To be able to perform a “fair” comparison between the different methods,

a computational framework named IREP—Information Retrieval Experimentation

Package— was developed. IREP allows testing different classification methods

while using the same datasets. IREP was built with the goals of being very con-

figurable, of allowing combinations of different classification methods, and of al-

lowing combinations of different term weighting schemes for the several datasets

that were used. With IREP, it was possible to perform the tests of the several

methods using the same datasets, the same terms and the same machine.

116 Conclusions and Future Work

It was also necessary to create a new data collection, and to retrieve several

other standard collections, so that the results obtained with this work could be

compared to the results obtained by other researchers. The datasets that resulted

from pre-processing the freely available collections were made publicly available

on a website. Part of the pre-processing that was applied to the original collec-

tions was applied to ensure that each document belongs to a single class, that is,

that the datasets are single-label.

Because this work was concerned with single-label TC, it was also necessary

to choose an evaluation measure more adequate to the single-label setting. The

measure that was used was Accuracy, and it was complemented with the Mean

Reciprocal Rank.

One of the first uses for the IREP framework was to perform a comprehensive

comparison of the several classification methods explored in this work, including

the ones that are most frequently used in the TC area. For this comparison were

used not only the standard collections that are used in this area, but also two other

less known collections in a different language, to confirm the results obtained.

This comparison led to several conclusions: of the several centroid-based meth-

ods that are used in the literature, C-NormSum is the one that provides the best

results; C-NormSum is competitive with other more computational demanding

methods, like SVM; the traditional tfidf term weighting approach is very effective,

even when compared to a more recent approach.

This work presented the combination of different classification methods with

LSI, namely k-NN and SVM. Its results suggested that k-NN-LSI, the combina-

tion of k-NN with LSI, usually shows a performance that is intermediate between

the ones of these two methods. Overall, k-NN-LSI presents an average Accuracy

over the five datasets that is higher than the average Accuracy of each original

method. It also showed that SVM-LSI, the combination of SVM with LSI, out-

7.2 Future Work 117

performs both original methods in some datasets. Because the SVM method has

been considered the top-performing method in several method comparisons in

the literature, the fact that SVM-LSI performs even better in some situations is

even more important.

This work also presented the combination of EM with a centroid-based method

that uses information from small volumes of labeled documents together with

information from larger volumes of unlabeled documents for text categorization,

and showed how a centroid-based method can be used to update the model of

the data incrementally, based on new evidence from the unlabeled documents.

Using one synthetic dataset and three real-world datasets, the results obtained

with this work provided empirical evidence that, if the initial model of the data

is reasonable, using unlabeled documents improves performance. On the other

hand, using unlabeled data can actually hurt performance if the initial model of

the data is not good enough.

Finally, this work also provided a comparison between the most used classi-

fication methods and the combinations of methods proposed in this work. This

comparison led to the conclusion that the combinations of methods can improve

the results obtained by the individual methods, even when they initially showed

a good performance, and that the improvement also depends on the difficulty

level of the dataset that was used.

7.2 Future Work

The work described in this dissertation opens up a series of interesting lines of

research for the future. Some of the most interesting possible developments for

this work include, but are not limited to, the following:

118 Conclusions and Future Work

• Given the present results regarding the combinations of methods, it will

be interesting to explore them even further, namely regarding the combi-

nations between the number of dimensions that is considered in the LSI

method and the kernel function that is used by the SVM method.

• It will be important to extend the centroid-based approach to multi-label

datasets. This will involve finding a threshold from which a document be-

longs to a class, and extending the semi-supervised approach for incorpo-

rating unlabeled data using multi-labeled datasets.

• The knowledge that was acquired in the development of the present IREP

framework is currently being applied in the specification and development

of IR-BASE [Calado et al., 2007], an object oriented framework that allows

the integration of several components, documentation and services, and

whose focus is on the rapid development of prototypes of Information Re-

trieval tools.

• A very active research area concerns Web 2.0, which refers to a second gen-

eration of web-based services which, among other things, allows internet

users to publish documents that they find interesting along with classifi-

cation keywords. The goal of these keywords is to facilitate searches on

related topics. The classification methods studied in this work may be suc-

cessfully applied to improve these searches.

Appendix A

Datasets

This appendix contains tables with the number of training documents, number

of test documents and total number of documents per class for each dataset, for

the train/test split used in my experiments. It also has a section detailing the

pre-processing applied to the documents in each collection.

