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Abstract

Children learn a variety of verbs for hand actions starting in their second year of life. The
semantic distinctions can be subtle, and they vary across languages, yet they are learned
quickly. How is this possible? This dissertation explores the hypothesis that to explain the
acquisition and use of action verbs, motor control must be taken into account. It presents a
model of embodied semantics—based on the principles of neural computation in general and
on the human motor system in particular—which takes a set of labelled actions and learns
both to label novel actions and to obey verbal commands. A key feature of the model is
the executing schema, an active controller mechanism which, by actually driving behavior,
allows the model to carry out verbal commands. A hard-wired mechanism links the activity of
executing schemas to a set of linguistically important features including hand posture, joint
motions, force, aspect and goals. The feature set is relatively small and is fixed, helping
to make learning tractable. Moreover, the use of traditional feature structures facilitates
the use of model merging, a Bayesian probabilistic learning algorithm which rapidly learns
plausible word meanings, automatically determines an appropriate number of senses for each
verb, and can plausibly be mapped to a connectionist recruitment learning architecture. The
learning algorithm is demonstrated on a handful of English verbs, and also proves capable
of making some interesting distinctions found crosslinguistically.
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Chapter 1

Overview

“Of the above possible fields the learning of languages would
be the most impressive, since it is the most human of these

activities. This field seems however to depend rather too

much on sense organs and locomotion to be feasible.”

—Alan Turing, 1948

How do children learn to use verbs such as push and pull?¥ They are able to do
so after hearing just a few examples, even though different languages classify actions quite
differently. The answer to this tantalizing question, we believe, is that the common substrate
of the human motor control system drives children’s rapid yet flexible acquisition of the
lexicon of action verbs in their native language. This hypothesis is explored by building a
computational model of motor control and word learning, and testing its acquisition of the

relevant vocabulary from a range of the world’s languages.

As an interdisciplinary endeavor this dissertation addresses a wide audience, rang-
ing from the artificial intelligence community to linguists, psychologists and neurobiologists.
Accordingly, the material has been organized so that each chapter fully discusses one aspect
of the model, including motivation, representations and algorithms, connectionist account,
cognitive implications, limitations and extensions. For the sake of the computer scien-
tist who wishes to cut to the chase, the core implemented computational ideas are always
grouped into a single block within each chapter (usually in a single section). Machine

learning experts may wish to skip directly to Chapter 6 and Chapter 8.

Chapter 2 begins by motivating the verb acquisition problem in detail. We see

that the English vocabulary for hand actions is quite rich, and furthermore that other
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Verbs

E=ElEn]E)

Obeying Labelling

Linking feature structure

Exe_zcution Feature
Guidance Extraction

(OO

Motor Actions (X—Schemas)

Figure 1.1: Top-level architecture of the verb learning model.

languages of the world classify hand actions in significantly different ways. In that chapter
we present our philosophical stance toward the question of how children deal with this
variety: bodily grounding of semantics constrains possible meanings. In this framework we
pose a specific computational task: Given a set of pairings of actions and verbs, learn the
bidirectional mapping between the two so that future actions can be labelled and future

commands can be acted out.

Figure 1.1 shows the architecture of our cognitive and computational model of
action verb acquisition. As does the dissertation as a whole, the overview will proceed
“bottom-up” through this diagram, and then move on to learning. For concreteness, a

simplified running example will be developed during the overview.

Given the command-obeying component of the task, it is obvious that our so-
lution must include an active motor control mechanism, not just passive descriptions of
actions. Chapter 3 presents executing schemas (2-schemas for short, shown at bottom of

Figure 1.1), our model of high-level motor control, where synchronization and parameter-
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ization of lower-level motor synergies are the key issues. Consequently, the model makes
the strong claim that details of lower-level motor control are not linguistically relevant.
X-schemas are described using the Petri net formalism (Murata 1989), allowing natural
expression of concurrency and asynchrony. Generally there is a 1-to-1 mapping between
x-schemas and goals. X-schemas for a variety of object manipulation tasks such as sliding

and lifting are developed. For example:

Example: A very simple x-schema for sliding an object on a tabletop might

look like this: .
Syde

’

!

" PALM
LY /////7 \\\\\

e @
\ (dir, force)

GRASP /

This x-schema begins by either grasping the object or placing the palm
against it, and then proceeds to move it in a given direction with a given

force.

Interfacing the execution of these x-schemas to language (bidirectionally) is ac-
complished by a set of special features called the linking feature-structure (linking f-struct
for short, shown in center of Figure 1.1), described in Chapter 4. The linking f-struct
essentially summarizes the execution of an x-schema as a collection of features. A key con-
sequence of the overall architecture is that all linguistically relevant aspects of x-schemas
must be represented in these features, which play the crucial role of further restricting the
hypothesis space so as to render verb learning tractable (in terms of both computation time
and the number of training examples needed). In particular, the summarizing nature of the
linking f-struct allows the verb learning algorithm to avoid dealing directly with the time-
varying activity of x-schemas. Linking features include the name of the executed x-schema
(indicating intention), parameters such as force or direction, control flow patterns such as

loop repetition, and perceptual information necessary to guide action. For example:
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Example: Linking features, derived from our example x-schema and others
like it, might include the following;:

schema posture direction force

f pam, grasp, |away, toward, .
dlide, depress index up. down low, med, high

Each column represents a feature. The upper box names the feature, and
the lower box lists possible values. Note that features can range from the
x-schema name, to choices of hand posture, to parameters of the primitive
synergies such as direction and force.

Next we turn to the semantic representation of verbs, the topic of Chapter 5.
Since the model must be able to re-create appropriate actions for a given verb, we cannot
just represent the minimal abstractions needed to distinguish one verb from another. Rather
we need to capture a richer “gestalt” representation, which is accomplished by a conjunction
of linking features called a word sense f-struct. In a word sense f-struct each feature can
be associated with multiple possible values, with varying strengths of association. This
permits graded judgments and hence an ability to generalize. By treating these degrees of
association as probabilities, well-known statistical techniques can be brought to bear on the
problem. Sometimes, the uses of a verb are too varied to sensibly encode as a single (albeit
probabilistic) conjunct. For these cases, we employ multiple senses for a single word, as
shown at the top of Figure 1.1. Labelling an action involves choosing the word sense f-struct
which most closely matches the linking f-struct resulting from the action, and emitting the
corresponding verb. Conversely, obeying a command involves choosing, for the given verb, a
word sense f-struct whose features fit best with the current world state, and then copying the
word sense f-struct’s features into the linking f-struct in order to guide x-schema execution.
Chapter 5 evaluates this model with respect to notions of human categorization including
prototype effects, basic-level effects and radial categorization. An example of the word sense

representation follows:
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Example: Simplified representations for some senses of the verbs push and
pull might look like this:

PUSH: 2 senses

sense 1 sense 2
schema posture direction schema posture force
side  100% | pm  60% | EUEY e side 0% | pdm 8% |low  10%
touch 0% | grasp 10% up 15% touch 100% | 9rasp 5% med 30%
index 30% down  30% index 10% [high 60%

PULL: 1 sense

schema posture direction
: o, | away 10%
dide  100% | pam 20% toward  70%
touch 0% | grasp 80% u 10%
index 0% | WP
down 10%

In use, the first sense of push generates sliding actions which usually use the
palm but in a suitable context might use the index finger, and which tend to
be directed away from the body or downward. The second sense generates
actions such as pushing on a wall, in which there is no motion but instead
a steady application of medium to high force, almost always involving the
palm posture. The single pull sense shown here generates sliding actions
toward the body using a grasp. In recognition mode, an occurrence of one of
these three prototypical actions would strongly activate the corresponding
sense, leading to production of the appropriate verb. Other actions would
weakly activate multiple senses, in which case a verb is produced only if the
winner’s activation exceeds a threshold.

Finally we arrive at the core of the dissertation: the learning algorithm. Since
much of the model’s structure (namely the x-schemas and linking features) is specified
before learning, the learning process involves only generating an appropriate set of word
sense f-structs given the data. Chapter 6 begins with a review of the lexical acquisition
literature, from which three important constraints are taken: children learn to label their
own actions, do so with little negative evidence, and exhibit fast mapping (learning from as
few as one example). This leads to the choice of Bayesian model merging for our learning
algorithm. One key property of this statistical approach to achieving good generalization
ability is the use of a Bayesian criterion which explicitly specifies the trade-off between
(1) a preference for a small number of word senses, and (2) the ability of a larger number
of senses to more accurately represent the training data. Another key property of model
merging is that it captures “fast mapping” because new words are immediately modelled

by a word sense which essentially copies the training example.
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Example: As instances of pushing and pulling occur, a new sense is initially
created for each, closely matching the instance. In accordance with the
formulas presented in Chapter 6, similar senses are then merged until only
the three senses described above remain. Their probability tables reflect
the instances merged to form them. The two senses of push do not merge
because if they did, important correlations—e.g. that sliding pushes often
use the index finger posture but touching pushes rarely do—would be lost.

A sketch of a connectionist network version of the model, including this learning
method, is presented in parts of Chapters 3 through 6, though it is mostly unimplemented.
Recruitment learning, conjunctive “triangle units” and winner-take-all connectivity provide

the mechanisms needed to implement the model.

Chapter 7 presents a way to extend the model to handle verb complexes, by
which we mean a verb plus any inflections, particles or auxiliaries which help to specify the
action. Essentially this involves grouping the word sense f-structs into separate slots for
each grammatical position, and extending the labelling and obeying algorithms to execute
within each slot. When a verb complex is given as a command and its component words
specify conflicting feature values, the word with the more selective probability distribution
is preferred. Interestingly, the learning algorithm can remain unchanged. However, a useful
heuristic is implemented to encourage the system to learn the typically relevant features in

each slot to speed learning of new words.

Example: Assume we have several x-schemas for moving objects like the
SLIDE x-schema described earlier, and we label actions with two words: a
verb and a directional modifier. The resulting representation for a modifier

like up might look like this:
UP: 1 sense

schema posture direction

0,
side  10% | pam 35% magrd 802
touch — 10% | grasp 350 |\~ 10006
depress 10% | index 30% down 0%

The word codes very selectively for the upward direction and hence will
override any weaker directional correlations in verbs such as those shown
earlier. Push up therefore generates an action directed upward, not away.

The model has been tested on a variety of verbs from languages such as English,
Farsi, and Russian. Chapter 8 surveys these results, first with English verbs and then

crosslinguistically. Sensitivity to the several learning parameters is discussed, as well as



CHAPTER 1. OVERVIEW 7

some categories which are not learnable by the model.

Finally, Chapter 9 discusses the implications of our model, addresses some ob jec-
tions, points out new questions it raises, and discusses related efforts applying the x-schema

formalism to other domains. We conclude with some thoughts on real world uses of this

work.
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Setting the Stage
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“It takes ... a mind debauched by learning to carry the

process of making the natural seem strange, so far as to ask

for the why of any instinctive human act.”

— William James

Historically, most of the effort in analyzing language has focused on its generative
capacity—how words are combined—treating the meanings of individual words as a com-
paratively simple problem. This chapter argues that the issue of lexical semantics is itself

subtle enough to warrant computational modelling, and proposes a methodology for the

particular case of action verbs.

2.1 A Crosslinguistic Conundrum

Have you ever considered the verbs you use to describe actions you perform with
your hands? Many people are surprised by the number of such verbs, and the subtle

distinctions they make. Consider the following list, which is far from complete:
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get, seize, snatch, grab, grasp, pick (up), take, hold, grip, clutch,
put, place, lay, drop, slam, release, let go, move, push, pull, shove,
vank, slide, bat, flick, tug, nudge, lift, raise, hoist, lower, pass over,
lob, toss, throw, fling, whip, chuck, hit, tap, rap, bang, slap, press,
poke, punch, rub, shake, pry, turn (over), flip (over), tip (over),
rotate, spin, twirl, handle, squeeze, pinch, tie, twist, bend, bounce,
scrape, scratch, scrub, smear, crush, smash, shatter, scatter, spread
(out/on), cut, slice, clip, wipe, brush, grind, tighten, loosen, open,
close, insert, remove, hook, hang, balance, peel, (un)wind, dunk,
(un)zip, juggle, knead, dribble, scribble, hand, pass, salute, caress,
fondle, pet, pat, stroke, wave, point, hide, stack, touch, feel, reach
(for), stop, help, resist, try, bump, slip, knock (over/down)

There are some gross distinctions in meaning (e.g. possession changes vs. object
movement vs. object manipulation) but also considerable variation of a subtler kind which
doesn’t so easily admit qualitative characterization (e.g. grab vs. seize, or raise vs. lift vs.

hoist, or fling vs. toss).

How could children possibly learn all these fine distinctions? Maybe all these
concepts are already in the child’s mind—either pre-wired, or as a result of maturation or
experience—before the child begins to learn language. If so, the verb learning task would
amount to a game of mix-and-match between verbs and concepts—a comparatively easy

task. This has been proposed by Nelson (1973).

But we will argue in this thesis that this can’t be the case. A few examples of
some conceptual distinctions made in other languages of the world should convince you. The
following examples are from our own informal crosslinguistic survey of languages including

Tamil, Cantonese, Farsi, Spanish, Korean, Japanese and Arabic:

¢ THALLU & ILU (Tamil): These correspond roughly to pushing and pulling; how-
ever, they connote a sudden action as opposed to continuous application of force and
smooth movement. The only way to get this latter meaning is to suflix a directional

specifier. Thus there is no way to indicate smooth pushing in an arbitrary direction.

¢ HOL-DAADAN & FESHAAR-DAADAN (Farsi): These correspond to two
different senses of push. Hol-daadan refers to moving an object away from oneself. (It
is actually closer to shove as it implies high force; there is in fact no word for gentle

or continuous pushing, other than the generic move verb with a directional specifier.)
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In contrast, feshaar-daadan refers to applying steady pressure to an unmoving object,

e.g. pushing on a wall.!

¢ PULSAR & PRESIONAR (Spanish): These verbs correspond to English press,
but they make a distinction based on hand posture. Pulsar refers to pressing with a

single finger, while presionar refers to pressing with the entire palm.

e PUDI (Tamil): Pudi covers both obtaining an object, as well as continuing to hold
an object. It connotes quickness in the first case, and exertion of force in the second
case. It prefers the use of either a cupped palm supporting the object, or else a closed

fist. Close English verbs are catch, clutch and restrain.

¢ ZADAN (Farsi): This word refers to a large number of object manipulations whose
common character seems to be the use of quick motions. The prototypical zadan is a
hitting action, though it can also mean to snatch (ghaap zadan), or to strum a guitar

(or play any musical instrument, for that matter!).

¢ MEET (Cantonese): This verb covers both pinching and tearing. It seems to
connote forceful manipulation by two fingers, yet it is also acceptable for tearing

larger items where two full grasps are used.

e DROP: Neither Tamil nor Cantonese has a verb for gentle dropping. Both languages
instead possess one verb for grip-release (i.e. let go) which does not specify whether
the released object is otherwise supported, and another verb for throwing down, which

connotes use of force.

e VAIIE & PODU (Tamil): Both verbs can refer to putting an object down. Care-
fully executed puts which ensure the object is placed securely use waiie, although
this verb is perhaps closer to English keep, since its prototypical case refers simply to
maintaining an object in a given location, without expenditure of effort. Meanwhile
podu connotes a careless put—indeed it includes throwing the object down. There
does not seem to be an equivalent of place, connoting gentleness but focusing on the

relocation of the object.

! Daadan means to give. Hol is a noun for an outward movement, but it is not used alone. Feshaar is a
commonly used noun for pressure.
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2.2 1It’s the Body, Stupid!

We have seen that languages are quite rich in verbs of hand action and also seem
to vary widely. Yet children learn those verbs in their native tongue from a modest number

of samples and quickly generalize their words correctly (or near correctly). How?

The answer explored in this dissertation is that the potential variety of lexicalized
action categories is not infinite, but instead is constrained by virtue of being grounded in the
workings of the human motor control system. Properly construed, this grounding greatly

restricts the size of the hypothesis space for verb acquisition, rendering it tractable.

In some sense it is an undeniable and obvious claim that language must ultimately
be bodily grounded, since it is a human activity. What this dissertation attempts to do
is to answer the question of how this grounding is important for computational models of
language. As I see it, there are three main aspects to bodily grounding as it applies to action
verbs: (1) neural constraints on information processing algorithms; (2) simple facts about
the structure of the body (e.g. arm, hand, five fingers, etc.); and (3) organizing principles
of the motor control system (e.g. discrete coordination of simple synergies). These topics

will be the theme of the dissertation.

Upon reflection, it’s not surprising that details of the motor system are implicated
in semantics: while abstract representations at the level of “CAUSE(POSSESS(x))” (such
as the conceptual dependency representation of Schank (1975)) may be useful for reasoning,
they clearly are inadequate for actually performing the action via the arm and hand. In

this thesis we will look at representations that do support driving actual behavior.

The following excerpt from Webster’s Ninth New Collegiate Dictionary corrobo-
rates the view that motor control plays a central role in making some of the finer distinctions

in FEnglish:
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“TAKE, SEIZE, GRASP, CLUTCH, SNATCH, GRAB mean to get
hold of by or as if by catching up with the hand. TAKE is a general
term applicable to any manner of getting something into one’s pos-
session or control; SEIZE implies a sudden and forcible movement
in getting hold of something tangible or an apprehending of some-
thing fleeting or elusive when intangible; GRASP stresses a laying
hold so as to have firmly in possession; CLUTCH suggests avidity or
anxiety in seizing or grasping and may imply less success in holding;
SNATCH suggests more suddenness or quickness but less force than
SEIZE; GRAB implies more roughness or rudeness than SNATCH.”

Most of these distinctions could be made based on features such as speed, force, security of
grip, and precision of motion. Going back to the crosslinguistic examples from the previous
section, it is clear that these distinctions, too, can usually be made in terms of motor control
features, broadly construed to include both goals and those aspects of world state which

are directly relevant to carrying out actions.

The influence of motor control and intentional activity in general on theories of
conceptual representation has a long history. Piaget is perhaps the best-known advocate,
having developed a comprehensive theory of the development of abstract concepts via in-
teraction with the world. Pinker, also, points out that children must certainly attend to
internal (and hence externally unobservable) variables such as goals in determining word
choice, since often two different words are uttered in the same world state. And Landau &
Gleitman (1985) show that blind children learn language more or less normally despite the
absence of what is often assumed to be the primary semantic source—vision. For example,
they found that blind children readily learn the verb look. But in their own behavior, it
translates to haptic exploration (that is, using the sense of touch). The core meaning of the

” certainly an action-oriented mean-

verb, they suggest, is “explore with the primary sense,’
ing. More recently, brain imaging studies (Damasio & Tranel 1993) have made a strong case
for the intimate connection between language and sensorimotor areas of the brain: verbs

activate motor control regions, while nouns do not.

The study of embodied cognition generally is not a new enterprise. Johnson (1987)
argues that human conceptualization is “imaginative” in the sense that our concepts tend
to reflect biases resulting from the human condition—whether perceptual or having to do
with the kinds of goals which people seek to achieve—rather than purely reflecting an

objective structure to the external world. Lakoff (1987) also argues persuasively for a “non-
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objectivist” basis for semantics. Ultimately, embodiment must be explained in terms of
neural structures. The role of connectionist modelling in this dissertation will be discussed

shortly (§2.4).

To be sure, only a subset of human concepts are directly bodily grounded. How-
ever, as Lakoff & Johnson (1980) further argue, these bodily concepts frequently underlie
more abstract concepts metaphorically. A computational account of metaphor consistent

with this thesis has been developed by Srini Narayanan and is discussed in §9.5.

The best-known example of the study of embodied cognition is work on basic color
terms, and we mention it here to make clear the kind of story we wish to tell. Berlin &
Kay (1969) show that while languages differ considerably in their “basic” terms for colors,
there is an underlying pattern. In particular, given the number of basic color terms in a
language, one can reliably predict what they will be. And for languages with fewer basic
color terms (which thus cover wider ranges of the spectrum), the set of prototypes for
each color corresponds to the basic color terms of the richer languages. Why should this
be? The punchline of the story is that in later work (Kay & McDaniel 1978), the spectral
characteristics of some of the prototypes were found to be predictable from the physiology
of the visual system, which suggests why they might be so nearly universal. Recently, this
work has been addressed in a computational framework by Lammens (1994). Lammens
was disturbed that the earlier accounts could not explain non-spectral colors like brown
or white (the latter would activate all the prototypes!), and built a computational model
to investigate learning of colors. A key result of the work was that the correctness of the
learned categories depended upon the choice of color-space with which to represent the light
collected by the camera. With a cognitively inspired color-space, reasonable learning results
were obtained using an optimization procedure which fit a multi-dimensional Gaussian to
each color so as to maximize response to examples of the color while minimizing response

to examples of other colors.

To avoid confusion, we point out that our notion of embodiment is somewhat
different from that of Brooks (1986) and others in the autonomous robotics community,
who emphasize the need for physically realizing robots in order to make progress in robotic
control. For them, embodiment primarily means confronting the details of the “real world”
such as sensor errors and effector failures. These concerns are certainly an important com-

ponent of embodiment, and indeed the design of our model of motor control is partially
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driven by such concerns. However, the perspective on embodiment taken here is that these
issues are secondary; the focus is instead upon the details of the structure of the human

body and the principles of neural computation.

With this mindset, then, I set out to find a suitable representation for motor

control and to see how it partially determines the course of action verb acquisition.

2.3 The Task in Detalil

In this study, the actions under consideration are limited to those of a single hand
by a person seated at a table, on which there may be zero or one simple geometric objects

such as a cube or stick. The verbs studied are limited to those applicable in this world.

The task is to build a computational model which meets the following requirement,

for any single natural language:

e Given: a training set consisting of pairs, each containing

— an action (represented by the motor control pattern which generates it)

— a verb (as an atomic symbol)
e Produce: a representation for the verb lexicon which allows

— appropriate labelling of novel actions

— appropriate obeying of verbal commands in novel world states

To the extent possible, the trajectory of learning should reflect the child’s.
The system should also be able to handle “verb complexes” such as keep pushing left.

Since actions are represented as motor control activity, there is a methodological
question of how to present them to native speakers in order to collect labels for the training
data. Ideally, an animation software package, such as Jack from Transom Technologies,
would be used to translate model internals into an on-screen depiction of the corresponding
action. Informants viewing the animation could then confidently label actions as well as
evaluate the obeying of verbal commands. However, due to some difficulties in interfacing

Jack to the verb-learning software system we have developed, various shortcuts were used in
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the experimental work reported here. In some cases, the author’s knowledge of the internals
of the model was used to physically demonstrate actions for speakers, or to label training
data directly. In other cases, informants were familiarized with the internals of the model.

For more details, see §8.1.

By its nature, this computational task forces any solution to strike a balance
between two extremes. The learning requirement demands that any solution model strong
innate biases. Meanwhile, the crosslinguistic requirement guards against solutions with

excessive biases which oversimplify the task actually faced by children.

It is critical to understand that our task definition specifies that the child is as-
sumed to be labelling his own actions, and therefore has access to his internal state during
the performance of the action, including his intentions. This is in contrast to using visual in-
put (i.e. watching a parent perform the action). Certainly it is a simplification to pretend the
child never hears a verb in association with someone else’s action rather than his own. But
it has been shown that the own-action case is indeed the most frequent (Tomasello 1992).
Furthermore, there is impressive evidence that even neonates can map others’ actions onto
their own motor control system (Meltzoff & Moore 1977), so even for the other’s-action case,
the language-learning child may be inclined to consider motor parameters as the primary

semantic component.

Another simplification in our task is the pre-selection of the time window of activity
labelled by the verb. This is done to simplify the problem, but Tomasello (1992) provides
evidence that children may have help in this regard, too, since most verb labels are uttered
immediately preceding the action, and for early verbs, the actions are usually short in

duration.

Many other simplifications have been made to render the task manageable. Lin-
guistic context is not modelled, even though it could contribute to learning individual lexical
items. (But see Goldberg (1995) for arguments on the separation of verb meaning and gram-
matical meaning, and the different nature of verb meaning from grammatical meaning.) The
social domain is absent, restricting the vocabulary we can address. We avoid using objects
with functional significance beyond their simple spatial qualities, to avoid representing those
other qualities. We don’t deal with deformable, liquid or jointed objects. Nor do we deal
with multiple objects or actions which involve both hands, or tools. We only consider ac-

tions which do not involve planning, i.e. those whose “plan” is already wired as a motor
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control program (so we don’t handle verbs like stack). Verbs are an open-class grammatical

category, making these somewhat arbitrary restrictions necessary.

Lastly, I would like to emphasize that this project explores only the motoric com-
ponent of the full semantics of action verbs. This reflects a belief that the motor component
is central, but in no way does it represent a claim that the motor component is the full

story.

2.4 A Connectionist Commitment

The role of connectionism in this work is very much tied up with the notion of
bodily grounding. Neural plausibility provides further strong constraints on how concepts

may be represented and learned, and thus should inform serious cognitive modelling efforts.

Yet working at the connectionist level can be cumbersome. In this thesis, it has
proved useful to define a number of computational tools which can be mapped to connec-
tionist models, but to do most of the work at the higher, computational level. Indeed,
our implementation of the verb learning system is done at this higher level. Throughout
the thesis, we will provide sketches of connectionist networks which could implement our
representations and algorithms. These sketches are intended to convince the knowledgeable
connectionist that they are implementable, but the networks have not been simulated in

code.

The important question is, what are the biological constraints which one should
respect when creating a connectionist network? What are the criteria for evaluating the
neural plausibility of an algorithm? For high-level tasks such as language learning, precise
neuronal modelling would be hopeless. What we consider are some broad computational

constraints imposed by neural structures in general (Feldman & Ballard 1982), including:

e use of many parallel, simple, slow computing units
e no central controller—local rules only
e 10 passing of structures between computing units (simple messages only)

e substantially less than full connectivity among computing units
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One decision in designing a neural network is whether to represent the “concepts”
of the problem domain in a punctate manner (Feldman & Ballard 1982) where “grandmother
cells” are assigned individually to the concepts?, or in a distributed manner where concepts
are represented by the activity of many neurons, each of which participates in many such
concepts. The advantages of distributed representations (Rumelhart & McClelland 1986)
include graceful degradation and the potential to allow learning algorithms to develop new
features, and for these reasons they have been the focus of neural network research. Yet,
learning algorithms for distributed representations, such as backpropagation (Rumelhart &
McClelland 1986) and its variants, virtually always involve gradual adjustment of weights,
rendering them useless for tasks in which one-shot learning is desired. Accordingly, we
will focus on more punctate representations, which have the advantages of facilitating more

structured design and, as we will see, faster (if less flexible) learning.

Within the connectionist framework, a variety of techniques have been developed
(Hertz et al. 1991). A few selections from this toolbox will prove useful in demonstrating the
neural plausibility of the verb learning model developed in this thesis. At a low level, we will
use the notion that the activation level of a connectionist unit can represent an approximate
probability, or degree of belief, that the concept it represents is currently applicable. We
will also make use of the notion of thresholding, in which evidence for a concept must
reach a certain level before the associated unit will fire. At a higher level, winner-take-all
organization will be used to select units which best fit data. Recruitment learning (Feldman
1982) provides a weight update rule and network pattern which proves useful for one-shot
learning. And lastly, the notion of encoding bindings via temporal synchrony of separate
units (Shastri & Ajjanagadde 1993) is used in one connectionist implementation of motor

schemas.

2.5 Related Efforts

Ideas from a variety of fields have been borrowed in this work. They are ac-
knowledged along the way. This section highlights a small number of projects which have

attempted an overall task very similar to this one, and which therefore invite comparison.

21t should be stressed that the punctate model does not demand that concepts are represented by a single
biological neuron, but allows for a small, functionally distinct cluster of neurons.
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This architecture could be considered an implementation of learning procedural
semantics, as pioneered by Winograd’s SHRDLU system (Winograd 1973). SHRDLU was
a question-answering system which operated in the time-honored blocks world domain.
The user could, for example, request that the system “Pick up the red block,” and the
appropriate object identification and action would occur. If the request was ambiguous,
the system might reply “Which one?” and could handle the simple response, “The big
one.” Later, if asked “What are you holding?” it would respond “The big red block.”
The current work differs from SHRDLU in two important ways. First, it pays considerably
more attention to the fine-grained motor details which can be involved in verb semantics.
Winograd was not concerned with distinguishing push from shove, only with providing
a set of qualitatively distinct actions and a single verb to map to each. It’s not clear,
for example, that SHRDLU could be straightforwardly recoded for an arbitrary natural
language, since his “procedures” might not correspond to action categories encoded by
all languages. This was entirely appropriate, for his focus was at the system level, i.e.
on demonstrating how simple models of semantics, along with simple models of parsing
and inference, could combine to provide a system capable of understanding full discourse
when the domain was suitably limited. The second important difference is that this thesis

addresses the problem of learning.

Siskind (1992) built a system to learn to recognize action verbs in visual movies.
Among the important contributions of this work is the identification of contact, support and
attachment relations as key features in understanding the scenes. A logical notion of events

i

was used to discretize movies into “phases,” which is not unrelated to the role played by
x-schemas in the model proposed here. Yet difficulties arose from the use of necessary and
sufficient conditions as a lexical representation: neither defaults nor focus of attention could
be expressed, and the system exhibited brittleness in the face of minor timing variations.
Furthermore, the input was strictly visual and thus faced an unnecessarily hard problem

compared with our model which includes internal state of the actor.

By far, the project most closely related to this thesis is the dissertation work of
Regier (1996). Both projects are part of the Neural Theory of Language Project (formally
called “Lg”) (Feldman et al. 1996), and Regier essentially provided the model for the type of
research reported here. Regier built a model of the acquisition of spatial terms based upon

features derived from the structure of the human visual system. This structure was modelled
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as a connectionist network with subnets for computing orientation relations and center-
surround relationships. During learning it would develop new features, such as contact or
inclusion, that were necessary for the language it was learning. A backpropagation network
then categorized these features into spatial terms such as in, over or through in English.
The current thesis borrows from Regier the methodology of training a structured network
on lexical items from a variety of languages in order to force a balance between innate
and learned structures. However, an important limitation of Regier’s system is that it can
function only as a recognizer; there is no way for it to produce a visual scene corresponding
to a given spatial term. This deficiency, it turns out, was the inspiration for my focus on

actions—recognizing them, and carrying them out.
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This chapter presents an active representation for control of actions. The represen-

tation is crucial because in our model it provides the foundation of action verb semantics.

In order to best understand the rationale behind the representation, we first briefly review

some important properties of human motor control which motivated its design.
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3.1 Human Motor Control

Before focusing on the neural aspects of motor control, consider the hand and arm
and their behavior apart from neural control. All motion is the result of joint rotation.
Muscularly, this rotation is accomplished by adjusting tension in opposing muscles, called
flexors (e.g. biceps) and extensors (e.g. triceps), attached to each degree of freedom of each
joint. The arm has two joints, the shoulder and elbow. The shoulder is a three-degree-of-
freedom ball-and-socket joint, while the elbow can either hinge or pivot. The four fingers
each contain two hinge joints with one degree of freedom each, and are attached to the
metacarpals—the bones within the palm—via a bi-axial joint with two orthogonal degrees
of freedom but no pivoting. Meanwhile the thumb, while possessing one fewer joint, enjoys
a very flexible saddle joint connecting at the proximal end of the metacarpal, facilitating
opposition. Proprioception—the perception of the body’s own state—is accomplished by
muscle spindles which measure joint positions (the finger muscles have some of the body’s
most sensitive position sensors (Napier 1993)) and other types of sensors which measure

joint velocity. Various receptors embedded in the skin detect contact, pressure and shear.

Controlling many joints at once is of course an exquisitely complex task, but there
are biological design principles which manage the complexity. The key idea is the notion
of the motor synergy (Bernstein 1967), which is a sub-cortical continuous feedback control
circuit for a stereotyped motion, which may be modulated by parameters. The simplest
example is the stretch reflex, in which the stretching of either the flexors or extensors (or
simulated stretching, such as the doctor’s tap on the knee) causes those muscles to contract,
to counteract the stretch. This feedback loop involves just two neurons, which extend
from the spinal column to the limb. The stretch reflex contributes to maintaining posture
and is also a building block for higher-level synergies such as walking. Synergies can also
operate across modalities. The flexor reflex rapidly retracts a limb that is experiencing pain.
More amazingly, the scratch reflex responds immediately to a localized itch by choosing a
suitable end effector (hand or foot), moving it to the needed location, and initiating a
cyclic scratching motion.! Many types of grasps are encapsulated as synergies. Cutkosky &
Howe (1990) catalogs these grasps according to their uses, and argues that motion planning

involves discrete choices amongst them.

1See Kandel et al. (1991: Chapters 37-38) for a review of these and other motor reflexes.
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The restriction on arbitrary joint movements implicit in the notion of synergies
is evident from experiments in bimanual coordination. Franz et al. (1991) has shown, for
instance, that subjects cannot draw a square with one hand while drawing a circle with the
other. When the two hands do manage to engage in different activities, they often bear

certain relationships to each other, such as mirror image activity.

One consequence of the existence of such low-level synergies is that cortical control
of activity needs to control many fewer degrees of freedom, since it need specify only the
“name” of the synergy and its parameters. While the idea remains controversial, so-called
command neurons which trigger a synergy by their activation have been located. For the
simple stretch reflex, activation and parameterization are accomplished by specification of
a single threshold. But even more complicated synergies can be modulated with a small
number of parameters. Cat locomotion, for example, can be driven by a single labelled line
(i.e. axon) from cortex to a central pattern generator (CPG) which not only controls the
speed of the cat’s gait, but also induces a switch to a different gait (e.g. trot to gallop)
as required to achieve the commanded speed (Shik & Orlovsky 1976) (reviewed in Kandel
et al. (1991)). Parameters seem to be specified separately from the coordinative structure,
and often are encoded in an ensemble of neurons. For example, Georgopoulos (1993) has
discovered population coding of direction and force in motor cortex of behaving monkeys.
According to this scheme, a precise parameter value is specified by the sum of the varying

activations of an ensemble of neurons which, individually, are only coarsely selective.

This modularization of low-level continuous control loops allows motor cortex to
concentrate on higher-level concerns: the coordination of firing of synergies. What types of
coordination are required? The list obviously include sequentiality. Evidence that humans
construct a sequential motor plan includes the work of Sternberg et al. (1978) on delays in
starting or stopping typing sequences depending upon the length of the string to be typed.
But the motor control system must also coordinate concurrent actions, as demonstrated by
Arbib et al. (1987) in the context of preshaping the hand during the movement of the hand
toward an object to be grasped. Synergy firing can be based not only on current perceptual
input but also on internal state. Central pattern generators are the simplest case of this;
the effect of perceptual input is modulated by the state (or phase) of the central pattern
generator. Thus high-level controllers are not simple percept—synergy maps. The existence

of ballistic synergies (for actions which must be performed too quickly to allow for feedback
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control) necessitates a looping mechanism at the coordination level to implement successive
refinement. And lastly, the uncertainties of the world demand coordination of “emergency”
error-correcting actions with the main sequence of actions. Motor representations with
these kinds of capabilities are referred to as motor programs and their study constitutes a
significant subfield of neuroscience (see e.g. (Pearson 1993)). The supplementary motor area
of the cortex appears to be implicated, since its activity increases with action complexity;
its activity often precedes activity in primary motor cortex and initiation of movement;
and cells in this area have been shown to be sensitive to ordering of actions about to be

performed (Tanji 1994).

