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Abstract. Due to the demand for real time wavelet processors in applications such as video compression [1],
Internet communications compression [2], object recognition [3], and numerical analysis, many architectures for
the Discrete Wavelet Transform (DWT) systems have been proposed. This paper surveys the different approaches
to designing DWT architectures. The types of architectures depend on whether the application is 1-D, 2-D, or 3-D,
as well as the style of architecture: systolic, semi-systolic, folded, digit-serial, etc. This paper presents an overview
and evaluation of the architectures based on the criteria of latency, control, area, memory, and number of multipliers
and adders. This paper will give the reader an indication of the advantages and disadvantages of each design.
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1. Introduction

The Discrete Wavelet Transform (DWT) is discrete in
time and scale, meaning that the DWT coefficients may
have real (floating-point) values, but the time and scale
values used to index these coefficients are integers.
A signal is decomposed by DWT into one or more
levels of resolution (also called octaves), as shown in
Fig. 1, where a 1-dimensional signal is decomposed
into 3 octaves. Figure 2 shows a one-dimensional, one-
octave DWT. It includes the analysis (wavelet trans-
form) on the left side and the synthesis (inverse wavelet
transform) on the right side. The low-pass filter pro-
duces the average signal, while the high-pass filter pro-
duces the detail signal. In multi-resolution analysis, the
average signal at one level is sent to another set of fil-
ters (Fig. 1), which produces the average and detail
signals at the next octave [4]. The detail signals are
kept, but the higher octave averages can be discarded,
since they can be re-computed during the inverse trans-
form. Each channel’s outputs have only half the in-
put’s amount of data (plus a few coefficients due to

the filter). Thus, the wavelet representation is approxi-
mately the same size as the original. The DWT can be 1-
Dimensional, 2-D, 3-D, etc. depending on the signal’s
dimensions.

The 2-D transform is simply an application of the
1-D DWT in the horizontal and vertical directions [5],
at least for the separable case. Figure 3 shows the 2-
dimensional (separable) transform for one octave. The
non-separable 2-D transform works differently from
the one shown, since it computes the transform based
on a 2-D sample of the input convolved with a matrix,
but the results are the same. The separable idea can be
extended to the 3-D DWT, shown in Fig. 4.

The low-pass filter applies a scaling function to a
signal, while the high-pass filter applies the wavelet
function. The scaling function allows approximation
of any given signal with a variable amount of precision
[5, 6]. Applying the following difference equation with
the scaling function’s coefficients, h, gives an approxi-
mation of the signal. This is also known as the low-pass
output, where W are the scaling coefficients, and j rep-
resents the octave, except in the case of W (0, n), which



156 Weeks and Bayoumi

Figure 1. Three octave decomposition of a 1-D signal.

Figure 2. A 1-Dimensional, 1-octave DWT and Inverse DWT.

Figure 3. A 2-dimensional, 1-octave DWT.

is the original signal:

W ( j, n) =
2n∑

m=0

W ( j − 1, m)h(2n − m) (1)

Convolution with the wavelet function’s coefficients,
g, produces the detail signal, also called high-pass

output Wh [5–10]:

Wh( j, n) =
2n∑

m=0

W ( j − 1, m)g(2n − m) (2)

The DWT of a 1-D signal can be computed recur-
sively using a filter pair with the fast pyramid algorithm,
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Figure 4. A 3-dimensional, 1-octave DWT.

by Mallat and Meyer [4], Fig. 1. It has a complexity
of O(N ), with an input of N samples. Other trans-
forms typically require O(N 2) calculations. Even the
Fast Fourier Transform takes O(N log N ) computa-
tions. The fast pyramid algorithm gets its efficiency
by halving the output data of each channel, otherwise
known as down sampling. Since every octave uses half
the number of data as the previous octave, the maxi-
mum number of octaves, J , can be found by setting 2J

equal to the input length, i.e. 2J = N , and the DWT
generates approximately N/2 j outputs for each octave
j . However, practical applications limit the number of
octaves. The number of operations is proportional to
2t(1 − (1/N )), where t represents the number of op-
erations in the first octave. Therefore, the DWT has
a lower bound of �(N ) multiplications [11]. Based
on the work of [4], Fridman and Manolakos [12] in-
clude a schedule for their folded wavelet architecture
that directly improves the effectiveness of hardware.
In essence, it devotes every other time slot to compute
the first octave, allowing the computations of higher
octaves to fill in between [13].

Several architectures have been proposed to per-
form the wavelet transform, mainly: systolic ar-
chitectures, semi-systolic, space-multiplexed, time-
multiplexed, folded, digit-serial, block-based, and non-
separable ones. These architectures are analyzed in this
paper. Architecture comparisons are also given, based

on several design and performance issues: latency, con-
trol, area, memory, and the number of multipliers and
adders.

This paper is organized as follows. The architectural
considerations are analyzed in Section 2, followed by
1-D DWT architectures in Section 3. Section 4 deals
with 2-dimensional DWT architectures, and Section 5
covers the 3-D case. Finally, Section 6 summarizes this
study and analysis.

2. Architecture Considerations

The performance and cost of DWT architectures are
influenced and affected by several design factors,
mainly latency, control, area, memory/storage, and
precision. Their impact varies based on the applica-
tion, wavelet coefficients, and type of architecture.
These architecture considerations are discussed in this
section.

2.1. Design Issues

Filters, the main computational kernels in DWT com-
putation, can be implemented either in serial or parallel.
The basic serial (systolic or semi-systolic) filter design
uses L multiply and accumulate cells (MACs), accom-
modating L wavelet coefficients (L is the width of the
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filter). During a single time step, each MAC performs
one multiplication and one addition, so 1/L of an an-
swer is generated at a time. Since the serial filter is
pipelined, it works on L calculations at the same time.
In a parallel filter, the inputs come to the multipliers si-
multaneously. The parallel filter has L multipliers, one
for each wavelet coefficient. The multiplications are
done in parallel, then their outputs are fed to a tree of
L −1 adders to compute the results in the shortest time
[8]. The adder tree has a latency of: (time needed for one
addition) × log(L). Adding the time needed for a multi-
plication to this gives the filter latency. Another design
question is ”how many wavelet coefficients should be
used?” This is a parameter of the application, which is
typically between 4 and 12 filter taps [12]. The size and
type of the wavelet filters do not matter to the architec-
tures described here, since most of them are scalable.
Both the low pass and high pass computations can be
done either by doubling the multiply-accumulate hard-
ware, or by doubling the clock frequency and having the
hardware do two computations per original clock pe-
riod; i.e. the computation can be multiplexed in space
or time [13–16]. This design choice has the obvious
tradeoff of speed versus area savings.

In the DWT computation, there are not exactly N/2
filter outputs for N inputs, because the filter imple-
mentation lengthens the outputs by the number of the
delay stages within the filter [17]. There are two ways
to deal with this problem. The first is zero padding,
where any value after the last input is assumed to be 0.
This adds a few extra outputs, equaling the number of
delay stages, but this is tiny compared to the input size.
The second solution assumes that the input is circular.
Circular input means that the input starts over at the
beginning when it reaches the end. For 1-D data, imag-
ine a circle. For 2-D, a torus describes the input. Both
solutions allow perfect reconstruction. Zero padding is
easier to implement in terms of routing. Some applica-
tions, such as the FBI fingerprint compression project
[18], only need one specific wavelet filter on the wavelet
analysis/synthesis chip. Therefore, the programmable
filters can be replaced by fixed filters, which reduce the
area required. Programmability gives the user flexibil-
ity, however. Most DWT chips allow coefficients to be
loaded.

Most architectures for the DWT are based on fixed-
point number representation. One can think of the
fixed-point number as an integer with a scale factor,
similar to a radix point. Treating the data values as in-
tegers greatly reduces the complexity of the hardware

design, makes performing multiplications faster, and
requires less silicon area. Floating-point allows a
greater range of numbers, but the wavelet transform
does not need the floating-point range, due to compact
support and small coefficients [19, 20].