120 Datasets

A.1 Bank37 Dataset

Class Training Test Total
bnffaps 51 21 72
bnffcf 33 19 52
bnfftib 15 3 18
bnfftin 14 4 18
bnqucum 21 10 31
bnqumt 22 9 31
bnqupco 31 15 46
bnqupe 37 25 62
bnqutib 14 10 24
bnqutl 11 10 21
boccaob 18 10 28
bocdob 35 21 56
ccarp 21 4 25
ccarpdi 27 7 34
cccan 4 3 7
ccccs 27 9 36
cccp 16 6 22
ccreq 7 6 13
ccv 9 5 14
cdratm 10 5 15
cdsub 10 4 14
cdua 11 4 15
chribn 29 17 46
co100 4 1 5
cocd 7 4 11
coepbv 26 19 45
coj 5 4 9
copee 23 6 29
cos 13 4 17
crhprc 6 7 13
nhi 230 116 346
oac 15 9 24
ocam 12 6 18
ocpbdp 30 16 46
ocpbig 31 11 42
op 37 21 58
ottib 16 12 28
Total 928 463 1391

Table A.1: Training, Test and Total number of documents for each of the
37 classes of the Bank collection, considering my random split — Bank37
dataset.

A.2 Web4 Dataset 121

A.2 Web4 Dataset

Class Training Test Total
project 336 168 504
course 620 310 930
faculty 750 374 1124
student 1097 544 1641
Total 2803 1396 4199

Table A.2: Training, Test and Total number of documents for each of the
4 classes of the Webkb collection, considering my random split — Web4
dataset.

122 Datasets

A.3 R8 and R52 Datasets

Topics Training Test Other Total
0 1828 280 8103 10211
1 6552 2581 361 9494
2 890 309 135 1334
3 191 64 55 310
4 62 32 10 104
5 39 14 8 61
6 21 6 3 30
7 7 4 0 11
8 4 2 0 6
9 4 2 0 6

10 3 1 0 4
11 0 1 1 2
12 1 1 0 2
13 0 0 0 0
14 0 2 0 2
15 0 0 0 0
16 1 0 0 1

Table A.3: Training, Test, Other and Total number of documents having a
certain number of topics for the Reuters-21578 collection, considering the
standard Mod Apté split. Here, “# Topics” stands for the number of topics
of the documents, “Train” for the number of training documents with a cer-
tain number of topics, “Test” for the number of test documents with a certain
number of topics, “Other” for the number of documents that are not consid-
ered as training nor test with a certain number of topics, and “Total” for the
total number of documents with a certain number of topics.

Class Training Test Total
acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51
interest 190 81 271
money-fx 206 87 293
ship 108 36 144
trade 251 75 326
Total 5485 2189 7674

Table A.4: Training, Test and Total number of documents per class for the
8 most frequent classes of the Reuters-21578 collection, considering docu-
ments with a single topic and the standard Mod Apté split — R8 dataset.

A.3 R8 and R52 Datasets 123

Class Training Test Total
acq 1596 696 2292
alum 31 19 50
bop 22 9 31
carcass 6 5 11
cocoa 46 15 61
coffee 90 22 112
copper 31 13 44
cotton 15 9 24
cpi 54 17 71
cpu 3 1 4
crude 253 121 374
dlr 3 3 6
earn 2840 1083 3923
fuel 4 7 11
gas 10 8 18
gnp 58 15 73
gold 70 20 90
grain 41 10 51
heat 6 4 10
housing 15 2 17
income 7 4 11
instal-debt 5 1 6
interest 190 81 271
ipi 33 11 44
iron-steel 26 12 38
jet 2 1 3
jobs 37 12 49
lead 4 4 8
lei 11 3 14
livestock 13 5 18
lumber 7 4 11
meal-feed 6 1 7
money-fx 206 87 293
money-supply 123 28 151
nat-gas 24 12 36
nickel 3 1 4
orange 13 9 22
pet-chem 13 6 19
platinum 1 2 3
potato 2 3 5
reserves 37 12 49
retail 19 1 20
rubber 31 9 40
ship 108 36 144
strategic-metal 9 6 15
sugar 97 25 122
tea 2 3 5
tin 17 10 27
trade 251 75 326
veg-oil 19 11 30
wpi 14 9 23
zinc 8 5 13
Total 6532 2568 9100

Table A.5: Training, Test and Total number of documents per class for the 52
classes with at least one training and one test document of the Reuters-21578
collection, considering documents with a single topic and the standard Mod
Apté split — R52 dataset.