While most of motor cortex is active only when actions are being carried out
(or are about to be carried out), the premotor area is active even when actions are only
thought about, including mental imagery or viewing another person acting (in which case
the phenomenon is called “mirroring” (Gallese et al. 1996; Grafton et al. 1996)). The
accepted view is that this area is involved in planning action sequences. This fact nicely

supports related work (see §9.5) employing x-schemas for reasoning.

In summary, then, the key properties of human motor control which we will capture
in our representation are (1) synergies for continuous coordination of muscles during simple
actions, (2) limited parameterization of these synergies, and (3) serial, concurrent and
asynchronous combination of these synergies to compose complex actions. For the curious
reader, Wing et al. (1996) provides a compendium of neurobiological and psychological
research on hand movements. For a lighter survey on hands ranging from their evolution

to left-hand taboos see Napier (1993).2

3.2 A Petri Net Model

Several constraints, then, drive the representation of actions described in this
section. Logical descriptions are ruled out, since the representations must be able to support
real-time control of the actions described. Traditional procedural attachment is ruled out,
since “black box” controllers would not support the kind of inference about actions which is

required in the language task. An inspectable yet active representation is needed, suggesting

?In this work we won’t address the issue of which portions of motor control are innate, maturational
or learned via experience. Huttenlocher et al. (1983) and Gopnik (1981) suggest, however, that lexical
development can be partly explained in terms of concurrent learning of language and motor competence.
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3

a state machine formalism.” In particular, the Petri net formalism has some desirable

properties and is our choice for implementing x-schemas.

3.2.1 Synergies as building blocks

The Petri net formalism requires that there be a set of actions at the lowest
level which are essentially atomic. In our x-schemas these will consist of actions which are
hypothesized to be controlled by motor synergies as described in the previous section.* This
set has several properties. First, they form a limited set of distinct actions. Second, since
they are atomic, the internal implementation of the primitive actions is irrelevant at the
Petri net level. Generally these actions would be expected to be implemented as some form
of continuous feedback controller. Third, most synergies have a small number of parameters
to modulate their function. The following list includes all the synergies used in the examples

in this dissertation:

®This idea is not new in robot control, e.g. Brooks (1986).

*While the “synergies” proposed here are biologically plausible in some ways (as discussed shortly), they
are not taken directly from the motor control literature. Indeed, a full characterization of human motor
synergies remains an elusive goal.
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List of Primitive Synergies

MOVE ARM (direction, force, duration): apply force to move the

arm in a feedback-controlled manner

MOVE ARM TO (dest, [via]): ballistically move the arm to a target

location, passing through the via point if it is specified

PIVOT WRIST (direction, force, duration): pivot the wrist around

the axis of the forearm
GRASP: preshape a circular grasp for holding round or cubic objects
WRAP: preshape a grasp for holding long, thin objects
PALM: preshape the palm for flat contact with an object
PLATFORM: preshape the palm to support an object from below

PINCH: preshape grasp for holding objects between the thumb and index
finger

APPLY HAND: close the fingers and/or move the palm until they contact

an object which is in front of the hand
TIGHTEN GRIP: increment the gripping force of the fingers
RELEASE: open the hand, terminating any kind of grip

POINT: extend index finger while closing other fingers

While the internals of these primitive synergies are not modelled here, a few points
are in order. First of all, note that most of the synergies involve moving a body part into
a goal position or orientation. We will assume that invocation of one of these synergies
when the body is already in the goal position is allowable and simply produces no motion.
This assumption is compatible with several theories of motor control, including the spring
model (Latash 1993; Jeannerod 1988) which hypothesizes that movements are generated by

simply informing the muscles of their desired tension levels and then allowing the system to
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Figure 3.1: A taxonomy of Jack grasp synergies. Courtesy of the Center for Human Mod-
eling and Simulation at University of Pennsylvania and Transom Technologies, Inc.

relax to this state in accordance with the spring law. It is also compatible with comparator
models (Jeannerod 1997: Chapter 6) in which cortex drives the muscles only until (or if)
their perceived position differs from the goal position. The MOVE ARM TO synergy also
demands a bit of explanation, since it seems to be missing some important parameters
such as force or duration. The answer here is that we assume this synergy computes these
parameters in accordance with Fitts’ Law (Fitts 1954), which is an empirically derived rule
relating force and duration to the accuracy requirements of a movement (determined by

context or by the specificity of the destination).

Many of these synergies refer to types of grasps. This taxonomy roughly follows
that of Cutkosky & Howe (1990) as mentioned in §3.1. It turns out that the Jack simulator
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also follows this taxonomy, and Figure 3.1 portrays the full taxonomy. Our synergy set uses

only a subset of these grasps for simplicity.”®

Certainly, humans possess many more motor synergies relevant to hand actions.

However, this set is large enough to make the points we want to convey.

3.2.2 The Petri net formalism

FErecuting schemas, or z-schemas for short, is the name given to our motor control
representation. In the current design they are modeled as Petri nets. Additionally, there
is a parameter-passing mechanism which operates in conjunction with the Petri formalism.
Fach x-schema is designed to achieve a given goal (such as obtaining an object) but may

represent multiple ways of achieving the goal, depending on the world state.

The Petri net formalism (Murata 1989; Reisig 1985) conveniently expresses most of
the needed properties for coordination of synergies, including concurrency and asynchrony.
A Petri net consists of places and transitions with directed connections between them.
Places may represent either perceived states of the world or internal state, and the current
state is indicated by the presence of a token. When all of the places with connections to a
transition possess tokens®, the transition is enabled and may fire, which involves consuming
those tokens and then depositing a token in each place with connections from the transition.
Figure 3.2(a) shows a before-and-after view of the firing of a single transition. Places are

drawn as circles, transitions as rectangles, and tokens as solid dots.

All transitions in a Petri net operate in parallel. There is no global clock, nor
do firings get serialized. FEach transition fires whenever it becomes enabled. In general,
the delay between enablement and firing is unpredictable, although the formalism allows
specification of probability distributions on the delays. But we do not use this feature here,

and in our x-schemas all delays are assumed to be zero.

In our use of Petri nets, a transition usually represents an action, namely the
execution of a primitive motor synergy. The action occurs exactly when the transition fires.

These transitions are depicted with the name of the action inside the rectangle. Sometimes,

A more detailed model of grasping could, if necessary, be made. The grasp types above can be decom-
posed using the opposition space and virtual finger abstractions of MacKenzie & Iberall (1994).

6Generally, only one token is required at each input place. Where more than one token is required, the
number is indicated next to the incoming arc.
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(&) A before-and-after depiction of atransition firing.
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(b) A Petri net which executes A, B and C in sequence.
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o

(c) A Petri net which executes A when c1 becomes true, or B when ¢c2 becomes true
(or arandom choice if both c1 and c2 are already true).

(d) A Petri net which executes A and B concurrently (or, at least, asynchronously).

Figure 3.2: Some common Petri net constructs. (a) shows the simplest case of an enabled
transition firing. (b)-(d) show constructs for sequentiality, branching and concurrency.
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though, transitions are needed simply to move tokens without any corresponding action.

These transitions are left unlabelled.

When assembling these building blocks into working Petri nets, certain patterns of
network structure prove particularly useful. For example, sequential actions are a common
requirement. The Petri net implementing sequential firing of transitions is depicted in
Figure 3.2(b). The places between each pair of transitions serve to pass “control” from
one transition to the next. Placing a token in the left-most place, as shown, leads to the
action sequence A, B, C and leaves a token in the right-most place. Loops are another
common pattern, and are trivial to construct; if the final output arc of Figure 3.2(b) were
to connect back to the left-most place, the net would generate the sequence A, B, C, A, B,
C, .... Another pattern, branching on perceptual conditions, is slightly more complex and
is shown in Figure 3.2(c). Separate places encode the mutually exclusive set of conditions,
such as “c1” and “c2”. When the token is deposited in the start place, only the transition
connected to the currently-true condition fires. If none of the conditions is true, the net
suspends until one becomes true. If the conditions are not mutually exclusive and more

than one is currently true, then one of the two enabled transitions is chosen at random to

fire.

Figure 3.2(d) shows how a Petri net can encode concurrency. A transition with
no associated action (labelled “|1” to indicate concurrency) is used to turn one token at
the start place into two tokens. The two tokens simultaneously enable transitions A and
B, allowing them to fire simultaneously, or at least in an arbitrary order. Once two tokens

arrive in the right-most place, we have a guarantee that both transitions have fired.

Note that some places represent control flow, while others represent input from
“outside” the net, i.e. perceptual information, which influences the course of action. This

latter type will be discussed shortly.

A simple extension to Petri nets allows weighted connections. A weight on a
connection into a transition specifies the number of tokens which must be present in order
to enable the transition. A weighted output arc from a transition specifies that multiple

tokens are emitted when the transition fires.
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Figure 3.3: Translating durative-action transitions into the standard Petri formalism with
instantaneous transitions.

3.2.3 Durative actions

In the Petri formalism, all transition firings are instantaneous, and thus input to-
kens are effectively consumed at the same time that output tokens are generated. Yet many
of the synergies defined in §3.2.1 do not execute instantaneously. In order to represent such
durative actions as transitions, we must alter the semantics of transitions from the standard
Petri model as follows. When a durative transition fires, it consumes its input tokens im-
mediately, but does not deposit its output tokens until its action completes. Furthermore,
we allow a special kind of connection from a place to a durative transition which aborts the
action-in-progress should a token become available before completion. These connections

are drawn with a flat bar at the “tip”.

Translating durative transitions back into standard Petri transitions can be ac-
complished as shown in Figure 3.3. The translation assumes that the durative action can
be redescribed as a pair of instantaneous actions which initiate and abort the action, along
with a place which detects when the action is done. In some cases the needed detector is
already explicitly modelled for other purposes (for example, detecting contact) but in other

cases we would need to model new detectors (such as detecting that muscles have reached
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their set point). The translated network in Figure 3.3(b) operates as follows. When a token
arrives in place A the “initiate” transition fires, invoking the corresponding synergy and im-
mediately placing a token in the unlabelled place in the center of the figure which indicates
that the action is ongoing. In the usual case, the network then waits until completion of the
synergy is detected. At this time the unlabelled transition, “noticing” that the action was
ongoing but is now done, fires and deposits a token in place B. However, if there exists an
“abort” connection and it receives a token before the synergy completes, then the “stop”

transition fires instead, aborting the synergy and depositing a token in place B.

3.2.4 Accessing perceived world state

A central feature of an x-schema is that its execution path can be highly context-
dependent, by virtue of having special places which receive tokens from external percep-
tual sources. In practice, these perceptual places represent fairly high-level properties of
the world, as opposed to, say, low-level visual details. Separate, unmodelled perceptual
mechanisms are assumed to perform the appropriate computations over perceptual and
proprioceptive inputs to generate these high-level properties. Such places have slightly non-
standard behavior, in that the token is never depleted; if consumed by a transition, it is
instantaneously replaced (unless, of course, the world state changes). These percepts are

boolean in nature. They are listed below.
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List of Perceptual Places

SMALL object size is small compared to hand

LARGE object size is large compared to hand
RESISTANCE detects a very high force opposing arm motion
ELONGATED object has a large length-to-width ratio
SLIPPING detects a slipping grip

STABLE detects that the object is stably supported

GRIPPING detects that object is already held in grip (any type of grip

including palm contact)

AT GOAL detects whether object is at goal location or orientation

Naturally, x-schema transitions can be enabled by either the truth or falsity of
these conditions. To allow this, the model has separate places for both the true and false
cases. The need for inhibitory connections is thus removed, and the model also gains the
capability of representing the “don’t know” condition. It is the (unmodelled) perceptual

mechanisms’ responsibility for ensuring consistency between the two contradictory places.

Not all of the relevant features of the world are boolean, however. X-schemas will
need to make calculations, such as computing the force needed to move an object given its
weight and a desired acceleration. We posit, therefore, a small working memory where such

values are stored. Features contained in this area include:

List of Perceptual Features (Quantitative)

WEIGHT an estimate of the object’s weight

OBJLOC a vector indicating object position
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Figure 3.4: The SLIDE x-schema.

3.2.5 The Slide x-schema in detail

Each x-schema corresponds to a single Petri net, and in this section we will examine

the SLIDE x-schema in detail. It is shown in Figure 3.4.

The SLIDE x-schema controls actions which move an object across the surface of
a tabletop. It begins when a token is deposited in the “start” place at the left-hand side
of the figure. Its first transition essentially copies this token into two output places in
preparation for carrying out two concurrent synergies (the || symbol is a reminder of this
function). The two concurrent synergies are preshaping of the hand and moving the hand to
the object. The preshaping step is conditional on the size of the object, choosing a circular

five-fingered grasp if the object is small but a flat palm if the object is large.

Only when both actions have completed—enforced by an arc with weight of 2—
does the x-schema proceed to the next step, actually applying the hand to the object
using the preshaped grip. The APPLY HAND transition outputs two tokens. One of them
fires the MOVE ARM transition which engages the arm in the continuous horizontal motion
which is the central action of the x-schema. The direction of motion parameter is externally
specified. The force of motion may be externally specified, or may be computed from the
desired acceleration and the estimated weight of the object. The duration of the movement
may be externally specified, but otherwise a value is computed which is likely to land the
object near its goal location. However, if the object is observed to reach its goal position

before this duration, the movement will be aborted.
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As an example of error recovery, note the piece of network above the MOVE
ARM transition in the top center of the figure. At the same time that the MOVE ARM
synergy is executing, the second token emitted by the APPLY HAND transition makes
its way to the place labelled “e”. This enables the TIGHTEN GRIP transition to fire
should slipping of the grip be detected. This transition returns a token to “e” whenever
it executes, so that the x-schema remains prepared to tighten the grip further if more
slipping is detected. Importantly, this error-recovery mechanism operates without any other
interaction with the rest of the x-schema; it is an “interrupt handler” in computer-systems
parlance. Once MOVE ARM is finished, the error-recovery mechanism should be disabled.
This is accomplished by the unlabelled transition following MOVE ARM, which consumes
the enabling token.

When the arm motion is complete, the x-schema tests whether the object is now
in its goal position, and if so terminates by depositing a token in the “done” place. But if
the goal has not been reached, the x-schema loops back to re-apply the hand to the object
and move it again, with the parameters of motion recomputed for the reduced distance to

the goal position.

The above discussion is noncommittal about the source of some of the inputs used
to compute synergy parameters. The next chapter will discuss how x-schemas interact with
language and reasoning and use feature structures for this purpose. But for the remainder

of this chapter the source of these inputs will remain implicit.

3.2.6 Other x-schemas

Besides the SLIDE x-schema described above, we have several others.

The LIFT x-schema (Figure 3.5) controls actions in which the vertical position of
an object is increased or the object is simply held in the hand. It has a similar structure
to SLIDE, but involves some different grasp types. In particular, cylindrical items are
picked up using a wrap grasp, while large objects are lifted by supporting them from below
using the hand as a platform. The continuous arm motion step calculates its parameters
somewhat differently than in the SLIDE x-schema. First of all, the direction is upwards.
More interestingly, the force parameter can be calculated to yield either a given upward

acceleration of the object, or else zero acceleration. With zero acceleration the x-schema
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Figure 3.5: The LIFT x-schema.

implements holding an object still against the force of gravity.

The ROTATE x-schema (Figure 3.6) is used to rotate objects. Interesting features
include the MOVE ARM TO step, which computes the “opposite” side of the target object
with respect to the desired rotation direction, so that the hand will not end up underneath
the object during the rotation. Also, the actual rotation step relies upon an abort connection
into the main PIVOT WRIST synergy, which terminates the rotation once the object has
re-achieved stability. This allows the rotation of, for example, a cube or a flat object. For a
round object (or any object rotated around an axis allowing smooth rotation), the duration

parameter would instead be used to determine the duration of the pivot synergy.

The DEPRESS x-schema (Figure 3.7) is for use with a button. Hence, it hardcodes
the choice of shaping the hand with an extended index finger. The pressing action is
implemented by a MOVE ARM synergy which relies on termination by detection of the
increase of resistance occurring when the button has hit the end of its travel. The subsequent
MOVE ARM step removes the hand from the button by a small distance, allowing potential

repetition (modelling the activity of an anxious elevator passenger).

The ToucH x-schema (Figure 3.8) encompasses a variety of behaviors and varies
more in structure from the other x-schemas. At the beginning, the x-schema chooses one of
two basic routes (top vs. bottom of the figure). The top route is chosen for slower touches.

The hand may be shaped so as to use either the index finger or the palm. Once the hand
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arrives at the object and contact is made via the APPLY HAND synergy, the x-schema
may either simply delay for a variable duration (momentary vs. extended touching) or may
move the hand along the surface of the object, crudely implementing a feel (the haptic
exploration of objects involves a host of strategies (Lederman & Klatzky 1996) which aren’t
modelled here at all). The bottom route, in contrast, generates a rapid ballistic motion of
the arm during its approach to the object, and aims at a location slightly behind the object
to ensure that contact is made—resulting in hitting-like behaviors. The path by which the
MOVE ARM TO synergy approaches the object can be influenced by specification of a
“via point” through which the path is constrained to travel. This allows anything from
straight-on hitting to a sideways slap. Whichever route is chosen, the entire action may be

repeated.”

This set of x-schemas is capable of generating only a small fraction of possible
hand actions. However, the intent here is not to build an exhausive set of controllers, but
rather just to include a wide enough range of action controllers to make a convincing case

for the approach to verb semantics presented in subsequent chapters.

"The “repeat” and “not repeat” places are under the control of either linguistic input (see next chapter)
or higher-level planning systems not considered here, such as the “aspect graph” of Narayanan (1996).
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3.2.7 Multiple entry points

A recurring pattern in the x-schema set is that they effectively have multiple entry
points. This is a natural consequence of the goal-oriented nature of x-schemas and the
fact that one can start toward a goal from varying distances (as measured in steps). For
instance, LIFT will skip the grip-acquiring step if the hand is already gripping the object,

in which case its behavior might be described in English as raise or hold but not pick up.

As shown in the LIFT x-schema, as well as the ROTATE and DEPRESS x-schemas,
multiple entry points have been implemented using “noticer” transitions which “fast-forward”
the control flow past unneeded steps when tokens are present in the appropriate perceptual

places (e.g. the “contact” place).

Another strategy is to have true multiple entry points into x-schemas. In other
words, we would declare a new x-schema RAISE, which would happen to point to the middle
of the LIFT x-schema, yet would be treated as a separate x-schema by the rest of the verb-
learning system. Such a strategy would facilitate learning the distinction between verbs
like pick up and raise, while making it more difficult to learn verbs which encompass either

starting point (as does lift for many speakers).

3.2.8 What can’t be encoded in x-schemas?

What is the advantage of using a formalism such as Petri nets to encode x-schemas
when, seemingly, one could just as well implement them as arbitrary computer programs?
The difference is that, unlike an arbitrary procedure, a Petri net is analyzable. The types
of interactions between primitive actions are limited. Consequently, important properties,
such as repetition or interruption, can be “pointed to,” i.e. described by their network
patterns. This analyzability derives partly from the restrictions the formalism places on the
procedures which can be encoded. For example, while a Petri net can encode concurrency,
it cannot specify the details of two concurrent actions such as their relative rate or which
finishes first. Such representational restrictions render the learning of action categories
tractable, and constitute an interesting claim about what kind of details are semantically

salient and which are semantically irrelevant.
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3.3 Connectionist Account

As a plausibility argument, this section sketches an account of how standard con-
nectionist techniques could be employed to model x-schemas. These ideas have not been
implemented. First, we will present a simple approach which captures the control structure
of Petri nets. Then we will overview a much more complex architecture which handles

parameter bindings as well as control flow.

3.3.1 Petri net control

For the most part, the Petri net formalism is a natural for connectionist imple-
mentation. It is a graph structure with limited connectivity. Both transitions and places
can be represented as connectionist units. We will first describe the representation and then

give an example (which is illustrated in Figure 3.9).

Transitions are the simpler case. Conceptually they can be implemented with
single neurons (although for robustness reasons one would ultimately expect a cluster of
neurons). The incoming arcs of the transition correspond to the inputs to the neuron. The
weights of the neuron are all set to 1, and the threshold is set to the number of inputs. The
enablement of the transition corresponds to the simultaneous firing of all the inputs to the
neuron. Note that this is the only condition under which the neuron will fire, due to its
high threshold. When it does fire, it does so for only a brief period. The output arcs of the

transition correspond to multiple branches of the output axon of the neuron.

Places are somewhat trickier since they must be capable of storing tokens indefi-
nitely between being deposited and being consumed. This can be modelled using a group
of neurons (minimally two) with mutual reinforcement. Such recurrent connections allow
the group to settle into stable states of activity, even after external excitatory or inhibitory
inputs have ceased. Using this design, the presence of a token corresponds to sustained ac-
tivation of the group of neurons, and absence of a token corresponds to sustained inactivity.
Depositing a token corresponds to incoming excitation that elevates the group to the active
state. Removing a the token corresponds to inhibitory activation that returns the group
to the inactive state. Outgoing axons from the group of neurons relay the current activity

level to transitions so that they may determine whether to fire.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 40

"dlipping grip"
to grip-tightening
perception muscles
of slippage
tighten grip
transition
todlide
x-schema
from dide "grip was tightened”
x-schema
"want slippage stopped"

Figure 3.9: An example connectionist implementation of Petri nets including one transition
and several places.

When the transition actually fires, a mechanism is required to remove its input
tokens. This can be accomplished with backward connections from the transition unit to its
place units. The backward connections supply sufficient inhibition to reset the place units
to the inactive state. For transitions which fire instantaneously, the output axon of the
transition neuron can be used to accomplish the removal of the input tokens. For the case
of durative actions, the translation process described in §3.2.3 would be needed to allow
this procedure to work. One problem with this design is that there is a potential for race
conditions. If two transition neurons are competing for a token from a shared input place,
it is possible that they will both fire before either gets a chance to remove the token. The
probability of this occurrence is reduced if transitions have delay before firing, but is not
eliminated. It should be noted that the x-schemas presented above do not use this type of

nondeterministic competition for tokens.

An example of these ideas is shown in Figure 3.9. Neurons in this and later figures
are drawn with a lobed side representing the dendritic tree, which is the “input” side of the
neuron, while the “output” axon is drawn as a line emerging from the rounded side. In the
center of Figure 3.9 is a neuron implementing a transition—in particular, the TIGHTEN
GRIP transition from the SLIDE x-schema. It accepts input from two groups of neurons,

one which implements the “slipping grip” place, and the other which implements the place
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signifying that we currently care about stopping any slippage. The output of the transition
neuron projects to a third group of neurons which represent a place signifying that the
grip has been tightened. The output also projects back to the input places with inhibitory
connections, indicated by round-tipped links. Lastly, the output projects to whatever motor
machinery actually controls the grip force. Within each group of neurons implementing a
place, the recurrent connections are shown. External excitatory connections to and from

the three place units are also shown.

3.3.2 Passing parameters

The preceding section addressed the control portion of the x-schema model, but
did not address the problem of passing parameters within x-schemas. This section considers

some ideas for integrating parameter passing with control flow.

One simple design strategy would be to keep the motor parameters separate from
the connectionist Petri net controller. They would connect only to the primitive synergies
they parameterize. Indeed, there is some evidence for this design, such as the experiments
of Georgopoulos (1993) which suggest that certain areas of motor cortex are dedicated to
representing single parameters such as direction, independent of other aspects of the current
action. With this design, when a transition fires it would trigger the corresponding motor
synergy (whose neural implementation we have not considered) and that synergy would

“read” any needed values from the global parameter-storing area.

But it’s hard to envision how that solution could scale up to x-schemas in which
some parameters might be used by more than one synergy during execution. For example,
perhaps the arm must be moved with one force value, while the hand squeezes an object
with a different force value. This situation requires binding of parameter values to particular

transitions in the Petri net.

To solve this binding problem, a connectionist action controller has been developed
(Shastri et al. 1997) allowing parameters to be (1) passed into an x-schema, (2) propagated
with potential modification, and finally (3) used to modulate primitive synergies. The
mechanism builds on SHRUTI (Shastri & Ajjanagadde 1993), a connectionist system for

logical reasoning.® This system is fairly complex and will not be described in detail here.

®In fact, the controller mechanism can be integrated with the reasoning system, providing the necessary
tools to build a full planning and execution system.
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Figure 3.10: A SHRUTTI implementation of a PUSH x-schema which is similar in function

to the SLIDE x-schema of Figure 3.4. From Shastri et al. (1997).
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The key idea, though, is that temporal synchrony is used to represent bindings. To use a
familiar example, the connectionist representation of the predicate loves(lover,loved)
would include units for the two roles of the predicate. Other units represent atoms such as
John or Mary. To represent the assertion loves(John,Mary), the lover unit fires at the
same time as the John unit, and the loved unit fires at the same time as the Mary unit. The
two synchronizations are kept distinct, and persist in a periodic manner while reasoning is
performed. Other units for the loves predicate detect whether all bindings are in place
and if so may trigger activation of related predicates such as alive(John). The collection

of units implementing a predicate are called a focal cluster.

The key step in adapting SHRUTI to implement x-schemas is that these focal clus-
ters can be used to represent “stages” of execution of an action (although they do not map
exactly to either transitions or places). Figure 3.10 shows a SHRUTI implementation of a
PusH x-schema. Focal clusters are drawn as ovals. A focal cluster is triggered when activa-

tion arrives at its “?”

unit. Thus, the whole x-schema is invoked by sending activation to
the “?” unit of its first focal cluster, shown at the bottom of the large hexagon (drawn with
dotted line) in the figure. Along with this start signal, the focal cluster receives parameters
by virtue of the firing of its role units (open circles in the figure) in synchrony with other
units in the overall system which represent the parameter values. Each focal cluster may
trigger a primitive synergy or perhaps a sub-schema, which eventually indicates completion

“_»

by sending activation back to the “4” or units of the focal cluster to indicate success

or failure. The focal cluster then redirects this activation to the next stage of execution,

“~7 is activated. The primitive

perhaps to different stages depending on whether “+” or
synergy or sub-schema may also create new temporal bindings, thereby manufacturing new
parameters for later steps of execution. (For example, in the figure the LOCATE OBJECT
sub-schema creates a new binding representing the object to be pushed.) The final step of
the x-schema returns activation to the “4+” or “~” unit of the initial focal cluster to indicate

completion (thus the first focal cluster acts as both the “start” and “done” place).

Although this connectionist representation does not directly mimic the places and
transitions of Petri nets, the mechanism is able to encode sequentiality, concurrency and
asynchrony, and can capture all of the control patterns used in x-schemas presented in this
dissertation. It does suffer, however, from the same race conditions as the simpler design

in the preceding section.
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The reader is referred to Shastri et al. (1997) for a fuller account of this architec-

ture.

3.4 Related Ideas in Artificial Intelligence

The notion of “schemas” has appeared in the Al literature in various guises.

One such notion, which came out of early work in planning, is the procedural
net (Sacerdoti 1975). Procedural nets are a graphical, flow-chart-like representation of
an activity, and to this extent they resemble our x-schemas. A further similarity is that
procedural nets include “split” and “join” nodes, allowing expression of parallelism.” The
main difference between procedural nets and our x-schemas is one of emphasis. While
x-schemas are primarily action controllers, procedural nets serve primarily as a working
memory for a nonlinear, hierarchical planner, NOAH. NOAH constucts a plan by beginning
with a single node for the goal, and gradually refining portions of the net with more detailed
sub-actions amongst which minimal ordering commitments are made. Thus the parallelism
allowed by the split and join nodes is not intended for coordinating concurrent actions, but
rather to express partial ordering of sub-actions. (Later addition of ordering constraints by
various “critics” is a crucial part of the planning algorithm.) Since the net’s main role is to
represent these ordering constraints, it omits much of the reasoning regarding the actions
it represents; a separate logical inference engine is used for this purpose. In contrast,
our x-schema model aims to include reasoning within the Petri net formalism in order
to achieve the rapid responses needed during action execution. (To be fair, the inferences
performed by our x-schemas are much simpler than those required for full-fledged planning—
but that is part of the point of using what can be thought of as “compiled plans”.) Lastly,
since Sacerdoti’s work precedes the era of conditional plans and integration of planning
and execution, procedural nets do not include a mechanism for branching. The ability to
choose execution paths based on world state—and in particular to do so in an asynchronous

manner—is the biggest advantage of the Petri net formalism.

In the robotic control world, our x-schemas are similar to the schemas of Arbib

et al. (1987) in their state-machine-like character as well as their use of parallel mechanisms

°0On a technical note, it appears that Sacerdoti’s system only constructs nets with nested parallelism,
though the representation is not inherently limited in this way (nor are Petri nets).



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 45

for control and for passing parameters. Our x-schema design is also akin to the subsumption
architecture of Brooks (1986) in that multiple layers of control may execute concurrently
(and also shares the finite-state nature of each controller). Nilsson (1994) offers a slightly
different perspective on schemas, in which a production system continuously monitors prim-
itive actions and switches amongst them appropriately as relevant (and discrete) changes

in world state occur.

In the learning and sensorimotor representations world, x-schemas also bear a
resemblance to the quasi-Piagetian schemas of Drescher (1991) in their use of essentially
independent primitive actions connected only by common preconditions and postconditions,

which allows for very flexible execution patterns depending on the vagaries of the world.

Schema-like representations have also found application in modelling verb seman-
tics in previous work. As part of the Jack project (Badler et al. 1993) (see §8.1.1), certain
coordinated activities such as grasping or walking are encoded using a construct called
parallel transition networks. These networks bear a passing resemblance to our Petri net
representation. However, practicality, not elegance, was the main design criterion, and as a
result they would make a less appealing semantic base than Petri nets. In particular, each
state has hooks for including arbitrary Lisp code at each state, and also there are several

global mechanisms operating in concert (or cacophony?) with the local code in each state.

Connectionist implementation of x-schema-like representations was the focus of
Goddard (1992), which represented various walking and running motions as cyclic sequences
of configurations and used these representations to recognize the motions in visual input.
The intricate strategies for managing delays would likely prove useful in a strictly connec-

tionist implementation of x-schemas.

3.5 Thoughts on Hierarchical X-Schemas

The limitation of the above x-schemas to fairly simple actions raises the question
of how x-schemas for more complex actions could be constructed. More complex actions
are obviously necessary from the problem-solving point of view, but also potentially from
the lexical-semantic point of view. For example, consider English verbs such as stack, tie or
sharpen. In certain languages—serial verb languages in particular—verbs directly code for

sequences of simpler actions, and thus clearly require an account of x-schema composition.
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(a) General MOVE x-schema:

(b) LIFT x-schema:

o
-

preshape
hand

move hand
to obyj

grasp

o

move hand
upwards

slipping
grip

tighten
grip

Figure 3.11: Two x-schemas organized hierarchically.
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The Petri net formalism can be extended easily to allow for hierarchical networks.
An example is shown in Figure 3.11. Hexagons represent transitions which invoke entire
sub-schemas rather than primitive synergies. Note how the LIFT x-schema is called as
one possible step in the more general MOVE x-schema depicted above it. An “umbrella” x-
schema like MoOVE, which serves only to choose a more specific x-schema which is best suited
to the current goal, would facilitate learning general verbs like move. Without it, the system
must learn the collection of x-schemas which are associated with move (SLIDE, ROTATE
and LIFT in this illustration). This statistical determination would require a substantial
number of training examples. But if the MOVE umbrella x-schema were present, the verb
move could simply map to this x-schema—a mapping which could be learned relatively
quickly. In effect, umbrella x-schemas could aid learning by pre-specifying collections of

specific x-schemas which are likely to be linguistically relevant.

Here are three approaches to handling more complex actions in the context of verb
learning. One approach is to manually construct higher-order x-schemas such as the MOVE
example just shown. Unfortunately, it would become impractical to design and hardwire
into the model such x-schemas as we scale up to ever more complex behaviors (as would be
necessary, say, if we were to consider sentential as opposed to lexical meaning) because the
range of possible behaviors is too large. A second approach would be to create a special set of
“template x-schemas” which essentially provide a catalog of ways in which the lower-level x-
schemas may be combined. We might have template x-schemas for executing two x-schemas
sequentially, for executing one x-schema conditional on successful execution of another, for
repeatedly executing an x-schema, and so forth. The major design problem any template-
schema solution would have to solve is how to bind the appropriate sub-schemas to the
template x-schema, for a particular invocation. The third approach, developed by Narayanan
(1996), is similar to the template x-schema idea but proposes a single template which
captures the stages inherent in any process, such as enablement, interruption, completion,

and so forth.
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This chapter shows how the execution of the x-schemas presented in Chapter 3
interacts with the language portion of the model via a restricted interface, called the linking

feature structure.

4.1 Cognitive and Linguistic Motivation

The case has been made that some details of motor control matter for verb seman-
tics. Yet it’s crucial to see that linguistic expression of motor control is restricted. After
all, consider how hard it is to tell someone how to juggle, ride a bike or play hockey. We
don’t have conscious access to our stretch reflex thresholds or motor unit activation levels.

We often don’t even have a good idea of our joint positions (Soechting et al. 1996). We
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certainly don’t have conscious awareness of discrete action controllers and all their state
changes during behavior! This motivates the search for a limited set of features to repre-
sent those aspects of x-schema execution which are relevant for distinguishing verbs. These

features will be the sole means by which verbs can “connect” to x-schemas.

But which features to choose? One source of motivation is the linguistics literature.
Talmy (1985) is the most comprehensive cataloging of features encoded by verbs and their
satellites (which roughly correspond to the grammatical forms we consider in Chapter 7
and call “verb complexes”). A key result for motion verbs—a category that overlaps our
domain—is that a given language will tend to encode in its root verbs, along with the fact
of motion, only one of (a) manner/cause, (b) path, or (¢) figure. Other semantic categories
can appear in verb roots as well, and Talmy has compiled a list which, considering only
those items relevant to our simplified domain, gives us the following sources of linguistic

distinction:!

cause, manner, purpose (goal), figure (for Atsugewi), path (in, out, up, down,
past, through), polarity (occurrence wvs. non-occurrence of key event), phase
(start, stop, initiate, finish), aspect (one-way, full-cycle, iterative, continuous,
gradient ), direction (deictic)

A recurring pattern in action verbs also observed by Talmy is that verbs which
express manner tend not to express goal. For example, releasing and obtaining possession
are distinct goals and have distinct verbs (put and get) which don’t express manner. If we
wish to express that the manner is a twisting motion, we have only the verb twist; the goal

must be expressed by a satellite, as in twist in and twist out.

The above catalog tells us what kinds of features are semantically salient, but
does not tell us the level of detail required. It is likely that the appropriate level is fairly
abstract. Talmy (1988) provides an account of how motoric features such as force may
be conceptualized in a schematic way for purposes of language. Mandler (1992) presents
psychological evidence that such schematizations are present before lexical development

begins.

Jeannerod (1994), by way of some ingenious experiments with mental imagery of

!The catalog is also important for its list of features which do not prove relevant to verb semantics.
These include: resulting event subordinate to main event, ground alone, hedging, degree of realization, rate
(Talmy claims it appears only in conjunction with other properties), spatial location of speaker or hearer,
tense, speech act (e.g. declarative wvs. imperative).
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actions, also demonstrates that only a subset of all the actual motor parameters are directly
available to consciousness; the others are “re-created” using typical—though not perfectly
reliable—relationships amongst parameters. For example, imagined duration of actions has
been shown to be a complex function of amount of force, radius of curvature of motion, and

effort expended.