The Inverse Discrete Wavelet Transform (IDWT) ar-
chitectures come in two forms. One assumes that all of
the DWT outputs are stored in memory (the off-line
case), while the second assumes that the DWT analy-
sis happens right before the IDWT synthesis (the on-
line case) [21]. Latency concerns are important in both
cases. The latter case requires a buffer of size 2J+1 be-
tween the DWT and IDWT, where J is the number of
octaves. Due to the similarity between the DWT and
IDWT, the same hardware can compute both functions,
with a few modifications. Therefore, most designs con-
centrate only on the DWT. Some designs, such as the
Wavelet Transform Processor (WTP) by Aware [22],
have both the DWT and IDWT built in.

2.2. Precision

The input data and output data precision are important
to a signal processing architecture design. Often, video
applications assume an input precision of 8 bits, corre-
sponding to 256 shades in the greyscale. However, for
other applications, the input precision could be 12 bits
or more corresponding to the input sampling hardware,
e.g. an analog to digital converter.

The intermediate coefficients are larger than the orig-
inal data, since the intermediate coefficients consist of
a summation of terms multiplied by the wavelet. The
rate of growth depends on the wavelet, but typically this
rate does not exceed a factor of 2 [20, 23]. To compute
lower octaves, the intermediate coefficients are again
passed through filters, which increase the range for each
octave computed. Most designs use fixed-point repre-
sentation. For example, a data value of 8 bits will need a
9th bit after the 1st octave computation, then a 10th bit
for the 2nd octave computation, and so on. Every time
an intermediate coefficient passes through a filter, its
range grows. Such bit growth is applicable to multi-
dimensional wavelet transforms, too. For the multi-
dimensional architectures introduced in Sections 4 and
5, the internal multipliers and adders will need to handle
data as wide as the outputs. The signal-to-noise ratio
(SNR) measures the difference between the floating-
point DWT coefficients and the ones rounded off due
to finite precision.
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2.3. Control

There are several types of control: centralized, flow,
and pre-stored. A centralized controller generates the
signals in one spot and distributes them to the other
components directly. Flow control sends the control
signals (tags) from processing element (PE) to PE along
with the partially computed data. A designer might also
build the control into the PE’s, called pre-stored control.
Centralized control may be easier to implement, but
may impact the scalability and increase the area, so the
choice of control is important to a good design [12]. In
dealing with architectures, we subjectively classify the
control as simple, moderate, or complex.

2.4. Area

Area is always an important consideration. For the
DWT, the multiplication hardware, the interconnec-
tions, and the storage will each add to the architecture’s
size. Therefore, an efficient design will minimize these
factors. Area is expressed in terms of gate count, µm2,
or λ2. If no other way is available, it will be given in
asymptotic complexity. Along with area, the number of
multipliers and adders indicate the size of the hardware.
The number of multipliers and adders are affected by
several design choices, such as whether serial or paral-
lel filters are used, whether time or space multiplexing
is employed, whether or not a lattice design is applied,
and to what degree folding is used. The number of oc-
taves and the number of wavelet coefficients has a direct
relationship to the number of adders, multipliers, and
multiply-accumulate cells.

2.5. Memory

Partial computations and input values must be stored
within the hardware. Several types of storage units are
available, such as MUX-based, systolic, RAM, reduced
storage, and distributed [21]. The MUX-based storage
unit has an array of storage cells that form serial-in-
parallel-out queues, such as in the pipelined design
[16], where one queue is used per octave. Multiplexors
determine which cell values are sent to the filters. This
approach is regular, but it is not scalable. The semi-
systolic storage unit is similar to the MUX-based unit,
except that busses and tri-state buffers are used in place
of multiplexors. This allows more octaves to be added
without changing the multiplexor’s size, and it keeps

the regularity. The semi-systolic unit has long busses,
which is a disadvantage. In the RAM based storage
unit, a large RAM replaces all of the storage cells, as
shown in [24–26], but this design is not as scalable. The
reduced-storage unit uses the forward-backward allo-
cation scheme to move data through the unit, allowing
for a minimum of storage cells (registers) [27]. Mini-
mizing storage like this makes control more complex,
and decreases regularity and scalability. The distributed
architecture has local storage on each processor in the
filter, which is analogous to parallel computers [15].
Additionally, each processor needs to have multiplex-
ors and demultiplexors in order to move data to another
processor’s memory.

3. 1-D Wavelet Architectures

One-dimensional architectures can be classified into
many types, the main ones are: space multiplexed, sys-
tolic array, time multiplexed, folded, and digit-serial.
There are techniques for improving these designs,
which include lattice, pipelining/register networking,
combined DWT and IDWT, and approximating results.
However, each improvement involves a certain trade-
off: for example, lattice uses less space at the expense
of a slower speed. Examples of each category will be
discussed below. Architectures are often designed with
applications in mind. For 1-D transforms, applications
may include denoising a nuclear magnetic resonance
(NMR) signal, compressing seismic information [18],
and identifying noisy FM signals [28].

3.1. Space Multiplexed Architectures

One of the most common DWT architectures is the
fully pipelined, 1-D DWT architecture of Knowles
[16], Fig. 5. It uses a low pass and a high pass filter,
which is an example of space multiplexing. Serial-in-
parallel-out (SIPO) shift registers store the filter inputs,
demonstrating multiplexor-based storage. One queue
stores data from the input stream, while the others store
data generated from the low pass filters. A design with
J octaves will require J shift registers, and the shift reg-
isters should be as deep as the longest filter. Because
of the scheduling, the contents of each shift register
will be used right after it fills up, but before it needs to
store another value. The shift registers are connected to
a multiplexor, which sends the contents of the correct
shift register to the filter pair. Both filters get the same
inputs. They perform the convolution in parallel, and
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Figure 5. Pipelined architecture [16].

pass along the results. The high pass filter’s output goes
to a demultiplexor. It decides which channel to send
the output to, based on the order of the octave. Another
demultiplexor routes the low pass filter’s output back

Figure 6. Systolic PE array architecture [13].

to the appropriate shift register. A small control unit
generates the signals to run the multiplexor, demulti-
plexors, and the shift registers. Together, these parts
form a 1-D DWT processor [16].

3.2. Systolic Arrays

The main features of systolic arrays are regularity, lo-
cality, and scalability. A semi-systolic array has mostly
local interconnections, so it retains scalability while al-
lowing more flexibility to the designer, and the PEs can
be less complex. Naturally, array architectures have dis-
tributed memory and control. This allows the PEs de-
signed for one case to be slightly modified or arranged
to solve another case. For example, a designer might
want an existing DWT architecture to handle a wider
filter length. Expanding a parallel filter for 2 more co-
efficients is not so easy, since another level of adders
will need to be included in the adder tree.

Fridman and Manolakos developed a set of sys-
tolic and semi-systolic arrays [13]. The semi-systolic
1-D DWT processing array meets the lowest possible
latency, shown in Fig. 6 for the 4-octave DWT. It has an



Discrete Wavelet Transform 161

efficiency of 1–2−J , which gets closer to 100% as the
number of octaves increase. Each PE needs memory
registers, depending on the total number of octaves.
This design is simple and modular, with distributed
control. Due to the scalability of the design, it trans-
lates to 2-D [13], as shown in the architecture of Chen
[29]. Another 1-D DWT processing array is described
in [30] for three octaves. It has latency of 3N/2. Three
octaves are optimal for this design, with 58% utiliza-
tion. Having four or more octaves increases the latency,
due to data collisions of the scheduling. The PEs of this
DWT architecture have 5 memory registers each, 2 reg-
isters plus one additional register per octave. The design
needs L PEs, where L designates the number of wavelet
coefficients. The systolic arrays have low latency and
are very efficient. An example of time multiplexed
systolic design is shown below.