124 Datasets

A.4 20Ng Dataset

Class Training Test Total
talk.religion.misc 377 251 628
talk.politics.misc 465 310 775
alt.atheism 480 319 799
talk.politics.guns 545 364 909
talk.politics.mideast 564 376 940
comp.os.ms-windows.misc 572 394 966
comp.sys.mac.hardware 578 385 963
comp.graphics 584 389 973
misc.forsale 585 390 975
comp.sys.ibm.pc.hardware 590 392 982
sci.electronics 591 393 984
sci.space 593 394 987
comp.windows.x 593 392 985
rec.autos 594 395 989
sci.med 594 396 990
sci.crypt 595 396 991
rec.sport.baseball 597 397 994
rec.motorcycles 598 398 996
soc.religion.christian 598 398 996
rec.sport.hockey 600 399 999
Total 11293 7528 18821

Table A.6: Training, Test and Total number of documents for each of the
20 classes of the 20-Newsgroups collection, considering the standard Bydate
split — 20Ng dataset.

A.5 Cade12 Dataset 125

A.5 Cade12 Dataset

Class Training Test Total
01–servicos 5627 2846 8473
02–sociedade 4935 2428 7363
03–lazer 3698 1892 5590
04–informatica 2983 1536 4519
05–saude 2118 1053 3171
06–educacao 1912 944 2856
07–internet 1585 796 2381
08–cultura 1494 643 2137
09–esportes 1277 630 1907
10–noticias 701 381 1082
11–ciencias 569 310 879
12–compras-online 423 202 625
Total 27322 13661 40983

Table A.7: Training, Test and Total number of documents for each of the
12 classes of the Cade collection, considering my random split — Cade12
dataset.

126 Datasets

A.6 Pre-Processing the Data

For the Bank collection, I applied the following pre-processing:

1. Substitute TAB, NEWLINE, RETURN and punctuation characters by SPACE.

2. Substitute multiple SPACES by a single SPACE.

3. Turn all letters to lowercase.

4. Substitute accented characters by their unaccented counterparts.

5. Add the subject of each message in the beginning of the message’s text.

6. Remove words that are less than 3 characters long.

7. Truncate words that are more than 20 characters long.

For the Webkb collection, I applied the following pre-processing:

1. Remove mime headers using StripMimeHeaders.java.

2. Delete the documents corresponding to classes “department”, “staff” and

“other”.

3. Convert from html to text using lynx.

4. Randomize files so that documents in each class are not in a predefined

order.

5. Separate two thirds for training and one third for testing.

6. Substitute TAB, NEWLINE, RETURN and punctuation characters by SPACE.

7. Substitute multiple SPACES by a single SPACE.

8. Turn all letters to lowercase.

9. Remove words that are less than 3 characters long. For example, remove

"he" but keep "him".

10. Truncate words that are more than 20 characters long.

For the Reuters-21578 and 20-Newsgroups collections, from the original doc-

uments, I applied the following pre-processing:

A.6 Pre-Processing the Data 127

1. Substitute TAB, NEWLINE, RETURN and punctuation characters by SPACE.

2. Substitute multiple SPACES by a single SPACE.

3. Turn all letters to lowercase.

4. Add the title/subject of each document in the beginning of the document’s

text.

5. Remove words that are less than 3 characters long.

6. Remove the 524 SMART stopwords. Some of them had already been re-

moved, because they were shorter than 3 characters.

7. Apply Porter’s Stemmer to the remaining words.

For the Cade collection, which was already preprocessed when I obtained it,

I simply transformed the file containing the terms of the documents to the same

format as the other files containing the processed datasets.

All the files for the processed datasets are text files containing one document

per line. Each document is composed by its class and its terms. Each document is

represented by a "word" representing the document’s class, a TAB character and

then a sequence of "words" delimited by spaces, representing the terms contained

in the document.

128 Datasets

Bibliography

Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T., and Jackson, P. Combining

multiple classifiers for text categorization. In Proceedings of CIKM-01, 10th ACM

International Conference on Information and Knowledge Management, pages 97–104.

ACM Press, New York, US, Atlanta, US, 2001.

B. Schölkopf, A. S., C. Burges, (Editor) Advances in Kernel Methods: Support Vector

Machines. MIT Press, Cambridge, MA, USA, 1999.

Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval. Addison-

Wesley, Reading, Massachusetts, USA, 1999.

Banerjee, A., Krumpelman, C., Ghosh, J., Basu, S., and Mooney, R. J. Model-based

overlapping clustering. In KDD ’05: Proceedings of the eleventh ACM SIGKDD in-

ternational conference on Knowledge discovery in data mining, pages 532–537. ACM

Press, New York, NY, USA, 2005.