In the next section we consider the projection of the above features onto our
restricted domain of hand movements to help determine an appropriate set of linguistic
features. In doing so, we must be able to extract the features from the schematic represen-

tations developed in the previous chapter.

4.2 The Linking Feature Structure

In order to map to declarative linguistic representations, the execution of an x-
schema is summarized in what we will call a linking feature-structure (f-struct for short).
The linking f-struct (and other kinds of f-structs, as we will see later) are drawn as horizon-
tally extended double-boxes, as can be seen at the top of Figure 4.1, which shows a subset
of the linking features we will use. Structurally, an f-struct is a list of (feature, value) pairs,
and our use of the term “f-struct” is meant to facilitate compatibility with feature struc-
tures as conventionally used in linguistics.? Each (feature, value) pair occupies a column in
the double-box, with the feature name in the top box and the value in the lower box. (In

Figure 4.1 several possible values are shown for each feature.)

Crucially, the linking f-struct by virtue of its position in the overall architecture of
the model provides a bidirectional interface between x-schemas and language. The features
in the linking f-struct are connected to appropriate locations within the x-schema set (as
indicated by dashed lines in Figure 4.1 and discussed later) so that when an x-schema
executes, appropriate values are placed in the linking f-struct. Similarly, when linguistic
input sets particular values in the linking f-struct, these values will then appropriately guide

the execution of x-schemas.

The set of features is hardwired into the model, meaning it cannot change during
verb learning. Certain features may prove irrelevant for a given language, but no new

features can be added. Thus, the set of features represents a strong claim about what kinds

2The actual features will, however, differ from those conventionally used in linguistics.
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Figure 4.1: A linking feature structure (top) and its connection to the SLIDE x-schema.

of properties of the execution of x-schemas can “matter” for the verbs we consider. In
return for this commitment, the small size of the linking f-struct (compared to the full set

of possible properties of executing schemas) facilitates rapid learning.

In summary, attempting to bridge the linguistic-motor gap with a simple static
feature structure yields some significant simplifications. This separation not only allows
natural representations to be used on each side of the divide, but more importantly, it limits

the hypothesis space while providing necessary access to active motor control machinery.

4.2.1 The linking feature set

The following list summarizes the set of linking features used in the current model.
Remember, the names of these features and their values serve only as identifiers to aid us in
discussing them; they have no theoretical significance and derive their meaning solely from

their grounding in x-schemas, which will be discussed next. The linking features dealing

with motor control are:

e schema (slide, 1ift, rotate, depress, touch):
Perhaps the most important linking feature. Specifies the x-schema generating the ac-

tion. Since x-schemas are generally goal-oriented, this feature also implicitly specifies
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the goal.

e posture (grasp, wrap, pinch, palm, platform, index):
Refers to the configuration of the hand while manipulating object. Usually determined

by which hand-preshaping primitive synergy is used during x-schema execution.

e clbow (flex, extend, fixed):
Qualitatively describes the elbow joint’s direction of motion (or lack thereof) during

arm motion.

e force (low, med, high):
Specifies the magnitude of effort applied to the muscles of the arm, discretized into
3 levels. The force may be measured during arm motion (most x-schemas) or during
static application of pressure (e.g. the ToucH x-schema). This feature could easily

be generalized to include finger force to capture verbs like squeeze.

e acceleration (zero, low, med, high):
Specifies the acceleration of an arm movement, discretized into three levels plus a zero

value.

e direction (away, toward, up, down, left, right):
Gives the direction of motion, with respect to the body. Also used for rotation, in
which case it refers to the direction in which the top of the object moves. Discretized

into a small set of salient directions.

e aspect (once, iterated):
Reflects whether the pattern of state transitions during execution involves repetition
of a loop. Loop detection is only a simple example of the kinds of aspectual distinc-
tions which can be given precise specification within the Petri net formalism. The
representational ideas have been worked out (Narayanan 1996), and learning such
semantics for both inherent aspect and aspectual markers fits the framework of this

thesis. However, implementation remains for future work.

e duration (short, med, long):
Specifies the length of time to carry out a particular salient continuous synergy within

the x-schema, discretized into 3 levels.
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The linking features dealing with perceived world state are:

e depressible (true, false):

True only if the object is button-like.

e clongated (true, false):

True for long, thin objects but not cube-like objects.

e size (large, small):

A coarse measure of object size.

e contact (true, false):

True if the hand contacts the object prior to x-schema execution.

4.2.2 Connecting to x-schemas

As mentioned earlier, these features are abstract in that they are wired into mul-
tiple x-schemas, and the roles played in different x-schemas can differ. The features also

must act as both input to and output from executing schemas.

We can return to Figure 4.1 for a depiction of how several of the linking features
connect to the SLIDE x-schema. The schema feature is associated with the presence of a
token in the start place of the x-schema. The posture feature is set according to which
preshaping synergy executes—PALM or GRASP. The direction feature is associated with
the direction parameter of MOVE ARM, while the acceleration feature is related to
the force of the move via a calculation involving the object’s weight. The aspect feature,
which distinguishes iterated from non-iterated actions, is set according to whether the lower-
rightmost transition fires since this is the mechanism by which the x-schema repeats the

grip-and-move sequence.

The connections between the linking features and the other x-schemas differ in
sometimes subtle ways. Figure 4.2 describes how the above linking feature set is hooked
to the full x-schema set presented in the previous chapter. In particular, note that while
features like acceleration and direction are linked to the object motion phase for most

x-schemas, they are linked to the hand’s approach to the object for the ToucCH x-schema.
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X-schema:

Feature: SLIDE LIFT ROTATE | DEPRESS | TOUCH

schema identifies identifies identifies identifies identifies
this this this this this
x-schema x-schema x-schema x-schema x-schema

posture while while while while during
moving moving rotating pressing contact
object object object

elbow while while N/A N/A during
moving moving approach
object object

force while while while while during
moving moving rotating pressing contact
object object object

accel while while while during during
moving moving rotating approach approach
object object object

direction motion of motion of rotation of | N/A of approach
object object wrist

aspect grasp & move object | grasp & press & approach &
move rotate release contact
object object object

duration of moving of moving of rotating | hold-down | contact
object object wrist phase phase

Figure 4.2: The different roles played by the linking features in different x-schemas.
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4.2.3 Deriving the feature set

First and foremost, the feature set stands or falls based on its ability to support
successful training on words from a variety of languages, and during its development it has
often fallen. The current feature set is the product of an iterative experimental process.
While this process differs from the analytical style common in linguistics, I feel that it has
equal legitimacy, even though our experimental capabilities prevent us from exploring the
full richness of human language use. The process has previously proved effective in work

on spatial semantics (Regier 1996).

That said, several influences have guided the search for the best feature set. First

is the cognitive and linguistic data as reviewed earlier in §4.1.

Another is the work of Agre & Chapman (1987) on so-called “indexical represen-
tations”. The essential idea is that rather than manage a large number of bindings, there
are special slots for the features of the object of interest in the current context, i.e. the
action currently being carried out. This served as motivation, for instance, for using a sin-
gle abstract force feature which represents whatever force value is relevant in the current
situation, by virtue of its connections to the x-schema set. Recently, Ballard et al. (1996)
have argued that such representation schemes are used by humans and have their genesis in
the fact that bodily motions occur on approximately the same time scales as some reasoning
tasks. For example, re-orientations of the hand or eye may be used to avoid having to store
in memory certain bindings which can instead simply be perceived. The indexical repre-
sentation view is also compatible with the neurobiological work cited earlier (Georgopoulos
1993) on population coding of motor parameters, since representations which are spread

across large numbers of neurons are not easily copied.

And finally, it must be confessed that the feature set is influenced by what is
easily computed from the x-schema set presented in Chapter 3. As a result, it is inevitable
that important features are missing whose lack would become evident with a more detailed
and biologically accurate x-schema set. Moreover, additional features would doubtless be
needed to handle a broader range of actions, especially more complex actions. In the end,
I believe the feature set is interesting for its flavor and for the example it sets, and not as

a claim about a complete and “true” set of features used by language.
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4.2.4 How many features?

In addition to which features to use, there is the question of how many. Recall
that it will be important to have a “moderate” number of features. An overly small set
would not be rich enough to represent all the conceptual distinctions found in languages.
But an excessively large set (for example, a full trace of all token movements and synergy
parameters in the x-schema set) would render learning intractable due to the “relevance
problem”—the more features associated with each example of an action, the greater the
burden upon the learning algorithm to determine which subset of features are relevant for

each category to be learned.

But how to arrive at this mysterious number, “moderate”? The obvious possi-
bilities are (1) guess a large number, then cut unneeded ones until learning becomes fast
enough; and (2) start with the empty set, then add features only as necessary until the learn-
ing algorithm can draw the necessary distinctions. In practice, I have generally worked with
a set of b to 15 features at a given time, using fewer features when investigating the learning

algorithm’s properties but more when attempting to fully model the verbs under study.

A subtle point on this issue of feature set size is that a minimal feature set may not
lead to a minimal lexicon. It is likely that some verbs have multiple possible descriptions
in terms of the features under consideration, and that some of these descriptions will be
shorter than others. For example, perhaps heave can be distinguished from [ift by some
combination of hand posture, object size, and acceleration, but the distinction may
have a simpler description in terms of just the force involved. In this case, omitting
force from the linking feature set would be possible, but including it would lead to a more
compact representation for heave and lift. So, there is a benefit to having a slightly larger
than minimal “menu” of features for the learning algorithm to choose from. The current
feature set does indeed include correlated features, such as force and acceleration, and

also elbow and direction.

On a related topic, it has been suggested that this attempt to find a small number
of universal linking features is reminiscent of work on “deep case” in linguistics (Fillmore
1968). The goal of deep case was to delineate a small, fixed set of abstract frame-semantic
roles (agent, patient, instrument, experiencer, etc.) which could serve as generalizations of

the specific roles found in the various frames in our conceptual system. Then, grammatical
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constructions would need to tie syntactic categories such as subject or object only to these
deep case roles, rather than to the individual roles in every frame. Moreover, the existence
of deep case would be a powerful clue about the structure of our conceptual system. The
linking feature structure described in this chapter shares the goal of seeking a small number
of universal abstractions. But two important differences exist. First, the work on deep case
focuses on the structure of frames and hence is an attempt to arrive at the fundamental
structure of our conceptual system. In contrast, I make no claim that action verb semantic
features will enjoy such generality. Second, the work on case is, in a sense, “object-oriented”
(the fillers of roles tend to be physical entities), while many of the action verb linking features

are instead “parameter-oriented” (e.g. force, duration).

4.2.5 Why a separate linking structure?

The reader may wonder why the linking f-structure deserves to be reified as an
actual structure in the model, as opposed to simply using a set of connections from the x-
schema set into the representations of individual lexical items. The most important reason
for this design choice is that features don’t come directly from x-schemas, but rather are

abstractions.

As we saw in §4.2.2, linking features like direction can be bound to the direc-
tion of hand motion in one x-schema, or the direction of object motion in another (see
Figure 4.2). The abstraction is accomplished by virtue of multiple connections to and from
the x-schema set. Importantly, this abstraction should not be performed within the repre-
sentation for each verb which encodes direction, since this needlessly increases the required
neural connectivity. If we have n verbs using an abstraction, and m different “groundings”
of the abstraction in the x-schema set, then we would need n X m connections to implement
the model without a linking f-struct. With the linking f-struct, the number of connections
is only n + m.

A secondary reason for the use of separate structures for holding features is that

it will prove useful in scaling up the model, where the need to deal with more than one

f-struct at a time will arise.
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4.2.6 Static vs. dynamic

It is important to realize that, as it is used in the current model, the linking f-
struct is a static structure. In other words, it summarizes the execution of an x-schema,
rather than changing dynamically during execution. This clearly restricts what can be
represented about an x-schema execution, without resorting to features such as force-at-
time-1, force-at-time-2, etc. But with this restriction comes a tremendous simplification of
the verb learning problem: classification of sequences is generally regarded as more difficult

than classification of static feature vectors, especially when the sequences vary in length.

And it is not unreasonable to assume that children compute a summary of a
temporally extended action. After all, the child normally hears the verb label in advance of
the action (Tomasello 1992), so he is alerted to begin storing a representation. Also, early
verbs tend to correspond to short-duration actions. From an empirical standpoint, Regier’s
model (Regier 1996:Section 5.4) successfully learned motion senses of spatial terms using
static summaries of feature values. And that was accomplished by averaging over movie
frames, with no notion of the key times during the movie. We have an easier time of it,

since Petri nets already encode only the key events in the action.

Limitation

Yet it must be admitted that for full modelling of language, a static structure
won’t suffice. Especially for multiple-sentence discourse understanding, it must be possible
to make reference to feature values bound to multiple points in time. A hybrid solution

would be to create separate linking f-structs for different points in time.

4.3 Connectionist Account

The connectionist representation of features is not particularly difficult. It turns
out that the best strategy (and a biologically plausible one as well) is to use place coding
(Feldman & Ballard 1982). That is, for each feature, there is a dedicated connectionist unit
(i.e. a separate place) for each possible value of the feature. In Figure 4.3, the rectangular
box shows an example of place coding to represent the possible values of the force feature.

For continuous-valued features (which we don’t use in our implementation for simplicity, but
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Figure 4.3: The connectionist representation of a linking feature such as force, and its
connection to motor control.

which certainly exist), place coding forces us to discretize the range of the feature; however,
by supplying varying degrees of activation to these discrete values we can still represent the
continuous range. One fundamental advantage of place coding is that it avoids encoding
feature values as activation levels, which is prone to noise sensitivity and is also unnatural
for nominal-valued (rather than numerical) features. Another advantage of a place-coded
design is that feature values are never passed around. Since they are tied to particular units,
feature values can be straightforwardly linked to their grounding by simple connections to

the relevant perceptual or motor apparatus, as we will show shortly.

We now turn to connectivity. Within the network representing the possible values
of a feature, we desire a winner-take-all (WTA) behavior. That is, only one value unit
should be active at a time, once the network has settled. And the active value should be
the one which is receiving the strongest evidential support from outside the WTA network.

The winner-take-all behavior is achieved by inhibitory connections between each pair of
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value units in the network. These are shown by circular-tipped connections in Figure 4.3.
Further details will be provided in §5.4 once we’ve laid out the full requirements which these

feature networks must fulfill.

Here, instead, our focus is the connection from the linking feature value units to
the model of motor control, i.e. the x-schemas and primitive motor synergies. While there’s
nothing particularly clever required to do this, we should at least mention the several types

of connections which are used.

Some linking features are used to parameterize a variety of primitive synergies.
For example, our abstract force feature parameterizes synergies such as MOVE ARM and
TIGHTEN GRIP. Thus, each value unit for this type of feature is connected to all of the syn-
ergies which it can parameterize. This is the situation depicted in Figure 4.3 (although only
one synergy—MOVE ARM—is shown). In the event that the currently executing x-schema
should trigger the MOVE ARM synergy, the neural circuitry implementing that synergy
will detect the currently active force value unit and use it to control the muscles. Other
synergies which do not get triggered by the currently executing x-schema (say, TIGHTEN

GRIP) effectively ignore any activation from incoming feature value units.

Other features, such as posture, serve to choose one primitive synergy versus
another. For these features, each value unit is connected to all those locations in the x-
schema set which should activate that value (in this case, it’s the transitions for executing
the corresponding hand posture synergy). The function computed by each value unit is a
temporal OR: if any of these these connections is active at any time during the action being

labelled, then the linking feature value unit will remain active at the end of execution.

Another interesting case is the aspect feature. Its iterated value unit is con-
nected to “backwards”-pointing arcs which construct loops in some of our x-schemas. Recall
that in any given execution, the loop may or may not be repeated. The iterated value unit
computes a temporal OR (as described above) of the activity on this arc over the course
of x-schema execution. Its peer, the once value unit, is wired to fire by default, unless

inhibited by the iterated value unit.
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“Nothing has really happened until it’s been described.”
— Virginia Woolf

In this chapter we develop structures for combining linking features into word
meanings and examine the algorithms which employ these word meanings to label actions

and to understand and obey verbal commands.
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5.1 Polysemy—Why Do Languages Have It?

The model’s verb representation (and learning algorithm) will deal centrally with
polysemy. Polysemy refers to the tendency of lexical items to possess multiple meanings,

! Why should words have more than one

or senses, which are related to one another.
meaning? The non-linguist may consider this a strange phenomenon and an inefficient way
for language to operate. One may even doubt the correctness of this account of meaning.
Yet, the linguistic evidence is fairly clear (Lakoff 1987), and moreover is compatible with

some convincing evidence from psychology (Rosch 1977).

The underlying issue is the structure of human concepts, and there are two relevant
views. Under the traditional set-theoretic view, as typified by mathematical logic, a concept
is a simply set of entities, which can be therefore be described by giving the necessary and
sufficient conditions on membership. This tradition is prevalent in the field of semantics,
which tends to favor concise and abstract meanings in the form of necessary and sufficient
conditions. Such efforts are commonly oriented toward finding the minimal discriminant
between a word and its contrast set, or determining which syntactic constructions a word can
appear in. As it turns out, even for those tasks it is far from clear that this set-theoretical
approach will work, due to its brittleness, context insensitivity, and lack of internal category

structure.

The contrasting view of conceptual structure takes into account the considerable
evidence that some examples of a category are “better” that others. Such examples are
called prototypes. This evidence suggests a representation of categories based on these pro-
totypes, rather than on necessary and sufficient conditions, thereby capturing the internal
category structure. Often prototypes will be related to each other in stereotyped ways, such
as metaphoric or image-schematic transformations. Thus, the full category representation
involves the prototypes as well as the typed links connecting them. (See further discussion

in §5.5, particularly §5.5.2.)

The arguments on this issue are rather involved, but within the context of our hand
action verb learning task the difference can be made rather clear. The key point is that

necessary and sufficient conditions, since they must be true of all examples of a category,

"When the meanings have no relation, such as the oft-cited example of river bank vs. financial bank, the
phenomenon is called homonymy, and is not of interest here.
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are necessarily rather abstract. Prototypes, on the other hand, are free to include specific
details, since generalization is achieved by other means (e.g. by measuring similarities to
prototypes). And for our verb learning task, in which we must interface our verb repre-
sentation to actual grounded activity, we need a more prototype-like representation which
includes the “full picture”—i.e. a conjunction of many features—especially for carrying out
commands. To actually drive behavior given a command, we must know all the relevant

motor parameters, not just those which distinguish the command from other verbs.

And why does this lead to polysemy, i.e. multiple word senses? Some degree of
generalization can be achieved within a prototype by using graded response and /or removing
features with multiple allowed values. But this kind of generalization must be sharply
limited because it is at odds with the very specificity which allows prototypes to successfully
drive motor behavior. Thus, to fully achieve the needed range of generality exhibited by
verbs, one needs to employ several such senses—i.e. the verb’s meaning is (roughly) the
disjunction of the senses. The richness of each sense and its inclusion of relevant world
state leads to strong context sensitivity which proves useful in determining the appropriate

sense of a verb when this is needed.

This is not to say that necessary-and-suffficient-conditions descriptions of the verbs
modelled here would be impossible to derive. Moreover, such descriptions—even if only
approximately correct—may well prove important for abstract reasoning. While this dis-
sertation does not include an account of such abstract concepts, nor of how they might
be learned from the collection of prototypes we do model, such an enterprise would be
worth pursuing. The important point for the current work, though, is that such abstract
descriptions alone would not suffice for our task. Each language lexicalizes some x-schema
parameters and not others. Language-independent pragmatic rules are useful for filling in
unspecified parameters, but cannot predict the linguistically coded parameters. In other
words, the specific prototypes which are needed for obeying commands would not derivable
from the abstract descriptions plus pragmatic rules, because these prototypes depend on

the vagaries of the particular language being learned.
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5.2 Structure of a Word Sense

Our model represents verbs by a set of word sense f-structs. Like any f-struct, a
word sense f-struct is a list of features; however, in this case the feature values are probability
distributions. The implemented system uses multinomial (i.e. discrete) distributions (even
for quantitative features like force). Each word sense f-struct also contains a measure
of its frequency of occurrence during learning. Word sense f-structs are drawn the same
way as linking f-structs are drawn, except the lower box shows probabilities on the values.
For space reasons we often show only the mode value (the most probable value) and its
probability. A verb’s collection of senses is drawn in an oval. See the top of Figure 5.2 for

examples of two verbs totalling three senses.

A word sense f-struct can be thought of as a conjunction of features, but more pre-
cisely it is a probability distribution over possible linking f-struct settings that is restricted
in form by an assumption that the features are independent. The probability assigned by
a word sense f-struct to a given linking f-struct can always be increased by choosing a
higher-probability value for any individual feature (assuming such a choice is available).
Consequently, the highest-probability linking f-struct is the one which contains the mode
value for each feature. The probability values provide a form of graded membership which
facilitates choosing the best-matching verb when none matches precisely. And the highest-
probability linking f-struct acts as the prototypical example of the word sense—one can
think of the word sense as a cluster around this point in “linking f-struct space”. This
ability to construct a prototypical example from a set of probability distributions is the key
to the model’s ability to perform “reverse” mappings from verbs to linking features (and

ultimately actions).

Due to the independence assumption, a single word sense f-struct is incapable
of representing concepts such as “SLIDE with direction = away or else DEPRESS with
direction = down” in which correlations exist between features. In these cases the concept
can be represented only by multiple word sense f-structs (cf. push in Figure 5.2). Critically,
since language never identifies which sense of a word is being used, the choice of sense is a

hidden variable which all algorithms must deal with.
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5.2.1 On the use of probabilities

At this point a few comments are in order on the use of probabilities in our model
of semantics. I would like to dispel any misconceptions that by using probabilities this work
is offering a so-called objectivist account of semantics, in which categories are presumed to
be properties of the world and not of the mind. I would also like to argue more generally

that numerical measures are essential in semantics.

First of all, let us review why there are numbers in the model in the first place.
The key point is that we want all the language processes we model (labelling, obeying, and
learning) to be evidential in nature. That is, they must respond to context and to prior
experience in a graded manner; they must “weigh the evidence”. This evidence comes in the
form of associations, whose strengths are represented numerically. These strengths are par-
tially determined by frequencies of events, and to this extent they may seem “objectivist”.
But it is important to understand that the “events” in our model are described solely in
terms of linking features which, through their connection to x-schemas and perception, rep-
resent a bodily-grounded construal of the world. Moreover, the association strengths in our
model are also partially determined by various internal biases and expectations, removing

them even further from the objectivity of simple frequencies.

In any neural implementation of the model, these numbers would be represented
by activation levels and weights, and this will be considered in later sections. But neural or
otherwise, the heart of any evidential system is the update rules it provides specifying how
the numbers get used and how they change during learning. In general, it is hard to discover
good update rules, or even to understand the properties which a given set of update rules
will exhibit. One way to think about these numbers is to treat them as probabilities, as
we do here. What this means is that we restrict the update rules we will consider to those
which obey the laws of probability. In return, we get certain guarantees. For example, we
are guaranteed that the numbers will remain in a bounded range (normally taken to be [0,
1]). We also get access to a body of probabilistic literature which includes update rules

with well-understood behavior.

It is not claimed that any particular neural systems obey the laws of probability.?

Rather, probability theory is simply something to leverage in the design of provisional

2Nor is it clear whether human reasoning in general obeys the laws of probability. Tversky & Kahneman
1974) argue that it does not.
g
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models—models which will ultimately be evaluated by their fit to the data, not by their
philosophical commitments. Indeed, an important question is what kinds of approximations
are necessary to map probabilistically formal algorithms to known connectionist architec-

tures.

Aside from the objectivist vs. subjectivist issue, there is a more general question
about the status of any numerical measure such as probability in semantics. When we
say that, e.g., push is associated with palm posture with probability 75%, what does this
mean? Is all of this information part of the “semantics” of push, or is only the feature

" while the 75% is just auxiliary information for use in

value palm part of the “semantics,’
“pragmatics”? My own view, similar to that of Wu (1992), is that the situation becomes
clearer if we adopt the perspective of language use instead of language description. From
this view, language is a situated activity in which decisions must be made under real-time
constraints. Situated language models may well not divide naturally into “semantic” and

“pragmatic” components.

Certainly, there is an intuitive sense in which it is unsatisfying to say that push
means “use the palm posture, probably”. We know that there are certain circumstances
where the palm posture is called for and other circumstances where it is not, and an ideal
representation should encode those conditions. However, the language learning child may
not always be privy to the appropriate conditions and thus may be forced to simply record
statistics until he better understands his environment. And full understanding may be a
long time coming. In general, the tremendous difficulty of verifying or even representing
all the preconditions of real-world rules is known as the “qualification problem” (McCarthy
1977). Other approaches to this problem include default logic and nonmonotonic reasoning,
but these mechanisms enjoy neither the formal simplicity nor the evidence-weighing ability

of probabilistic inference.

A convincing case study of the power of probability theory in language modelling
is Jurafsky’s (1996 ) model of full-fledged parsing. Short-term memory allows only a limited
number of parses to be considered in parallel. A probabilistic account can be given specifying
when constructions will be accessed, and when potential partial parses will be discarded.
Such an account can explain certain psychologically observable effects such as the lengths

of “garden paths” in sentences which use infrequent constructions.
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PUSH: 2 senses

sense 1l sense 2

schema posture direction schema posture force

53%’ dide 0% | padm  85% [low  10%

dide  100% | pam  60% |3V

touch 0% | orasp  10% LOF‘)"’""“’ o touch 1000 | @ 5% [med  30%
index 30% down  30% index 10% |[high 60%
commonness 0.2 commonness 0.1

Figure 5.1: Two senses of push with full specification of their probability distributions.

5.2.2 An illustration of two senses of push

This section works through a simple illustration of word sense f-structs, to help
ensure that readers understand the representation before we move on to how it supports
labelling and obeying and how it is learned. Figure 5.1 shows two senses of push as word

sense f-structs (these are copied from the Overview chapter).?

First let’s look at sense 1. We see that three linking features are involved: schema,
posture and direction. To get a feel for this word sense f-struct, it is helpful to determine
its prototypical example. By choosing the highest-probability value for each feature, we
see that the prototypical example is an execution of the SLIDE x-schema using a flat palm
posture to move an object away from the body. If the model were commanded to push an
object and this sense were chosen, this is the action that would result. The probability of
this prototypical example can be computed from the distributions: 100% x 60% x 50% =
30%. Changing any of the feature values will produce less-probable examples. Changing
the schema to ToUucH would yield zero probability. Changing posture or direction would
lower the probability in a more gradual manner. Observe that while sense 1 prefers palm
posture over the other possible postures, it doesn’t insist. Index finger posture is quite
acceptable. If we were designing word sense f-structs for Spanish, we would not have a word
sense like sense 1, because in Spanish, separate verbs are used for sliding using the palm wvs.

the index finger (presionar vs. pulsar).

Now let’s turn to sense 2. By examining the feature distributions, we can observe
that it represents the “apply pressure” sense of push, rather than the “move object” sense

just described. Most importantly, sense 2 codes for a different x-schema: ToucH. And it

®Note that these are not quite the same senses portrayed in Figure 5.2.
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push

schema | posture |elbow jnt
dide 1.0 | pam 0.7

aspect |depressable
extend 0.9) once 0.8 false 0.9

shove

schema | posture | elbow jnt

accel
slide 1.0 | pam 0.9 | extend 0.9 high 0.9

schema | posture accel
depress 1.0 indx 0.9

aspect | depressable
low 0.7 |once 0.6 true 1.0

relevant

motor parameter features world state features
fI:enal?unr?es schema posture elbow jnt | direction aspect accel depressable
slide | depress | grasp|palm|indx| flex | extend [up | dn | If | rt|once | iteratedlow | med | hi | true|false

world state features
used by schema

weight | at goal
A/' 231bs

false

PRESHAPE
GRASP

TIGHTEN
GRIP

PRESHAPE
PALM \ \
[ 2| APPLY ARM
HAND (horiz-dir,| —>O
force,
dur)

MOVE
ARM TO|
(objloc)

.

Figure 5.2: The full model as originally depicted in Figure 1.1 but filled in with the SLIDE
x-schema, several linking features and two verb representations.
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does so absolutely, just like sense 1. Typically in our model, different x-schemas will lead
to separate senses. (Moreover, this is usually a good indication of a conceptual distinction
that will be marked by separate verbs in some other language. In Farsi, sense 1 and sense
2 correspond to hol-daadan and feshaar-daadan, respectively.) Like sense 1, sense 2 prefers
the palm posture, but its preference is stronger than that of sense 1. Additionally, sense

2 codes for the force feature, preferring a medium to high value.

Why are these senses kept separate, besides intuitively being distinct? If we were
to use just one sense, we would lose information. For instance, the probability distribution
for schema would become SLIDE 50%, ToucH 50%; and the posture distribution would
become palm 73%, grasp 8%, index 20%. We would be hiding the important fact that,
for the verb push, index posture is reasonably compatible (30%) with SLIDE but not very

compatible (10%) with ToucH.

Lastly, note that the commonness of sense 1 (amongst all senses in the lexicon)
is double that of sense 2. This plays a role when these push senses are competing against
senses of other verbs to label a new action. Due to its greater commonness, sense 1 need not

match the new action as closely as sense 2 would need to in order to beat its competitors.

5.3 Labelling and Obeying Algorithms

The word sense f-struct representation for verbs supports the two basic require-
ments for use of the verbs, namely labelling (in which a linking f-struct summarizing an
x-schema execution must be labelled with the best possible verb) and obeying (in which
a verb must be translated into an appropriate linking f-struct that can guide x-schema
execution). These two processes are represented by the upper two arrows in the architec-
tural overview in Figure 1.1. For both cases the mappings between the linking f-struct and

linguistic utterances can be given a clean probabilistic account.

5.3.1 Labelling algorithm

For labelling, the goal is to find the verb » with the highest probability, given the
trained model m and the linking f-struct [ resulting from execution of an x-schema. That

is, we seek
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Finding the Best Label

argmax  P(v ||, m)
v AELA RIRLLS

N

sy P(s|l, m)
K P(s|m) P(l|s, m)
2N
freq of this look at sense' s distributions
sense of v for each linking feature
Key: m =model of lexicon v =verb | = linking f-struct

s=sense of verb

Figure 5.3: Formulas used to determine the best label v for a given linking f-structure /.

argmax P(v | [, m) (5.1)

The computation of this probability is now described and is summarized in Figure 5.3. A
simplification is employed in calculating the probability for a verb: the algorithm does not
sum the probabilities of all the verb’s senses s, but instead chooses the probability of the
maximum-probability sense. This is a kind of Viterbi approzimation (Viterbi 1967) and is
meant to reflect the notion that only one sense is mentally “settled upon” in response to a
stimulus (an action in this case), so low probability on two senses is not equivalent to high

probability on one sense. The approximation is

Pv|l,m)~ mEaXP(s | I,m) (5.2)

To compute a value for P(s |, m), we apply Bayes’ rule. Bayes’ rule is a simple tautology
that follows from the laws of probability, which expresses a conditional probability such
as P(H | D) in terms of its converse, P(D | H). In practice one of these probabilities is

often available but the other is desired; hence the rule’s tremendous utility. It will be used
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extensively in this dissertation, especially for learning. Bayes’ rule is:

P(H) P(D | H)
P(D)

P(H | D)= (5.3)

Often H may range over multiple hypotheses while D is the available data and hence is

fixed, in which case the denominator is constant and can be ignored, yielding

P(H | D)« P(H) P(D | H) (5.4)

The probability P(H) is called a prior and often is determined subjectively. P(D | H) is
called a likelihood and P(H | D) is called a posterior. Using Bayes’ rule we can rewrite

P(s |1, m) as follows:

P(s|l,m)x P(s|m)P(l|s,m) (5.5)

Finally, we have arrived at expressions which can be directly calculated from the
statistics contained in the word sense f-struct. P(s | m) is simply the frequency value
stored in the word sense as described in §5.2. P(l | s,m) is calculated directly from the
per-feature probability distributions comprising the word sense, by multiplying together the
probabilities of the individual feature values in [ (this is the independence assumption at
work). In a nutshell, the probability for a given word sense is the product of its commonness
and its fit to the current action.

These calculations are incorporated into the LABEL algorithm presented below in

pseudo-code form:*

t“Pgendo-code,” a somewhat abstract level of algorithm description which is not tied to any particular
programming language, will be used to describe all our algorithms. The «— symbol stands for assignment of
the value on the right-hand side to the variable on the left-hand side.
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LABEL(linking f-struct [, model m) returns a verb
for each sense s of each verb v in m:
prior < relative frequency of s amongst all senses
likelihood < product over each feature f in s of:
s4's likelihood of generating [
posterior < prior X likelihood
endfor
if (some sense’s posterior > MinLabel)
then return v corresponding to s with highest posterior
else return nothing
endif
end

The main loop of the algorithm computes P(s |, m) for every sense of every verb
in the lexicon, according to the formulas just described. The if-statement then chooses
the sense with the highest probability and returns the verb associated with it—but only
if the probability exceeds MinLabel, a tunable threshold. Note that since a word sense
provides no sharp boundaries on the category it represents, any action will have some
residual probability for any verb. So if MinLabel is set to 0, the LABEL algorithm is
“forced choice”—that is, it is required to provide an answer no matter how bad it may be.

Non-zero values for MinLabel provide a means for leaving unclassifiable actions unlabelled.’

5.3.2 Obeying algorithm

Our word sense representation reveals an important advantage when we turn to
obeying commands, which involves the reverse mapping from linguistic input to action. The
first step of this process, which we discuss here, involves finding the maximum probability
motor-parameter linking features p given the command verb v, the current world state

linking features w and the lexicon model m. That is, we seek

argmax P(p | v, w, m) (5.6)
P

The computation of this probability is now described and is summarized in Fig-

ure 5.4. We begin with a simplification similar to the one made in LABEL: we choose not to

®The MinLabel parameter will take on more significance when multi-word labels are considered in Chap-
ter 7.
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Finding the Best Way to Obey a Command
agmax  p(p | v, w, m)

™

MaX P(p|s v, w, m) P(s|v,w, m)

SN

look at sense’ s distributions
P(s|v,m) P(w|s, v, m
for each motor-param feature % ) PWis )

freq of this look at sense's distributions
sense of v for each world-state feature
Key: m =model of lexicon v =verb | = linking f-struct:
s=sense of verb p = motor param. component
w = world state component

Figure 5.4: Formulas used to determine the best motor parameters p for obeying a command
v given initial world state w.

sum motor-parameter linking feature probabilities over all senses of v, but instead commit
fully to a single sense—namely the sense which best fits w, the initial world state. That is,

we choose the sense s as follows:

argmax P(s | v,w,m) (5.7)

s€Ev

This expression is transformed via Bayes’ rule:

P(s|v,w,m)x P(s|v,m) P(w|s,v,m) (5.8)

At this point the computation of the prior can be performed by consulting s’s frequency
count relative to the total frequency count of all senses of verb v, and the likelihood of the
world-state features can be computed from the per-feature probability distributions in word

sense s as was done for labelling.

But our goal was p, not the maximal s. That is, we really want to find
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argmax P(p | s,v,w, m) (5.9)
P

This expression is maximized by choosing, for each motor-parameter feature distribution in
s, the mode value. However, there are reasons not to retain the full set of motor-parameter

features, as will be seen shortly when we review the algorithm.