3.3. Time Multiplexed Architectures

Syed and Bayoumi developed a systolic architecture
for the 1-D DWT [14], and noted that only half of
the PEs do calculations at a time. The other PEs
stay idle due to the downsampling operation. To im-
prove hardware utilization, a register was added for
the high-pass coefficient. During their idle time, the
PEs will calculate the details. The input signal must
be kept for an additional clock cycle, but this change
increases the hardware utilization and eliminates the
need for a high-pass filter. In effect, this architecture
maps the high-pass computations in time instead of
space. Figure 7 shows the PE array for a 3-octave
DWT. With a slight modification, this architecture can

Figure 7. Time multiplexed architecture [14].

be used to compute the inverse DWT as well. This
is a good example of a time multiplexed architecture,
where area is roughly half that of a space multiplexed
design.

3.4. Folded Architectures

Folding is the process of performing multiple opera-
tions with one processor [29]. Regardless of how many
octaves of decomposition are required, the 1-D folded
design only needs 1 low pass and 1 high pass filter,
Fig. 8 [27]. This design shows a high-pass filter on top,
with a low-pass filter below. Notice that the high-pass
(detail) outputs are simply sent off-chip. The results
from the low-pass filter are passed along to registers
to the right of the filter, and are periodically sent off-
chip. While the filters use the 4 latest inputs every-other
clock cycle, the multiplexors send along previous low-
pass results during the odd clock cycles. Multiplexors
pass on results from the first octave on clock cycle 3,
and every 4th clock cycle after that. Similarly, in every
clock cycle beginning with the 5th and in increments of
8, the multiplexors send along results from the second
octave. Naturally, this example is specific to a 3-octave
decomposition. Folding has the disadvantages of long
wires for interconnection, and the filters are not used to
their full potential. The 3-octave analysis above shows a
utilization of 7/8. Folding does have advantages of low
latency, as well as a flexible word-length. Categories
of folded architectures are serial, parallel, and serial-
parallel (for the 2-D case), depending on the manner
which the filter requires the inputs. In a folded archi-
tecture, a pair of filters is used, and the output from
the low-pass filter feeds back to the input. This allows
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Figure 8. Folded architecture [27].

multiple octaves to be computed by a single pair of
filters.

The DWT requires a special folding algorithm, since
the octaves have different amounts of calculations. For
example, if the first octave does N computations, then
the second octave only does N/2 computations. Most
folding algorithms assume a constant number of calcu-
lations, and are thus not appropriate for the DWT. The
design of the folding architecture uses “lifetime anal-
ysis” to figure out the minimum number of registers
which the design should include. The lifetime analysis
algorithm is given by Parhi and Nishitani [27].

Yu et al. [31] show an improved 1-D folded archi-
tecture by including an additional filter pair. The first
filter pair computes the first octave, while the second
one works on all lower octaves. This folding modifi-
cation increases the throughput. These folded architec-
tures have low storage requirements, and are fast and
efficient.

3.5. Digit-Serial Architectures

The digit-serial design is based on processing a cer-
tain number of bits per cycle, known as the digit-size.
A digit-serial architecture (also called digit pipelining)
uses the input digits one after the other, and the outputs
are produced similarly. Digit-serial architectures have
a high utilization of hardware, with less routing than
the folded design. Digits are smaller than words, i.e. for
the first octave, the digits are half the size of the input
words. A data converter breaks the input words into
2 digits, but the converter stage increases the latency.
The arithmetic components are smaller, but are not as
fast, compared to a folded design. Naturally, the design
requires a data format converter to reconcile the con-
stant clock period with the varying data rate. Similar to
the digit-serial approach are short-length filtering algo-
rithms. Short-length algorithms try to eliminate calcu-
lations by taking advantage of calculation redundancy.
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Figure 9. Digit-serial architecture [27].

The DWT digit-size varies with the octave j . The j th
octave processes wordlength/2 j bits at a time. As be-
fore, lifetime analysis allows the designer to minimize
the number of registers needed in the data converters.
Due to the downsampling implicit with the DWT, the
designer can view the computations as additions of even
and odd parts. Therefore, the architecture can send out
the even part of the output followed by the odd part in
order to keep the data rate consistent.

The digit-serial architecture [27] computes each oc-
tave with different sized processors, Fig. 9, again with
a 4-tap filter. A wavelet with more coefficients requires
more registers, so the application’s needs affect the
area and latency of the final design. An assumption is
made that there should be 2 pipeline stages within this
particular design. Another design consideration deals
with handling intermediate results. To juggle them, one
should add an output converter unit. For example, an
output from octave 1’s low pass filter will be used as
input to both the low and high pass filters of octave 2. Fi-
nally, ripple carry adders in the design affect the overall
speed, although Parhi and Nishitani note that the speed
would still be practical for video applications [27].

The digit-serial design allows the designer to use lo-
cal interconnections, which reduces routing. Also, one
clock operates the entire design. It utilizes the hardware

100%. The lower octaves need less supply voltage be-
cause of the smaller digit sizes, which lowers the over-
all power consumption. However, the increased amount
of processing, i.e. the data conversion, increases the la-
tency. Also, the wordlength must be a multiple of 2J ,
where J represents the number of octaves [27]. The
digit-serial design is not as flexible as the folded de-
sign, but it requires less power.

3.6. Specialized Architectures

There are techniques for making these DWT architec-
tures more efficient in terms of area and time, which
include lattice, pipelining, combined DWT and IDWT,
and approximating results. As mentioned previously,
each improvement involves a trade-off, though the
trade-off can be very desirable, like when speed is sac-
rificed for flexibility. Thus, we present several special-
ized architectures and note their positive and negative
attributes.

3.6.1. Combined DWT and IDWT Architectures.
Aware Inc. introduced a wavelet transform processor
(WTP) [22], which allows up to 6 coefficients. The
user chooses the wavelet coefficients, either specifying
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Figure 10. The combined DWT/IDWT architecture [22].

the coefficient values or the pre-loaded 6-coefficient
Daubechies transform. Input and output data can have
a width of 16 bits, and can be fed at a rate of 30 MHz.
The chip processes both the DWT and the IDWT. A de-
lay of 9 clock cycles occurs between the time that the
first input is received and the time that the first output
is complete.

The Aware WTP is pipelined into 4 stages, Fig. 10.
Each stage has registers, a multiplier, adder, and shifter.
Though the multiplier is size 16 × 16, only 16 bits are
passed on from the multiplier. Software chooses which
16 bits of the result to keep. For example, the most
significant bits of the multiplication result might all
be 0. Two 16 bit, bi-directional busses allow inputs
and outputs to the four stages, depending on the cross-
bar switch, while one output bus always supplies the
outputs. A designer can cascade a number of these chips
to achieve a longer wavelet. The WTP demonstrates
how the DWT and IDWT can be combined on a single
chip. Of course, combining these on one chip will have
an impact on the chip’s size, power consumption, and
speed.

Sheu, Shieh, and Cheng developed a 1-D architecture
that allows both the DWT and the IDWT [32]. Based on
the distributed arithmetic approach, the equations of the
DWT and IDWT are modified to allow two generalized
parts to compute both. Assuming a 4-tap wavelet, a bit-
level look up table is used to avoid a multiplication,
which speeds up the transform processing.

3.6.2. Lattice Filters. A lattice structure is a variation
of the direct DWT implementation, which has only half
of the required MACs. It needs complex control and in-
creased routing to allow for fewer multipliers. The filter
coefficients must be symmetric [33]. A lattice structure
has 2 multipliers and 2 adders and one delay with each
stage. The delay elements are clocked with a period of
2T. The lattice structure has been applied to both the
folded and the digit-serial designs [34]. Resulting de-
signs have smaller area and lower power dissipation,
but also have increased latency. For a good overview
of the lattice structure, see [35] and [36].