Bell, D. A., Guan, J., and Bi, Y. On combining classifier mass functions for

text categorization. IEEE Transactions on Knowledge and Data Engineering, vol-

ume 17(10):pages 1307–1319, 2005.

Bennett, P. N., Dumais, S. T., and Horvitz, E. Probabilistic combination of text

classifiers using reliability indicators: models and results. In Proceedings of

SIGIR-02, 25th ACM International Conference on Research and Development in In-

formation Retrieval, pages 207–214. ACM Press, New York, US, Tampere, FI,

2002.

130 BIBLIOGRAPHY

Bennett, P. N., Dumais, S. T., and Horvitz, E. The combination of text classi-

fiers using reliability indicators. Information Retrieval, volume 8(1):pages 67–

100, 2005.

Berger, A., Caruana, R., Cohn, D., Freitag, D., and Mittal, V. O. Bridging the

lexical chasm: statistical approaches to answer-finding. In Proceedings of the

23rd Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 192–199. Athens, Greece, 2000.

Bi, Y., Bell, D., Wang, H., Guo, G., and Guan, J. Combining multiple classifiers

using dempster’s rule for text categorization. Journal of Applied Artificial Intelli-

gence, volume 21(3):pages 211–239, 2007.

Bilenko, M., Basu, S., and Mooney, R. J. Integrating constraints and metric learn-

ing in semi-supervised clustering. In ICML ’04: Proceedings of the twenty-first

international conference on Machine learning, pages 81–88. ACM Press, New York,

NY, USA, 2004.

Burges, C. J. C. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, volume 2(2):pages 121–167, 1998.

Calado, P. Utilização da Estrutura de Ligações para Recuperação de Informação na

World Wide Web. Ph.D. thesis, Universidade Federal de Minas Gerais, Departa-

mento de Ciência da computação, 2004.

Calado, P., Cardoso-Cachopo, A., and Oliveira, A. IR-BASE: An integrated frame-

work for the research and teaching of information retrieval technologies. In

TLIR’07 — First International Workshop on Teaching and Learning of Information

Retrieval. London, UK, 2007.

Cardoso-Cachopo, A. and Oliveira, A. Combining LSI with other classifiers to im-

prove accuracy of single-label text categorization. In EWLSATEL 2007 — First

BIBLIOGRAPHY 131

European Workshop on Latent Semantic Analysis in Technology Enhanced Learning.

Heerlen, The Netherlands, 2007a.

Cardoso-Cachopo, A. and Oliveira, A. L. An empirical comparison of text cate-

gorization methods. In Proceedings of SPIRE-03, 10th International Symposium on

String Processing and Information Retrieval, pages 183–196. Springer Verlag, Hei-

delberg, DE, Manaus, BR, 2003. Published in the “Lecture Notes in Computer

Science” series, number 2857.

Cardoso-Cachopo, A. and Oliveira, A. L. Empirical evaluation of centroid-based

models for single-label text categorization. Technical Report 7/2006, INESC-ID,

2006.

Cardoso-Cachopo, A. and Oliveira, A. L. Semi-supervised single-label text cate-

gorization using centroid-based classifiers. In ACM SAC 2007 — The 22nd An-

nual ACM Symposium on Applied Computing, Special Track on Information Access

and Retrieval (IAR), pages 844–851. Seoul, South Korea, 2007b.

Caron, J. Experiments with LSA scoring: Optimal rank and basis. Presented at

SIAM Computational Information Retrieval Workshop, 2000.

Caropreso, M. F., Matwin, S., and Sebastiani, F. A learner-independent evalua-

tion of the usefulness of statistical phrases for automated text categorization.

In A. G. Chin, (Editor) Text Databases and Document Management: Theory and

Practice, pages 78–102. Idea Group Publishing, Hershey, US, 2001.

Chang, C.-C. and Lin, C.-J. LIBSVM: a library for support vector machines, 2001.

Chuang, W. T., Tiyyagura, A., Yang, J., and Giuffrida, G. A fast algorithm for hi-

erarchical text classification. In Proceedings of DaWaK-00, 2nd International Con-

ference on Data Warehousing and Knowledge Discovery, pages 409–418. Springer

Verlag, Heidelberg, DE, London, UK, 2000. Published in the “Lecture Notes in

Computer Science” series, number 1874.

132 BIBLIOGRAPHY

Cohen, W. W. and Singer, Y. Context-sensitive learning methods for text catego-

rization. ACM Transactions on Information Systems, volume 17(2):pages 141–173,

1999.

Cormack, G. V. and Lynam, T. R. Validity and power of t-test for comparing map

and gmap. In Proceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval. Amsterdam, The Nether-

lands, 2007.

Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning, vol-

ume 20(3):pages 273–297, 1995.

Creecy, R. M., Masand, B. M., Smith, S. J., and Waltz, D. L. Trading MIPS and

memory for knowledge engineering: classifying census returns on the Connec-

tion Machine. Communications of the ACM, volume 39(1):pages 48–63, 1996.

Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines.

Cambridge University Press, Cambridge, MA, USA, 2000.

Debole, F. and Sebastiani, F. An analysis of the relative hardness of reuters-21578

subsets. Journal of the American Society for Information Science and Technology,

volume 56(6):pages 584–596, 2004a.

Debole, F. and Sebastiani, F. Supervised term weighting for automated text cat-

egorization. In S. Sirmakessis, (Editor) Text Mining and its Applications, Num-

ber 138 in the “Studies in Fuzziness and Soft Computing” series, pages 81–98.

Physica-Verlag, Heidelberg, DE, 2004b.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman,

R. A. Indexing by latent semantic analysis. Journal of the American Society for

Information Science, volume 41(6):pages 391–407, 1990.

Dempster, A., Laird, N., and Rubin, D. Maximum likelihood from incomplete

BIBLIOGRAPHY 133

data via the em algorithm (with discussion). Journal of the Royal Statistical Soci-

ety, Series B, volume 39:pages 1–38, 1977.

Fung, G. and Mangasarian, O. Semi-supervised support vector machines for un-

labeled data classification. In Optimization Methods and Software, 15, pages 29–

44. 2001.

Furnas, G. W., Deerwester, S. C., Dumais, S. T., Landauer, T. K., Harshman, R. A.,

Streeter, L., and Lochbaum, K. Information retrieval using a singular value

decomposition model of latent semantic structure. In Proceedings of the 11th

Annual International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 465–480. Grassau, France, 1988.

Han, E.-H. and Karypis, G. Centroid-based document classification: Analysis

and experimental results. In Principles of Data Mining and Knowledge Discovery,

pages 424–431. 2000.

Han, E.-H., Karypis, G., and Kumar, V. Text categorization using weight-adjusted

k-nearest neighbor classification. In Proceedings of PAKDD-01, 5th Pacific-Asia

Conferenece on Knowledge Discovery and Data Mining, pages 53–65. Springer Ver-

lag, Heidelberg, DE, Hong Kong, CN, 2001. Published in the “Lecture Notes in

Computer Science” series, number 2035.

Hsu, C. and Lin, C. A comparison of methods for multi-class support vector ma-

chines. Technical Report 19, Department of Computer Science and Information

Engineering, National Taiwan University, Taipei, Taiwan, 2001.

Hull, D. Using statistical testing in the evaluation of retrieval experiments. In

Proceedings of the 16th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 329–338. Pittsburgh, PA, USA,

1993.

134 BIBLIOGRAPHY

Hull, D. A. Improving text retrieval for the routing problem using latent semantic

indexing. In Proceedings of SIGIR-94, 17th ACM International Conference on Re-

search and Development in Information Retrieval, pages 282–289. Springer Verlag,

Heidelberg, DE, Dublin, IE, 1994.

Hull, D. A., Pedersen, J. O., and Schütze, H. Method combination for document

filtering. In Proceedings of SIGIR-96, 19th ACM International Conference on Re-

search and Development in Information Retrieval, pages 279–288. ACM Press, New

York, US, Zürich, CH, 1996.

Ittner, D. J., Lewis, D. D., and Ahn, D. D. Text categorization of low quality

images. In Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis

and Information Retrieval, pages 301–315. Las Vegas, US, 1995.

Joachims, T. A probabilistic analysis of the Rocchio algorithm with TFIDF for

text categorization. In Proceedings of ICML-97, 14th International Conference on

Machine Learning, pages 143–151. Morgan Kaufmann Publishers, San Francisco,

US, Nashville, US, 1997.

Joachims, T. Text categorization with support vector machines: learning with

many relevant features. In Proceedings of the 10th European Conference on Machine

Learning, pages 137–142. Springer-Verlag, Chemnitz, Germany, 1998a. Pub-

lished in the “Lecture Notes in Computer Science” series, number 1398.

Joachims, T. Text categorization with support vector machines: learning with

many relevant features. In Proceedings of ECML-98, 10th European Conference

on Machine Learning, pages 137–142. Springer Verlag, Heidelberg, DE, Chem-

nitz, DE, 1998b. Published in the “Lecture Notes in Computer Science” series,

number 1398.