Pseudo-code for the OBEY algorithm follows:

OBEY/(verb v, initial world state w, model m)
returns motor-parameter linking features
for each sense s of v:
prior — relative frequency of s amongst senses of v
likelihood < product over each world-state feature f in s of:
s4's likelihood of generating wy
posterior < prior X likelihood
endfor
if (some sense’s posterior > MinQObey)
then let s be the sense with highest posterior
else return nothing
endif
create an empty f-struct p
for each motor-parameter feature f:
if (s4's peakedness > MinSetFeature)
then p; — s;’s mode value
endfor
return p
end

The first phase of the algorithm can be thought of as a variant of the first step of
the LABEL algorithm: we find the sense s (of verb v) which gives the highest probability to
the partial linking f-struct w containing the current world state. The effect of this procedure
is to find the sense of the command verb which best fits the current world state. As with
LABEL, a tunable threshold is now employed: MinQObey. If set to 0 the algorithm will be
forced to attempt the action most compatible with the world state even if bad conflicts
with the world state are apparent, while a greater than 0 setting allows the algorithm to

say “Sorry, Dave, I can’t do that.”®

SWith apologies to Arthur C. Clarke.
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Assuming this test is passed, the next step is to extract the “prototypical” motor-
parameter linking features from sense s; that is, for each motor-parameter linking feature,
extract its mode value. However, an additional thresholding parameter is introduced here.
The sense s may code strongly for some motor parameters, but weakly for others, and we
don’t want to set features in the linking f-struct if s codes only weakly for them. We will
define a measure of peakedness of probability distributions, and only those features of s
with peakedness exceeding MinSetFeature will be returned from OBEY to be set in the
linking f-struct.

The peakedness measure used is the relative probability of the mode value (the
highest-probability value) and the runner-up (the second-highest-probability value). That

is,

P(mode)

P(runner — up)

(5.10)

peakedness =

This definition of peakedness is obviously only a heuristic since it involves only two of the

values in the distribution. It was chosen for simplicity after two other simple definitions

failed.

5.4 Connectionist Account

Word senses can be fairly directly mapped into connectionist networks, by using a
more localist style of encoding than that found in PDP-style representations. This section
sketches such a connectionist architecture. The intent is to demonstrate the plausibility of
the architecture. Full specification of the architecture including precise activation functions

is not given and remains for future work.

5.4.1 Triangle units

The essential building block is the triangle unit (Feldman & Ballard 1982; Diederich
1988), shown in Figure 5.5(a). A triangle unit is an abstraction of a neural circuit which
effects a three-way binding. In the figure, the units A, B and C represent arbitrary “con-
cepts” which are bound by the triangle unit. All connections shown are bidirectional and

excitatory. The activation function of a triangle unit is such that activation on any two of
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(@) (b)

(external sources of activation)

Figure 5.5: (a) A simple triangle unit which binds A, B and C. (b) One possible neural
realization.

its incoming connections causes an excitatory signal to be sent out over all three outgoing
connections. Consequently, the triangle unit allows activation of A and B to trigger C, or

activation of A and C to trigger B, etc.

Triangle units will be used here as abstract building blocks, but Figure 5.5(b)
illustrates one possible neural realization. A single neuron is employed to implement the
binding, and each concept neuron projects onto it. Concept neurons are assumed to fire
at a uniform high rate when active and all weights into the main neuron are equal. As a
result, each input site of the triangle neuron can be thought of as producing a single 0-or-1
value (shown as lower-case a, b and c¢) indicating whether its corresponding input neuron
is active. The body of the binding neuron then just compares the sum of these three values
to the threshold of 2. If the threshold is met, the neuron fires. Its axon projects to all
three concept neurons, and the connections are strong enough to activate all of the concept

neurons, even those receiving no external input.

A particularly useful type of three-way binding consists of an entity, a feature,
and a value for the feature, as shown in Figure 5.6. With this arrangement, if posture and
palm are active, then "push" will be activated—a primitive version of the labelling process.

Alternatively, if "push" and posture are active, then palm will be activated—a primitive
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Figure 5.6: Using a triangle unit to represent the value (palm) of a feature (posture) for
an entity ("push").

version of obeying. (But note that our final version of labelling and obeying will be more

complex than this.)

Generally, a set of these triangle units is connected in a winner-take-all fashion
to ensure that only the appropriate binding reaches an activation level sufficiently high to

excite its third member. We will soon show how to do that for our language task.

5.4.2 Complex triangle units

But first, we must introduce an extended version of triangle units. In the extended
version, multiple connections are allowed on each side of the triangle. Furthermore, these
connections can have varying strengths (in both directions). And lastly, these extended
triangle units can have graded outputs rather than simple on/off behavior. An example is
shown in Figure 5.7(a), in which the B side has three connections and the C side has two.
The variable weights are each indicated by a ‘w.” The extended triangle unit is useful when
more than three entities must be bound, but there is a natural partitioning of the entities
into three groups. The function of the extended triangle unit depends on the weights;

several usages can be delineated.

One usage is where the desired binding is conjunctive over all the connected units
(e.g. A, B1, B2, B3, C1 and C2), and the minimum condition for triggering the binding is
that all the units on any two sides of the triangle are active (e.g. A, B1, B2 and B3; or A, C1

and C2). This functionality can be implemented by setting the incoming weights on each
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Figure 5.7: (a) A complex triangle unit with multiple weighted connections per side. (b)
One possible neural realization.

side to 1/n, where n is the number of connections on the side, and adding a threshold of 1
locally to each side of the triangle. The central activation function then remains identical
to that of the simple triangle unit. A “softer” version of the conjunctive triangle unit can
also be implemented, in which one or two missing concept units might lead to weak—but
non-zero—activation. Or, if the activation of concept units is variable, then the conjunctive
triangle unit can implement a trade-off between the number of active inputs to a side, and
their strength of activation. This kind of unit will be used in our connectionist architecture

to implement the collection of features in word sense f-structs.

Another usage is more disjunctive in nature: at any moment in time, we expect
only one concept unit per side to be active, but the activation of the triangle unit should
be in proportion to the weights on the links to the active units. (Naturally, in this case we
expect the weights to differ from one another.) For example, suppose that Bl and C1 have
strong weights and B2, B3 and C2 have weaker weights. Then, should B1 and C1 become
active, A will be strongly activated. But if instead B1 and C2 should become active, then A
will be only weakly activated. The weighted connections also work in the outgoing direction:
if A and C1 should become active, then activation will be sent to all of the B units, although
B1 will receive more activation than B2 and B3. This type of triangle unit will be used in

our connectionist architecture to implement probabilistic feature values.

Once again, we are not focusing on neural realization here, but an example realiza-
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tion of complex triangle units is shown in Figure 5.7(b). We retain the single-neuron design
used for the simple triangle unit, but each of the three “lobes” of the neuron, corresponding
to the sides of the triangle, must be considered as a full-fledged site (Feldman & Ballard
1982).7 A site is a portion of a neuron’s dendritic tree which computes its own local function
and passes only the result upstream to the neuron body. These local functions are indicated
by the ‘w’” markings and the arrows pointing to the ‘a’, ‘b’ and ‘c’ quantities summarizing
the response of each site. Another difference from the simple case is that the projections
of the output axon back to the concept units involves storing another copy of the weights
-

w” in the concept units themselves. This is needed to implement graded activation of the

concept units for the disjunctive triangle units just described.

5.4.3 Network architecture

We will now turn to the construction of a network architecture which implements
(approximately) our multiple-sense verb representation and its associated algorithms for
labelling and obeying. The architecture is shown in Figure 5.8, whose layout is intended to

be reminiscent of the upper half of Figure 5.2.

On the top is a “vocabulary” subnetwork containing a unit for each known verb.
Each verb is associated with a collection of phonological and morphological details, whose
connectionist representation is not considered here but is indicated by the topmost “blob”
in the figure. Fach verb unit can be thought of as a binding unit which ties together such
information. The verb units are connected in a winner-take-all fashion to facilitate choosing

the best verb for a given situation.

On the bottom is a collection of subnetworks, one for each linking feature. The
collection is divided into two groups. One group—the motor-parameter features—is bidi-
rectionally connected to the motor control system, as described in §4.3 but shown here as a
blob for simplicity. The other group—the world-state features—receives connections from
the perceptual system, which is not modelled here and is indicated by the bottom-right blob.
Each feature subnetwork consists of one unit for each possible value. Within each feature
subnetwork, units are connected in a winner-take-all fashion. A separate unit represents

each feature itself, apart from its possible values.

If the local thresholding of the conjunctive case is needed, then it may be more appropriate to use
separate neurons rather than sites.
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Figure 5.8: A connectionist version of the model, using a collection of triangle units for each
word sense.
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The most interesting part of the architecture is the circuitry connecting the verb
units to the feature units. In the central portion of Figure 5.8 the connectionist represen-
tation of two senses of push are shown,® each demarcated by a box. Each sense requires

several triangle units with specialized functions.

One triangle unit for each sense can be thought of as primary; these are drawn
larger and labelled “pushl” and “push2”. These units are of the soft conjunctive type
described earlier, and serve to integrate information across the features which the sense is
concerned about. Their left side connects to the associated verb unit. Their right side has
multiple connections to a set of subsidiary triangle units, one for each world-state feature
(although only one is shown in the figure). The lower side of the primary triangle unit
works similarly, but for the motor-parameter features (two are shown in the figure). Recall
that, within each side, the weights are equal. However, their magnitude is set to reflect
the frequency of the word sense: higher weights are used for more frequent senses, allowing

them to be activated more easily.

Each subsidiary triangle unit is of the disjunctive type described earlier, and rep-
resents its word sense’s probability distribution for a single feature. Its right side connects
to the primary triangle unit. Its left side connects to the unit representing the feature itself
(e.g. “force”). Most importantly, its lower side connects to each of the value units for the
feature. These connections have variable weights representing the preference of the word
sense for certain values over others. The response of a subsidiary unit is therefore graded
in response to the currently active value; and in the reverse direction, it is also capable of
activating value units to differing degrees in accordance with the probability distribution
embodied in the weights. In the figure, high-probability links are indicated by thicker lines.
Thus it can be seen that sense “pushl” corresponds to pushing away a large object with
medium force, while sense “push2” corresponds to pushing away a small object with low
force. (Clearly these ought to be combined into a single sense; this will be illustrated in the

next chapter.)

Lastly, note that the primary triangle units are connected into a lexicon-wide

winner-take-all network.

8Naturally, the figure illustrates only a subset of the actual features involved in push.
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5.4.4 Labelling and obeying

We can now illustrate how the network performs labelling and obeying. Essentially,
these processes involve providing strong input to two of the three sides of some word sense’s

primary triangle unit, resulting in activation of the third side.

For labelling, the process begins when x-schema execution and the perceptual sys-
tem activate the appropriate feature and value units in the lower portion of Figure 5.8. In
response—and in parallel—every subsidiary triangle unit connected to an active feature unit
weighs the suitability of the currently active value unit according to its learned connection
strengths. In turn, these graded responses are delivered to the lower and right-hand sides
of each word sense’s primary triangle unit. The triangles units become active to varying
degrees, depending on the number of activated subsidiary units and their degrees of acti-
vation. The winner-take-all mechanism ensures that only one primary unit dominates, and

when that occurs the winning primary unit turns on its associated verb unit.

For obeying, we assume one verb unit has been activated (say, by the auditory
system) and the appropriate world-state feature and value units have been activated (by
the perceptual system). As a result, the only primary triangle units receiving activation
on more than one side will be those connected to the command verb. This precipitates
a competition amongst those senses to see which has the most strongly active world-state
subsidiary triangle units—that is, which sense is most applicable to the current situation.
The winner-take-all mechanism boosts the winner and suppresses the others. When the
winner’s activation peaks, it sends activation to its motor-parameter subsidiary triangle
units. These, in turn, will activate the motor-parameter value units in accordance with the
learned connection strengths. Commonly this will result in partial activation on multiple
values for some features. The winner-take-all mechanism within each feature subnetwork
chooses a winner. (Alternatively, we might prefer to preserve the distributed activation
pattern for use by smarter x-schemas which can reason over probabilistic specification of
parameters. E.g., if all the force value units are weakly active, the x-schema knows it can

choose any suitable amount of force.)
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5.5 Some Cognitive Linguistics Issues Considered

Now that we have fully specified a model of verb representation and use, it is time
to take stock of how the model relates to some important ideas in linguistics. For example,
evidence from cognitive linguistics (Lakoff 1987) and also from psychology (Rosch 1977;
Rosch et al. 1976) suggests that human categories exhibit internal structure that would
not be captured by the classical representation using necessary and suflicient conditions.
Human categories exhibit prototype effects, radial structure and basic-level effects. We will
see that our model captures some of these phenomena, but falls short of a full account,
suggesting some avenues for future work. On another front, the traditional linguistics
literature decomposes meaning into pragmatics and semantics, each with its own properties.

We will see that this distinction has a nice interpretation in terms of our model.

5.5.1 Prototype effects

One characteristic of human categorization is that it exhibits prototype effects.
With one kind of prototype—graded prototypes—certain members of the category are
marked as especially “good” examples of the category and other members are judged by how
much they differ from the prototypical members. (In the psychology literature, degree of
prototypicality is measured by explicit ratings, by frequencies with which a member is listed
as belonging to a category, or by reaction times for judging membership.) Our word sense
representation exhibits several of the main graded prototype effects. Fach sense implic-
itly includes a prototype, namely the f-struct with maximum probability according to the
distributions in the word sense. The potential for multiple senses corresponds to multiple-
prototype categories. Next, the probability distributions give a measure of the degree of
goodness of a non-prototypical f-struct. Lastly, the connectionist implementation involves
a winner-take-all step which will converge more slowly for lower-probability f-structs than
for higher-probability (i.e. prototypical) f-structs during categorization, in accordance with

the slower reaction times observed for classifying non-prototypical examples.
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5.5.2 Radial categories

According to radial category theory, conceptual representations consist of not only
a set of graded prototypes, but also a structure connecting the various prototypes. The
central tenet of radial category theory is that the multiple prototypes of a category are
not arbitrary, but are related to each other in particular ways. These relations include
image-schematic transformations, metaphorical links and metonymic links. If there is one
central sense plus several others which each derive from the central sense by one such
transformation, the category structure is radial, hence the term. However, other topologies

are possible.

Beyond transformations relating verbal senses of a word, there is a wider range of
extensions which include changes in part of speech, and these also exhibit various regularities
(Wilensky 1991). For example, part of the meaning of pocket as a noun carries over to its
interpretation as a verb. Presumably there is a rule to the effect that a noun referring to
“X” may also be used as a verb to denote some kind of action involving “X,” subject to
some restrictions. In this example, combined with appropriate world knowledge, this rule
leads to the verb meaning “INSERT-INTO(POCKET)”. This is an example of a metonymic

transformation.

The current model doesn’t model such category structures, in that we have included
no account of these connections. For our relatively limited modelling task, we must ask
what benefit is to be gained from representing the category structure as opposed to merely
a catalog of possible uses.” The primary benefit may be greater compactness. One could,
for example, represent the central sense just the way we have been doing in our model, but
delta code the other senses, i.e. represent them by the (presumably comparatively short)
list of features on which they differ from the central sense. This strategy would require
significant changes to our learning algorithm (Chapter 6) which would then be charged

with the task of identifying which sense is central.

A potentially more interesting version of radial category representation would be
to explicitly represent a fixed set of transformations (at the feature level) motivated by

linguistic analysis. In such a model, each non-central sense would be represented simply by

®Generativity is one potential benefit. If the applicability conditions of the various transformations could
be learned, then novel word extensions could be generated on demand. However this may not be feasible,
since extended senses, while usually motivated, are not fully predictable.
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a link to the sense it is derived from, plus the identity of the relevant transformation. This
is effectively a procedural representation of the non-central senses, requiring the indicated
transformation to be applied each time the sense is needed. The learning task in this case

is a very open question.

Also open is the question of what sorts of transformations apply to the action
domain. Metaphorical and metonymic links are quite numerous and often involve reason-
ing outside the action domain, and thus are hard to incorporate into a learning story at
the present time. But we hope that, within the action domain, a relatively small list of
motor-schematic transformations (analogues to the image-schematic transformations such
as end-point focus, mass-multiplex duality, etc. (Lakoff 1987)) could be identified by future
linguistic research and used to construct a radial-category-based learning algorithm as just

described.

5.5.3 Basic-level effects

Another proposed structural characteristic of human categorization is that in the
hierarchy of specific to general conceptual levels, there exists a privileged level called the
basic level (Rosch et al. 1976). Categories at the basic level (the standard example is
“chair”) enjoy a privileged position in that they are conducive to mental imagery yet are
abstract enough to be useful for common reasoning tasks. The basic level is not the lowest
level of the concept hierarchy—categories at the more specific “subordinate levels” exhibit
a fine level of detail which is not essential for most reasoning (e.g. “ottoman”). Nor is the
basic level the highest level of the hierarchy—categories at these “superordinate levels” are
too abstract for mental imagery (e.g. “furniture”). Basic-level categories are more easily

learned and are more commonly used in reflexive reasoning.

There tends to be disagreement about exactly where the basic level lies in the
various domains of human experience. This suggests that perhaps the basic level is not
entirely universal, and thus not tied intimately to biology. Revisions to the original theory
should allow for the basic level to be determined relative to experience. For an antique
furniture salesperson, “ottoman” may be at the basic level. Such revised theories are still
at a preliminary stage; nevertheless, it is worth considering how the current model of actions

can be made to fit into the story.
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First, consider how our model represents categories at varying levels of abstrac-
tion. The simplest categories are those which simply code for a specific x-schema, such
as lift. These, we argue, correspond to the basic level. Choosing x-schemas appropriately
to achieve your goals is the kind of everyday reasoning which characterizes the basic level.
Furthermore, if we assume that mental imagery or gestalt perception of actions consists
of “mental” x-schema executions (i.e. disconnected from the muscles), then specifying an
x-schema with no further constraints is the highest level at which such imagery could occur.
Lastly, such categories are relatively easy to learn in our model, since only one feature—the
x-schema name—is involved, and a single value is called for. (The learning algorithm is
usually initialized with a predisposition toward peaked distributions for the schema feature
but broader distributions for the other motor-parameter features. See the next chapter for

details.)

At the subordinate level, we have categories which code for both a specific x-
schema and some parameter values, such as heave which specifies schema = L1rFT and force
= high. Such categories are somewhat slower to learn, since probability distributions must
be learned over multiple features, and motor-parameter features such as force are initially
biased toward broad probability distributions (see next chapter). And the parameter prob-
ability distributions may be more complicated than simply selecting a single value; if we
had a finer resolution in our force feature, we might have to learn that heave calls for

“force = 6 to 10, with 8 best” or somesuch.

At the superordinate level, our model can learn categories which map to sets of
x-schemas. For example, move maps to any invocation of SLIDE, LirT, DROP, etc. Such
categories are slightly harder to learn than basic-level categories since a broad probability
distribution for the schema feature must be learned (again, this is against the normal bias
toward selecting a single x-schema). They become even more cumbersome, however, if the
category specifies parameter settings which differ for the different x-schemas, for in this case

the category can be represented only by multiple word senses.

So far, we’ve been assuming that there are separate hierarchies for objects and for
actions, each with its own basic level. Yet it may be fruitful to consider (action, object)
pairings as basic, since actions and objects each clearly exert an influence on how the other is
conceptualized. Such an interactionist account of basic-level phenomena, incorporating an

x-schematic model of actions connected to some sort of affordances-based model of objects,
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would be an intriguing modelling endeavor.

5.5.4 Pragmatics

It has been argued that many apparent problems of semantics become simpler if
the role of pragmatics is considered. Pragmatics refers to the role in interpretation played
by context—both linguistic and external. The model we have presented offers an illustration

of how world-state context effects can be separated from semantics, simplifying the latter.

The key observation is that x-schemas can be heavily branched, allowing them to
function in a wide variety of world states, yet most of this does not appear in the linking
f-struct and hence is not directly available linguistically. In the extreme case, a word like
slide can be represented merely by a pointer to the SLIDE x-schema; when carrying out a
slide command all the movements, grip choices, obstacles avoided and other such decisions
are handled down at the x-schema level. Thus, a wide array of possible behaviors may be
associated with the verb slide while retaining a very simple semantic representation for the

verb.

5.6 Limitations of the Model

The labelling and obeying algorithms assume independence amongst the linking
features. Such independence assumptions are commonly needed to make probabilistic mod-
els tractable. Fortunately independence often holds, and when it doesn’t the model can
compensate by having a larger number of word senses. Yet clearly there is a cost to the
system’s inability to, e.g., represent in a single sense that both posture and size have
broad distributions but are highly correlated (e.g. small objects tend to be pinched but
large objects tend to be grasped).

So the limitation is not so much the independence assumption but the representa-
tion itself, i.e. flat attribute-value lists. Such a representation is vastly less expressive than,
for instance, predicate calculus, since relationships amongst entities cannot be represented.
The ability to represent something like “force is proportional to acceleration times object

weight” would allow richer concepts to be (naturally) represented.

A different limitation arising from the architecture of the system is that any er-
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rors made by the OBEY algorithm (which, remember, chooses all linking features before
beginning execution)—perhaps due to incorrect estimates of the world state—cannot be
undone during execution. While x-schemas include branches for handling some anomalous
conditions, there is currently no mechanism for discovering early in the x-schema execution

that the chosen verb sense is unimplementable and a different sense should be chosen.

With a richer representation system, the OBEY routine’s very simple conflict res-
olution strategy could be replaced with an algorithm capable of general planning, which is
indeed necessary even in interpreting simple verb phrases. Work in this area by Levison
(1995) has investigated the role of objects in choosing among alternate realizations of a verb
(e.g. open the door compared with open the jar or open the box (Levison 1993)). Levison’s
Object Specific Reasoner demonstrates the importance of the planning level, thereby point-
ing out some limitations to an approach such as ours with its restricted focus on the motor

level.

5.7 Continuous Distributions

Characterizing probability distributions by multinomials over each possible value
becomes unwieldy for inherently continuous-valued features when the granularity of dis-
cretization is increased. In this case, it becomes highly desirable to find a functional form
for the distribution with a small number of parameters. When a distribution is modelled
as a Gaussian, we no longer need worry that a particular value will, upon being absent in
the training data, receive low probability despite the presence of high probability on nearby

values.

Continuous distributions are not included in the current version of the model, but
were included in an earlier version. The types of distributions that were found to be useful
were Gaussians (for linear features such as force) and circular Gaussians (for features such

as direction).

In a continuous probability distribution, the probability of any particular value
is zero; probabilities are meaningful only over an interval. Consequently, when calculating
the probability of a particular feature structure given a word sense, we use a standardized
interval for all the continuous features. In other words, a force value of 6.24 is interpreted

as 6.24 + 6, where 6 is fixed in advance. While the resulting probabilities will depend on
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the arguably arbitrary choice of é, all relative probabilities are still legitimate, so the choice
of the best label for an action will not be affected. However, in LABEL and OBEY, the
MinLabel and MinQObey thresholds must be adjusted whenever the standard interval is

adjusted, since they represent actual—not relative—probabilities.

An approximation to Gaussians can be added to the connectionist account of word
senses by modifying the connectionist network in §5.4 as follows. For each numerical feature,
the value units are connected in a topographic fashion. That is, excitatory connections link
value units which represent quantities of similar magnitude, with stronger connections for
values which are closer together. As a result, when activation is present on one value unit,
nearby values will receive partial activation. This structure is needed because word sense
triangle units can not act like radial basis function (RBF) units (Moody & Darken 1988)
commonly used in neural modelling to represent ellipsoidal regions in continuous spaces.
RBF units rely on each continuous feature being represented by degree of activation rather
than place coding. Since, with place coding, there is no way for word sense triangle units
to “know” about the distances between the quantities represented by each feature value,

we need the excitatory connections amongst value units to represent those relationships.

Some pilot training experiments with Gaussian distributions revealed an important
limitation imposed by such restrictions on the form of probability distributions. The word
in question was sideways (see Chapter 7 on including directional specifiers in the model).
The relevant feature was direction. Unlike away or toward, which prefer a single direction
with some amount of tolerance on each side, sideways has two best directions—left and
right—but does not apply to intermediate directions. Such a bimodal distribution cannot
be modelled as a Gaussian. The result, during learning, was two separate senses, one for
left and one for right. While this may be acceptable for toy examples, it will not scale well,
particularly if many features exhibit such bimodality. Simple mathematical models such as
Gaussians are convenient to design algorithms for, but don’t capture the complexities of

language.

Fokok ok ok

In this chapter we have developed the idea that probability distributions over
linking features derived from x-schema execution can capture the needed functionality for

both labelling actions and carrying out verbal commands. But we were able to do so only
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by positing multiple, conjunctive senses for each verb. In the next chapter, we will turn to

the question of learning these senses, including the important subproblem of determining

how many senses are called for.
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This chapter is the core of the thesis. It reviews some facts about children’s lexical
development and then incorporates them into a Bayesian model merging algorithm which

learns an appropriate set of word senses from a set of labelled actions.

6.1 Children’s Verb Acquisition

Lexical acquisition has been studied extensively in psychology. Yet most work has
focused on acquisition of nouns to the exclusion of other categories such as verbs. Why?
Children do acquire verbs and other parts of speech early in their lexical development

(Nelson 1973). A recent volume (Tomasello 1995a) proposes some answers to this question
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and then reviews recent efforts to borrow and adapt ideas from noun acquisition (e.g.
Markman’s principle of mutual exclusivity (Markman 1989)) to explain acquisition of other
parts of speech. Omne reason cited for the lack of research on acquiring verb semantics is
that verbs are seen as the stepping stone to acquisition of grammar, which of course has
long fascinated the research community and presents its own issues (such as understanding

argument structure) which overshadow the inherent semantics of the verbs themselves.

Another reason, though, is that the verb acquisition problem just seems harder
than noun acquisition. One difficulty arises from the temporal nature of actions. The ref-
erent of an action verb is usually offset in time from hearing the verb, unlike nouns where
the parent can point to the object while vocalizing its label. Actions are also fleeting, not
available for extended contemplation the way a just-labelled object is. Another difficulty is
that action verbs involve not only perceptually available information (when watching some-
one else act) but also proprioception of internal states (when acting oneself). In particular,
many verbs imply goal-directedness and thus can’t be properly learned until goal-directed
behavior begins! And lastly, in languages like FEnglish verbs are phonologically less salient
than nouns because they are buried in the middle of sentences rather than appearing at
the end. (Verbs appear to be learned earlier in verb-final languages like Korean (Gopnik &
Choi 1995).)

How does the child surmount these obstacles? On the issue of temporal difficulties,
it has been found that in the formative second year of life children most often hear verbs
from their mothers before the corresponding action (Tomasello 1992). Indeed, learning is
slower if this condition is experimentally altered. FEarly verbs also typically label short-
duration actions. These two facts simplify the task of segmenting the proper time window
for the verb and alert the child to attend to important features of the action." The need to
attend simultaneously to both action and speech is also relieved. Our model incorporates
this simplification by using a static linking f-struct which (1) summarizes (i.e. remembers)
an action, (2) implicitly provides the proper segmentation, and (3) does not encode the
timing of the label relative to the action. On the issue of perception ws. proprioception,
it turns out that a disproportionate fraction of children’s early exposures to verbs refer to

their own activities rather than someone else’s (Tomasello 1992; Huttenlocher et al. 1983).

'But see Tomasello (1995b) for further pragmatic and social factors in determining proper reference for
actions.
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Thus the difficult correspondence problem can be delayed until later.?

But there are other significant obstacles that cannot be so easily explained in terms
of restrictions on the task itself. These must be addressed by any proposed learning algo-
rithm if it is to be psychologically plausible. One such obstacle is the accepted observation
that children generally receive negligible negative evidence during learning (for a review see
e.g. Marcus (1993)). That is, they hear examples of words used properly, but don’t hear
improperly used words and aren’t corrected when they improperly use a word themselves.
Basic results in computational learning theory (Gold 1967; Mitchell 1980) demonstrate that
learning in this circumstance is impossible without a bias specifying preferences amongst

those concepts consistent with the data.

Another obstacle—or challenge rather—is fast mapping, the ability of children to
understand and use a word in a reasonable way after as few as one exposure to it from the
parent (Carey 1978). (See Heibeck & Markman (1987) for a more recent treatment or Flavell
et al. (1993: pages 301-302) for a thoughtful overview.) The key point of fast mapping is
that the child hazards a guess as to the relevant features of the single example rather than
waiting to collect statistics across multiple examples. The guess may be based on linguistic
context (“no it’s not purple, it’s mauve”), parental cues (pointing) or, as modelled here,

innate biases regarding what is linguistically relevant.?

These constraints together motivate the probabilistic model merging algorithm

presented next for the learning of action verbs.

6.2 Learning Word Senses via Model Merging

Recall that the learning task is to construct a model lexicon—that is, an appro-
priate set of word senses for each verb—from a training set consisting of labelled actions.
Each training example consists of a verb and a linking f-struct summarizing an action. The
verb representation consists of probability distributions, and thus we frame the problem of
verb acquisition in terms of probabilistic model inference. The basic idea is to start with a

lot of very specific senses for each verb, and then gradually merge them together to form a

2The correspondence is also likely to be partially innate. Neonates are capable of mimicking facial
expressions (Meltzoff & Moore 1977).

1t should be noted that while fast mapping is well-established for a few domains, it has not been carefully
studied for the case of verbs.
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TRAINING EXAMPLES WORD SENSES FOR " PUSH"
(linking f-struct)
initial
schema | ebow |posture | duration | .} | schema elbow posture | duration
exl dide extend | pam med side 0.9 | extend 0.9 palm 0.9 med 0.9
merge -
2 schema | ebow | posture | duration [ . a| schema elbow posture | duration
ex
dide | extend | pam short dide 09 |extend 0.9| pam 0.9| T4, 93
T
3 schema elbow posture | duration B | schema abow posture | duration
touch fixed palm long touch 0.9 |fixed 0.9 pam 0.9 | long 0.9
4 schema elbow | posture | duration | .. e | schema elbow posture
ex .
dide | extend | index | long dide 10 |extend 10| PAM 07

Figure 6.1: Learning two senses of push.

smaller set of more general senses.

6.2.1 An illustration of merging

We will introduce the procedure by illustrating a hypothetical training run. Fig-
ure 6.1 depicts how the learning of two word senses for push might proceed. Importantly,
the figure illustrates online learning: each training example is incorporated into the model
as soon as it occurs. In contrast, the algorithm description in the following sections is ori-
ented toward the offline case, where all training examples are collected before any merging
occurs (the description is cleaner this way), but the algorithm can operate in an online

fashion.*

The left-hand side of each row in Figure 6.1 shows a linking f-struct for a new
example labelled push. The right-hand side shows the modified semantic representation for

push after incorporation of the example.

The first training example (which might correspond to pushing a cube across a
table) necessarily entails creation of an initial word sense. This initial sense closely reflects
the example itself, except that the feature values are probabilistic. Each feature value

observed in the example f-struct is assigned probability slightly less than 1.0 (they are

*In particular, the fully-online case corresponds to setting the algorithm’s BatchSize parameter to 1.
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shown as 0.9 in the figure). The remaining probability is divided amongst the unobserved

possible values of the feature. A very modest amount of generalization has thus occurred.

The second example of push is quite similar to the first, differing on only one
feature—duration. So, it is merged into the existing word sense, thereby generalizing that

sense’s duration probability distribution.

The third example corresponds to a different kind of pushing, perhaps pushing
against a wall. This example differs from the current word sense on almost every feature,
and thus is deemed too different for merging. Instead a new word sense is generated (shown

in the right-most column).

Finally, the fourth example arrives. It is a sliding motion like the first two exam-
ples, but involves the index finger posture. It is compared against both existing word senses
and is judged most similar to the left-hand sense. It is then merged with that sense. Since
the schema and elbow features have been consistent for all three examples incorporated
into this left-hand word sense, the probabilities on these feature values are now virtually
1.0. The posture feature, however, has been generalized so that it favors palm but allows

index. Duration, has proved not to be criterial for this word sense and has been dropped.

6.2.2 A Bayesian criterion

We now turn to a more formal treatment of the learning algorithm. The learning
task is an optimization problem, in that we seek, amongst all possible lexicons, the “best”
one given the training set. First off, then, we must precisely define “best”: we wish to find

the lexicon model m which is most probable given the training data ¢. That is, we seek

argmax P(m | t) (6.1)

The probability being maximized is the a posteriori probability of the model, and our
algorithm is a “maximum a posteriori (MAP) estimator” in statistics parlance. The funda-
mental insight of Bayesian learning is that this quantity can be decomposed using Bayes’
rule into components which separate the fit to the training data and an a priori preference
for certain models over others. The calculations which follow are summarized in Figure 6.2.

The first transformation is:



CHAPTER 6. VERB LEARNING

Measuring the Lexicon Model’s Posterior Probability

P(m | t)
T~

R(m)
4

P(mg) P(mg| mg) ﬂ P( | v, m)

/ \ (v)e t —\

PEim)

prefer virtual maX  ps|v,m) P(l|s, v, m)

sEv

fewer samples
senses / \\V

freq of this look at sense' s distributions
sense of v for each linking feature
Key: M= modelocgellfzxistcon . t =training set v = verb
mg=m s structure s _
mg = model’s parameters | = linking f-struct s=sense of verb

96

Figure 6.2: Formulas used to determine the posterior probability of a lexicon model m.
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P(m|t) o« P(m) P(t|m) (6.2)

Let’s begin with the second term, P(t | m). This term, the likelihood, is the probability
of the model generating the data. It is a measure of the degree of fit of the model to the
training data. To gain intuition for this, one should imagine a word sense f-struct with its
probability distributions as a random generator of linking f-structs. The likelihood computes
the probability of the word senses in m generating exactly the set of linking f-structs found

in the training set t. Thus, we can rewrite the likelihood as follows:

Pitim)= ] P(|v,m) (6.3)

(lw)et

The individual probabilities are computed using the same Viterbi-like approximation as

used for labelling and obeying; that is,

P(l|v,m)~ mEaXP(s | v,m) P(l|s,v,m) (6.4)

and as before, the first term is computed from the sense s’s stored frequency count and the
second term is computed by consulting the probability tables in s for each feature in [ and
multiplying.

Now back to the first term in Equation 6.2, P(m). This term, the prior, is how
sub jective preferences are hooked into the learning procedure. While any kind of probability
distribution over models can be used in the Bayesian framework, the current work will use
only one kind of prior. Our prior has two parts, one dealing with the structure of the lexicon
model (m,) and one dealing with the probability distributions within each word sense, given

a particular structure (mg):

P(m) = P(mg) P(mg | my) (6.5)

The structural component is used to express the subjective preference that, all else

being equal, we should prefer a model with fewer senses per verb. We use:

P(m )O( e—ModelPriOTWeightx|m| (6 6)
s .
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where | m | denotes the number of senses in the lexicon model m and M odel PriorWeight
is a tunable parameter which adjusts the strength of this bias toward fewer senses.® To
turn the proportionality into an equality, a normalization must be included to ensure that

the sum over all possible model structures equals 1. This normalization factor is

eModelPMOTWezght(l _ e—ModelPMOTWezght)

Because of its exponential form, this structural prior has the characteristic that
the ratio of the prior on an (7 — 1)-sense model compared to an ¢-sense model is independent

Model PriorWeight

of 7 and is always equal to e . This value effectively specifies the maximum

amount by which the likelihood is allowed to drop during each merge.