3.6.3. Register Network, and RAM-Based Architec-
tures. Vishwanath, Owens and Irwin [11] presented
three 1-D DWT systolic architectures. The first ar-
chitecture is similar to the systolic time-multiplexed
architecture seen in Section 3, but is presented here
for comparison with their other architectures. It cas-
cades linear systolic arrays in a matrix, where each
row computes one octave, while each column con-
tains a multiply and accumulate cell (MAC) for each
wavelet coefficient, Fig. 11. The input flows from left
to right, while the output flows in the opposite direc-
tion. One output can be created every two clock cy-
cles, since the cells include downsampling. Due to
this timing issue, two overlapped input streams can
feed into this architecture, e.g. a practical application
has the architecture computing the low and high-pass
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Figure 11. Systolic architecture [11].

outputs for a signal. Time mapping works for the
other 2 architectures of Vishwanath et al. [11] as well.
This architecture suffers from a large area require-
ment, and keeps the processors busy only 33% of the
time.

The second architecture by these researchers uses
a register network to store intermediate data. It im-
proves the processor utilization while reducing the
area, Fig. 12. The improved architecture schedules the
octave outputs as in [13]. To implement this design,
a routing network is used consisting of shift regis-
ters. The network has a size of (number of wavelet
coefficients) × (number of octaves). A bound of the area
was calculated to be O (network size × precision). The
time needed to find a DWT with this architecture is 2N
cycles.

Finally, Vishwanath et al. proposes an improved
DWT architecture that has minimal area and uses
RAM, Fig. 13 [11]. However, the control is very com-
plex. The hardware schedules the inputs on-line, de-
pending on whether the clock cycle is even or odd.
Tags specifying the octaves are added to the data, for
flow-control. It multiplies data only when the input tag
is 1 less than the output tag. Due to the scheduling dif-
ference, the basic cell for this architecture had to be

Figure 12. Register network architecture [11].

modified, so it is semi-systolic. The complexity of this
design means that the clock cycle must be slower than
the clocks in the other architectures.

3.6.4. Approximate 1-D DWT Architecture. Chang
et al. present a plan to get faster wavelet transforms
at the expense of accuracy. They use fixed-point, but
also propose thresholding the calculations. If the prod-
uct of a data value and a wavelet coefficient will be
close to zero, then the multiplication will be skipped,
saving time. The two operands are quantized to decide
whether or not to perform the multiplication based on
the magnitude estimate stored in a lookup table [19].

Another architecture giving a DWT approximate is
the design of Lewis and Knowles [37]. They present a
VLSI architecture that performs the DWT with 4 tap
Daubechies filters. The key advantage of this architec-
ture is that it does not include multipliers, which saves
on space while increasing speed. It takes advantage of
the wavelet coefficients and the low precision require-
ments of video applications. Since multiplication or
division by powers of 2 can be achieved by shifting the
data left or right, some multiplications can be done by
shifting and adding. For example, multiplication by 32
is simply a left-shift of 5 bits. The four values used in
this wavelet transform are:

a = (1 + sqrt(3))/8 ∼= 11/32 low pass filter:

b = (3 + sqrt(3))/8 ∼= 19/32 h = (a, b, c, −d)

c = (3 − sqrt(3))/8 ∼= 5/32 high pass filter:g(n)

d = (−1 + sqrt(3))/8 ∼= 3/32 = (−1)n+1h(3 − n)
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Figure 13. RAM-based architecture [11].

The Lewis and Knowles design [37] presents a good
way to speed up the transform (i.e. eliminate actual
multiplications) when a fixed wavelet is used. Sheu
et al. also eliminated multipliers from their architecture
[32]. They use a look-up table, which saves in area.
These architectures have the obvious disadvantage of
low precision. Also, changing the wavelet coefficients
would be difficult if not impossible.

3.6.5. Summary of 1-D Architectures Direct imple-
mentation of 1-D DWT tends to be inefficient, and sev-
eral alternatives have been developed. The pipelined
and space-multiplexed architecture is the first discrete
wavelet transformer [16]. It is not scalable, it has a
large area, complex control and routing, but its latency
is O(N ). The folded and digit-serial architectures of
Parhi [27], Aware [22], and Knowles [16] are fast but
not regular. This means that scaling these architectures
for more octaves, wider filters, or to higher dimensions
is difficult [12]. Vishwanath, et al. developed three ar-
chitectures, a systolic design, one using a register net-
work to control the filter pair, and the third using RAM
[11]. Fridman and Manolakos’ architecture has the ad-
vantages of distributed memory and control, based on
systematic data dependence analysis [12].

A lower latency bound of O(N ) is important, it
has been achieved by Vishwanath [11], Parhi [27],
and Knowles [16]. Fridman’s first architecture [12]
also meets this lowest possible latency with an effi-
cient semi-systolic 1-D DWT processing array. It has
a latency of N or 2N depending on space or time
multiplexing [12], and it requires 2L or L Multiply-
Accumulate units, respectively. It can be distinguished
by the following observations. Adding more processing
elements can lengthen the filters, and simple changes to
the PEs allow the architecture to perform more octaves.
Most important, the analysis can be used for arrays
other than the one specifically shown in [12], such as 2-
D designs. Aware’s WTP has a latency of O(N log N ).
The designs of Vishwanath et al. [11] have global rout-
ing networks, which varies in memory requirements.

The systolic architectures are modular and have a lower
latency bound of N [11, 14].

The folded architecture is faster, but larger. It has
low latency and allows for arbitrary wordlength. The
digit-serial architecture uses less power and has simpler
interconnections, but the speed and wordlength are con-
strained. Each architecture requires the same amount of
input/output pins. With these features in mind, a project
designer can choose which of these architectures best
suits the target application.

Chang, Liu and Chan developed a quick algo-
rithm that yields an approximate solution [19]. Lewis
and Knowles present a way to calculate the DWT
with Daubechies coefficients, without multipliers [37].
These algorithmic variations can be implemented ac-
cording to the application’s demands. For fast, low-
resolution video applications, Lewis and Knowles’
multiplier-less algorithm would work well. The design
of Chang, et al. sacrifices accuracy for speed, while
Lewis and Knowles’ design is not readily altered for a
different wavelet.

For a lossy compression of an on-line source signal,
speed will be more important than power consumption
or space savings. For example, a chip based on the ar-
chitecture of [16] can meet the television requirements.
If the manufacturers are making several variations for
different sized wavelets, perhaps for different television
models, then the design of [13] would be very good.
If accuracy is not required, for example in compres-
sion of a voice signal, the approximate DWT [19] may
work well. If the chip will be in a portable unit, such
as a telephone, then savings in power dissipation will
be the dominant concern, the digit-serial lattice design
[34] would be good, and the folded lattice [34] would
be good for an even smaller unit. For an integrated unit,
space savings would allow other functions to be per-
formed on chip, such as quantization, so a denoising
circuit in a sensor might be best suited by [14]. In short,
the architecture chosen for an application will depend
upon the application’s priorities. A comparison of 1-D
DWT architectures appears in Table 1.
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Table 1. Architectures for the 1-D DWT.