Joachims, T. Transductive inference for text classification using support vector

BIBLIOGRAPHY 135

machines. In Proceedings of the 16th International Conference on Machine Learning,

pages 200–209. Morgan Kaufmann Publishers, Inc., Bled, Slovenia, 1999a.

Joachims, T. Transductive inference for text classification using support vector

machines. In Proceedings of ICML-99, 16th International Conference on Machine

Learning, pages 200–209. Morgan Kaufmann Publishers, San Francisco, US,

Bled, SL, 1999b.

Jones, K. S. and Willett, P., (Editors) Readings in Information Retrieval. Morgan

Kaufmann Publishers, Inc., Los Altos, USA, 1997.

Koller, D. and Sahami, M. Hierarchically classifying documents using very few

words. In Proceedings of ICML-97, 14th International Conference on Machine

Learning, pages 170–178. Morgan Kaufmann Publishers, San Francisco, US,

Nashville, US, 1997.

Koster, C. H. and Seutter, M. Taming wild phrases. In Proceedings of ECIR-03,

25th European Conference on Information Retrieval, pages 161–176. Springer Ver-

lag, Heidelberg, DE, Pisa, IT, 2003.

Lam, W. and Lai, K.-Y. A meta-learning approach for text categorization. In

Proceedings of SIGIR-01, 24th ACM International Conference on Research and De-

velopment in Information Retrieval, pages 303–309. ACM Press, New York, US,

New Orleans, US, 2001.

Larkey, L. S. and Croft, W. B. Combining classifiers in text categorization. In

Proceedings of SIGIR-96, 19th ACM International Conference on Research and De-

velopment in Information Retrieval, pages 289–297. ACM Press, New York, US,

Zürich, CH, 1996.

Lertnattee, V. and Theeramunkong, T. Effect of term distributions on centroid-

based text categorization. Information Sciences, volume 158(1):pages 89–115,

2004.

136 BIBLIOGRAPHY

Lewis, D. D. An evaluation of phrasal and clustered representations on a text cat-

egorization task. In Proceedings of SIGIR-92, 15th ACM International Conference

on Research and Development in Information Retrieval, pages 37–50. ACM Press,

New York, US, Kobenhavn, DK, 1992a.

Lewis, D. D. Text representation for intelligent text retrieval: a classification-

oriented view. Text-based intelligent systems: current research and practice in infor-

mation extraction and retrieval, pages 179–197, 1992b.

Lewis, D. D. Naive (Bayes) at forty: The independence assumption in informa-

tion retrieval. In Proceedings of ECML-98, 10th European Conference on Machine

Learning, pages 4–15. Springer Verlag, Heidelberg, DE, Chemnitz, DE, 1998.

Published in the “Lecture Notes in Computer Science” series, number 1398.

Lewis, D. D. and Jones, K. S. Natural language processing for information re-

trieval. Communications of the ACM, volume 39(1):pages 92–101, 1996.

Lewis, D. D. and Ringuette, M. A comparison of two learning algorithms for text

categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document

Analysis and Information Retrieval, pages 81–93. Las Vegas, US, 1994.

Ling, C., Huang, J., and Zhang, H. Auc: a statistically consistent and more dis-

criminating measure than accuracy. In Proceedings of IJCAI-2003, pages 519–526.

2003.

Liu, T.-Y., Yang, Y., Wan, H., Zhou, Q., Gao, B., Zeng, H.-J., Chen, Z., and Ma,

W.-Y. An experimental study on large-scale web categorization. In WWW ’05:

Special interest tracks and posters of the 14th international conference on World Wide

Web, pages 1106–1107. ACM Press, New York, NY, USA, 2005.

MacQueen, J. Some methods for classifcation and analysis of multivariate ob-

servations. In 5th Berkley Symposium on Mathematical Statistics and Probability,

pages 281–297. 1967.

BIBLIOGRAPHY 137

Masand, B., Linoff, G., and Waltz, D. Classifying news stories using memory-

based reasoning. In Proceedings of the 15th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, pages 59–65. ACM

Press, Copenhagen, Denmark, 1992.

McCallum, A. K. and Nigam, K. Employing EM in pool-based active learning

for text classification. In Proceedings of ICML-98, 15th International Conference on

Machine Learning, pages 350–358. Morgan Kaufmann Publishers, San Francisco,

US, Madison, US, 1998.

Miller, D. J. and Uyar, H. S. A mixture of experts classifier with learning based on

both labelled and unlabelled data. In Advances in Neural Information Processing

Systems, volume 9, pages 571–577. MIT Press, 1997.