The mg component takes the form of a Dirichlet prior®, a common choice of prior
for multinomial distributions because it is mathematically convenient and has an intuitive
interpretation. The intuition behind the Dirichlet prior is that it acts as if a number of
virtual samples had been observed prior to the actual observed samples. Typically the
virtual samples are distributed over the possible values of the multinomial for the purpose
of avoiding “drastic” conclusions from limited data. The Dirichlet prior is parameterized,
and the parameters effectively specify the number of virtual samples for each possible value.
The greater the number of virtual samples, the more observations will be needed before the
MAP estimate will converge to the frequencies observed in the data. Consider an example:
we would not want to conclude that a coin is unfair (probability of heads equal to 1) based
on a single flip yielding heads! Instead, suppose we assign 5 virtual samples to each of
heads and tails. This constitutes an initial belief that the coin is fair (probability of heads
equal to 5/10). A single flip yielding heads would then lead to an estimated probability
of heads equal to 6/11, i.e. we are still more or less convinced the coin is fair. But if 100
consecutive flips yield heads then this probability increases to 105/110 and we have pretty

much concluded the coin is unfair.

The above calculations are summed up in the following pseudo-code for the sub-
routine COMPUTE_MODEL _POSTERIOR:

®This prior can also be thought of as a description length prior (Rissanen 1984) and the full algorithm
can be thought of as minimizing the combined description length of the lexicon model and the training set.

6See Stolcke (1994:p. 23) for a well-written full definition of the Dirichlet distribution and discussion of
its properties.
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COMPUTE_MODEL_POSTERIOR(model m) returns a probability

prior — e—ModelPriorWeightx|m|

likelihood < product over all examples ({,v) of P(l| v, m)
return prior X likelihood
end

In summary, we have provided the groundwork for biased estimation of the training
set labeller’s lexicon, in accordance with a specified subjective prior. The prior has a
structural component that will be employed by the learning algorithm to make discrete

changes in the model structure during search.

6.2.3 Model merging

So we know what we must maximize; what is our search procedure? We use model
merging (Omohundro 1992), a hill-climbing algorithm which has proven useful in learning
stochastic grammars and Hidden Markov Models. The idea is to start with a model which
generates exactly and only the training data, hence maximizing the likelihood. Then, the
model is transformed in discrete steps which increase the posterior probability, i.e. the
product of the prior and the likelihood. Usually, each such step raises the prior but lowers
the likelihood. Eventually a step will occur where the increase in the prior is more than

offset by the decrease in likelihood, at which time the algorithm terminates.

In general terms, the algorithm is:

Model merging algorithm:

1. Create a simple model for each example in the training set.
2. Repeat the following until the posterior probability decreases:

(a) Find the best candidate pair of models to merge.

(b) Merge the two models to form a possibly more complex model, and remove
the original models.

In our case, “model” in the name “model merging” refers to an individual word

sense f-struct. Our learning algorithm creates a separate word sense for every occurrence of
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a word, and then merges these word sense f-structs so long as the reduction in the number

of word senses outweighs the loss of training-set likelihood resulting from the merge.

A major advantage of the model merging algorithm is that it is one-shot. After a
single training example for a new verb, the system is capable of using the verb in a mean-
ingful, albeit limited, way. Omohundro (1992) argues for the cognitive plausibility of this
learning strategy, which essentially calls for memorizing individual experiences when they
are few, followed by a gradual transition to postulating generalities as enough experiences
accumulate to warrant it. Model merging is also relatively efficient since it does not back-
track. Yet it often successfully avoids poor local minima because its bottom-up rather than

top-down strategy is less likely to make premature irreversible commitments.

One might ask, why merge at all? Why not just keep the initial set of word
sense f-structs? There are several answers. One is generalization; without the broadened
probability distributions resulting from merging, the lexicon model would have no way of
extending its use of verbs (for both obeying and labelling) beyond the set of situations in
which it has previously observed the verb used. Another is memory limitations; one cannot
store every instance of every word one hears! And lastly, concise representations are more

suitable for reasoning since they are easier to “inspect”.

6.2.4 Algorithm details

We now turn to details of our implementation of the model merging algorithm

described in general terms in the previous section.

Creating initial word sense f-structs

We begin with the first step, which creates initial models corresponding to each

training example. The following pseudo-code describes how this is done:
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CREATE_NEW_SENSE(linking f-struct [, virtual samples table virt) returns a sense
create an “empty” sense s
example-count of s «— 1
for each feature f of {:
create a probability distribution d
set each of d;’s value counts to virty
add 1 to d;'s value count for the value of [
insert dy into s
endfor
return s
end

A very important point is that the initial word sense f-struct we create is not
exactly the maximum likelihood sense for the observed linking f-struct. Instead, the initial
sense incorporates a number of virtual samples for every value of every feature, effectively
“blurring” the probability distributions. The virtual sample values are specified in a table
vert which has an entry for each feature. The wvirt table is specified externally and thus
provides another way to tune our algorithms. For most training runs, we use a small value
for the schema feature, since verbs often correspond to one particular x-schema. Larger

values are used for the other features.

Two advantages follow from this step, which essentially inserts a little generaliza-
tion right off the bat. The basic point is that by adding the virtual samples the algorithm
avoids zero probabilities on unseen feature values, and thereby allows probabilities over
entire f-structs to be a useful metric of their similarity. When labelling, this metric makes
it possible for a new verb supported only by such an initial sense to be chosen as the label
for a linking f-struct even if the match is not perfect. In this way, fast mapping with mod-
est generalization is achieved. And as we will see shortly, the ability to define a cheaply

computed similarity metric between word sense f-structs can speed up merging.

Finding the best merge candidate

Next, we consider how the algorithm will choose at each iteration which pair
of word senses to merge. Merging can be performed only between senses of the same

verb. For a given verb, we generate all possible pairs of senses and then call the routine

FIND_BEST_CANDIDATE_MERGE with this set:
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FIND_BEST_CANDIDATE_MERGE(set of senses 5) returns two senses
for each pair of senses a, b in 5:
for each feature f:
compute C'hiSquares(ays,by)
endfor

imilari - Chis
similarity,, — e Y ChiSquareg

endfor
if (highest observed similarity exceeds MinMerge)
then return «, b with highest similarity,;
else return nothing
endif
end

A couple points deserve comment. First, the routine uses a measure of similarity
to choose the best merge pair. Ideally, we would calculate the new posterior which would
result from each potential merge, since that is the quantity we wish to maximize. However,
this is prohibitively expensive. The similarity heuristic is intended to be a cheaper way to
estimate the improvement in the posterior for a given candidate merge. Since the structural
prior depends solely on the number of word senses, any merge will increase it by the same

amount. Thus, the similarity heuristic is designed simply to minimize the loss in likelihood.

The similarity measure used here is based on the chi-square statistic. The chi-

square statistic of two distributions R and 5 is defined as

(R; = 9:)?

P (6.7)

ChiSquare = Z

where ¢ ranges over possible values of the distributions and R; and S; represent the oc-
currence counts for each value in the two distributions. This measure is similar to a least
squares error function. A problem with this measure is that it is sensitive to differences
in the total number of samples in the two distributions. Often we will want to merge two
word sense f-structs which “cover” very different numbers of examples, such as when a new
sense has just been created for a new training example and the algorithm is attempting to
merge it into an already mature set of senses. So we cannot use the statistic in this form,
but instead modify it so that R; and S; represent probabilities of each value rather than

counts.
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The modified chi-square statistic is applied to each individual feature. To achieve
an overall similarity statistic for two word senses, these measures for each feature are
summed, which is a reasonable combination function since the measure is additive in nature.
Finally, the sum is pushed through the negative exponential function in order to yield a
measure which tends toward 1 for identical distributions and toward 0 for totally dissimilar

distributions.

Another noteworthy feature of FIND BEST_CANDIDATE_MERGE is that it em-
ploys a similarity threshold, MinMerge. If the best candidate merge exhibits similarity
lower than this threshold, then no candidate will be returned and merging will stop. This
thresholding heuristic can be turned off by setting MinMerge to 0 but often it proves useful

to set it to a small but positive value to filter undesirable merges.

The computation of similarities for every pair of senses is time-consuming. Ac-
cordingly, the implemented version of FIND _BEST_CANDIDATE_MERGE employs a priority
queue to store these potential merges, ordered by their similarity, so that they needn’t be
recomputed each time merging is performed. The priority queue implementation has an
additional routine to update the queue after a merge: some old potential merges must be

deleted, and some new potential merges added.

Performing the merge

Once a candidate merge is selected, the actual merge operation goes as follows:

PERFORM_MERGE(model m, senses s; and s,) modifies m
create an “empty” sense s
example-count of s15 « sum of the example-counts of s; and s9
for each feature f of sy and sg:
create a probability distribution d
for each possible value v of f:
dy’'s value count for v «— virty + sum of si's and s3's
observed value counts for v
endfor
insert dy into sq
endfor
remove s; and s; and add s;; to model m
end
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Essentially, we just sum the counts on each value for each feature (and also sum
the counts of the number of examples incorporated into each sense). It is important to note,
though, that it is only observed counts that are summed, not virtual counts, since otherwise
merged models could never generate more-peaked probability distributions than occur in
the initial senses. In the implementation this is accomplished by not actually storing the
virtual samples within the data structure for each distribution but rather by referring to
the global virt table as well as the local observed counts whenever probability calculations

must be made.

Top-level control and online learning

We finally present the top-level control of the model merging algorithm:

INCORPORATE_EXAMPLE(linking f-struct [, verb v, model m) modifies m
CREATE_NEW_SENSE(I, m’s virtual samples table virt)
if (BatchSize senses have been created for v since last merge) then
loop:
51, s3 — FIND_BEST_CANDIDATE_MERGE(m's senses for v)
if (s1 and sy are null) then terminate loop
old posterior —— COMPUTE_MODEL_POSTERIOR(m)
PERFORM_MERGE(m, s1, s2)
new posterior — COMPUTE_MODEL_POSTERIOR(m)
if (new posterior is lower) then undo merge and terminate loop
endloop
endif
end

While the general model merging algorithm appears to require the full data set to
be present initially, this is not necessary. As can be seen above, our top-level algorithm waits
only until BatchSize training examples have accumulated for a given verb before entering
the main loop which performs iterative merging. Model merging has historically proven

robust to being used in a nearly online fashion, i.e. by using batch sizes of approximately

ten (Stolcke 1994).

The main merging loop continually checks the model’s posterior probability after
each merge, and stops as soon as a merge reduces the posterior. This last merge is then

“undone”. This stopping criterion is not particular robust, since a single small “dip” in the
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posterior might terminate merging, even if many more merges could be performed which
would increase the prior. An alternate version of the algorithm considers other potential
merges when the best candidate merge fails. In practice, though, it was found that the

similarity heuristic is actually quite good, and this extra level of robustness was unnecessary.

6.2.5 Computational complexity

First we consider the worst-case performance of model merging for the offline case,
i.e. where all training data is available initially. In this case, the running time is of complexity
O(n?) where n is the number of training examples. The reasoning is straightforward: at
most O(n) merges will be performed, and at each merge step there are O(n?) potential pairs

of senses to evaluate as potential merges.

The online case presents the potential for considerable improvement in efficiency,
since m above is replaced by the batch size b which is presumably much lower. This is
assuming the number of senses in the lexicon (measured after each completion of the merge
loop for each batch) converges to a small constant. Intuitively, the algorithm will be faster
in the online case because we expect to never accumulate too many word senses at any
given time, since a moderate amount of merging is expected after every batch of b training

examples is processed.

6.2.6 Updating the virtual sample priors

An optional final step has been added to the INCORPORATE_EXAMPLE routine
to speed learning of new verbs once a modest vocabulary has already been learned. The
key insight here is that each language tends to code for certain features in its verbs. For
example, English verbs commonly code for manner (implicating features such as posture)
while Korean or Spanish verbs usually code for more spatial features such as direction.

Children pick up on this sort of language pattern quite early (Choi & Bowerman 1991).

These patterns are captured by modifying the virt virtual sample table. Such
modifications affect the amount of generalization performed for each linking feature when a
new verb is encountered and its initial word sense f-struct is created. Decreased generaliza-
tion is appropriate for those features which have often proven relevant in previously learned

verbs. It is achieved by lowering the number of virtual samples for such features, thereby
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causing a new verb’s initial word sense to stick more closely to the value found in its train-
ing example. Conversely, increased generalization is appropriate for features which have
previously proven irrelevant. It is achieved by increasing the number of virtual samples—in
the limit effectively ignoring the specific feature values found in future training examples

for a new verb.

To summarize: as a result of such modifications to virt during learning, new
words in a slot will more quickly converge on their relevant features, so long as they fit the

established pattern.

The heuristic used to adapt the virtual sample count virt; for a given feature f is
as follows. We first define a function which maps probability distributions d; over f to an
“effective” virtual sample count. Intuitively, the broader the distribution, the greater the

number of effective virtual samples. The formula used is
L — Py, (mode)

Vi = ns Py, (mode) — 1 (6-8)

where n is the number of possible values of the feature f, and “mode” is the most probable

value of dy. Why is this a reasonable formula? The equation can be rewritten as

?de—l—l

Pdf (mode) = m
f

(6.9)

Observe that this latter formula reflects the algorithm used when forming each distribution
in an initial word sense for a new verb. The bottom line, in other words, is that Equation
6.8 computes the number of virtual samples which, if used in creating a new distribution,
would assign the mode of the new distribution (i.e. the observed value) the same probability

which it has in dy.

We then compute the average of these effective virtual sample counts for feature
f across all verbs, weighted by the number of training examples supporting each verb.
This average also includes the current value of virt;, weighted by a tunable parameter
VirtuallInertia (which thus specifies the rate of adaptation of the virt table as a whole).

The resulting value replaces the current value in virty.

A difficulty with this heuristic is that for a perfectly uniform probability distribu-

tion, the effective virtual sample count is infinite. To prevent setting virty to infinity, each
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effective virtual sample count is artificially limited to MaaVirtuals, yet another tunable

algorithm parameter.

This procedure is summarized below as the routine ADAPT _VIRTUALS:

ADAPT_VIRTUALS(model m) modifies virt
for each linking feature f:
wsum «— 0

for each word sense s in m:
1—P(mode)

WwsuUm «— wsum -I— (min(m,

MazVirtuals) x s's example-count)
endfor
wsum — wsum + (virty x VirtuallIntertia)
wsum — wsum -+ (sum of example-counts + Virtuallntertia)
virty — wsum
endfor

end

The routine is run after each merging loop during training.

6.2.7 Summary of algorithm parameters

At this point we have concluded the presentation of all algorithms for verb use
and learning. Since a fairly large number of algorithm parameters have been employed,
a summary is in order. The full set of parameters, each with its range of allowed values,
is summarized in Figure 6.3. Training results are reported in Chapter 8. The parameter
settings for the main English training run in that chapter are shown in Figure 6.3 in the

column labelled “Typical”.

6.3 Alternatives to Model Merging

We’ve seen Bayesian model merging and its advantages, but we haven’t yet dis-

cussed other relevant learning algorithms and why they weren’t chosen.

Since ours is a connectionist enterprise, an obvious question is why we did not
choose backpropagation (Rumelhart et al. 1986)—the de facto neural network learning

algorithm—or one of its many variants. The primary difficulty lies with the network struc-
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Parameter | Range | Typical | Description |
MinLabel [0, 1] 10-7 Ml.mmum P.(word | action) re-
quired to emit word
MinExplain [0, 1] 05 Minimum P(feature | sense) re-

quired to explain away feature

Minimum P(sense | worldstate)
MinQObey [0, 1] 1077 required to use sense in setting
linking f-struct

Minimum “peakedness” of distri-
MinSetFeature [1, o0] 1.5 bution required to set feature in
linking f-struct

Minimum similarity required be-
MinMerge [0, 1] 0 tween two senses if they are to be
merged

Magnitude of preference for merg-
Model PriorWeight [0, o] 4.5 ing relative to preserving likeli-
hood

Number of new instances of a word

BatchSize 1,2,... 00 to accumulate between merging
episodes

Replicate training data this many
times

Whether to adapt Dirichlet prior
in each slot during learning

Traiming Passes 1,2,... 1

AdaptVirtuals true, false true

Effective number of samples sup-
Virtuallnertia [0, o0] 50 porting current virtuals when
adapting them

MaxVirtual [0, oc] 10 Prevent .uni.forrr{ d.istributions
from causing infinite virtuals

schema: 0.05 | Number of virtual samples to add
vert table [0, o] all others: 1.0 | to each value of each feature in
each word sense

Figure 6.3: Summary of parameters of the labelling, obeying and learning algorithms and
their settings for the English training run.
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ture which backpropagation presupposes. Hidden-node representations of one-way map-
pings, such as those produced by backpropagation, are very difficult to reverse (as is needed
for command-obeying in our task). The network structure does not include any reverse
connections which could represent the reverse mapping. If such connections were added,
their weights would have to be learned independently of the forward connections. And since
the hidden nodes do not correspond to any previously identified features, it is impossible

to include pre-wired network structure to “interpret” them.

Nonetheless, there is one way to attempt to reverse such mappings, called back-
propagation through the inputs (Thrun 1992). Bailey (1992) attempted to use this technique
to model the mapping from a spatial term to a mental image of its prototypical case, in the
context of Regier’s (1996) system. The technique involves applying a random input vector
(i.e. image) to the trained network, computing the corresponding (bogus) output vector,
and comparing it to the desired output (in which only the node for the desired spatial term
is active). The error propagation formulas are then applied, but rather than treating the
inputs as fixed and the weights as variable, we do just the opposite: the weights are treated
as fixed, and the input is modified to reduce the error. The process is then repeated with
this slightly-improved input vector. Eventually the network will converge on an input vector
which minimizes the output error. If this error is low enough, we can conclude that the
inputs now represent a good “mental image” of the spatial term. However, the success of
this project was limited (the non-continuous features in the structured portion of Regier’s
network could not be handled) and the cognitive plausibility of such an iterative procedure

is rather lacking.

Another reason to avoid backpropagation learning is that the trajectory of learning
is typically quite slow, since weights are adjusted in small increments to avoid “hopping”
over the correct solution. Indeed, typically backpropagation training involves many repeated
presentations of the training set. So backpropagation is not capable of modelling fast
mapping.

Our multiple-word-sense representation can be viewed as a mixture model. A
common algorithm for learning mixture distributions is the “Expectation-Maximization”
or “EM” algorithm (Dempster et al. 1977). But the EM algorithm focuses on estimation
of parameters and not learning of the structure which gives rise to the hidden mixture

parameters in the first place. Furthermore, implicit in EM is the notion that an observation
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may be “caused” by any of the mixture elements, so that the probability of an observation
is the sum of its probability of being generated by each mixture element. And in adjusting
each mixture element, each observation is used (in proportion to its probability given the
current parameters of the mixture element). In contrast, in our language task, we assume
that cognitively one commits to a single sense when categorizing an observation, and hence
we do not want to sum the probabilities across all senses of a word, but rather we should

look only at the highest-probability sense.

6.4 Connectionist Account

We now turn to the issue of implementing the model merging algorithm in a
connectionist manner, so that we will have a unified connectionist story for the entire
system. The learning mechanism operates within the architecture described in §5.4, which
should be understood before proceeding. And, just as was the case in §5.4, the ideas here

are intended as a plausibility argument and have not been worked out in full detail.

Recall the neural plausibility criteria from §2.4. At first glance, the model merging
algorithm of §6.2 does not appear particularly connectionist. Two properties cause trouble.
First, the algorithm is constructivist. That is, new pieces of representation (word senses)
need to be built, as opposed to merely gradually changing existing structures. Second,
the criterion for merging is a global one, rather than depending on local properties of
word senses. Nevertheless, we have a proposed connectionist solution employing a learning

technique known as recruitment learning.

6.4.1 Recruitment learning

Recruitment learning (Feldman 1982; Shastri 1988) assumes a localist representa-
tion of bindings such as the triangle unit described in §5.4, and provides a rapid-weight-
change algorithm for forming such “effective circuits” from previously unused connectionist

units.

Figure 6.4 illustrates recruitment with an example. Recall that a set of triangle
units is usually connected in a winner-take-all (WTA) fashion to ensure that only one bind-

ing reaches an activation level sufficiently high to excite its third member. For recruitment
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Figure 6.4: Recruitment of triangle unit T3 to represent the binding E-F-G.

learning, we further posit that there is a pool of “free” triangle units which also take part
in the WTA competition. The units are free in that they have low, random weights to
the various “concept units” amongst which bindings can occur. Crucially, though, they do
have connections to these concept units. But the low weights prevent these free units from

playing an active role in representing existing bindings.

This architecture facilitates the learning of new bindings as follows. Suppose, as
in Figure 6.4, several triangle units already represent several bindings, such as T1, which
represents the binding of A, C and F. (The bindings for T2 are not shown.) Suppose further
that concept units E, I and G are currently active, and the WTA network of triangle units
is instructed (e.g. by a chemical mechanism) that this binding must be represented. If
there already exists a triangle unit representing the binding, it will be activated by the
firing of E, I and G, and that will be that. But if none of the already-recruited triangle

units represents the binding, then it becomes possible for one of the free triangle units (e.g.
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T3)—whose low, random weights happen to slightly bias it toward this new binding—to
become weakly active. The WTA mechanism selects this unit and increases its activation,
which then serves as a signal to the unit to rapidly strengthen its connections to the active

concept units.” It thereby joins the pool of recruited triangle units.

As described, the technique seems to require full connectivity and enough unre-
cruited triangle units for all possible conjunctions. Often, though, the overall architecture of
a neural system provides constraints which greatly reduce the number of possible bindings,
compared to the number possible if the pool of concept units is considered as an undifferen-
tiated whole. For example, in our connectionist word sense architecture, it is reasonable to
assume that the initial neural wiring is predisposed toward binding words to features—not
words to words, or feature units to value units of a different feature. The view that the
brain starts out with appropriate connectivity between regions on a coarse level is bolstered
by the imaging studies of Damasio & Tranel (1993) which show, for example, different

localization patterns for motor verbs (nearer the motor areas) vs. other kinds of verbs.

Still, the number of potential bindings and connections may be daunting. It turns
out, though, that sparse random connection patterns can alleviate this apparent problem
(Feldman 1982). The key idea is to use a multi-layered scheme for representing bindings,
in which each binding is represented by paths amongst the to-be-bound units rather than
direct connections. The existence of such paths can be shown to have high probability even
in sparse networks, for reasonable problem sizes. These issues are not considered further in

this discussion.

Complex triangle units, with multiple connections per side (see §5.4), present some
special difficulties for recruitment learning. Consider first the case of the conjunctive style
of complex triangle unit, which must not only bind together a set of concept units, but must
also partition them into three groups in the desired way. Since all the concept units are
equally active at the time of recruitment, there is no way for a potential recruit to “know” if
it is wired for the desired partitioning. In this case, we must rely on the overall structure of
the net to restrict the potential partitionings to those which are reasonable. For example,

in our connectionist word sense architecture, this is easy to specify because each side of the

"This kind of rapid and permanent weight change, often called long term potentiation or LTP, has been
documented in the nervous system. It is a characteristic of the NMDA receptor, but may not be exclusive
to it. It is hypothesized to be implicated in memory formation. See Lynch & Granger (1992) for details on
the neurobiology, or Shastri (1997) for a more detailed connectionist model of LTP in memory formation.
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conjunctive triangle units used to represent word senses has a quite different function.

Next, consider the case of the disjunctive style of complex triangle unit. The
difficulty here is in how the variable weights are set, at the neural level. The incoming
weights are not problematic; we can employ an update rule which sets each weight to be
proportional to the degree of activation of its input. The hitch is the outgoing weights, for
they are stored in—and hence must be updated by—the “concept” neurons, not the triangle
unit’s own neuron. We must, therefore, posit a non-local mechanism (e.g. chemical) for
informing all concept neurons that learning is taking place, and that if any of them should
receive input from a (newly recruited) triangle neuron, they should set their weight on that

synapse in proportion to their own (not the triangle unit’s) degree of activation.

6.4.2 Merging via recruitment

The techniques of recruitment learning can be put to use to create the word sense
circuitry shown earlier in Figure 5.8. The connectionist learning procedure does not exactly
mimic the algorithm given above (more on that later), but is most similar to the online case

(BatchSize = 1) illustrated back in §6.2.1.

To illustrate our connectionist learning procedure, we will assume that the two
senses of push shown in Figure 5.8 have already been learned, and a new training example
has just occurred. That is, the “push” unit has just become active, as have some of the

feature value units reflecting the just-executed action.

The first key observation is that when a training example occurs, external acti-
vation arrives at a verb unit, motor-parameter feature value units, and world-state feature
value units. This three-way input is the local cue to the various triangle units that adap-
tation should occur—labelling and obeying never produce such three-way external input
to the triangle units. Depending on the circumstances, there are three possible courses of

action the net may take:

e Case 1: The training example’s features closely match those of an existing
word sense. This case is detected by activation of the primary triangle unit of the
matching sense—strong enough activation to dominate the winner-take-all competi-

tion.

In this case, an abbreviated version of merging occurs. Rather than create a full-
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fledged initial word sense for the new example, only to merge it into the winning
sense, the network simply “tweaks” the winning sense to accommodate the current
example’s features. Conveniently, the winning sense’s primary triangle unit can detect
this situation using locally available information, namely: (1) it is highly active; and
(2) it is receiving activation on all three sides. The tweaking itself is a version of Hebb’s
Rule (Hebb 1949): the weights on connections to active value units are incrementally
strengthened. With an appropriate weight update rule, this strategy can mimic the
probability distributions learned by the model merging algorithm.

¢ Case 2: The training example’s features do not closely match any existing
sense. This case is detected by failure of the winner take all mechanism to elevate

any word sense above a threshold level.

In this case, standard recruitment learning is employed. Pools of unrecruited triangle
units are assumed to exist, pre-wired to function as either primary or subsidiary units
in future word senses. After the winner-take-all process fails to produce a winner from
the previously-recruited set of triangle units, recruitment of a single new primary
triangle unit and a set of new subsidiary units occurs. The choice will depend on
the connectivity and initial weights of the subsidiary units to the feature value units,
but will also depend on the connections amongst the new units which are needed for
the new sense to cohere. Once chosen, these units’ weights are quickly set to reflect
the currently active linking feature values, thereby forming a new word sense which

essentially is a copy of the training example.

e Case 3: The training example’s features are a moderate match to two
(or more) existing word senses. This case is detected by a protracted struggle
between the two partially active senses which cannot be resolved by the winner-take-
all mechanism. Figure 6.5 depicts this case. As indicated by the darkened ovals, the
training example is labelled “push” but involved medium force applied to a small

size object—a combination which doesn’t quite match either existing sense.

This case triggers recruitment of triangle units to form a new sense as described for
case 2, but with an interesting twist. The difference is that the weights of the new
subsidiary triangle units will reflect not only the linking features of the current training

example, but also the distribution of values represented in the partially active senses.
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CHAPTER 6. VERB LEARNING 116

Thus, the newly recruited sense will be a true merge of the two existing senses (as
well as the new training example). Figure 6.5 illustrates this outcome by the varying
thicknesses on the connections to the value units. If you inspect these closely you
will see that the new sense “push12” encodes broader correlations with the force and
size features than those of the previous senses “push1” and “push2”. In other words,

“push12” basically codes for dir = away, force not high.

How can this transfer of information be accomplished, since there are no connections
from the partially active senses to the newly recruited sense? The trick is to use
indirect activation via the feature value units. The partially active senses, due to
their partial activation, will deliver some activation to the value units—in proportion
to their outgoing weights. Each value unit adds any such input from the various senses
which connect to it. Consequently, each feature subnetwork will exhibit a distributed
activation pattern reflecting an average of the distributions in the two partially active
senses (plus extra activation for the value associated with the current action). This
distribution will then be effectively copied into the weights in the newly recruited

triangle units, using the usual weight update rule for those units.

A final detail for case 3: to properly implement merging, the two original senses must
be removed from the network and returned to the pool of unrecruited units. If they
were not removed, the network would quickly accumulate an implausible number of
word senses. After all, part of the purpose of merging is to produce a compact model
of each verb’s semantics. But there is another reason to remove the original senses.
The new sense will typically be more general than its predecessors. If the original
senses were kept, they would tend to “block” the new sense by virtue of their greater
specificity (i.e. more peaked distributions). The new sense would rarely get a chance
to become active, and its weights would weaken until it slipped back into unrecruited
status. So to force the model to use the new generalization, the original senses must be
removed. Fortunately, the cue for removal is available locally to these senses’ triangle
units: the protracted period of partial activation, so useful for synthesizing the new
sense, can serve double duty as a signal to these triangle units to greatly weaken their

own weights, thus returning them to the unrecruited pool.

Again, the foregoing description is only a sketch, and activation functions have not

been fully worked out. It is possible, for example, that the threshold distinguishing case 2
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from case 3 could prove too delicate to set reliably for different languages. These issues are

left for future work.

Nonetheless, several consequences of this particular connectionist realization of a
model-merging-like algorithm are apparent. First, the strategy requires presentation of an
intermediate example to trigger merging of two existing senses. The architecture does not
suddenly “notice” that two existing senses are similar and merge them.® It is conceivable
that one could test for the presence of such a strategy in children. In other words, it
might be instructive to try to test whether leaps in generalization ability tend to occur
shortly after presentation of intermediate usages of a word, as opposed to occurring after a
“contemplative” phase, or in response to repeated occurrence of the original usages of the

word.

Another consequence of the architecture is that it never performs a series of merges
as a “batch”. There is no “merge loop” as described in §6.2.4. On the other hand, the ar-
chitecture does, in principle, allow each merge operation to combine more than two existing
senses at a time. Indeed, technically speaking, the example illustrated in Figure 6.5 is a
three-way merge of “pushl,” “push2” and the current training example. The question of

the relative merits of these two strategies is left unexplored.

In summary, we have shown that the two seemingly connectionist-unfriendly as-
pects of model merging—its constructiveness and its use of a global optimization criterion—

can be overcome by using recruitment learning and a modified winner-take-all mechanism.

6.5 Overgeneralization and Contrast Sets

Now that we have presented the full learning algorithm, we return to a few psy-

cholinguistic issues and how they are reflected in the model.

A common pattern in early lexical development is overgeneralization, in which word
meanings initially extend beyond the bounds of the adult meaning. The reader may object
that our merging algorithm is a poor psychological model because it handles presentation
of an initial example of a new word by creating a rather specific sense strongly reflecting

the training example. The objection has some legitimacy for the case of comprehension

81t is possible that an “imagination mode” could be implemented, in which the current senses would be
used to generate imagined linking f-structs which then might trigger merging.
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(i.e. obeying commands), although it should be pointed out that early undergeneralization
patterns have also been observed (Kay & Anglin 1982) and are harder to detect. It turns
out, however, that our model can capture early overgeneralization for the case of production
(i.e. labelling actions), which is indeed where they are most prevalent. LABEL can emit a
verb (the best-matching one, of course) even if its probability is arbitrarily low, so long
as the MinLabel parameter is set to a low value. Thus if the vocabulary—and hence the
contrast set (Clark 1987) for the new verb—is small, the verb may indeed exhibit plausible

overgeneralization in production, assuming the Men Label parameter is tuned appropriately.

Extension

This behavior suggests that it may be possible to extend our learning algorithm
to take advantage of the current lexicon in learning new verbs. For example, suppose the
model has successfully learned push along with contrasting verbs such as pull or lift. When

an example of a new verb, shove, is presented to the model, the algorithm might:

1. Run the LABEL routine to determine that push is the closest existing verb and the
match is pretty good;

2. Inspect the features of push and compare them to the new training example;

3. Find the biggest differences between them, probably the acceleration feature in this

case;

4. Conclude that shove must code for those differences by the principle of contrast (Clark
1987).

In general, then, the reversibility of the features-to-verbs mapping opens the pos-
sibility of discovering relationships between verbs (e.g. generalization, specialization, oppo-
sition, etc.). Such information could then be leveraged to provide more specific negative
evidence than was possible in Regier’s framework, in which each label was taken as mild

negative evidence for all other labels.
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So far we’ve considered verbs in isolation. In this chapter, we provisionally extend
our model to handle a wider range of linguistic forms. “Verb complexes” consist of a
verb root plus any associated affixes, auxiliaries or particles (collectively called satellites by
Talmy (1985)) which together specify the action, such as the four-component verb complex
keep pick-ing up. These are handled by adding multiple “slots” to the model.!

7.1 The Nature of the Problem

First off, note that we could simply treat an entire verb complex as a single “word”
and thereby continue to use our algorithms from the preceding chapters. But in doing so, we
would forfeit all the benefits which can follow from exploiting the compositional structure
of verb complexes. Those benefits include, first of all, compactness. In a compositional

account the lexicon will be much smaller. A language with n verbs and m particles will

!Full verb phrases are not considered since our focus is on linguistic elements which are fundamentally
about action. Noun phrases, prepositional phrases, etc. certainly play a role in specifying actions, but this
is beyond the scope of this thesis.
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have only n 4+ m lexical items rather than a potential n X m lexical items. Moreover, a
consequence of a smaller lexicon is that the amount of data per lexical item will be much
greater, allowing statistical techniques to home in better on the meaning of each. Perhaps
most importantly, learning separate semantics for each components permits the model to

both produce and obey novel combinations of words.

Children certainly are inclined toward this “take it apart and look inside” ap-
proach. In fact, one of the first morphological rules mastered by children—at around age
two—is the -ing ending (Brown 1973), whose semantics are obviously related to action and

process.

So the big question is how to dissect a compositional meaning into its parts during
learning, and then how to compose meanings from their parts during language use. If
compositionality were just a matter of forming a union of features, the problem would be
trivial. But many other types of composition exist, in which one component overrides a
feature from another, or modifies a feature in some non-trivial way, etc. Fauconnier (1985)
provides numerous examples and proposes the term “blending” to better reflect the subtlety
of the phenomenon. Weber (1994) developed a connectionist account of such blends as they
occur in adjective-noun phrases. Wu (1992) worked on similar issues for noun compounds.
It is far from obvious how to capture the full range of action description blends in the current
model. Yet it turns out that some easy cases can be handled by fairly simple modifications

to our architecture, to which we now turn.

7.2 Slots: A Provisional Solution

Our partial solution can be summed up quite simply: we divide both linguistic
input/output, and our lexicon model, into “slots” corresponding to each of the grammatical
positions (prefix, root, particle, etc.) which we want to deal with. The term “slots” is chosen
to convey the idea that the model initially has no notion of the particular grammatical
role played by any slot. The partitioning of an utterance into its various slots represents

grammatical knowledge which we are not modelling; this process is done by hand.

Figure 7.1 shows a revised version of our model with two slots: Slot 1 is for verb
roots, and Slot 2 is for particles and other directional specifiers. It’s important to note

that there is no structural distinction between the slots. And since our multiple-sense word
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Figure 7.1: Word senses from each of two slots are chosen and then combined to process

the command push left.
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representation does not involve any structure “connecting” the word senses, there is no
apparent boundary between the slots when looking at the lexicon. The boundaries become
relevant in two places: first, an utterance is chopped up and each word (or morpheme) is
delivered to its appropriate slot. Again, we don’t model the details of this process and the
grammatical knowledge it would require. But the boundary is also relevant at the interface

between the lexicon and the linking f-struct, and this will be the focus of this chapter.

We will now look at how the labelling, obeying and learning algorithms have
been adapted to deal properly with slots. Except as noted, these algorithms have been

implemented.