Type Latency Control Area Memory MACs

[8] Parallel filter Tm + Ta log L Complex O(LJK) JL shift registers 2L mults, 2(L − 1)
adders

[11] Systolic 2N + log(N )-4 Simple O(LK log(N )) 2L(J + 3) JL MACs (12 mults,
(48 registers) 12 adders)

[11] Semi-systolic 2N Simple/moderate O(LK log(N )) JL registers L MACs
shift-registers

[11] Semi-systolic 2N Complex O(LK) L(J+ 3) registers L MACs
RAM-based

[14] Systolic O(N ) Simple/moderate 11.6 × 7.9 mm2 per PE 60 registers 18(8b) mults, 21(16b)
adders, (18 MACs)

[16] Pipelined (folded) O(N ) Simple, centralized 1500 gates JL registers 2L

[19] Fast approximation Depends on Central, complex Small 36 registers + Booth mult (1 adder +
input data coefficient table circuitry)

[20] Systolic time O(N ) Simple 10 mm × 7 mm 49 registers L
multiplexed (3 octs, L = 6)

[27] Folded O(N ), 28 cycles Complex More than digit-serial 164 registers 4(L + 1) mults,
(at 3 octaves) 4L adders

[27] Digit-serial 70 cycles Simple Less than folded 258 registers 4 γ (L + 1) mults
(at 3 octaves) 4 γ L adders

[30] Semi-systolic 3N /2 + 1 Simple, distributed – L(J+ 2) registers L PEs
PE array

[31] Folded, 2 stages O(N ) Simple 2974 × 2868 µm2, JL registers 2L MACs
39275 transistors

[22] Pipelined O(N log(N )) External O(NK) 4 (16b), 4(3b) 4 MACs
for 1 octave registers

[32] No multipliers O(N ) Simple 5100 ∗ 5900 µm2 61 registers 32 adders

[35] Folded-lattice 74 cycles Complex About half the size 182 registers (L + 3) mults,
(at 3 octaves) of folded 2(L + 1) adds

[34] Digit-serial-lattice 168 cycles Simple About half the size 257 registers 2 γ (L + 3) mults
(at 3 octaves) of digit-serial 2 γ (L + 1) adds

[38] Frequency domain 2 log(n1) + 1 complex O(KJN1 log(N1)) – JN1

multiplication

[39] Analog L (4 taps, Simple About 1500 × 900 λ2 Uses voltage 4 quadrant mults,
3 octaves) followers current adders

Note: In the architectures of [34] and [27], the character γ is used, where γ = 	i=1..K 2−i .
L = filter length, J = number of octaves, K = data precision (i.e. number of bits per input sample), N = input size (for 1-D), M = input size
(for 2-D, i.e. rows) (M = N for square images), P = input size (for 3-D, i.e. number of images), Ta = Time to perform 1 addition, Tm = Time
to perform 1 multiplication, – = not addressed.

4. 2-D Wavelet Architectures

Architectures for the 2-D DWT include many of the
same types as in 1-D case, presented in the previous
section, as well as a few new ones. The 2-D folded
and semi-systolic architectures are similar to the 1-D
versions, while the block-based, and non-separable ar-
chitectures do not have a 1-D equivalent. A 2-D digit-
serial design is also feasible. Applications for the 2-D

transform include image compression, and speeding up
matrix algebra [18]. Two-dimensional data get the most
correlation from the transform when the second dimen-
sion is considered. In other words, one could treat 2-D
data as 1-D data, and perform the 1-D DWT on it, but
the transform will be less effective. The DWT com-
pacts the majority of the signal’s energy into the low
pass outputs. The resulting approximate signal from a
2-D transform will be 1/4 the size of the original, while
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the approximate signal from a 1-D transform will only
be 1/2 the size of the original. Therefore, the 2-D trans-
form is more efficient for 2-D data than a 1-D transform,
since it compacts the signal’s energy (i.e. the approxi-
mate signal) into less space.

When the DWT is separable, it means that the 2-D
transform is simply an application of the 1-D DWT in
the horizontal and vertical directions. In other words,
filtering in both the horizontal and vertical directions
performs the separable 2-D discrete wavelet transform.
The horizontal (row) inputs flow to one high-pass filter
and one low-pass filter. The filter outputs are downsam-
pled by 2, meaning that every other output is discarded.
At this point, a 1-D transform would be complete for
one octave. The 2-D transform sends each of these out-
puts to another high-pass and low-pass filter pair that
operates along the columns. Outputs from these fil-
ters are again downsampled. One octave of the 2-D
transform results in four signals, with each of the four
signals only one-fourth the size of the original input.
The algorithm sends the low-low output (the signal’s
approximation) to the next stage in order to compute
the next octave. This process repeats for all octaves.
Separable 2-D architectures can be generated from 1-
D designs, such as the case of the 2-D architecture of
[29], which is based on the 1-D design of [13]. The
non-separable 2-D DWT does not do the row and col-
umn transforms, but instead generates the 4 outputs of
an octave decomposition directly.

Figure 14. Serial-parallel 2-D architecture [40].

4.1. The 2-D Folded Architecture

Folded architectures for the 2-D DWT come in
three varieties. The first is serial-parallel, also called
systolic-parallel [40], where the computations along
the X (horizontal) axis are done with serial filters, while
the Y (vertical) axis calculations are done in parallel.
The second variety is to use parallel filters along both
dimensions [8]. The third one is a direct architecture
[40], it uses one filter combined with a multiplexor and
RAM to perform all calculations. It is similar to the
other folded architectures, but it takes longer to per-
form the transform since it only uses 1 filter pair.

The serial-parallel architecture has 2 serial horizon-
tal (row) filters, and 2 parallel vertical (column) filters,
Fig. 14. A storage unit buffers the data sent to the paral-
lel filters, and a second storage unit buffers the low-low-
pass output before it feeds back into one of the serial
filters. The first storage unit has an approximate size of
2K N , where K represents the data precision, while the
second storage unit has a size of N . The serial-parallel
architecture could be easily redesigned as a fully paral-
lel architecture. The fully parallel architecture replaces
the multipliers with programmable multipliers, which
eliminates half the multipliers. Both the serial-parallel
and fully parallel architectures are scalable.

The processing load does not distribute evenly in
a parallel environment. Folding can be used to make
the architecture more efficient since it requires only
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one pair of filters. As in the 1-D case, a folded archi-
tecture requires a large storage size. Without register
minimization, a 1-D folded architecture needs memory
storage of N words, where N is the length of the input.
A 2-D folded architecture, operating on N × N sized
data, requires a memory size of N 2 words, since N 2 out-
puts will need to be stored in the worst case (without
minimization). Register minimization is more difficult
to perform on a 2-D design, and takes away from the
modularity while increasing the complexity. Besides
a large storage size, the 2-D folded architecture has a
long latency [21].

Vishwanath et al. devised a 2-D algorithm that runs
in real-time, and is similar to the fast pyramid algo-
rithm [40]. The 1st octave has a calculation, followed
by 4 cycles where the lower octaves are scheduled. This
process repeats until completion. The calculations for
the IDWT are scheduled similarly, with the final re-
construction getting a time slot every other cycle. The
intermediate reconstructions are scheduled in between.
Interleaving the octave’s calculations in this manner re-
duce the DWT/IDWT storage requirements and over-
all latency. When using a vector quantizer, the outputs
must be in block form, and the inverse transform must
be set up to receive blocks. Putting data in block form
adds to the latency, especially in the inverse transform.
This architecture has the advantages of minimum la-
tency, minimum buffering, and single chip implemen-
tations for an encoder, decoder, and transcoder. The
scheme is hierarchical, which means that the image
can be accessed at different resolutions. Hierarchical
coding applies to progressive transmissions and multi-
purpose uses. This architecture takes N 2 + N cycles
to compute the 2-D DWT or IDWT. It has an area

Figure 15. Serial 2-D architecture [15].

of O(NLk). The 2-D implementation needs additional
memory to act as holding cells between the horizon-
tal and vertical filters [5]. The work of Vishwanath et
al. [40] addresses the problem of interactive multi-cast
over channels with multiple rates, for example, tele-
conferencing over mixed networks.