Moschitti, A. and Basili, R. Complex linguistic features for text classification: A

comprehensive study. In Proceedings of ECIR-04, 26th European Conference on

Information Retrieval Research, pages 181–196. Springer Verlag, Heidelberg, DE,

Sunderland, UK, 2004. Published in the “Lecture Notes in Computer Science”

series, number 2997.

Nigam, K., Lafferty, J., and McCallum, A. Using maximum entropy for text classi-

fication. In IJCAI-99 Workshop on Machine Learning for Information Filtering,

1999.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. M. Text classifica-

tion from labeled and unlabeled documents using em. Machine Learning, vol-

ume 39(2/3):pages 103–134, 2000.

Ramakrishnan, G., Chitrapura, K. P., Krishnapuram, R., and Bhattacharyya, P. A

model for handling approximate, noisy or incomplete labeling in text classifi-

cation. In ICML ’05: Proceedings of the 22nd international conference on Machine

learning, pages 681–688. ACM Press, New York, NY, USA, 2005.

138 BIBLIOGRAPHY

Robertson, S. E. and Harding, P. Probabilistic automatic indexing by learning

from human indexers. Journal of Documentation, volume 40(4):pages 264–270,

1984.

Robertson, S. E. and Jones, K. S. Relevance weighting of search terms. Journal of

the American Society for Information Science, volume 27(3):pages 129–146, 1976.

Also reprinted in [Willett, 1988, pages 143–160].

Sable, C. and Church, K. Using bins to empirically estimate term weights for text

categorization. In Proceedings of EMNLP-01, 6th Conference on Empirical Meth-

ods in Natural Language Processing, pages 58–66. Association for Computational

Linguistics, Morristown, US, Pittsburgh, US, 2001.

Salton, G. The SMART Retrieval System. Prentice-Hall, Inc., New Jersey, USA,

1971.

Salton, G. Automatic Text Processing: The Transformation Analysis and Retrieval of

Information by Computer. Addison-Wesley, 1989.

Salton, G. and Buckley, C. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, volume 24(5):pages 513–523, 1988. Also

reprinted in [Jones and Willett, 1997, pages 323–328].

Salton, G. and Lesk, M. Computer evaluation of indexing and text processing.

Journal of the ACM, volume 15(1):pages 8–36, 1968. Also reprinted in [Jones and

Willett, 1997, pages 60–84].

Sanderson, M. and Zobel, J. Information retrieval system evaluation: effort, sen-

sitivity, and reliability. In Proceedings of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 162–169.

Salvador, Brasil, 2005.

Schapire, R. E. and Singer, Y. BOOSTEXTER: a boosting-based system for text

categorization. Machine Learning, volume 39(2/3):pages 135–168, 2000.

BIBLIOGRAPHY 139

Schütze, H., Hull, D. A., and Pedersen, J. O. A comparison of classifiers and

document representations for the routing problem. In Proceedings of SIGIR-95,

18th ACM International Conference on Research and Development in Information

Retrieval, pages 229–237. ACM Press, New York, US, Seattle, US, 1995.

Sebastiani, F. Machine learning in automated text categorization. ACM Computing

Surveys, volume 34(1):pages 1–47, 2002.

Sebastiani, F. Text categorization. In L. C. Rivero, J. H. Doorn, and V. E. Ferrag-

gine, (Editors) The Encyclopedia of Database Technologies and Applications, pages

683–687. Idea Group Publishing, Hershey, US, 2005.

Shah, C. and Croft, W. B. Evaluating high accuracy retrieval techniques. In Pro-

ceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 2–9. Sheffield, UK, 2004.

Shahshahani, B. M. and Landgrebe, D. A. The effect of unlabeled sam-

ples in reducing the small sample size problem and mitigating the Hughes

Phenomenon. IEEE Transactions on Geoscience and Remote Sensing, vol-

ume 32(5):pages 1087–1095, 1994.

Shankar, S. and Karypis, G. Weight adjustment schemes for a centroid based

classifier. 2000.

Sindhwani, V. and Keerthi, S. S. Large scale semi-supervised linear svms. In

Proceedings of the 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 477–484. Seattle, Washington,

USA, 2006.

Tan, S., Cheng, X., Ghanem, M. M., Wang, B., and Xu, H. A novel refinement

approach for text categorization. In CIKM ’05: Proceedings of the 14th ACM

international conference on Information and knowledge management, pages 469–476.

ACM Press, New York, NY, USA, 2005a.