7.2.1 Labelling and obeying

Labelling proceeds much as described earlier, except that it is repeated for each

slot. Here is the algorithm:

LABEL_MULTISLOT (linking f-struct [, model m) returns a verb complex
create an empty verb complex ve
loop:
for each unfilled slot ¢ in ve:
best_label, — LABEL(m;, {)
endfor
if (at least one non-empty label was collected)
then choose best_label; with the highest probability and place it in slot ¢ of ve,
as long as its probability > Mn Label
remove all features f from [ with P(l; | best label;) > MinExplain
else terminate loop
endif
endloop
return vc
end

In §5.3.1, our labelling algorithm was essentially “forced choice” in that the highest a pos-
teriori label was always emitted (unless its posterior probability was less than MinLabel).
We cannot, however, be quite so eager to fill slots in a multi-slot label, lest we produce
potentially redundant verb complexes such as shove hard or drop down. We also want to

prefer short phrases such as pull to longer phrases such as slide toward. These problems
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have been addressed previously in the natural language generation literature; here, we cap-
italize on our use of probability to cleanly describe these preferences. Qur algorithm works
by filling slots one by one, and after each slot is filled those features “explained” by the
filler are removed from the linking f-struct. The criterion for explaining away a feature is
that its probability given the label exceeds a tunable parameter, MinFaplain. With this
procedure, subsequent slots will be filled only if there remain features which have not been
expressed. With this scheme it is important that we fill slots not in an arbitrary order,
but rather by choosing at each step a label with maximal a posteriori probability, so that
the features of the linking f-struct will be expressed with the smallest number of words.
Accordingly the MnLabel parameter plays an even more important role than before, since
it is now responsible not only for saying “I can’t find a good label at all,” but also is re-
sponsible for deciding when enough slots have been filled to adequately express the content

of the action.

The algorithm for obeying a command by choosing suitable linking features must

also change to handle verb complexes. Here is the changed algorithm:
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OBEY_MULTISLOT(verb complex ve, initial world state w, model m)
returns motor-parameter linking features
for each slot ¢ of m:
for each sense s of ve;:
prior — relative frequency of s amongst senses of v
likelihood < product over each world-state feature f in s of:
s4's likelihood of generating w
posterior < prior X likelihood
endfor
if (some sense’s posterior > MinObey)
then mark the sense with highest posterior
endif
endfor
create an empty f-struct p
for each motor-parameter feature f:
find the marked sense s with maximal peakedness for feature f
if (s4's peakedness > MinSetFeature)
then p; — s;’s mode value
endif
endfor
return p
end

The essential problem is one of arbitrating conflicts amongst the multiple words (or mor-
phemes) in the various slots. We have already seen how potential conflicts with the initial
world state are considered in choosing a “best” sense for a verbal command. In the multi-
slot case this procedure is performed in parallel in each slot, resulting in a set of word
senses. Now, since there is potential for conflict amongst the senses, a mechanism is re-
quired to resolve these conflicts on a feature-by-feature basis in order to reduce them to a

single (non-probabilistic) linking f-struct.

This is accomplished as follows. Fach linking feature is set by looking to the sense
with the most peaked distribution and choosing its peak value. This is only an approxi-
mation to the more probabilistically correct approach of summing each sense’s distribution
for the feature and then picking the mode of the summed distribution. The intuition here
is that the word sense which most strongly codes for the feature should have the privilege
of setting that feature, since that may well be the reason the word was included in the

command. In the example in Figure 7.1, we assume that push codes for direction = away
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but only weakly, whereas left codes for direction = left quite strongly. As a result, the

direction linking feature is set to left.

7.2.2 Learning

No extensions were required to handle verb complexes (other than the simple step
of noting the correct slot for each new lexical item). The lexicon is simply that much
larger to account for the new words. And each training example involves multiple calls to

INCORPORATE_EXAMPLE, one for each component of the verb complex.

While changes may not be required, one straightforward change has been made
which leverages the knowledge of words’ slot position to speed up learning. In §6.2.6 we
described ADAPT _VIRTUALS, an optional step modifying the virtual sample table virt. In
the multi-slot case, we modify the algorithm to maintain one such table for each slot, in
an array. Each is updated by ADAPT_VIRTUALS to reflect only those lexical items in its
own slot. In this way, the algorithm can learn the type of semantic information which
tends to be encoded in each slot. For example, after exposure to an English training set we
expect virt[root]schema <& virt[particle]sepemq to reflect the fact that the schema feature is
usually coded by the verb root, not the particle. On the other hand, virt[root]gircction >
virt[particle]girection since direction is more commonly encoded in the particle than the

root.

Extension

In order for a word to be learned correctly in the multi-slot case, the learning
algorithm must marginalize over many other words with which it may be used. Otherwise,
it will be impossible to pick out the word’s semantics from the semantics of those other
words. For example, if up were observed only in conjunction with push, there would be no
way to know that it encodes only a direction and not some of the other motor parameters
which rightly belong to push. Only by observing lift up, hold up, pull up, etc. can the

algorithm home in on direction as the relevant feature.

The training set, then, must reflect this diversity of usage. Siskind (1995) discusses
the characteristics of so-called cross-correlational learning in detail. His conclusion is that

such techniques are feasible even given the limited amount of input a child receives. His
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algorithm differs from ours in that it maintains two lists for each word—one for required

2

features and one for prohibited features—and this facilitates elimination of possibilities

even before the exact meanings of the words in an utterance are known.

A similar technique, unimplemented at the current time, could be applied to our
algorithm. Consider the case of training examples where the verb complex contains an
already well-understood word (as measured, say, by the peakedness of its probability distri-
butions) along with a less known (or totally new) word. In this case those features explained
by the known word can be removed from the linking f-struct, on the assumption that the
multi-word label does not redundantly code for those features. Thus, the unknown word

would gain an advantage in determining its relevant features.

7.3 Limitations of the Model

The above algorithms can handle some cases of compositional meaning, and they
do so without our having to introduce any notion of grammar into the system. Naturally,
though, there are many examples of composition which cannot be handled by such a simple

model.

One limitation derives from our use of distinct slots as the sole way to represent
what is going on grammatically in an utterance. Such a representation cannot easily handle
inflections which modify the root (as opposed to appending to it) without manual “hacking”
of the linguistic input so that the system will be able to recognize the root as familiar. In
general, a fuller account of compositional meaning will require a serious model of syntax

and morphology.
While OBEY_MULTISLOT does a good job of conflict resolution, it does only a

fair job of conflict avoidance in choosing a sense for each word in the command. Polysemy
involves not only the world state, but also the surrounding linguistic context. Some ex-
periments with polysemy were performed in Regier’s visual/spatial model by Zlatev (1992)
(summarized in (Regier 1996:Section 7.1)) on recognizing spatial phrases consisting of a
verb and a preposition (e.g. be over vs. fly over). Hierarchical cluster analysis of the re-

sulting hidden layers revealed polysemous representations in which each sense of a word

%In this sense the algorithm is reminiscent of version spaces (Mitchell 1982) although it adds a mechanism
to handle noise.
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corresponded to a different linguistic context. That is, there would be a sense of over cor-
responding to its use with be (the static sense of over), and another sense corresponding
to its use with fly (one of the dynamic senses of over). This suggests that linguistic con-
text plays an important role in determining the intended sense of a polysemous word. Our
model certainly allows correlations between senses of a word and the surrounding linguistic
context, but it turns out that it also requires that there be some correlated features of the
initial world state. This is the case because the OBEY_MULTISLOT algorithm chooses the
best sense for each word based only on each sense’s compatibility with the initial world
state. To account for linguistic context effects, that algorithm would need to be extended
to minimize conflicts amongst word senses, not just between each word and the world state.
This is a general constraint satisfaction problem and one can imagine a number of solutions
(including recasting the word sense representation into the belief network formalism (Pearl
1988)). Of course, any such algorithm will be iterative in nature and hence slower than the

current algorithm.?

A common problem is found in verb complexes where a modifier alters, but does not
itself specify, the appropriate value of a feature. Here are some thoughts on how to handle
such cases. We would need to build at least a small amount of grammatical knowledge into
the system: namely, we would need to distinguish the verb root slot, and classify the other
slots (adverbs for instance) as “modifier slots”. We would also need to allow a new kind of
value for features: namely, modification rules. For example, the adverb hard could code for

force = "multiply root’s value by 2".

It’s worth pointing out, though, that even with these extensions we are still a long
way off from handling all cases of action specification. An interesting case in point is the
verb stop when used as an auxiliary verb (Crangle & Suppes 1994: Chapter 7). In the
simplest case, the meaning is to abort an in-progress action (e.g. stop pushing), which can
be straightforwardly modelled in our x-schema formalism. Even here, there is the difficulty
of deciding whether to abort an in-progress primitive synergy (e.g. stop pushing), or whether
to stop at the x-schema level (e.g. stop picking up cubes, which perhaps should be obeyed by
finishing picking up the current cube but then terminating a loop before picking up another

one). Harder still, though, is a command such as stop holding which in fact requires the

? Another approach is to encode linguistic context directly into the semantic representation for each word,
such as in Charniak (1993). In other words, we might add a used-with feature whose values range over the
lexical items in adjacent slots (a so-called n-gram approach).
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initiation of a new action (i.e. to put the object down). Narayanan (1996) and Jonathan

Segal have done work in this vein.

7.4 Thoughts on Construction Grammar and Learning

All these limitations conspire to suggest the need to account for how grammatical
constructions might be learned. The Construction Grammar framework (Goldberg 1995)
has been chosen because it is compatible with the assumptions made in this model and

might even support learning using techniques similar to those used here for lexical learning.

Verb acquisition has long been associated with grammar acquisition. Indeed, some
might find it strange for this thesis to have considered verb semantics independently of argu-
ment structure. Controversy has continued over the direction of causality in the learning of
semantics and syntax (the so-called “syntactic vs. semantic bootstrapping” debate between
Pinker (1989) and Gleitman (1990)). I believe that a Construction Grammar approach can

solve this dilemma.

Construction Grammar replaces the traditional lexicon-grammar dichotomy with
a continuum, ranging from the specific, such as lexemes and idioms, to the general, such as S
— NP VP. In between there is scope for constructions which are somewhat rule-like but also
have specific content—in both their surface forms and their semantics. For example, the
“Way Construction” (She made her way through the crowd) includes syntactic elements like
verbs and noun phrases but also a particular lexeme (way); similarly it involves semantic
composition of its components but also some additional content particular to the construc-
tion (progress, effort, repetition). Importantly, Goldberg (1995) argues persuasively that
much of the semantics which have typically been associated with verbs (namely for dealing
with arguments) are more properly considered part of the semantics of the constructions
in which the arguments are couched. Our study of the inherent semantics of verbs—apart

from their arguments—meshes nicely with this perspective.

This perspective with its continuum of abstractness is also compatible with learn-
ing theory. Furthermore, we have reason to believe our simple hand action framework is an
appropriate one for study of early grammar learning: Slobin (1985) argues that the earliest

grammatical markings and rules acquired by children apply preferentially to “prototypical
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events” such as a person manipulating a physical object.? Such an approach, in which syn-
tactic generality is achieved only gradually, is driven by semantics, and is focused around
verbs, is taken seriously in the the psychology literature and is sometimes referred to as the
“Verb Island Hypothesis” (Tomasello 1991). Indeed, in recent work, Tomasello has begun

to describe verb islands simply as early constructions (Tomasello & Brooks (to appear)).

How would such an approach work? If only we knew the set of constructions in
advance (syntactically, that is), then we could apply the same learning algorithms used thus
far to learn a sense or set of senses for each construction. But of course we don’t have this
advance information, and while we are busy searching for repeated syntactic patterns in
the training sentences, we must be careful not to lose the associated semantic information.
The model merging approach may offer a solution, and an initial attempt has been made by
Stolcke (1994: Chapter 5). We begin by creating a construction for every training sentence.
Then we try to find both semantic and syntactic regularities, eventually leading to a mixture
of lexical entries, general syntactic constructions and intermediate constructions (such as
the Ditransitive or the Way Construction) with their syntactic and semantic selectional

constraints.

A difficulty of this approach is that, since the training data takes the form of
pairings of entire sentences with their semantics, it takes a long time and a lot of training
data before semantic information can be properly ascribed to the individual lexical items.
Fortunately, the learning task faced by the child may not be quite so severe. Parents speak a
simplified language to their children, including many examples of one-word sentences. The
value of ordering a training set so it begins with simpler examples is well known (Elman
1991). If the system sees enough such examples early on it may develop accurate semantic
representations of some lexemes and then be able to leverage this information in learning

higher-level constructions.

The result of such learning would be a construction grammar augmented by prob-
abilities reflecting the training data. Such a grammar would be well suited to probabilistic
parsing, which, as demonstrated by Jurafsky (1996), offers promise as a model of human

performance in language understanding.

*For more recent discussion of the semantics of grammatical forms see Slobin (to appear), which argues
that rather than seeking an innate set of grammaticizable notions, we should think of grammaticizability
as a continuum which, combined with linguistic experience, aids the child in determing the semantics of
grammatical forms in his language.
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“An ounce of action is worth a ton of theory.”

—Friedrich FEngels

In this chapter, we turn to the validation of our model on selected verbs from

English as well as other languages.

8.1 Training Procedure

The first step in our experimental procedure is the generation of training and test

sets. Fach element of these sets is called a scenario and describes a single action event.

Ultimately, a scenario consists of two linking f-structs: an initial one describing the world
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state before the action takes place, and a final one which includes the initial world state

but also summarizes the action.

Scenarios may be generated in two ways. For reasons of practicality, the majority
of scenarios have their initial and final linking f-structs generated directly by a program
which randomly assigns values to each linking feature.! This Generator program is tuned to
yield a set of scenarios which covers a range of actions exhibiting the linguistic distinctions
we want to learn, and does so with appropriate relative frequencies. (In particular, the
Generator produces more SLIDE executions than any other x-schema, since the thesis has

focused on these actions.) The Generator also uses a filter to remove nonsensical scenarios.

Once a collection of scenarios has been generated, the next task is to label them for
the various languages of interest. All languages share the same collection of scenarios; labels
are stored separately for each language.? Labelling is based on the final linking f-struct.
An intimate knowledge of the x-schema set and its interaction with the linking features is
required in order to determine the action which would have generated the features; generally
this has been performed by the author or other researchers familiar with the model. In some
cases the labels, too, have been provided by the author, based on interviews with language
informants. In other cases, the author has “acted out” the indicated action for labelling by

the informant.

The scenario collection can be partitioned arbitrarily into training set, recognition
(i.e. labelling) test set, and command-obeying test set. These partitionings are stored sepa-
rately from the scenarios themselves, to facilitate switching amongst different partitionings
of the same set of scenarios. By changing partitionings, and in particular the relative sizes

of the sets, one can get a feel for the robustness of results.

The use of training scenarios is straightforward: for each scenario, the final linking
f-struct and its label are given to the model merging algorithm as a training instance, for

conversion to a word sense and potential merging with existing senses.

There are two ways to test the trained system: we can test recognition ability (la-

belling novel actions) and we can also test command-obeying ability (given a label, produce

!The other method of generating scenarios, still under development, is to use an animation package. This
is discussed in the next sub-section.

?Most training is done with single word labels corresponding to verb roots. When multi-slot training is
done, these multi-slot labels are stored separately from the single-slot labels—acting, in effect, as a different
language.
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an appropriate action). The use of recognition test scenarios is conventional: a scenario’s
final linking f-struct is given to the LABEL algorithm, and the result is compared to the
stored label. The use of scenarios for testing the obeying of commands is more complex.
The stored label is used as the command. It and the initial world-state f-struct are given to
the OBEY algorithm, which produces a full linking f-struct. This f-struct is in turn given

to LABEL, whose output can be compared to the original command.?

For testing of both recognition and obeying, there is a problem with this approach
of comparison to the informant’s label. Some actions may be good examples of multiple
verbs. For example, a push is also a good example of a move. In this case, LABEL may emit
a reasonable label which happens to differ from the stored label but is not truly an error.
We do not have any quantitative way to discount this type of error. Instead we simply
inspect the posterior probabilities of all word senses and come to a qualitative judgment of
the “desired” label’s probability in terms of (1) how close it is to that of the emitted label,

and (2) how strongly it stands out from the probabilities of inappropriate labels.

8.1.1 Animating actions

As mentioned in §2.3, the preferred method for collecting labels and comand-
obeying judgments from informants would be to animate x-schema executions graphically.
The Jack animation package (Badler et al. 1993), developed at the University of Pennsylva-
nia and now sold by Transom Technologies, provides the tantalizing possibility of realistic
depiction of x-schema executions. Unfortunately, due to implementation difficulties and
shortness of time, Jack has not yet been integrated into the verb learning system. However,
work is still in progress on this front, and so it is worth reporting how Jack is envisioned

to connect to the rest of the implemented model.

Jack Overview

By design, Jack’s main purpose is in evaluating the ergonomics of working envi-
ronments such as cockpits or control panels. A human model can be placed into various

configurations, and then various kinematic and dynamic properties of the posture can be

?A better technique would be to execute the indicated x-schema to produce additional feature bindings
before passing the linking f-struct to LABEL.



CHAPTER 8. LEARNING RESULTS 133

Figure 8.1: A typical Jack stillshot from a hand action animation.

evaluated, as well as other concerns such as visibility as the head moves or turns.

Jack is realistic in two ways. First, it models the biomechanics of the human
body in intricate detail, including a fully jointed model, with appropriate joint limits and
joint strengths. See Figure 8.1 for a sample screen shot depicting Jack about to push a
cube. Second, the package contains a powerful inverse-kinematics engine which propagates
constraints through all these joints so that, for example, a higher-force push will cause the

shoulder to “lean in,” and lifting a heavy object will cause the arms to pull in toward the

body.

While aimed at this type of static analysis, Jack fortunately also provides the
building blocks needed to animate motions. The primitive commands available match well
to the primitive synergies we have posited in the model. This includes arm motions (such
as moving the wrist to a coordinate position, or maintaining the hand orientation) and a
host of hand postures roughly following the taxonomy in Cutkosky & Howe (1990) (such
as power, precision, hook, etc.). It’s noteworthy that this confluence arises from modelling
biomechanics alone—Jack is not at all concerned with modelling neural motor control.
Other conveniences include object-oriented access to the world state, so that, for example,
one can easily specify that a particular object should be grasped by a particular grasp

attachment point.
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Jack’s Role in Verb Learning

Earlier in this section we described how scenarios are generated randomly by a
Generator program. With Jack connected to the system, there would be an alternative
way to specify scenarios. These “grounded scenarios” would be initially specified by (1)
a Jack environment file which sets up an initial world state; and (2) a minimal motor-
parameter linking f-struct needed to initiate an action. The Jack environments would
involve an actor seated at a table, and the objects would perhaps be limited to a fist-sized
cube, a screwdriver-sized cylinder and a push-button. The action-initiating f-structs would
be designed based on intuition of what goals and parameters are needed to generate the

desired range of actions.

These grounded scenario specifications would then need to be fleshed out as follows.
The Jack animator would load the initial world state. Then custom-written perceptual
routines would extract the initial world-state linking features needed by our model. A Jack
LISP implementation of the x-schema set would then issue simulator commands to carry
out the action, with two important effects: the final linking features would be collected and

stored, and the animation itself would be stored as a fairly realistic movie.

Then, during the labelling process, these grounded scenarios would cause the stored
movie to be played, and the final linking features to be recalled. The informant would

provide a label for the movie which would then be associated with the linking features.

During the command-obeying phase, grounded scenarios can be evaluated the
same way as ungrounded scenarios (i.e. by applying the LABEL algorithm to the generated
features). However, an additional option is available: the linking f-struct can be used to

animate a novel action for visual inspection by the language informant.

8.2 Results for English

8.2.1 Training run

Approximately 200 scenarios were created by the Generator program and labelled

with English verbs by the author. The range of actions led to the following vocabulary:
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push slide slap lift turn
pull press hit pick up roll
shove touch tap heave

yank feel poke hold

These verbs occur in the data with different frequencies, ranging from push (47)
and pull (18) to hit (5) and poke (4). This reflects our concentration on the SLIDE x-schema
and results for these verbs should thus be taken more seriously than some of the less frequent

verbs.

The most successful training runs use approximately 85% of the data as training

examples, and the remaining 15% to test both recognition and command-obeying.

Some experimentation with parameters was required to get good results. The
parameter settings for the training run we report on below are shown in the column la-
belled “Typical” back in Figure 6.3. Note, in particular, the low values for MinLabel and
MinObey. In fact, they both can safely be set to 0 for single-slot training; since all test
scenarios include a label—and one which presumably is consistent with the scenario’s initial
world state—the system can never improve its performance by refusing to guess a label or
carry out a command. The MinSetFeature parameter, however, works best when set to
approximately 1.5, which does prune a fair number of features from the linking f-structs
used to obey commands. During learning, we chose not to use the MinMerge threshold (by
setting it to 0), instead trying all potential merges until one fails to increase the posterior.
The strength of the prior is made relatively high by setting Model PriorWeight to 4.5.
Offline learning is specified by setting BatchSize to oo. Adaptation of the virtual sample
table is enabled, but the rate of adaptation is kept low by setting the Virtuallnertia to
the relatively high value of 50. The initial virtual sample table includes a very low value

for the schema feature (0.05) and a more moderate value (1.0) for all other features.

Recall the steps in the learning procedure. First the algorithm creates new senses
for each training example. Fach new sense includes virtual samples. Incorporating a new

sense of pull is reported in the training log like this:

*# Incorporating scenario sci5b:
Creating new sense pull3 (1 ex) {
size {small=0.333 LARGE=0.666}
elongated {TRUE=0.666 false=0.333}
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depressible {true=0.333 FALSE=0.6661}

contact {true=0.333 FALSE=0.666}

schema {SLIDE=0.840 1ift=0.04 rotate=0.04 depress=0.04 touch=0.04}

posture {grasp=0.142 wrap=0.142 pinch=0.142 PALM=0.285 platform=0.142 index=0.142}
elbow {FLEX=0.5 extend=0.25 fixed=0.25}

force {LOW=0.5 med=0.25 high=0.25}

accel {zero=0.2 LOW=0.4 med=0.2 high=0.2}

dir {away=0.142 TOWARD=0.285 up=0.142 down=0.142 left=0.142 right=0.142}

aspect {ONCE=0.666 iterated=0.333}

dur {short=0.25 MED=0.5 long=0.25}

This format for describing word senses will be used extensively. First, notice that the sense
is given a name composed of the verb itself followed by an arbitrary number (pull3). In
parentheses, the number of training examples from which the sense is derived is shown
(here, naturally, it is 1). Then, for each linking feature, the full probability distribution
is shown, and its mode value is displayed in capitals if the peakedness of the distribution
meets the threshold MinSetFeature. In all the output fragments in this chapter, asterisks
at the left margin highlight important details discussed in the main text.

Once all the new senses are created, the merge loop is run for each verb in suc-
cession. During each iteration of these merge loops, the model’s pre-merge posterior prob-
ability is measured, the highest-similarity candidate merge is performed, and the posterior

is measured again. An excerpt from the training log for push follows:

* Starting merging for push (prior=6.63e-79 likelihood=4.19e-176 posterior=2.78e-254):
* Merging push16 and push6 (similarity 1.0) to form push42 (2 ex) {

size {SMALL=0.75 large=0.25}

elongated {TRUE=0.75 false=0.25}

depressible {true=0.25 FALSE=0.75}

contact {true=0.25 FALSE=0.75}

schema {SLIDE=0.911 1ift=0.022 rotate=0.022 depress=0.022 touch=0.022}

posture {GRASP=0.375 wrap=0.125 pinch=0.125 palm=0.125 platform=0.125 index=0.125}

elbow {flex=0.2 EXTEND=0.6 fixed=0.2}

force {low=0.2 MED=0.6 high=0.2}

accel {zero=0.166 low=0.166 MED=0.5 high=0.166}

dir {AWAY=0.375 toward=0.125 up=0.125 down=0.125 left=0.125 right=0.125}

aspect {once=0.25 ITERATED=0.75}

dur {SHORT=0.6 med=0.2 long=0.2}

}

* New push prior=5.97e-77 likelihood=1.80e-174 posterior=1.08e-250.

New push prior=1.22e-4 likelihood=3.53e-139 posterior=4.31e-143.
Merging push79 and push78 (similarity 0.070) to form push80 (29 ex) {
size {small=0.516 large=0.483}
elongated {true=0.516 false=0.483}
depressible {true=0.064 FALSE=0.935}
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contact {true=0.258 FALSE=0.741}
schema {SLIDE=0.822 1ift=0.001 rotate=0.001 depress=0.035 touch=0.138}
posture {grasp=0.4 wrap=0.028 pinch=0.028 palm=0.457 platform=0.028 index=0.057}
elbow {flex=0.032 EXTEND=0.838 fixed=0.129}
force {low=0.281 MED=0.468 high=0.25}
accel {zero=0.060 low=0.333 med=0.454 high=0.151}
dir {AWAY=0.529 toward=0.029 up=0.029 down=0.029 left=0.235 right=0.147}
aspect {ONCE=0.806 iterated=0.193}
dur {short=0.343 med=0.25 long=0.406}

}

New push prior=0.010 likelihood=2.96e-141 posterior=3.25e-143.

Posterior decreased; removing push80 and restoring push79 and push78.

* Stopped merging because the most plausible merge reduced the posterior.

Eventually merging stops, often because the posterior has decreased, but some-

times because only one sense remains. The reason for stopping is reported in the log, as

can be seen by the final lines in the excerpt.

8.2.2 Tour of the learned lexicon

After training, we are left with a lexicon model which includes a small number of
senses for each verb—often only one sense. This section discusses the lexicon arising from

the training run described above. The next section reports test results.

The total number of senses is 21, down from 161 initial senses. This amounts to
approximately a factor of 8 reduction in the number of parameters being estimated, which

is crucial given the very limited amount of training data.

As a by-product of merging, the learning algorithm has adjusted the virtual sample
counts for each feature. (Recall that these counts are used when a new verb arrives in the
training data.) The new counts are an indication of what features have generally proven

important for English verbs. Here they are:

Slot 0 virtuals:
size=1.99 elongated=2.13 depressible=0.424 contact=0.516
schema=0.036 posture=0.480 elbow=2.58 force=1.07 accel=0.769
dir=1.27 aspect=1.63 dur=2.10

These numbers reveal that the schema feature has proven even more criterial than
it was pre-wired to be, since its virtual sample count has dropped to 0.036 from 0.05.
So have contact and posture, which have halved their virtual sample counts from their
initial setting of 1. Meanwhile, other features like size and duration have proven to be

less important than initially guessed, doubling their virtual sample counts.
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When push comes to shove...

We’ll begin with our favorite verb, push. Three senses have been learned for this

verb, as shown below:

Model for push (3 senses):

push74 (12 ex) {
size {SMALL=0.785 large=0.214}
elongated {true=0.071 FALSE=0.928}
depressible {TRUE=0.928 false=0.071}
contact {true=0.071 FALSE=0.928}

* schema {slide=0.004 1ift=0.004 rotate=0.004 DEPRESS=0.983 touch=0.004}
posture {grasp=0.055 wrap=0.055 pinch=0.055 palm=0.055 platform=0.055 INDEX=0.722}
elbow {flex=0.333 extend=0.333 fixed=0.333}
force {low=0.466 med=0.2 high=0.333}
accel {zero=0.062 low=0.312 MED=0.5 high=0.125}
dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}
aspect {once=0.5 iterated=0.5}
dur {SHORT=0.6 med=0.266 long=0.133}

push79 (8 ex) {
size {small=0.4 large=0.6}
elongated {true=0.3 FALSE=0.7}
depressible {true=0.2 FALSE=0.8}
contact {TRUE=0.7 false=0.3}

* schema {slide=0.369 1ift=0.006 rotate=0.006 depress=0.127 touch=0.490}
posture {grasp=0.142 wrap=0.071 pinch=0.071 PALM=0.5 platform=0.071 index=0.142}
elbow {flex=0.1 extend=0.5 fixed=0.4}
force {low=0.181 MED=0.545 high=0.272}
accel {zero=0.166 low=0.333 med=0.333 high=0.166}
dir {AWAY=0.384 toward=0.076 up=0.076 down=0.076 left=0.230 right=0.153}
aspect {0ONCE=0.9 iterated=0.1}
dur {short=0.363 med=0.090 long=0.545}

push78 (21 ex) {
size {small=0.565 large=0.434}
elongated {TRUE=0.608 false=0.391}
depressible {true=0.043 FALSE=0.956}
contact {true=0.086 FALSE=0.913}

* schema {SLIDE=0.990 1ift=0.002 rotate=0.002 depress=0.002 touch=0.002}
posture {grasp=0.481 wrap=0.037 pinch=0.037 palm=0.370 platform=0.037 index=0.037}
elbow {flex=0.041 EXTEND=0.916 fixed=0.041}
force {low=0.333 med=0.416 high=0.25}
accel {zero=0.04 low=0.32 MED=0.48 high=0.16}
dir {AWAY=0.518 toward=0.037 up=0.037 down=0.037 left=0.222 right=0.148}
aspect {ONCE=0.739 iterated=0.260}
dur {short=0.333 med=0.333 long=0.333}
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For the most part, the lexicon is distinguishing the senses based on the schema feature:
we have a sense for DEPRESSing a button (push74), a sense for applying pressure to an
object for a long time using the TOUCH x-schema (push79), and a sense for SLIDE actions
(push78). As expected, the DEPRESS sense codes for a depressible object while the other
two senses do not. Other features also vary amongst the three senses. Push74 codes strongly
for the index posture since that is the only allowed posture in our simple DEPRESS
x-schema. Push79 codes fairly strongly for the palm posture and long duration and
excludes iterated aspect, since other parameterizations of ToUCH actions usually lead
to other verbs. Both push79 and push78 code for extending the elbow and the away
direction, as expected. Yet not all the correlations seem plausible: for instance, push78
codes more strongly for the grasp posture than the palm posture. And push79, despite
coding most strongly for the TOUCH x-schema, has merged with some SLIDE examples due

to coincident parameterizations.
Next consider shove, shown below:

Model for shove (1 sense):

shove27 (14 ex) {
* size {small=0.187 LARGE=0.812}
elongated {true=0.375 FALSE=0.625}
depressible {true=0.062 FALSE=0.937}
contact {true=0.312 FALSE=0.687}
schema {SLIDE=0.985 1ift=0.003 rotate=0.003 depress=0.003 touch=0.003}

* posture {grasp=0.15 wrap=0.05 pinch=0.05 PALM=0.65 platform=0.05 index=0.05}
elbow {flex=0.058 EXTEND=0.588 fixed=0.352}
* force {low=0.058 med=0.294 HIGH=0.647}

accel {zero=0.055 low=0.166 med=0.277 HIGH=0.5}
dir {away=0.35 toward=0.05 up=0.05 down=0.05 left=0.25 right=0.25}
aspect {ONCE=0.625 iterated=0.375}

* dur {SHORT=0.588 med=0.235 long=0.176}

It is similar to the third sense of push, most notably because it codes for the SLIDE x-
schema. But it specifies different parameters. It codes for higher force, shorter duration,
and is more likely to involve the palm posture and a large object. The senses shove27
and push78 overlap significantly, in that there are many actions which receive significant
posterior probability from both senses. It is only by virtue of the competition between senses

in the LABEL algorithm that a definite border between these two verbs is established.

Two more related verbs are pull and yank:
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Model for pull (1 sense):

pull2s (13 ex) {
size {small=0.4 large=0.6}
elongated {TRUE=0.666 false=0.333}
depressible {true=0.066 FALSE=0.933}
contact {true=0.133 FALSE=0.866}
schema {SLIDE=0.984 1ift=0.003 rotate=0.003 depress=0.003 touch=0.003}
posture {grasp=0.315 wrap=0.052 pinch=0.052 PALM=0.473 platform=0.052 index=0.052}
* elbow {FLEX=0.875 extend=0.062 fixed=0.062}
force {low=0.25 med=0.437 high=0.312}
accel {zero=0.058 low=0.352 med=0.411 high=0.176}
* dir {away=0.052 TOWARD=0.631 up=0.052 down=0.052 left=0.157 right=0.052}
aspect {ONCE=0.666 iterated=0.333}
dur {SHORT=0.5 med=0.312 long=0.187}

Model for yank (1 sense):

yank3 (2 ex) {
size {SMALL=0.75 large=0.25}
elongated {TRUE=0.75 false=0.25}
depressible {true=0.25 FALSE=0.75}
contact {true=0.25 FALSE=0.75}
schema {SLIDE=0.911 1ift=0.022 rotate=0.022 depress=0.022 touch=0.022}
posture {GRASP=0.375 wrap=0.125 pinch=0.125 palm=0.125 platform=0.125 index=0.125}
elbow {FLEX=0.6 extend=0.2 fixed=0.2}
force {low=0.2 MED=0.6 high=0.2}
accel {zero=0.166 low=0.166 med=0.333 high=0.333}

* dir {away=0.125 toward=0.25 up=0.125 down=0.125 left=0.125 right=0.25}
aspect {once=0.5 iterated=0.5}
* dur {SHORT=0.6 med=0.2 long=0.2}
}

Both verbs code for SLIDE actions which involve a flexing elbow and are directed toward
the body, though yank’s correlation with this direction is weaker than one would expect.
While yank3 does code more strongly than pull25 for short duration, this tendency is
also weak. And there is no appreciable increase in force for yank. These shortcomings
probably result from the very small number of training examples that were labelled with
yank. What’s more, this small number leads to an exaggerated frequency ratio (13:2)
between the two senses pull25 and yank3. As a result, yank is at a great competitive
disadvantage and will rarely be chosen as a label, even for actions which are better yanks

than pulls. Indeed, this happens in the test runs reported in the next section.

The verb slide ought to have a more general meaning than any of these verbs.
However, since it occurs in the training data only for actions which do not have a more

specific label, its learned meaning is skewed:
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Model for slide (1 sense):

slide25 (13 ex) {

size {small=0.6 large=0.4}
elongated {true=0.6 false=0.4}
depressible {true=0.066 FALSE=0.933}
contact {true=0.133 FALSE=0.866}
schema {SLIDE=0.984 1ift=0.003 rotate=0.003 depress=0.003 touch=0.003}
posture {GRASP=0.473 wrap=0.052 pinch=0.052 palm=0.315 platform=0.052 index=0.052}
elbow {flex=0.187 extend=0.187 FIXED=0.625}
force {low=0.25 MED=0.5 high=0.25}
accel {zero=0.058 low=0.235 MED=0.529 high=0.176}

* dir {away=0.052 toward=0.105 up=0.052 down=0.052 left=0.263 RIGHT=0.473}
aspect {ONCE=0.933 iterated=0.066}
dur {short=0.437 med=0.125 long=0.437}

Slide prefers left- or right-ward motion over motion toward or away from the body,
instead of learning a uniform direction probability distribution. This won’t affect labelling
results, since we prefer the more specific verbs when they are applicable. But it does affect
obeying, because certain legitimate slides (e.g. movement toward the body) will not be
generated because they have low likelihood. In general, our architecture is not well suited to
learning a hierarchical vocabulary, as opposed to learning a collection of mutually exclusive

terms. A major design change would be needed to avoid this sort of problem.