4.2. Semi-Systolic Architecture

The Limqueco and Bayoumi sequential architecture
[15], shown in Fig. 15, is optimized for a 2 octave,
2-D DWT, where it has 100% utilization. With modifi-
cations to the architecture, it can be expanded to include
more octaves, but the hardware utilization drops. This
architecture handles downsampling with time multi-
plexing, where an even and an odd coefficient share
one processing element. The processing element (PE)
alternatively uses the even and odd coefficients, result-
ing in a need for only half the number of PEs, while
improving the throughput by about 50%. A similar de-
sign of breaking the inputs into even and odd streams
can be found in [41]. Simply adding more PEs to the
filter can expand the number of filter coefficients. The
filter computes the high and low pass outputs at the
same time, which produces 2 outputs every other cy-
cle. From the horizontal filter, the outputs are fed to
the vertical filter one per cycle, instead of 2 outputs
per every other cycle with nothing in between. Stag-
gering the outputs this way allows the vertical filter to
be utilized 100% of the time. The second octave of this
architecture has only one filter. It computes both low
and high pass outputs, for both horizontal and vertical
directions. The second octave uses 2 register banks for
intermediate data storage. It requires adding one more
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filter and removing one register bank to expand this
architecture for more than 2 octaves. Though the regis-
ter bank’s memory decreases, memory is added to the
PEs. Since the PEs have different amounts of internal
storage, this architecture is semi-systolic. A 2-D DWT
for 3 octaves has a utilization of 91% for this ar-
chitecture, but the utilization increases for additional
octaves.

4.3. Block-Based 2-D Architectures

The block-based architecture requires that the input
signal be available as a block, instead of just a row
or column. The block-based architecture needs a data
converter, which reduces scalability and increases the
routing. The data conversion is necessary between oc-
tave decompositions. One example of the block-based
2-D architecture is in [42], Fig. 16, where the C units are
data converters, and the F units are filters. The design
is similar to the structure used for the 2-D Discrete Co-
sine Transform (DCT). The transform is “lapped” since
the data blocks are overlapped. To perform a transform
on an n × n block, an overlap of (L − 1) samples is
needed in both the horizontal and vertical directions.
The samples are given to the 1-D filtering module a
column at a time. The 1-D processor outputs 2 inner
products every other cycle, and these can be shifted to

Figure 16. Block-based 2-D architecture [42].

be output one at a time (1 output per cycle). Lifetime
analysis can be used with the design to minimize the
registers needed in the converters [34]. Other exam-
ples of a block-based 2-D architecture can be found in
[43] and [44]. Block-based architectures can be very
efficient in terms of memory use, or can perform the
transform very quickly [23].

4.4. Non-Separable 2-D Architecture

Another version of block-based design is the non-
separable architecture for the 2-D DWT. It uses a 2-
D parallel-serial filter for each octave’s output. This
is shown in Fig. 17 [31]. It has a storage size of
N (2L − 1). The non-separable approach performs the
decomposition without performing the DWT on rows
and columns. Instead, the input feeds to 4 filter units,
each calculating the high-high, low-high, high-low or
low-low pass results. The filter units have L-inputs
each, and essentially perform a matrix multiplication
to generate the outputs. The design needs no transpose
memory between rows and columns, which eliminates
some memory and delay. It is efficient for data sent in
a parallel manner. The main difference between this
architecture and the block-based design is the way it
handles inputs as bands (entire rows at a time) instead
of blocks.
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Figure 17. Non-separable 2-D architecture [39].

4.5. Architectural Improvements—The
Lattice Structure

Acharya et al. form a 2-D DWT module from 2 1-D
modules [45, 46], Fig. 18. A transpose circuit is used to

Figure 18. Lattice 2-D architecture [45, 46].

transfer the horizontal (row-wise) outputs to the vertical
(column-wise) DWT module. The design is specifically
for a 9–7 biorthogonal spline filter, where the low pass
filter has 9 coefficients, and the high pass filter has 7
coefficients. Since the coefficients are symmetric, 2 of
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the low pass filter coefficients have the same value,
while 3 of the high pass filter coefficients share the
same value. Thus, only 5 and 4 coefficients need to be
specified to the architecture.

The first few cycles allow the inputs to load. On the
following clock cycles, it generates a high or a low
pass filter output. On the trailing edge of an even clock
cycle, a high pass filter output becomes available. The
low pass filter outputs come on the trailing edge of odd
clock cycles. Since the architecture generates an output
for every clock cycle, the architecture is 100% utilized
[45]. This architecture is specific for the biorthogonal
spline wavelet, so it is not flexible.

4.6. Summarizing 2-D Architectures

The 2-D folded architectures come in three varieties.
The direct one is the simplest, but gives lowest perfor-
mance. The serial-parallel and the fully parallel designs
can be thought of as variations of the direct architecture,
with filter pairs for the vertical as well as the horizon-
tal dimensions. The direct method has O(N 2) mem-
ory units, while the serial-parallel design uses O(NL)
holding cells. The fully parallel design has L2 pro-
grammable multipliers, with L2 − 1 adders. It has a
memory of O(JLN) shift registers. The fully parallel
architecture is the fastest of the three folded designs.
The 2-D lattice design in [45] is specific for a biorthog-
onal spline filter. It takes advantage of the coefficients to
minimize the operations needed to generate the results.

In the semi-systolic serial architecture of [15],
each PE has a different amount of memory that
makes scalability a problem. The architecture is fast,

Table 2. Architectures for the 2-D DWT.

Type Latency Control Area Memory MACs

[5] Systolic N 2 + N – O(NLK) 2NL 2L MACs, 4L mults,
4L adders

[8] Non-separable Tm + 2Ta log(L) Complex O(NLK) NL registers 2L2 mults 2(L2 − 1)
O(N 2) adders

[29] Systolic (see Parhi93) – Simple – “Y dimension 18 mults, 18 adders,
buffer” (12 PE’s)

[31] Parallel-systolic, N 2 + N Simple 7702 × 8187 µm2, N (2L − 1) 2L MACs,
non-separable 567899 transistors L − 1 adders

[37] No multipliers – Local Small, about 1/8 “normal” filter – 8 adders

[43] Semi-systolic N 2 + N Simple, O(3L(4 K gates + memory)) 29N L/2 PEs
time-multiplexed distributed

[45] Time-multiplexed, – Simple – “Transpose –
systolic circuit”

efficient, moderately modular, has localized wiring,
but large memory is required. High- and low-pass fil-
ter calculations are done simultaneously, with 16 bit
multipliers.

Most single-chip signal processing implementations
are done with block-based architectures, since they
show the most promise. But these designs assume that
an arbitrary input pattern is available, which will not be
a realistic assumption for all applications. Like block-
based, the non-separable 2-D DWT architecture pre-
sented in [31] has some attractive features. However,
it is not conclusively better than the separable designs.
It has 2L MACs, 2L − 1 adders, and N (2L − 1) reg-
isters, with a delay of N 2 + N . In comparison, the
fully parallel architecture has about N 2 delay, while
the serial-parallel design has a N 2 + N delay. Table 2
compares the 2-D DWT architectures.

Applications for the 2-D DWT include image pro-
cessing [47], 2-D signal compression, and finger-
print storage [48]. Potential markets include on-line
video compression and decompression (codec) sys-
tems. For a stand-alone system, the folded architec-
ture [8, 21] would work well, especially the parallel-
parallel model. A simpler model, using only 2 octaves
of decomposition, could take advantage of the semi-
systolic architecture of [15]. A portable device with
a smaller screen would need a less power consuming
processor, where the block-based architecture would
be suited [42]. When bandwidth is not a constraint,
perhaps between equipment sharing a dedicated line,
the non-separable design would allow parallel compu-
tation of the 2-D DWT [31]. As in the previous section,
the architecture chosen for an application will depend
upon the application’s priorities.
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5. Architectures for the 3-D DWT

Methods to compress a sequence of images have been
proposed using both the 2-D DWT [49] and the 3-D
DWT [50]. But three-dimensional data, such as that
produced by medical applications, get best results from
a true 3-D transform [51]. Video compression, mag-
netic resonance imaging (MRI) compression [52] and
noise reduction between frames of a video sequence
are applications for the 3-D transform [18]. Weeks and
Bayoumi developed 2 architectures for the 3-D DWT
[53, 54]. The first architecture, 3DW-I, is a folded de-
sign where a single filter pair performs the calculations
for one dimension. The second architecture, 3DW-II,
is a block-based architecture. The 3DW-I design does
fewer calculations, but the 3DW-II design is smaller
and can run in parallel. These architectures are detailed
in the next two sections.