140 BIBLIOGRAPHY

Tan, S., Cheng, X., Wang, B., Xu, H., Ghanem, M. M., and Guo, Y. Using drag-

pushing to refine centroid text classifiers. In Proceedings of the 28th Annual In-

ternational ACM SIGIR Conference on Research and Development in Information Re-

trieval, pages 653–654. Salvador, Brasil, 2005b.

Tsay, J.-J., Wei, Y.-G., and Wang, J.-D. Combining multiple classifiers for auto-

matic text categorization. In Proceeding of the Taiwan National Computer Sympo-

sium. 2003.

Vapnik, V. The Nature of Statistical Learning Theory. Springer-Verlag, Heidelberg,

Germany, 1995.

Voorhees, E. M. The TREC-8 Question Answering Track Report. In Proceedings

of the 8th Text REtrieval Conference, pages 77–82. Gaithersburg, Maryland, USA,

1999.

Weiss, S. M., Apté, C., Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., and

Hampp, T. Maximizing text-mining performance. IEEE Intelligent Systems, vol-

ume 14(4):pages 63–69, 1999.

Wiener, E. D., Pedersen, J. O., and Weigend, A. S. A neural network approach to

topic spotting. In Proceedings of SDAIR-95, 4th Annual Symposium on Document

Analysis and Information Retrieval, pages 317–332. Las Vegas, US, 1995.

Willett, P., (Editor) Document Retrieval Systems. Taylor Graham, Cambridge, MA,

USA, 1988.

Yang, Y. Expert network: effective and efficient learning from human decisions

in text categorisation and retrieval. In Proceedings of the 17th Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Re-

trieval, pages 13–22. Springer-Verlag, Dublin, Ireland, 1994.

Yang, Y. and Liu, X. A re-examination of text categorization methods. In Proceed-

ings of SIGIR-99, 22nd ACM International Conference on Research and Development

BIBLIOGRAPHY 141

in Information Retrieval, pages 42–49. ACM Press, New York, US, Berkeley, US,

1999.

Yang, Y., Zhang, J., and Kisiel, B. A scalability analysis of classifiers in text cate-

gorization. In Proceedings of SIGIR-03, 26th ACM International Conference on Re-

search and Development in Information Retrieval, pages 96–103. ACM Press, New

York, US, Toronto, CA, 2003.

	Introduction
	Text Categorization
	Contributions
	Outline of the Dissertation

	Related Work
	Text Categorization
	Single-Label vs Multi-label

	Document Term Weighting
	Term Frequency / Inverse Document Frequency
	Term Distributions
	Document Length Normalization

	Classification Methods
	Vector Method
	k-Nearest Neighbors
	Naive Bayes
	Centroid-based Methods
	Latent Semantic Indexing
	Support Vector Machines

	Evaluation Metrics
	Accuracy
	Mean Reciprocal Rank
	Micro and Macro Averaging
	Statistical Significance

	Combinations of Methods for Text Categorization
	Semi-supervised Text Categorization
	Incremental Text Categorization
	Datasets
	The 20-Newsgroups Collection
	The Reuters-21578 Collection
	The Webkb Collection
	The Cade Collection
	Pre-Processing

	Summary and Conclusions

	Experimental Setup
	Classification Methods
	Term Weighting
	Evaluation Metrics
	Datasets
	Creating a New Dataset from the Bank Collection
	Providing Other Single-label Datasets
	20-Newsgroups
	Reuters-21578
	Webkb
	Cade

	Statistics of the Datasets

	Computational Framework --- IREP

	Performance of Existing Text Classification Methods
	Comparing Centroid-based Methods
	Comparing Classification Methods
	Comparing Execution Times for the Methods
	Comparing Term Weighting Schemes
	Summary of Experimental Results

	Combinations Between Classification Methods
	Document Representation and Classification Strategy
	Combinations Between Methods
	Comparing k-NN-LSI with k-NN and LSI
	Comparing SVM-LSI with SVM and LSI
	Summary and Conclusions

	Incorporation of Unlabeled Data using Centroid-based Methods
	Reasons to Choose a Centroid-based Method
	Incorporating Unlabeled Data with EM
	Incrementally Incorporating Unlabeled Data
	Comparing Semi-Supervised and Incremental TC
	Synthetic Dataset
	Using Unlabeled Data with the Synthetic Dataset
	Using Unlabeled Data with the Real World Datasets

	Summary and Conclusions

	Conclusions and Future Work
	Main Contributions
	Future Work

	Datasets
	Bank37 Dataset
	Web4 Dataset
	R8 and R52 Datasets
	20Ng Dataset
	Cade12 Dataset
	Pre-Processing the Data

	Bibliography