Lastly, the verb press is essentially a synonym of one of the senses of push (push74):

Model for press (1 sense):

press? (4 ex) {

size {small=0.333 LARGE=0.666}
elongated {true=0.166 FALSE=0.833}

* depressible {TRUE=0.833 false=0.166}
contact {true=0.333 FALSE=0.666}
schema {slide=0.011 1ift=0.011 rotate=0.011 DEPRESS=0.952 touch=0.011}
posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.1 platform=0.1 INDEX=0.5}
elbow {flex=0.333 extend=0.333 fixed=0.333}
force {LOW=0.428 med=0.285 high=0.285}
accel {zero=0.25 low=0.25 MED=0.375 high=0.125}
dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}
aspect {ONCE=0.833 iterated=0.166}
dur {short=0.142 med=0.428 long=0.428}

It codes for depressing a button with the index finger, though its distributions on other

features are somewhat different from those of push74.
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Lifting

Let us now examine a different contrast set involving the LIFT x-schema, including

the verbs [lift, heave, pick up and hold.

Model for 1lift (1 sense):

1ift21 (11 ex) {
size {small=0.461 large=0.538}
elongated {true=0.384 FALSE=0.615}
depressible {true=0.076 FALSE=0.923}
contact {true=0.230 FALSE=0.769}

* schema {slide=0.004 LIFT=0.982 rotate=0.004 depress=0.004 touch=0.004}
posture {grasp=0.058 wrap=0.176 pinch=0.235 palm=0.058 PLATFORM=0.411 index=0.058}
elbow {flex=0.214 extend=0.357 fixed=0.428}
force {low=0.142 med=0.357 high=0.5}
accel {zero=0.066 low=0.466 med=0.333 high=0.133}
dir {away=0.058 toward=0.058 UP=0.705 down=0.058 left=0.058 right=0.058}
aspect {0ONCE=0.692 iterated=0.307}
dur {SHORT=0.5 med=0.214 long=0.285}

Model for heave (1 sense):

heave? (4 ex) {
* size {small=0.166 LARGE=0.833}
elongated {true=0.5 false=0.5}
depressible {true=0.166 FALSE=0.833}
contact {true=0.166 FALSE=0.833}
schema {slide=0.011 LIFT=0.952 rotate=0.011 depress=0.011 touch=0.011}

* posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.1 PLATFORM=0.5 index=0.1}
elbow {flex=0.142 extend=0.428 fixed=0.428}
* force {low=0.142 med=0.285 HIGH=0.571}

accel {zero=0.125 low=0.25 MED=0.5 high=0.125}

dir {away=0.1 toward=0.1 UP=0.5 down=0.1 left=0.1 right=0.1}
aspect {ONCE=0.666 iterated=0.333}

dur {SHORT=0.428 med=0.285 long=0.285}

Model for pickup (1 sense):

pickupl? (9 ex) {
* size {SMALL=0.727 large=0.272}
elongated {true=0.545 false=0.454}
depressible {true=0.090 FALSE=0.909}

* contact {true=0.090 FALSE=0.909}
schema {slide=0.005 LIFT=0.978 rotate=0.005 depress=0.005 touch=0.005}
* posture {grasp=0.066 wrap=0.333 pinch=0.266 palm=0.066 platform=0.2 index=0.066}

elbow {flex=0.416 extend=0.166 fixed=0.416}

force {low=0.25 MED=0.583 high=0.166}

accel {zero=0.153 LOW=0.461 med=0.307 high=0.076}

dir {away=0.066 toward=0.066 UP=0.666 down=0.066 left=0.066 right=0.066}
aspect {ONCE=0.636 iterated=0.363}
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dur {SHORT=0.5 med=0.333 long=0.166}

Model for hold (1 sense):

hold11l (6 ex) {
size {small=0.5 large=0.5}
elongated {true=0.125 FALSE=0.875}
depressible {true=0.125 FALSE=0.875}
contact {true=0.25 FALSE=0.75}
schema {s1ide=0.008 LIFT=0.968 rotate=0.008 depress=0.008 touch=0.008}
posture {grasp=0.083 wrap=0.083 pinch=0.333 palm=0.083 platform=0.333 index=0.083}
elbow {flex=0.111 extend=0.111 FIXED=0.777}
force {LOW=0.666 med=0.222 high=0.111}
accel {ZER0D=0.7 low=0.1 med=0.1 high=0.1}
dir {away=0.083 toward=0.083 UP=0.583 down=0.083 left=0.083 right=0.083}
aspect {0ONCE=0.875 iterated=0.125}
dur {SHORT=0.555 med=0.222 long=0.222}

Since all these verbs map to the LiFT x-schema, they are differentiated only by
the parameterization of this x-schema. Lift is fairly general, but heave is more applicable
when the object is of large size and it prefers actions with high force and the platform
posture. Pick up (treated as a single word) is more particular than lift or heave about the
hand not having initial contact with the object (which is usually small), and also rules
out the platform posture (instead preferring pinch or wrap). Hold differs from the others
by specifying zero acceleration (and corresponding low force), which, with the LirT
x-schema, corresponds to keeping the object suspended in place—the appropriate meaning
for hold in our limited action domain. Being steady-state in nature, this action codes for

the once aspect. (It should also code for long duration but doesn’t.)

Rotation

The verb turn leads to two senses:

Model for turn (2 senses):

turn26 (8 ex) {

* size {small=0.1 LARGE=0.9}
elongated {true=0.5 false=0.5}
depressible {true=0.1 FALSE=0.9}
contact {true=0.2 FALSE=0.8}

* schema {slide=0.006 1ift=0.006 ROTATE=0.975 depress=0.006 touch=0.006}

* posture {GRASP=0.642 wrap=0.071 pinch=0.071 palm=0.071 platform=0.071 index=0.071}
elbow {flex=0.333 extend=0.333 fixed=0.333}
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force {low=0.272 MED=0.545 high=0.181}
accel {zero=0.083 low=0.416 med=0.416 high=0.083}
* dir {away=0.214 toward=0.142 up=0.071 down=0.071 LEFT=0.357 right=0.142}
aspect {0ONCE=0.8 iterated=0.2}
dur {short=0.363 med=0.272 long=0.363}

turn24 (6 ex) {

* size {SMALL=0.875 large=0.125}
elongated {true=0.375 FALSE=0.625}
depressible {true=0.125 FALSE=0.875}
contact {true=0.125 FALSE=0.875}
schema {s1ide=0.008 1ift=0.008 ROTATE=0.968 depress=0.008 touch=0.008}
posture {grasp=0.083 wrap=0.083 PINCH=0.583 palm=0.083 platform=0.083 index=0.083}
elbow {flex=0.333 extend=0.333 fixed=0.333}
force {LOW=0.555 med=0.222 high=0.222}
accel {zero=0.1 low=0.2 med=0.4 high=0.3}

* dir {away=0.083 toward=0.25 up=0.083 down=0.083 left=0.166 right=0.333}
aspect {0NCE=0.75 iterated=0.25}
dur {short=0.333 med=0.444 long=0.222}

Both senses code for the ROTATE x-schema. Both have fairly broad probability distributions
for direction, as is appropriate for this rather general verb. So why two separate senses?
The learning algorithm has noticed a strong correlation between object size and hand
posture, and separate senses are the only way to preserve the correlation. What the
learning algorithm doesn’t know is that the ROTATE x-schema is capable of choosing the
proper posture based on the object size, and therefore omitting both these features and
using only a single sense would not degrade performance. In general, our architecture has
no way to convey which relationships amongst linking features are enforced at the x-schema

level and hence needn’t be learned.

Hitting

Executions of the ToUCH x-schema with high force and acceleration and

short duration lead to verbs like hit and slap:

Model for hit (1 sense):

hit9 (56 ex) {
size {SMALL=0.857 large=0.142}
elongated {true=0.285 FALSE=0.714}
depressible {true=0.571 false=0.428}
contact {true=0.142 FALSE=0.857}
* schema {s1ide=0.009 1ift=0.009 rotate=0.009 depress=0.580 touch=0.390}
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* posture {grasp=0.090 wrap=0.090 pinch=0.090 palm=0.272 platform=0.090 index=0.363}
elbow {flex=0.2 extend=0.4 fixed=0.4}
force {low=0.125 med=0.375 high=0.5}
* accel {zero=0.111 low=0.111 med=0.111 HIGH=0.666}
dir {away=0.125 toward=0.125 up=0.125 DOWN=0.375 left=0.125 right=0.125}
aspect {ONCE=0.857 iterated=0.142}
* dur {SHORT=0.625 med=0.25 long=0.125}

Model for slap (1 sense):

slap7 (4 ex) {
size {SMALL=0.666 large=0.333}
elongated {true=0.5 false=0.5}
depressible {true=0.166 FALSE=0.833}
contact {true=0.166 FALSE=0.833}
schema {slide=0.011 1ift=0.011 rotate=0.011 depress=0.011 TOUCH=0.952}
posture {grasp=0.1 wrap=0.1 pinch=0.1 PALM=0.5 platform=0.1 index=0.1}
elbow {flex=0.142 extend=0.428 fixed=0.428}
force {low=0.142 med=0.285 HIGH=0.571}
accel {zero=0.125 low=0.125 med=0.25 HIGH=0.5}
dir {away=0.1 toward=0.1 up=0.1 down=0.1 left=0.2 RIGHT=0.4}
aspect {once=0.5 iterated=0.5}
* dur {SHORT=0.571 med=0.285 long=0.142}

Hit is interesting because it includes significant probability for the DEPRESS x-schema,
which corresponds to usages such as hit the button. This turns out to be the more common
usage in the training set, hence the higher probability on DEPrRESs than ToucH, and
the mild tendency for the object to be depressible. The posture feature also becomes
muddled, since the DEPRESS cases involve the index finger while the ToUCH cases involve
the palm. This correlation is lost, unfortunately, because these two types of actions have
merged into a single word sense. (Presumably a large portion of the other features happened
to be set identically amongst the training examples for this verb, causing the merge to look
artificially attractive. This is an example of how the algorithm can be overly sensitive to
its tunable parameters, in this case Model PriorWeight.) The sense for slap, on the other
hand, suffers no such ambiguities, and codes strongly for ToucH and the palm posture.
Appropriately, it also keys in on the direction of approach of the arm, requiring a sideways

approach (direction of left or right).

Other verbs involving the ToucH x-schema include touch, poke and tap:

Model for touch (1 sense):

touch17 (9 ex) {
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size {SMALL=0.636 large=0.363}
elongated {true=0.454 false=0.545}
depressible {true=0.090 FALSE=0.909}
contact {true=0.090 FALSE=0.909}
schema {slide=0.005 1ift=0.005 rotate=0.005 depress=0.005 TOUCH=0.978}
posture {grasp=0.066 wrap=0.066 pinch=0.066 palm=0.266 platform=0.066 INDEX=0.466}
elbow {flex=0.166 EXTEND=0.583 fixed=0.25}
force {low=0.5 med=0.416 high=0.083}
accel {zero=0.076 low=0.461 med=0.384 high=0.076}
dir {AWAY=0.333 toward=0.066 up=0.066 down=0.133 left=0.2 right=0.2}
* aspect {ONCE=0.818 iterated=0.181}
dur {SHORT=0.583 med=0.25 long=0.166}

Model for poke (1 sense):

poke5 (3 ex) {
size {small=0.4 large=0.6}
elongated {true=0.2 FALSE=0.8}
depressible {true=0.2 FALSE=0.8}
contact {true=0.2 FALSE=0.8}
schema {slide=0.015 1ift=0.015 rotate=0.015 depress=0.015 TOUCH=0.938}
posture {grasp=0.111 wrap=0.111 pinch=0.111 palm=0.111 platform=0.111 INDEX=0.444}
elbow {flex=0.166 EXTEND=0.666 fixed=0.166}
* force {low=0.166 med=0.166 HIGH=0.6661}
accel {zero=0.142 low=0.142 med=0.142 HIGH=0.571}
dir {AWAY=0.333 toward=0.111 up=0.111 down=0.111 left=0.222 right=0.111}
* aspect {once=0.6 iterated=0.4}
dur {SHORT=0.666 med=0.166 long=0.166}

Model for tap (1 sense):

tap? (4 ex) {

size {small=0.5 large=0.5}

elongated {true=0.333 FALSE=0.666}

depressible {true=0.333 FALSE=0.6661}

contact {true=0.333 FALSE=0.666}

schema {slide=0.011 1ift=0.011 rotate=0.011 depress=0.247 TOUCH=0.717}

posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.2 platform=0.1 INDEX=0.4}

elbow {flex=0.333 extend=0.333 fixed=0.333}
* force {LOW=0.714 med=0.142 high=0.142}

accel {zero=0.25 LOW=0.5 med=0.125 high=0.125}

dir {away=0.111 toward=0.111 up=0.111 DOWN=0.333 left=0.111 right=0.222}
* aspect {once=0.333 ITERATED=0.666}

dur {SHORT=0.714 med=0.142 long=0.142}

Touch and poke are quite similar, though poke encodes higher force and is much less
committed to the “once” aspect than touch is. Tap also distinguishes itself based on
aspect, though in this case it is the iterated value which is called for. Low force is also

important for tap, and it prefers the down direction compared to poke’s preference for
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away. Lastly, an intuition which cannot be captured using our primitive TOUCH x-schema
is that poke prefers motion of the arm while tap prefers flexion and extension of the index

finger.

Patterns in the lexicon

To summarize this tour of the lexicon, we call attention to several patterns. Per-
haps the most prevalent pattern is that very few senses code for more than one x-schema.
This is a direct result of using fewer virtual samples for the schema feature than for the
other features, discouraging merging of actions involving different x-schemas. The result
is appropriate, since the other motor features (and the initial world state features too, for

that matter) tend to correlate with the choice of x-schema.

Another pattern is that most verbs collapse down to a single sense. Partly, this is
an artifact of our limited range of available x-schemas. I believe that with a richer range of

actions, many more verbs would require multiple senses.

8.2.3 Test results
Recognition test results

To evaluate this learned lexicon, we test its ability to label the remaining 15% of

the data. Here is the result:

Beginning recognition test...

Scenario sc6: desired=push, output=push

Scenario scl12: desired=push, output=push

Scenario sc18: desired=pickup, output=pickup
Scenario sc24: desired=feel, output=feel

Scenario sc30: desired=shove, output=shove

Scenario sc36: desired=heave, output=lift *ERROR#*
Scenario sc42: desired=hold, output=hold

Scenario sc48: desired=slide, output=push *ERROR#*
Scenario sc60: desired=slap, output=slap

Scenario sc66: desired=pull, output=pull

Scenario sc72: desired=turn, output=turn

Scenario sc78: desired=pull, output=pull

Scenario sc84: desired=push, output=push

Scenario sc90: desired=press, output=press

Scenario sc96: desired=turn, output=turn

Scenario sc102: desired=pickup, output=pickup
Scenario sc108: desired=pull, output=pull

Scenario scl114: desired=1ift, output=lift
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Scenario sc120: desired=hold, output=hold

Scenario sc126: desired=poke, output=poke

Scenario sc132: desired=pull, output=pull

Scenario sc138: desired=pull, output=pull

Scenario scl144: desired=push, output=push

Scenario sc150: desired=turn, output=turn

Scenario sc156: desired=tap, output=touch *ERROR#*
Scenario sc162: desired=slide, output=slide

Scenario sc168: desired=yank, output=pull *ERROR#*
Scenario scl174: desired=press, output=push *ERROR#*
Scenario sc180: desired=push, output=push

Scenario sc186: desired=heave, output=lift *ERROR#*
Scenario sc192: desired=press, output=push *ERROR*
Scenario sc198: desired=push, output=push

Correctly labelled 25 of 32 test scenarios (78%).
Recognition test done.

A recognition rate of 78% is achieved. Realize that with an 18-word vocabulary,

the “chance” recognition rate would be about 6%. Nonetheless, higher recognition rates

would have been preferable. We can at least attempt to learn about the errors. In almost

all cases, they involve subtle distinctions, not major goofs. For example, consider scenario

sc186. Here are the posterior probabilities of all word senses in the lexicon for this action:

Scenario sc186: desired=heave, output=lift *ERROR#*

sense
sense
sense
sense
sense
sense
sense
¥ sense
sense
sense
sense
sense
sense
sense
¥ sense
sense
sense
¥ sense
sense
sense
sense

tap7, prior = 0.024, likelihood = 1.09e-8, posterior = 2.72e-10
roll3, prior = 0.012, likelihood = 1.62e-7, posterior = 2.02e-9
slap7, prior = 0.024, likelihood = 1.48e-8, posterior = 3.69e-10
push74, prior = 0.074, likelihood = 5.32e-11, posterior = 3.97e-12
push79, prior .049, likelihood = 6.42e-8, posterior = 3.19%e-9
push78, prior .130, likelihood = 2.24e-8, posterior = 2.93e-9
holdl1, prior .037, likelihood = 3.70e-6, posterior = 1.38e-7
pickupl7, prior = 0.055, likelihood = 7.63e-5, posterior = 4.26e-6
feelb, prior = 0.018, likelihood = 6.25e-7, posterior = 1.16e-8
press7, prior = 0.024, likelihood = 2.05e-8, posterior = 5.11e-10
turn26, prior = 0.049, likelihood = 2.20e-7, posterior = 1.09e-8
turn24, prior = 0.037, likelihood = 4.92e-9, posterior = 1.83e-10
yank3, prior = 0.012, likelihood = 7.32e-8, posterior = 9.09e-10
pokeb, prior = 0.018, likelihood = 2.31e-8, posterior = 4.31e-10
1ift21, prior = 0.068, likelihood = 4.94e-4, posterior = 3.37e-5
hit9, prior = 0.031, likelihood = 2.89%e-9, posterior = 8.99e-11
pull25, prior = 0.080, likelihood = 4.08e-9, posterior = 3.29e-10
heave7, prior = 0.024, likelihood = 4.0le-4, posterior 9.98e-6
slide25, prior = 0.080, likelihood = 1.82e-8, posterior = 1.47e-9
touchl?7, prior 0.055, likelihood = 5.02e-8, posterior 2.80e-9
shove27, prior = 0.086, likelihood = 5.47e-9, posterior = 4.76e-10

0
0
0
0

Note that the correct label, heave, has barely lost out to the actual label, lift (by a factor

of about three). Pick up is also competitive (which is reasonable, since it is a related verb),

being within a factor of ten, but all other word senses are far behind. Most of the errors in
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this training run are like this. Speakers are likely never to be perfectly consistent in their
labelling of actions, rendering errors of this sort inevitable. However, it is also possible that
the errors are exacerbated by the small amount of training data that was used. So, while it
is probably appropriate to “discount” most of these errors, I would prefer to test on more

data before drawing this conclusion.

Command-obeying test results

Now consider command-obeying. We use the same 15% of the data as used for
recognition testing. The labels in the data are used as commands, which are interpreted in
light of the initial world state features in each scenario. The resulting linking features are

labelled, and the label is compared to the initial command. Results follow:

Beginning obey test.

Scenario sc6: command=push, output=push

Scenario sc12: command=push, output=push

Scenario sc18: command=pickup, output=pickup
Scenario sc24: command=feel, output=feel

Scenario sc30: command=shove, output=shove

Scenario sc36: command=heave, output=1lift *ERROR#*
Scenario sc42: command=hold, output=hold

Scenario sc48: command=slide, output=slide

Scenario sc60: command=slap, output=slap

Scenario sc66: command=pull, output=pull

Scenario sc72: command=turn, output=turn

Scenario sc78: command=pull, output=pull

Scenario sc84: command=push, output=push

Scenario sc90: command=press, output=push *ERROR*
Scenario sc96: command=turn, output=turn

Scenario sc102: command=pickup, output=pickup
Scenario sc108: command=pull, output=pull

Scenario scl114: command=1ift, output=1lift

Scenario sc120: command=hold, output=hold

Scenario sc126: command=poke, output=poke

Scenario sc132: command=pull, output=pull

Scenario sc138: command=pull, output=pull

Scenario sc144: command=push, output=push

Scenario sc150: command=turn, output=turn

Scenario sc156: command=tap, output=tap

Scenario sc162: command=slide, output=slide

Scenario sc168: command=yank, output=pull *ERROR*

Scenario sc174: command=press, output=push *ERROR*
Scenario sc180: command=push, output=push

Scenario sc186: command=heave, output=lift *ERROR#*
Scenario sc192: command=press, output=push *ERROR*

Scenario sc198: command=push, output=push
Correctly recognized 26 of 32 obeyed commands (81%).
Obey test done.
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Note that the success rate of 81% is higher than that for recognition. In other training runs,
it is often significantly higher. The explanation is that the motor-parameter linking features
of obeyed actions are generated by the model itself, via the interpretation of the command.
The resulting actions thus basically correspond to the prototypes embodied in the lexicon.
So it is not surprising that the model is in turn able to recognize these prototypical actions

very successfully.

As was the case for recognition testing, the errors observed above are all cases in

which both the actual and desired labels are plausible.

An example of command-obeying

To illustrate how the model chooses an appropriate interpretation of a command
verb (i.e. a sense which best fits the initial world state), we will go through how the learned

lexicon handles a push command in several initial world states.
We first give the push command in scenario sc41, which has the following initial
world state:

{size=small elongated=false depressible=true contact=false}

The important cue is that the object is depressible, and the obeying algorithm correctly
chooses the DEPRESS sense of push, as can be seen from the resulting linking feature in-

structions to the x-schema execution system:
Linking f-struct (pre-execution):

{size=small elongated=false depressible=true contact=false
schema=depress posture=index accel=med dur=short}

The next push command is given in scenario sc6, which has a different initial

world state:

{size=large elongated=false depressible=false contact=false}

In this case, the SLIDE sense is chosen:

Linking f-struct (pre-execution):
{size=large elongated=false depressible=false contact=false
schema=slide elbow=extend accel=med dir=away aspect=once}

In either case, the x-schema which is chosen to execute has its proper parameters

set, since these were learned separately for each of the two senses.
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Trajectory of learning

How does the model’s posterior probability, and also the recognition rate, change
as merging proceeds? The plot in Figure 8.2 shows these statistics for the training run
we have been considering. The plot reflects only the model for the verb push. The x-axis

ranges from before merging begins until after it is done (40 merges total).

The top plot displays, on alogarithmic scale, the push model’s posterior probability
as well as its prior probability and likelihood (recall posterior o prior x likelihood). As
expected, the prior probability steadily increases during merging—indeed it is perfectly
linear on this log plot, since the prior is just an exponential function of the (steadily-
decreasing) number of word senses. The likelihood also increases initially, but eventually
decreases. Why does the likelihood not drop until near the end of the training period?
The explanation is that initially, there are a very large number of word senses (one for
each example), and these give rise to a large number of “simple” merges of identical or
nearly-identical senses. These merges tend to increase the likelihood since they decrease the
relative importance of the virtual samples (with their “fuzzifying” effect) in those senses.
Only after these easy merges are performed do dissimilar senses begin to merge. Since
fewer senses exist at this point, fewer merges will occur during this generalization-inducing,
likelihood-dropping phase. Turning to the third curve, the posterior can be seen to increase
monotonically, as required by our learning algorithm. It can also be seen to level off toward

the end due to the decreasing likelihood.

During this process, the recognition rate increases from 83% to 100%. Since there
are only six test scenarios for push (five of which are recognized correctly from the start), this
curve is rather abrupt and certainly does not tell us much about recognition performance
in general. The important points are (1) that the recognition does not drop despite the
shrinking of the model, and (2) that at some point the generalization ability of the model

does in fact increase to cover the sixth test scenario.

To get a better handle on how generalization ability (as reflected in the recognition
rate) relates to the number of word senses, a series of training runs were performed with
different settings of the Model PriorWeight parameter. The result is a collection of lexicons
with differing numbers of word senses. And since they are fully trained, we can then test each

lexicon on the full set of recognition test scenarios, and thus obtain more reliable numbers.
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Training Trajectory
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Figure 8.2: Plot of the push model’s prior, likelihood and posterior probabilities, as well as
the recognition rate, as merging proceeds.
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Recognition Rate vs. Number of Senses
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Figure 8.3: Plot of the recognition rate for various learned lexicons with different total
numbers of word senses.

The results are shown in the plot in Figure 8.3. The lexicons are arranged on the x-axis
in decreasing order of the number of word senses they contain. Recognition performance
(i.e. generalization ability) is seen to increase as the number of senses decreases, up to a
point—which is just what we want. However, if too much merging is performed, recognition

performance eventually decreases. The optimum lexicon size is 21 senses.

If we were to repeat the experiment using the training set itself for recognition
testing, we would get a different curve. In this case, memorization is the best policy and
generalization can only hurt. Indeed, in one such series of training runs, a lexicon with
151 senses achieved 96% recognition, while lexicons with 30 and fewer senses achieved only

about 80% recognition.
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8.3 Crosslinguistic Validation

8.3.1 Farsi

The Farsi language exhibits some non-English-like distinctions within the sphere
of actions represented by push, press, pull and their ilk. A subset of 61 of the scenarios
used for the English training run were labelled with four Farsi verbs? and the system was

trained using the same parameters used for English.

Farsi distinguishes two of English’s familiar senses of push. One verb, hol daadan,
encodes away-directed motion. Another verb, feshaar daadan, encodes applying force with-

out motion. They are learned as follows:

Model for hol_daadan (1 sense):

hol_daadanil7 (9 ex) {

size {small=0.181 LARGE=0.818}
elongated {true=0.272 FALSE=0.727}
depressible {true=0.090 FALSE=0.909}
contact {true=0.181 FALSE=0.818}
schema {SLIDE=0.978 1ift=0.005 rotate=0.005 depress=0.005 touch=0.005}
posture {grasp=0.133 wrap=0.066 pinch=0.066 PALM=0.6 platform=0.066 index=0.066}
elbow {flex=0.083 EXTEND=0.833 fixed=0.083}

* force {low=0.083 med=0.166 HIGH=0.75}
accel {zero=0.076 low=0.076 MED=0.538 high=0.307}
dir {AWAY=0.666 toward=0.066 up=0.066 down=0.066 left=0.066 right=0.066}
aspect {ONCE=0.909 iterated=0.090}
dur {short=0.166 med=0.333 LONG=0.5}

Model for feshaar_daadan (2 senses):

feshaar_daadan74 (26 ex) {
size {SMALL=0.714 large=0.285}
elongated {true=0.035 FALSE=0.964}
depressible {TRUE=0.964 false=0.035}
contact {true=0.142 FALSE=0.857}

* schema {slide=0.001 1ift=0.001 rotate=0.001 DEPRESS=0.992 touch=0.001}
posture {grasp=0.031 wrap=0.031 pinch=0.031 palm=0.031 platform=0.031 INDEX=0.843}
elbow {flex=0.333 extend=0.333 fixed=0.333}
force {low=0.413 med=0.310 high=0.275}
accel {zero=0.133 low=0.266 MED=0.433 high=0.166}
dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}
aspect {ONCE=0.642 iterated=0.357}
dur {SHORT=0.517 med=0.310 long=0.172}

}

*Three of these four labels are in fact composed of multiple words. However, they were treated as single
verbs in this training run, as indicated by underscores in the transcripts.
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feshaar_daadan73 (12 ex) {

size {small=0.5 large=0.5}
elongated {TRUE=0.642 false=0.357}
depressible {true=0.071 FALSE=0.928}
contact {true=0.357 FALSE=0.642}
schema {slide=0.004 1ift=0.004 rotate=0.004 depress=0.004 TOUCH=0.983}
posture {grasp=0.055 wrap=0.055 pinch=0.055 PALM=0.722 platform=0.055 index=0.055}
elbow {flex=0.2 extend=0.466 fixed=0.333}
force {low=0.4 med=0.266 high=0.333}
accel {zero=0.062 LOW=0.437 med=0.25 high=0.25}
dir {away=0.235 toward=0.058 up=0.058 down=0.294 left=0.176 right=0.176}
aspect {ONCE=0.928 iterated=0.071}

* dur {short=0.266 med=0.2 LONG=0.533}

These verbs are distinguished mainly by the fact that they map to different x-schemas. Hol
daadan maps to the SLIDE x-schema, while feshaar daadan has two senses, one mapping
to ToucH and another mapping to DEPRESS. Both hol daadan and the TOUCH sense of
feshaar daadan code strongly for the palm posture. The ToUucH sense of feshaar daadan
requires long duration and cannot be iterated; it is similar to English lean. Hol daadan
codes movements away from the body, requires high force, and prefers quick motions but
does allow more continuous pushing. A closely related verb, pas zadan, parameterizes SLIDE

differently:

Model for pas_zadan (1 sense):

pas_zadan9 (5 ex) {

size {small=0.142 LARGE=0.857}
elongated {TRUE=0.714 false=0.285}
depressible {true=0.142 FALSE=0.857}
contact {true=0.142 FALSE=0.857}
schema {SLIDE=0.961 1ift=0.009 rotate=0.009 depress=0.009 touch=0.009}
posture {grasp=0.090 wrap=0.090 pinch=0.090 PALM=0.545 platform=0.090 index=0.090}
elbow {flex=0.125 EXTEND=0.75 fixed=0.125}

* force {low=0.375 med=0.375 high=0.25}
accel {zero=0.111 LOW=0.555 med=0.111 high=0.222}
dir {AWAY=0.545 toward=0.090 up=0.090 down=0.090 left=0.090 right=0.090}
aspect {once=0.285 ITERATED=0.714}
dur {SHORT=0.75 med=0.125 long=0.125}

It shares the preference for the away direction and the palm posture, but prefers lower
force and short duration. It allows an iterative interpretation whereas hol daadan

does not.

The closest equivalent to pull in Farsi is keshidan:
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Model for keshidan (1 sense):

keshidanl7 (9 ex) {

size {small=0.545 large=0.454}
elongated {true=0.454 false=0.545}
depressible {true=0.090 FALSE=0.909}
contact {true=0.090 FALSE=0.909}
schema {SLIDE=0.978 1ift=0.005 rotate=0.005 depress=0.005 touch=0.005}
posture {GRASP=0.466 wrap=0.066 pinch=0.066 palm=0.266 platform=0.066 index=0.066}
elbow {FLEX=0.833 extend=0.083 fixed=0.083}

* force {low=0.25 med=0.333 high=0.416}
accel {zero=0.076 low=0.230 med=0.384 high=0.307}
dir {away=0.066 TOWARD=0.666 up=0.066 down=0.066 left=0.066 right=0.066}
aspect {ONCE=0.909 iterated=0.090}
dur {short=0.25 MED=0.5 long=0.25}

Compared to pull, keshidan codes for higher force and longer duration. It also prefers

the once aspect. In some respects it resembles Fnglish haul.

8.3.2 Russian

The next language we consider is Russian. From the perspective of our model,
Russian is interesting because its verbs almost always appear with prefixes and suffixes.
Thus, we have used Russian as a testbed for the multi-slot version of our model as presented

in Chapter 7. The results are mixed.

The same set of 200 scenarios described above was labelled by a Russian informant.

The set of labels used was as follows:®

Prefixes Roots Suffixes
po- pere- pri- | trogat tolknut davit zhat dvinut | -ut -at
no- ot- pod- stuknut derzhat tyanut vernut tknut

As might be expected, the different grammatical positions tend to encode different
aspects of the semantics of actions. In particular, it is clear that the suffixes code for
perfectiveness. The verb roots tend to code for goals, posture and effort. The prefixes tend
to encode more image-schematic features such as paths. We will soon see how the model

captures these tendencies.

®Note that, in the process of dividing the labels into three slots, some liberties have been taken with
spelling. In particular, verb root labels retain a suffix when they would be difficult to recognize without it.
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Training

Training the model on this data proceeded differently than it did for English and
Farsi in several respects. First, there are effectively three times as many training examples
for Russian than for the other languages, since each training example involves incorporating

anew instance for each of the three components of its label. Training times grew accordingly.

Secondly, since there are only two possible suffixes each of them occurs quite often
in the training set. The offline version of the model merging algorithm, since its runtime
complexity is cubic in the number of training examples (see §6.2.5), proved intractable. It
was essential to utilize the BatchSize parameter to implement online learning; a batch size

of ten turned out to produce reasonable results and greatly speeded up learning.

Satisfyingly, it did not prove necessary to modify the value of Model PriorWeight,
even in the face of these different training set statistics. This is an encouraging sign that
the model merging criterion is robust to such variations. This kind of robustness would be

essential in modelling a wide range of languages.

Tour of the learned lexicon

We will not present the entire learned lexicon here, but rather just mention some
highlights. One of the more interesting results is the representation for the imperfective
suffix -at. It is learned as follows. (To save space, this section will present word senses by

simply listing the set of feature values which would be used for obeying a command.)

Model for at (4 senses):

atb8 (11 ex)
{elongated=false depressible=false contact=false schema=lift
accel=med dir=up aspect=iterated dur=short}

at79 (5 ex)
{size=small elongated=false depressible=true contact=false
schema=depress posture=index force=high aspect=iterated
dur=short}

at78 (22 ex)
{size=large depressible=false contact=false schema=slide
posture=palm aspect=iterated dur=short}

atb1l (2 ex)
{elongated=true depressible=false contact=false schema=touch
posture=palm accel=low aspect=once dur=long}
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In the judgment of the informant, imperfectiveness corresponded to two types of x-schema
execution. One type corresponded to iterated but brief motions, and the other type cor-
responded to non-iterated but long-duration motions. In order to capture this dependence
between the aspect and duration features, multiple senses are required. Observe that
at51 encodes non-iterated but long actions. The other three senses encode iterated short
actions. Unfortunately the model has not seen enough data to generalize over some of the
other features, resulting in the three separate senses for the case of iterated short actions.

This does not negatively impact recognition performance, though, as will be shown shortly.

The learned representations for the verb roots are generally acceptable, in that the
appropriate correlations are captured. However, a large number of spurious associations are
also picked up. It is not clear if more data would help. Several examples are listed here. To
begin, consider the roots tolknut, which corresponds to crude and forceful pushing involving
object motion, and dwvinut, which is used for “calmer” sliding motions. They are learned as

follows:

Model for tolknut (1 sense):

tolknut31 (16 ex)
{size=large depressible=false contact=false schema=slide
posture=palm force=high accel=med aspect=once}

Model for dvinut (3 senses):

dvinut21 (1 ex)
{size=small elongated=true depressible=false contact=true
schema=touch posture=palm elbow=fixed force=med
accel=med dir=away aspect=once dur=long}

dvinut95 (30 ex)
{size=small depressible=false contact=false schema=slide
posture=grasp elbow=extend aspect=once}

dvinut94 (16 ex)
{size=large depressible=false contact=false schema=slide
posture=palm force=med dur=short}

Tolknut31 properly codes for the SLIDE x-schema, the palm posture, and high force. In
contrast, dvinut codes for a less restrictive set of SLIDEs, since it is modelled by a sense
(dvinut95) involving the grasp posture as well as a sense (dvinut94) involving the palm

posture. High force is not coded for by either sense.
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Consider another example, the verb root stuknut. It corresponds to English hit or

slap, and is learned as follows:

Model for stuknut (2 senses):

stuknut27 (10 ex)
{size=small depressible=false contact=false schema=touch
posture=palm force=high accel=high dur=short}

stuknut24 (4 ex)
{size=small elongated=false depressible=true contact=false
schema=depress posture=index force=high aspect=iterated
dur=short}

This verb is learned rather well. The first sense, stuknut27, encodes high-speed ToUucCHes
using the palm, which corresponds to either English hit or slap depending on the direction
of approach of the arm—which the sense properly does not code for. The other sense,
stuknut24, codes for hitting a button. It insists on high force, which is correct since a
different Russian verb root (zhat) is used to refer to gentler button-pushing, as can be seen

in the first sense for zhat shown below:

Model for zhat (2 senses):

zhat25 (12 ex)
{size=small elongated=false depressible=true contact=false
schema=depress posture=index force=low aspect=once
dur=short}

zhat8 (1 ex)
{size=large depressible=false contact=false schema=slide
posture=palm force=high accel=high dir=toward
dur=short}

Prefixes prove to be the most troublesome in Russian, due to the inadequacies
of our linking features for representing image-schematic concepts. For example, the prefix
pod- can mean “under” or “a little”. It is learned as shown below—mno such image-schematic
pattern is obvious. (Although, again, the representation does a passable job in recognition

testing as reported shortly.)