5.1. Folded 3-D Architecture

Figure 19 shows how the conceptual model of the 3-
D could be implemented directly, assuming the fil-
ters are folded and space-multiplexed. This design
is the 3DW-I architecture. It uses semi-systolic fil-
ters, each containing Li Multiply-Accumulate Cells
(MACs). Here, Li stands for the number of filter taps
in the i th dimension. Each MAC has a number of shift
registers, dependent upon the dimension. For each di-
mension, the number of computations stays the same.
The number of implemented filters doubles due to
branching, but the amount of data passing through
the filters is cut in half by the downsampling opera-
tion. The data are used by every other MAC, which

Figure 19. Folded 3-D DWT architecture [54].

eliminates the need for explicit downsampling. The
data are sent from the even MACs to other even
MACs, while the odd MACs send data to the next odd
MAC, similar to the folded 1-D filter [13]. Doubling
the amount of registers in each MAC allows it to al-
ternate between two data streams, which simulations
confirmed.

The 3DW-I architecture’s folded design allows scal-
ability to a longer wavelet. It has simple, distributed
control, since each processing element has few func-
tions: shift inputs, multiply and add. The MACs have
few internal registers, and any two MACs in a filter have
the same amount of registers. The 3DW-I is cascadable,
like other folded designs. Finally, the semi-systolic fil-
ters generate results in a low number of clock cycles,
relative to the data size.

5.2. Block-Based 3-D DWT Architecture

In the second 3-D DWT architecture, 3DW-II, the
data is asserted as blocks instead of the row-column
fashion, eliminating the need for large on-chip mem-
ory. Therefore, the 3DW-II processor needs a data
block of size L1 × L2 × L3 to compute the 8 out-
put streams of the 3-D DWT. This architecture pro-
cesses data blocks from along the X dimension, Y di-
mension, then the Z dimension. The blocks are read,
skipping every other block horizontally, vertically, and
between images in order to take downsampling into
account.

The 3DW-II architecture is shown in Fig. 20. The
control unit will be more complex for this architec-
ture than the prestored control of the 3DW-I. This
control unit will be directly responsible for selecting
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Figure 20. Block-based 3-D DWT architecture [54].

the input block from off-chip. The control unit gen-
erates the addresses needed to get the correct input
block. The memory on the chip will be small com-
pared to the input size [55]. The amount of storage
needed depends solely on the filter sizes, that is, it will
be L1 × L2 × L3 + 2 × L2 × L3 + 2 × 2 × L3 + 8. The
last 8 values do not need to be stored on the chip; they
are outputs. The design needs 1 × L2 × L3 cycles to
do the X calculations, followed by 2 × L3 cycles to do
the Y calculations, followed by 4 × 1 cycles for the Z
calculations. Note that the last 4 cycles produce 2 out-
puts each. This results in (L2 + 2) × L3 + 4 cycles per
every 8 outputs.

The filters are parallel, since this produces the com-
putation result with the least latency. In contrast, sys-
tolic filters assume that the data is fed in a non-block
form such that partial calculations are done. The 3DW-
I’s (semi-) systolic filter is very efficient, but assumes
partial calculations that result in large memory require-
ments. In the 3DW-II, calculations are done on one
data block as an atomic operation. This means that the
3DW-II is not as efficient as the 3DW-I. Rather than
store partial results for later calculations, the 3DW-II
will re-compute them as needed.

5.3. Summarizing 3-D Architectures

The 3DW-I architecture is a straightforward implemen-
tation of the 3-D DWT. It allows even distribution of

the processing load onto 3 sets of filters, with each set
doing the calculations for one dimension. The filters
are easily scalable to a larger size. The control for this
design is very simple and distributed, since the data are
operated on in a row-column-slice fashion. The design
is cascadable, meaning that the approximate signal can
be fed back directly to the input to generate more oc-
taves of resolution. Scheduling every other time slot
to do a lower octave computation works for this de-
sign. The filters are folded, allowing the multiple filters
in the Y and Z dimensions to map onto a single pair
for each dimension. Due to pipelining, all filters are
fully utilized, except for the start up and wind-down
times.

In the 3DW-I architecture, the amount of memory
between filters is a concern. To get started in the Y di-
rection, the X direction must generate enough results,
one row of outputs for every wavelet coefficient in the
Y dimension. Similarly, the Z filters must wait on the
Y dimension filters to finish enough outputs for multi-
ple images. Therefore, the 3DW-I needs large internal
storage space.

The 3DW-II architecture has a single low/high fil-
ter pair to compute all the outputs. It requires a small
amount of storage, based on the filter size, O(L1 ×
L2 × L3), and not the input size. The filter sizes are
much smaller than the input size (Li � NMP). The
latency is small, it depends on the filter sizes and not
the input size. For example, using a 4 × 4 × 2 wavelet,
the first output comes at the 12th clock cycle. The ar-
chitecture can be used in parallel to transform the data
in half the time (or less, if more than 2 are used). Com-
plex control and the large number of clock cycles are
the major drawbacks. Though the 3DW-II uses many
clock cycles for a large wavelet on a large data volume,
putting multiple chips in parallel will allow each chip
to run at a fraction of the speed that would be required
of one chip. Table 3 compares the two architectures.
For fixed size data, the 3DW-I will complete the trans-
form faster. But for variable data sizes, or when the first
results are needed right away, the 3DW-II is the better
choice.

Potential applications for the 3-D DWT architectures
include television processing and MRI compression.
The 3DW-I would be good for television, since the
image size will be consistent, speed is important, and
space is less of a concern. The 3DW-II works well with
MRI data, or any 3-D data that can be buffered into
blocks. It can run in parallel, allowing even greater
speed than the 3DW-I can provide.
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Table 3. Architectures for the 3-D DWT.

Type Latency Control Area Memory MACs

[52] Folded, semi-systolic O(NMP) Simple, distributed O(NMP) 2NMP + 2MN + 2(L1 + L2 + L3) MACs
2(L1 + L2 + L3)

[52] Block-based, L2 L3+ 2L3 + 4 Complex, centralized O(L) L1 L2 L3 + L2 L3 + 4L3 2 max(L1, L2, L3) mults,
parallel multipliers 2 max(L1, L2, L3)-2 adders

6. Conclusions

The Discrete Wavelet Transform presents an interest-
ing problem for hardware designers. Many researchers
have proposed methods for the 1-D and 2-D cases, as
well as the 3-D case. Each architecture has advantages
and disadvantages compared to the others. This paper
gives an overview of several architectures and com-
pares their performance.

Architectures for the DWT include the same compu-
tational blocks. First, finite impulse response filters are
used. Most designs are scalable, so switching to a dif-
ferent wavelet is not a concern. Digital designs are the
most common. Folding is the dominant design choice,
since it is flexible and allows an architecture to do more
without adding much area. In other words, doubling the
amount of calculations does not mean doubling the area
needed. Though Mallat’s pyramid algorithm is the ba-
sic algorithm used [4], Fridman’s work optimizes the
algorithm with scheduling for folded architectures [30].

Options include the type of filter (serial versus par-
allel). Also, time versus space mapping allows the de-
signer to trade off between area and latency. The target
application will influence the architecture’s design to
an extent. For example, when speed is a critical factor,
space mapping will give the best speed performance.

Tables 1, 2 and 3 give more information about the
selected architectures examined in this paper, as well as
listing other DWT architectures. These tables include
several variables used to indicate architecture parame-
ters. For example, most designs do not require a specific
wavelet (Lewis and Knowles’ design [37] is one excep-
tion). Instead, the designs are modifiable to accom-
modate any size wavelet. These variables are listed
below:

J = number of octaves
K = data precision (i.e. number of bits per input

sample)
L = filter length (number of taps)
N = input size (for 1-D)
N1 = overlapped block size (N1 	 L)

M = input size (for 2-D, i.e. rows)
P = input size (for 3-D, i.e. number of images)

To demonstrate a design, J typically has the value of 3.
The choice of this variable can affect the design, for
example, how many registers are needed. The variable
K indicates the data precision. This is also known as
the data sample width, or number of bits per sample.
Typical values of K are 8 and 16.

For a 2-D application, the data has dimensions of
NM, though it is reasonable to assume that the image
width will equal the image height; that the image is
square. Three-dimensional data can be thought of as a
sequence of images. While N and M give the dimen-
sions of the images themselves, P specifies the number
of images. Also in 3-D designs, the wavelets used for
each dimension do not need to be the same. Thus, L1,
L2, and L3 are used to denote the filter lengths of the
3 wavelets used.

The Discrete Wavelet Transform can be used on 1,
2, and 3-dimensional signals. The DWT represents an
input signal as one approximate signal and a num-
ber of detail signals. The representing signals com-
bined together need no more storage space than the
original signal. These signals can be sent to the syn-
thesis procedure, to recreate the original signal with-
out loss of information, assuming that no lossy com-
pression is performed. Alternately, the analysis out-
put signals can be compressed, stored, and uncom-
pressed before being sent to the synthesis procedure.
This allows the signal to be stored with little loss of
information.

The current state of architectures for the Discrete
Wavelet Transform typically use finite impulse re-
sponse filters in parallel filter, systolic, semi-systolic,
folded, and digit-serial configurations. Their scalable
design makes it easy to modify them to different
filter structures according to application demands, such
as additional filter coefficients. Tradeoff between area
and latency determines the architectural structures: se-
rial versus parallel or time versus space mapping. For
time critical applications, space mapping provides a
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faster transform. The architectures can handle a wide
range of applications of 1, 2, and 3-D DWTs.

Acknowledgments

The authors would like to acknowledge the support
from contract LEQSF (1996-99) RD-B-13.

References

1. J. Ozer, “New Compression Codec Promises Rates Close to
MPEG,” CD-ROM Professional, 1995, p. 24.

2. A. Hickman, J. Morris, C. Levin, S. Rupley, and D. Willmott,
“Web Acceleration,” PC Magazine, June 10, 1997, p. 10.

3. W.W. Boles and Q.M. Tieng, “Recognition of 2-D Objects from
the Wavelet Transform Zero-crossing Representation,” in Pro-
ceedings SPIE, vol. 2034, Mathematical Imaging, San Diego,
July 11–16, 1993, pp. 104–114.

4. S. Mallat, “A Theory for Multiresolution Signal Decomposi-
tion: The Wavelet Representation,” IEEE Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, 1989, pp. 674–693.

5. M. Vishwanath and C. Chakrabarti, “A VLSI Architecture for
Real-Time Hierarchical Encoding/Decoding of Video using the
Wavelet Transform,” IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP ’94), Adelaide,
Australia, vol. 2, April 19–22, 1994, pp. 401–404.

6. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding,
Englewood Cliffs, NJ: Prentice-Hall Inc., 1995.

7. S. Mallat, “Multifrequency Channel Decompositions of Images
and Wavelet Models,” IEEE Transactions of Acoustics, Speech
and Signal Processing, vol. 37, no. 12, 1989, pp. 2091–2110.

8. C. Chakrabarti and M. Vishwanath, “Efficient Realizations of
the Discrete and Continuous Wavelet Transforms: From Single
Chip Implementations to Mappings on SIMD Array Comput-
ers,” IEEE Transactions on Signal Processing, vol. 43, no. 3,
1995, pp. 759–771.

9. G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley,
MA: Wellesley-Cambridge Press, 1996.

10. I. Daubechies, Ten Lectures on Wavelets, Montpelier, Vermont:
Capital City Press, 1992.

11. M. Vishwanath, R.M. Owens, and M.J. Irwin, “Discrete Wavelet
Transforms in VLSI,” in Proceedings of the International Con-
ference on Application Specific Array Processors, Berkeley,
Aug. 1–2, 1992, pp. 218–229.

12. J. Fridman and E.S. Manolakos, “Discrete Wavelet Transform:
Data Dependence Analysis and Synthesis of Distributed Mem-
ory and Control Array Architectures,” IEEE Transactions on
Signal Processing, 1994, pp. 77–81.

13. J. Fridman and E.S. Manolakos, “Distributed Memory and Con-
trol VLSI Architectures for the 1-D Discrete Wavelet Trans-
form,” in IEEE Proceedings VLSI Signal Processing VII, La
Jolla, California, Oct. 26–28, 1994, pp. 388–397.

14. S. Syed, M. Bayoumi, and J. Limqueco, “An Integrated Discrete
Wavelet Transform Array Architecture,” in Proceedings of the
Workshop on Computer Architecture for Machine Perception,
Como, Italy, Sept. 18–20, 1995, pp. 32–36.

15. J. Limqueco and M. Bayoumi, “A 2-D DWT Architecture,” in
Proceedings of the 39th Midwest Symposium on Circuits and

Systems, Iowa State University, Ames, Iowa, Aug. 18–21, 1996,
pp. 1239–1242.

16. G. Knowles, “VLSI Architecture for the Discrete Wavelet Trans-
form,” Electronics Letters, vol. 26, no. 15, 1990, pp. 1184–
1185.

17. T. Edwards, “Discrete Wavelet Transforms: Theory and Imple-
mentation,” Technical Report, Stanford University, September
1992.

18. A. Bruce, D. Donoho, and H.-Y. Gao, “Wavelet Analysis,” IEEE
Spectrum, Oct. 1996, pp. 26–35.

19. C.C. Chang, J.-C. Liu, and A.K. Chan, “On the Architectural
Support for Fast Wavelet Transform,” SPIE Wavelet Applications
IV, vol. 3078, Orlando, Florida, April 21–25, 1997, pp. 700–707.

20. A. Grzeszczak, M.K. Mandal, S. Panchanathan, and T. Yeap,
“VLSI Implementation of Discrete Wavelet Transform,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 4, no. 4, 1996, pp. 421–433.

21. C. Chakrabarti, M. Vishwanath, and R. Owens, “Architectures
for Wavelet Transforms: A Survey,” Journal of VLSI Signal Pro-
cessing, vol. 14, no. 1, 1996, pp. 171–192.

22. Wavelet Transform Processor Chip User’s Guide, Bedford, MA:
Aware, Inc., 1994.

23. M. Weeks, J. Limqueco, and M. Bayoumi, “On Block Architec-
tures for Discrete Wavelet Transform,” in 32nd Asilomar Con-
ference on Signals, Systems and Computers, Pacific Grove, CA,
Nov. 1–4, 1998.

24. M. Vishwanath, “The Recursive Pyramid Algorithm for the Dis-
crete Wavelet Transform,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 3, 1994, pp. 673–676.

25. M.-H. Sheu, M.-D. Shieh, and S.-W. Liu, “A VLSI Architec-
ture Design with Lower Hardware Cost and Less Memory for
Separable 2-D Discrete Wavelet Transform,” IEEE International
Symposium on Circuits and Systems (ISCAS ’98), vol. 5, Mon-
terey, California, May 31–June 3, 1998, pp. 457–460.
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