Model for pod (3 senses):

pod57 (3 ex)
{size=large depressible=false contact=false schema=slide
posture=palm elbow=flex accel=med dir=toward}
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pod66 (8 ex)
{size=small depressible=false contact=false schema=1ift
accel=low aspect=once}

pod58 (22 ex)
{size=large depressible=false contact=false schema=1ift
posture=platform dir=up aspect=once dur=short}

Lastly, let us examine the virtual sample counts in each of the three slots of the
model, to see how they have adapted in response to the training data:
Slot 0 (prefix) virtuals:
size=3.46 elongated=3.48 depressible=0.024 contact=0.225

schema=0.065 posture=0.188 elbow=2.71 force=1.54 accel=0.723
dir=1.72 aspect=0.977 dur=2.19

Slot 1 (root) virtuals:
size=1.13 elongated=5.07 depressible=0.057 contact=0.322
schema=0.002 posture=0.119 elbow=4.33 force=0.903 accel=0.722
dir=2.39 aspect=1.57 dur=1.47

Slot 2 (suffix) virtuals:
size=6.13 elongated=2.62 depressible=0.023 contact=0.148
schema=0.078 posture=0.272 elbow=3.75 force=2.26 accel=0.778
dir=1.98 aspect=0.075 dur=3.75

This array of numbers is a far cry from representing a clear-cut decision about the semantic
roles played by the three slots. But we can see that a few trends have been partially picked
up. For instance, note that slot 1 (the verb root slot) codes much more strongly for the
schema feature than the other two slots, as we would expect given the tendency for Russian
verb roots to encode the goal and overall type of action. Slot 2 (the suffix slot) codes much
more strongly for the aspect feature than the other two slots, which is consistent with its
role as a perfectiveness marker. Lastly, slot 0 (the prefix slot) appropriately codes most
strongly for direction—which is one of the more image-schematic of the model’s linking

features—although the actual virtual sample count is not as low as one might have expected.

In summary, the three-slot Russian lexicon appears to have been learned somewhat
less cleanly than one-slot English or Farsi. The question then is, how does its recognition

performance compare?

Recognition testing

The model was tested on the 33 test scenarios with the following results:
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Beginning recognition test...
sc6: desired=ot-dvinut-ut, output=ot-tolknut-ut *ERROR#*

Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario
Scenario

scl2:
scl8:
sc24:
sc30:
sc36:
sc42:
sc48:
scb4:
sc60:
sc66:
sc72:
sc78:
sc84:
sc90:
sc96:

scl102:
sc108:
scli4:
sc120:
scl26:
scl132:
sc138:
scl44:
sc150:
scl1b56:
scl62:
scl68:
scl74:
sc180:
scl186:
scl192:
sc198:

desired=ot-dvinut-at, output=ot-dvinut-at
desired=pod-nyat-ut, output=pod-nyat-ut
desired=-trogat-at, output=po-trogat-at *ERROR*
desired=ot-dvinut-at, output=ot-dvinut-at
desired=pod-nyat-ut, output=pod-nyat-ut
desired=pod-derzhat-ut, output=pod-derzhat-ut
desired=pere-dvinut-ut, output=pere-dvinut-ut
desired=po-dvinut-ut, output=po-dvinut-at *ERROR#*
desired=-stuknut-ut, output=pri-stuknut-ut *ERROR#*
desired=pri-dvinut-at, output=pri-dvinut-at
desired=ot-katit-ut, output=pere-katit-ut *ERROR#*
desired=pri-dvinut-ut, output=pri-dvinut-ut
desired=pere-dvinut-ut, output=po-dvinut-ut *ERROR#*
desired=na-zhat-ut, output=na-davit-ut *ERROR#*
desired=po-vernut-ut, output=po-vernut-ut
desired=pod-nyat-at, output=pod-nyat-at
desired=pri-dvinut-ut, output=pri-dvinut-ut
desired=pod-nyat-ut, output=pod-nyat-ut
desired=pod-derzhat-ut, output=pod-derzhat-ut
desired=-tknut-at, output=na-stuknut-at *ERROR*
desired=pri-dvinut-ut, output=na-dvinut-ut *ERROR#*
desired=pri-dvinut-ut, output=pri-dvinut-at *ERROR#*
desired=na-zhat-ut, output=na-zhat-ut
desired=pere-katit-ut, output=pere-vernut-ut *ERROR*
desired=-trogat-at, output=na-stuknut-at *ERROR*
desired=po-dvinut-at, output=po-dvinut-at
desired=pod-tyanut-ut, output=pri-vernut-ut *ERROR#*
desired=na-zhat-at, output=na-zhat-at
desired=-stuknut-at, output=na-zhat-at *ERROR*
desired=pod-nyat-ut, output=pod-nyat-ut
desired=na-davit-ut, output=na-davit-ut
desired=po-dvinut-ut, output=po-dvinut-ut

Correctly labelled 19 of 33 test scenarios (57%).
Recognition test done.

The first thing to notice is that the overall recognition rate is somewhat lower

lower than it is for English and Farsi. There are several reasons for this. The first reason

is that the three-slot recognition task is simply much harder than the one-slot recognition

task. While random guessing on the 18-verb Inglish vocabulary would yield a recognition

rate of 6%, the random guessing rate for the Russian data, with its 7 possible prefixes, 10

roots, and 3 suffixes (including the possibility for null prefixes and suffixes), is less than

0.5%. Viewed in this light, the results look rather good.

A more serious problem, though, is that it proved impossible to set the Min Label

parameter appropriately. Several of the test examples require the prefix slot to be left

unfilled, which can only be accomplished by setting MinLabel above 0. However, any
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setting of M1nLabel which accomplished this goal exhibited the unfortunate side-effect of
omitting too many labels, often including verb roots. In other words, this parameter is very

brittle.

A related problem occurred regarding the MinFaplarn parameter. Recall that
the multi-slot labelling algorithm always fills the slot for which it has found the highest-
posterior-probability label, and then removes (or “explains away”) the features strongly
coded for by that label before going on to fill the next slot. MinFExplain defines the criterion
for which features will be removed. Since many word senses are coding for spurious features
almost as strongly as for the proper features, this parameter, too, has proven brittle. When
set too low (e.g. less than 0.8 or so), features which are spuriously correlated with the
label in one slot get explained away and then are not available to help choose the label
for the remaining slots. This problem manifests itself most clearly by producing drastically
incorrect verb root labels—errors which do not occur if MinLabel is set to a very high value

(e.g. 0.95, which virtually disables the explaining away strategy).

One hypothesis—although it is only a hunch—is that if explaining away were to
be utilized during learning, then it would prove more effective during testing. The reason is
that fewer spurious correlations (hopefully) would make their way into the learned lexicon,
and therefore explaining away during recognition would remove only the proper features.

This remains to be implemented and tested.

Variations

An interesting question is how the performance on verb roots alone compares to
the one-slot training reported in earlier sections. If we examine the above trace and count
as errors only those scenarios for which the verb root label is wrong, we obtain a recognition

rate of 81%. This is in line with the earlier one-slot results.

To further investigate this issue, the Russian training data was stripped of all
prefixes and suffixes and used to train a one-slot model. This strategy for obtaining one-
slot data is somewhat suspect. For example, an action labelled hold down may well be
labelled press, not hold, when the informant is requested to give one-slot labels. But the
strategy is convenient and allows us to get a rough measure of what kind of performance

might be obtained with “real” one-slot labels. As it turns out, the recognition errors for
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this one-slot model are identical to the errors on the verb root slot in the three-slot lexicon

(and thus are also comparable to the English results).

Finally, there is the question of what improvment is obtained by dividing the multi-
word Russian labels into slots compared to treating them as wholes. To get a measure of
this improvement, a one-slot model was trained with the three-slot labels, except each label
was treated as a single “verb”. The resulting lexicon consisted of 43 total word senses
when trained using the same algorithm parameters as English. This is a few more than the
total number of senses in the three-slot lexicon. One would expect much lower recognition
performance, though, since the one-slot model is not generative, i.e. it cannot form novel
combinations of roots, prefixes and suflixes. However, the recognition performance obtained
was 54%—comparable to the three-slot case. This appears to be due to there being less
productivity within the labelled data than was expected. Most of the target labels in the
recognition test had in fact appeared in the training data. Whether this would remain true

with more data or more actions is unknown.

8.3.3 Other crosslinguistic examples

A number of other interesting crosslinguistic examples have come to the author’s
attention,® but have not been trained on due to either lack of full data for the language,
or lack of time. Nevertheless, many of these examples seem to be representable—or nearly
representable—within the model developed here, and so are worth reporting. This section,
then, presents some of these examples along with guesses as to how they might be repre-
sented in terms of our linking features. These guesses are based on the informal descriptions
of the verb meanings provided by informants. They are written here in an abbreviated form

for clarity and to emphasize that they are hypothetical.

Postural coding in Korean and Spanish

A variety of languages distinguish actions based upon hand posture. Consider two
examples from Korean, um kyo gi da and dul da. Both are similar to English hold. But um
kyo gi da codes specifically for holding a small object with the fingers wrapped around it,
while dul da codes for heavier objects held with a flat hand. They might be represented as

SMany of them thanks to Carol Bleyle’s interviews with her ESL students.
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follows:

Model for um_kyo_gi_da:
{size=small schema=1ift posture=grasp accel=zero}

Model for dul_da:
{size=large schema=1ift posture=platform accel=zero}

Note that the grasp posture is not quite right for um kyo gi da; to perfectly
capture this expression, we would need to further refine the posture feature to include

more of the postures shown in Figure 3.1.

Another example from Korean is the case of kon dur ida compared with tu chi da.
The first refers to tipping an object over using one finger, while the latter refers to tipping

a large object. These might be represented as follows:

Model for kon_dur_ida:
{size=small schema=rotate posture=index}

Model for tu_chi_da:
{size=large schema=rotate posture=‘grasp or palm’}

A very interesting example from Korean is kul ri da, which refers to rolling an
object off of the hand (and then across a surface, normally). Representing such an action

is beyond the capabilities of the current set of x-schemas and linking features.

Turning to Spanish, we have two related verbs, pulsar and presionar. Pulsar refers
to pressing with one finger (especially a button), while presionar refers to pressing with the
palm. These verbs map to the DEPRESS and TOUCH x-schemas, respectively, and should

correspond approximately to the two senses of Farsi feshaar daadan shown earlier.

Lastly, Spanish distinguishes general hitting (pegar) from hitting with a flat palm
(golpear). This distinction can easily be captured by the posture feature; in one case the
probability distribution is broad, while in the other case it is highly peaked around the palm

value.

Aspectual coding in Tamil, Korean and Japanese

Another type of distinction found in verbs from some languages involves aspect.
In particular, some verbs code for repetition of short-duration actions while other verbs

code for a smooth and continuous version of the same basic action.
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This shows up, for example, in the Tamil verbs for pushing (thallu) and pulling
(ilu). Whereas most English speakers assume a continuous motion by default, the Tamil
verbs, when used alone, strongly suggest a sudden motion, and may even suggest repetition
of the sudden motion. (The repetition can be emphasized by reduplication—i.e., with thallu-
thallu.) In order to suggest continuous motion, a directional suffix can be added, such as
-po (away) or -wa (toward). Thallu might be represented as follows:
Model for thallu: {
schema {SLIDE=0.9 ...}
posture {PALM=0.9 ...}

duration {SHORT=0.5 med=0.3 long=0.2}
aspect {once=0.4 ITERATED=0.6}

Meanwhile, the suffix -po might be represented as:

Model for po: {
direction {AWAY=0.9 ...}
duration {short=0.1 med=0.3 LONG=0.6}
aspect {0ONCE=0.8 iterated=0.2}

}

Note that this suffix codes not only for direction but also for the once aspect and a longer
duration. Moreover, its probability distributions for these two features are more peaked

than those of thallu, allowing it to override the values suggested by thallu.

Korean makes a similar distinction in its expressions for poking. G4 ru da refers
to a single poke, while maani gi ru da refers to poking repeatedly. Again, an affix plays the
role of overriding the aspect setting of the root verb. Japanese, too, makes this distinction
in its poking verbs. In this case, the force parameter is also implicated. Tsuku refers to
a single poke, which may use any amount of force. Tsutsuku, on the other hand, codes for

repeated poking but only with low force.

Directional coding in Spanish

Spanish has several verbs for tipping an object over. Volcar refers to tipping an
object onto its side, while volver is used for tipping an object onto its back. Finally, poner
al reves refers to tipping an object upside down. Our model’s direction feature could be

used to distinguish the first two verbs, if objects were always placed in a canonical position.
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However, in order to capture the full generality of these verbs, the model would need to
be augmented with a notion of deixis. In other words, it would need a mechanism for
determining the appropriate point of view for determining the “back” ws. the “side” ws. the

“top” of an object.

Some generalizations in Tamil and Arabic

Many of the examples presented thus far code for rather specific actions. But there
are other verbs which refer to broad classes of actions. Interestingly, even these very general

verbs can differ significantly from the general verbs of English (such as move).

One such example is the Tamil verb pudi. This verb covers catching, holding and
restraining. It definitely codes for high force, and its connotation of restraint suggests a
zero acceleration. Yet this verb can be used for carrying an object, so this is not quite

right.

Another example is Arabic erme al callem, which can cover English drop, throw,
knock over and tip over. All of these involve an object in free-fall, suggesting an important
linking feature not presently in the model. More importantly, both dropping and knocking
over an object are (or can be) unintentional actions. The current model, due to its focus
upon actions which correspond to single, entire, intentionally-executed x-schemas, is not

vet equipped to deal with such verbs.

8.4 Sensitivity to Parameters

The results reported above were obtained after a certain amount of tuning of the
various parameters of our labelling, obeying and learning algorithms. Since robustness to
such parameters is a desirable quality in any learning system, we review here the sensitivity

of these various parameters on the above examples.

For review, all the parameters of our labelling, obeying and learning algorithms

are summarized in Figure 6.3.

In practice, the MinSetFeature has been the most troublesome. Recall that this
parameter specifies the minimum peakedness a feature’s probability distribution must have

in order for the mode value of that distribution to be included in the prototype. If set
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too high, statistically significant patterns may get omitted from the linking f-struct. Too
low, and merely-loosely-correlated features may get set, which can potentially overspecify
x-schema parameters to the point where successful execution is impossible. The problem is
partly due to the peakedness metric’s failure to take into account the number of possible
values for a feature: if the mode and runner-up have nearly equal probability (say 0.4 and
0.35), this ought to generate a very low peakedness for a feature with three possible values,
but a fairly high peakedness if the feature has 10 values. In our experiments we have erred
on the side of a high setting for MinSetFeature to be sure to exclude weakly correlated
features. As a result, the latter case presents problems. For instance: if all examples of [ift
exhibit forces of 1 or 2 (roughly similar number of each), while examples of heave exhibit
forces of 4 or 5 (also roughly similar numbers of both), then we would like to have this
significant correlation reflected in the linking f-struct when obeying commands. However,
the peakedness measure will return a low value in each case and so the force feature will
not be set. We have considered other peakedness measures but they have had their own

problems.

The MinMerge parameter is used to cut off merging when the best candidate
merge consists of two senses of insufficient similarity (according to the heuristic described
in §6.2.4). Since the similarity metric is sensitive to the peakedness of the probability
distributions, so is MinMerge. While this is largely appropriate, it does lead to a certain
amount of fiddling which is dependent upon the number of identical training examples in
the training set (varied with the TrainingPasses parameter): the more there are, the
more peaked the distributions will become before non-trivial merges are considered, and
thus the less likely they are to be judged similar enough to merge. Moreover, the values
in the wvirt table are also implicated in the peakedness of probability distributions. The

interdependence of all these algorithm parameters makes fine-tuning difficult.

The MinLabel parameter has caused few problems, but this is partly an artifact of
the type of training that has been performed. Most training has been with a single slot, using
recognition test examples which do in fact have a reasonable label. Under these conditions

any adequately low setting of the MinLabel parameter produces acceptable results.

Another class of parameters is the initial settings of the veirt table containing the
number of virtual samples to use in probability distributions for each linking feature in

a new word sense. Since in most languages there is a tendency for verbs to code for the
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schema feature (more so than for the various features encoding x-schema parameters) it has
proven useful to begin training with a smaller virtual sample count for that feature than

for the others.

Finally, there is the question of sensitivity to the contents of the training set. In
other words, for the modest-sized training sets which we have been able to work with, to
what extent do variations affect the resulting lexicon? One observed effect is that it is
important to “shuffle” the training data to ensure that the training and test sets end up
containing examples that were labelled at a variety of times during the several-hour session
with the informant. The labelling process itself seems to induce refinements of informants’
ideas about these action verbs and thus they may label differently toward the end of the
session than toward the beginning. For the labelling done by the author, an improvement

of approximately 10% in recognition testing was made by this kind of shuffling.

8.5 Unlearnable Categories

Now that we’ve seen a range of word meanings capturable by our model, it’s worth
pausing to review the kinds of concepts which are not learnable. Unlearnable concepts fall

into three categories.

The first type of unlearnable concept is one that depends on mechanical details of
actions which are not representable at the schema level. For example, the SLIDE x-schema
involves parallel invocation of an arm movement with a hand preshaping. The schema
then specifies that grasping should not occur until both these actions are completed. But
there is no way to specify exactly how these two actions should interrelate. As a result,
if some language were to make a linguistic distinction based on whether the preshaping
occurs toward the beginning of the arm motion vs. toward the end of the arm motion, our
model would fail to capture it. If such distinctions were to occur frequently, it would be a
rather fundamental type of failure, since it would argue against the appropriateness of our

x-schema representation as a basis for the semantics of action terms.

A second type of unlearnable concept is one whose basis is present in the x-schema
level, but which cannot be represented in word senses because the linking feature structure
does not contain the appropriate features. For example, our model includes an aspect

feature with values once and iterated which are set according to whether the x-schema



CHAPTER 8. LEARNING RESULTS 169

traverses a loop. We can imagine that some language might make more refined aspectual
distinctions, such as distinguishing a few repetitions from many repetitions. Our linking
feature interface would not be able to reflect this distinction. Part of the scientific aim
of this project has been to determine the set of relevant features, so such discoveries are
significant. However, such modifications to the set of linking features do not invalidate our
model, and indeed are inevitable when surveying more languages (or when expanding the

x-schema set to cover a wider range of actions).

A third type of concept is not strictly unlearnable, but instead is difficult to learn,
because the resulting representation is unnatural (i.e. has a low prior). These concepts are
those in which there are strong dependencies amongst the features, so that when expressed
in disjunctive normal form there are a large number of disjuncts (i.e. word senses). For
example, a word which codes for force = high when elbow = extend but force = low
when elbow = flex cannot be represented in a single word sense. It is always possible to
remedy this problem by introducing a new feature which expresses the appropriate abstrac-
tion. But there is a cost, because adding features exacerbates the “relevance problem” as
described in §4.2.4. Fortunately, these cases so far seem rare. One example is the Russian
suffix -at, which is an imperfective marker. Imperfectiveness can map to long duration
when the aspect is once, or it can map to iterated aspect when the duration is short.

Thus, this suffix is modelled using multiple senses.

8.6 Shortcomings

In recognition testing, many of the apparent errors encountered are in fact cases
in which a relatively specific label is emitted but the informant had supplied a relatively
general label. In other words, the “error” is simply a matter of multiple applicable labels
and human labellers might exhibit the same behavior. In these cases it is necessary to
inspect the posterior probabilities of all word senses to determine whether the general label
also receives high probability. In most cases it does, although a quantitative analysis has

not been made.

Another type of recognition error often encountered is the emission of a common
word when a less common (and usually more specific) word is desired. This happens when

the desired word is so uncommon in the training set that even its high likelihood of gen-
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erating the linking f-struct is not enough for it to win over the more common word. The
problem can be exacerbated if the desired word is so uncommon that it doesn’t even have
enough training examples to generate a nice peaked distribution, in which case it may not
even generate a particularly high likelihood when it sees its prototypical case. One could
attempt to address this problem by partially smoothing out the strong relative frequencies
observed in the training data by using some sort of damping function on the occurrence
counts. Indeed, it is psychologically plausible that children place low significance on rela-
tive frequencies, especially once the words in question have been learned well (Dan Slobin,

personal communication).

Sometimes the model will learn multiple senses where we might expect only one.
Multiple senses are required when two features can each take on a range of values but they
are strongly correlated. In this case, the correlation can be captured only by multiple senses,
e.g. one sense with posture = palmand size = large and another sense with posture =
pinch and size = small. Intuitively, we would prefer a single sense which simply encodes
“use a posture appropriate for the object size”. But such a concept is beyond the power of

our representation.

Due to the vagaries of the non-backtracking search procedure—especially if the
MinM erge parameter is set too high—training can occasionally produce more word senses
than desired. An excessive number of senses is unappealing not only because it is counter-
intuitive. It can also cause failure to label legitimate occurrences of the verb. The reason is
that, since the overall frequency of the verb is “spread out” over its many senses, each indi-
vidual sense has a low frequency count and is therefore at a disadvantage when competing

against senses of other verbs. “Divided we fall...”
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“People are more than curious about language; they are
passionate. ... Chances are you would never have made it
to the last chapter of a book about the human hand.”
—Steven Pinker

This final chapter takes stock of the model we’ve developed and suggests some

new avenues of inquiry.

9.1 Summary

This dissertation has explored the hypothesis that in order to explain acquisition

and use of action verbs, motor control must be integrated with language. We have presented
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a model of lexical semantics for hand actions, which is embodied in the sense that it is inti-
mately connected to a model of how those actions are actually controlled. We have provided
an account of how such a semantics might be learned within a connectionist framework.
The model was developed by building a system which, from a set of (action,verb) pairings
from any of a variety of natural languages, learned to both label novel actions and obey ver-
bal commands. Use of an active, Petri net representation called executing schemas proved
essential for controlling actions. A hardwired mechanism for extracting a set of special
linking features was then employed to provide the semantic building blocks. These linking
features involved hand posture, joint motions, force and aspect. This traditional featural
representation facilitated use of a Bayesian probabilistic learning algorithm, model merging,
which displayed a number of desirable properties, including rapid learning of plausible word
meanings and learning of an appropriate number of separate word senses. A moderate-size
English vocabulary was learned, as well as some interesting distinctions from a handful of

other languages.

Despite its successes, it’s important to emphasize that the model is still quite
provisional and no strong claims are being made about its cognitive validity. The isolation
of verb learning from other cognitive activities is artificial; the learning results are limited;
and indeed it is quite possible that the known constraints from computer science, linguistics
and psychology aren’t sufficient to converge upon the “correct” model of verb learning at
the current time. Nevertheless, I feel the model does have something to offer to the study
of cognitive science. The following sections attempt to place the model into this broader

scientific context.

9.2 Contributions

9.2.1 Computer science

In the artificial intelligence literature there has been a longstanding divide between
declarative and procedural representations. Declarative representations do not specify the
algorithms which operate over them, imbuing them with a certain flexibility and the ability
to focus on what is true rather than on how to reason. Yet with this flexibility can come

inefficiency. Procedural representations solve the efficiency problem by directly hard-coding
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the solution to a given task, but when interfaced with a declarative system, they become
unanalyzable “black boxes,” and hence have tended to be used only for simple functions
which can be treated as atomic within the overall declarative framework. This thesis has
investigated the use of a restrictive formalism for procedures—Petri nets—and has shown
how it can facilitate the definition of a featural interface between such nets and more

traditional declarative representations.

The thesis has also demonstrated how learning can be performed in a connectionist
framework yet, unlike most neural network algorithms in the style of backpropagation, still
retain the very valuable property of bidirectionality. Learning of bidirectional maps is
crucial for tasks in which the resulting concepts must support not only recognition but also

reasoning, acting or imagery.

The thesis is also an example of learning in the face of no negative evidence.
Previous work on this problem has focused on rule induction such as grammar learning.
The use of a Bayesian approach to lexical acquisition has shown that these techniques can

also be effective in the semantic domain where the structures to be learned are not rule-like.

9.2.2 Cognitive modelling

Despite the successes of our model at its assigned task, we must be careful not to
jump to the conclusion that we’ve discovered how children learn these action verbs. For
one thing, it’s perfectly possible that a completely different approach might work equally
well. Even more importantly, we can’t be sure that the task we sectioned off for ourselves
corresponds to a “module” in children’s overall learning strategy. In other words, we don’t
even know that we have considered the right input/output for verb learning, never mind

the right algorithms!

Our hope is simply that having taken into account many of the known constraints,
our model provides insights into these psychological processes. In turn, we hope this com-
putational insight will spur further empirical research, so that future models will converge
on the truth. In that spirit, then, let’s look at some predictions suggested by the model,

and consider how it may open new avenues of inquiry into semantics.

Most fundamentally, we hope we have presented a plausible account of how se-

mantics for action-oriented words may be bodily grounded via a connection to the mo-
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tor synergies which drive behavior. An important implication of the model is that x-
schema internals—such as stretch receptor activation levels or detailed patterns of muscle
contractions—are not available at the linguistic level, leading to the prediction that no lan-
guage will contain verbs referring to these details. In other words, the model predicts that
coordination and parameterization are the appropriate level for linguistic access to motor

control.

The model, by showing the importance of motor control to semantics, also serves to
partially explain the results of Huttenlocher et al. (1983) showing children’s early tendency
not to generalize action verbs beyond their own activity. If, for example, the visual effects
of actions were primary, one might expect the child not to differentiate so strongly between

his own and his parent’s actions, since both are observed via the same visual mechanism.

Our use of adjustable priors over which features are likely to be relevant in each
part of a verb complex predicts that children should be slower to learn words which violate
the patterns represented by those priors. Choi & Bowerman (1991) report such results for
Korean vs. English. The model predicts that this effect should become more pronounced

as the vocabulary expands and these priors become stronger.

Our category representation comes down strongly on the side of richly detailed,
embodied, gestalt-like prototypes, with generalization achieved largely through the use of
multiple such prototypes and graded boundaries. Having made this perspective on catego-
rization computationally explicit ought to facilitate fair comparison of this approach with

the more traditional necessary-and-sufficient-conditions approach.

Predictions, though, are not the only contribution to cognitive science. It is my
hope that this work has suggested a novel approach to semantic analysis which may prove
fruitful in some circumstances. For example, in the course of building the model the elbow
feature (which encodes whether the elbow joint flexes or extends during motion of the arm)
turned out to be useful for discriminating pushes and pulls. It was arrived at by considering
the x-schematic grounding of those verbs, and solves some difficulties with previous analyses
involving solely external properties such as center of mass and direction of motion. More
generally, it is hoped that the model offers a concrete scientific language in which one
can express neurally plausible representations of events—including motor actions but also
less bodily grounded kinds of events—in a way which permits analysis, comparison, and

integration into models of learning and processing.
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9.3 Some Objections Considered

Many potential objections have been considered in the preceding chapters. This

section briefly considers a few remaining issues.

e What if some languages code for smooth (or finer-grained) coordination of synergies

rather than just the discrete kinds of coordination expressible in Petri nets?

The current x-schema formalism can partially accomplish smooth coordination by
introducing rate parameters. Then, two synergies can be smoothly coordinated by
passing this rate parameter to both of them. Fine-grained coordination can always be
implemented by introducing new (and otherwise unmotivated) triggering conditions.
For example, if it proves important to capture the idea of preshaping the hand exactly
when it has travelled halfway to the target object, one could add a new place to the
Petri net which receives a token when the arm has travelled halfway. This place would
then serve as the precondition for the preshape synergy. Both of these techniques are
ad hoc. If they should prove to be necessary very often, it would be a sign that the

underlying formalism should be changed.

e [sn’t model merging a greedy algorithm subject to local minima?

Yes. The effect is mitigated, however, by the nature of the merging approach. Since
it is possible to accumulate a number of training examples before merging occurs,
the likelihood of making premature commitments is reduced. Of course, storing these
examples requires memory. Fortunately, in practice, collecting even relatively small
numbers of examples (e.g. a dozen) between merging episodes seems to overcome local
minima, and so we needn’t posit cognitively implausible memory capacity in order to

avoid local minima.

Nevertheless, it would be trivial to add backtracking to the merging process. But this
would come at quite a price in terms of runtime complexity, since the algorithm would

lose its monotonic character.
e Why should words be represented by distinct senses as opposed to some sort of con-
tinuum?

For one thing, Lakoff (1987) convincingly shows how categories exhibit structure,

including multiple senses and the relations between them. However, since I haven’t
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modelled such inter-sense relations in this thesis, the question remains. The answer,
I believe, is that separate representations of each sense is one of only two ways to
capture multiple sets of correlations amongst features in a way which allows retrieval
of the features given the category. The other way is to use a basin-of-attraction
approach as seen with Hopfield nets (Hopfield 1982). However, such a net would
require iterative activity in order to “settle” upon a prototype, which is probably too

slow to be cognitively plausible.

e Isn’t there more to action verbs than motor control?

To more fully capture the (concrete) uses of these words, I think the next important
step is to look at planning, e.g. Levison (1995). It is possible that higher-level x-
schemas can be used to seamlessly integrate motor control with some sort of reactive

planner, but I have done no work in this direction.

e What about qualia, i.e. what it “feels like” to push something?

The model offers no clues on this perplexing philosophical problem.

9.4 New Questions

As any cognitive model should, our verb acquisition model suggests a number of
questions for cognitive science. Some important ones have been discussed already, including:
how to explicitly represent the image-schematic transformations which link the multiple
prototypes of a radial category (§5.5.2), how to improve learning by recognizing contrast
sets within the lexicon (§6.5), and how to extend the model to learn constructions (§7.4).
This section discusses some others. I don’t have the answers to these questions—I want to

convince others to go and find them!

9.4.1 Classifiers

Let’s start with a fairly specific but intriguing issue. We have seen how hand
posture has proven to be an important determinant in a number of verbs and how it relates
to x-schema activity. But hand posture (and motor behavior more generally) might have

implications beyond verbs. In particular, many languages employ classifiers which must be
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attached to nouns. A small number of classifiers are used for all objects. Generally, linguists
have sought to characterize the semantics of object classifiers in terms of geometry, such as
“long thin object”. The question then arises, why those geometric abstractions? Perhaps
the choice of abstractions can be better understood by examining how classifiers correlate
with the motor activities involved in manipulating the objects. Perhaps “long thin object”
should be better thought of as “objects held with a prismatic grasp”; other classifiers may
correspond to power grasps vs. precision grasps. Even if this perspective does not lead to
any cleaner a description of the classifier categories, it could serve as an explanation for

them.

9.4.2 Reversatives

Reversatives present an intriguing challenge to the model. Consider the English
prefix un-. Why can we form verbs like unzip and unbutton, while others like unpush or
ungrasp are impossible? Perhaps some kind of account could be developed in terms of

x-schemas.

One such hypothesis would be that the semantics of un- fundamentally involves
the reversal of an x-schema which involves attainment of a goal state. Put another way,
only resultative root verbs can take the un- prefix. Exploring the meaning of this claim in
terms of our model would involve formulating a precise definition of resultatives in terms of
patterns of x-schema execution. The abstract x-schematic aspectual model of Narayanan
(1996 )—which includes a state for achievement of a result—may be a starting point for such

an analysis.

To carry this idea forward (pun intended), one would need to build x-schemas
which allow bidirectional execution, which might well require extensions to the current
formalism. Yet it seems to be within the spirit of the representation. First, though, it
would be prudent to investigate how reversatives work in other languages. In the West
African language Wolof, for instance, there is a common reversative suffix which seems to
be more productive than English un-. For example, the sufflix is applied to the “put” verb

(teg) to form the “get” verb (tiggi) (Kevin Moore, personal communication).
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9.4.3 Speech acts

Another area of inquiry involves speech acts. To make our task feasible we have
simplified reality in many ways. In focusing on what kinds of actions a verb can refer to,
we’ve ignored why the child might choose to communicate something about his actions at
all. It is unclear how the model would change if we were to take into account motivations
to communicate. For example, perhaps words uttered before carrying out an action are
intended to declare goals, while verbs uttered during an action tend to comment on manner.
If so, this fact is a candidate for pre-wiring into the model to aid learning. Another example:
the present model has no built-in knowledge of the Gricean principle that one generally
aims to communicate information which is unlikely to be shared by the listener (Grice
1975). Incorporating expectations about the listener’s knowledge would affect the LABEL

algorithm in ways which would be interesting to investigate.

9.4.4 Probabilistic linking f-structs

As discussed in §8.6, a verb may correlate with a given feature without necessarily
specifying only one possible value for that feature. For example, lift may encode force
= low or med while heave may encode force = med or high—clearly the verbs differ on
this feature. Yet, since neither verb codes strongly for a single force value, it’s possible that
force will be left unset when the system obeys a [ift or heave command. The difficulty lies
in the fact that in the current model, each feature in the linking f-struct can be set to only
one value, and so obeying a command requires making an all-or-none decision whether to set
each feature. This decision is based on whether the word sense codes for the feature with a
peakedness exceeding the threshold MinSetFeature. As aresult, the model is very sensitive
to this threshold, often erring on one side or the other. Sometimes it leaves features unset,
ignoring significant correlations. Other times, it sets too many non-obligatory features,

overly constraining x-schema execution, possibly to the point of causing execution failure.

The model could therefore be improved by allowing the linking f-struct—the sole
interface between language and action—to be probabilistic itself. By doing so, the all-or-
none decision described above would be unnecessary. Furthermore, x-schemas would have
an indication of the strength of commitment to the given feature settings required by the

command. So, for the above example, when the LirT x-schema discovers the object is too
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heavy to lift with force = low, it would know whether and how much it could increase the

force and still comply with the command.

9.4.5 X-schema learning

Let’s turn now to a larger issue: x-schema learning. Our model has assumed that
a set of x-schemas exists prior to verb acquisition and does not change during acquisition.
Now one obvious avenue of inquiry is how x-schemas are acquired in the first place. While
some simple ones are probably innate, others are obviously learned from experience. The
appropriate learning paradigm is probably reinforcement learning, except for those cases
where a parent shows the child the reasons for his failures. The acquisition of stateful
action policies like x-schemas—rather than simple world-state-to-action maps—is as yet an

unsolved problem.

But another aspect of the x-schema learning story is how the learning process might
interact with language learning. First, one could try to model the effects of ongoing motor
development during language learning (e.g. Gopnik (1981)). More speculatively, perhaps
the very labelling of multiple types of actions (a push, a pull, alift, etc.) with the verb move
might trigger the creation of a new higher-level MOVE x-schema which selects one of the
more specific x-schemas based on world state. Or, perhaps two x-schemas sharing the same
label might be merged into one, thereby sharing substructures for handling contingencies,
etc. In either case the result may be that the child may become more flexible in choosing
actions even in purely non-linguistic settings. Such learning would be an incarnation of the

(very controversial) Sapir-Whorf hypothesis (Whorf 1956).

9.4.6 Integrating x-schemas with image schemas

In Chapter 7 we presented a simple model capable of combining prepositions with
verbs. In that chapter, the semantics of spatial terms were modelled using the same motoric
features used for verbs. In some cases, such as push left or pull up, this proved adequate.
However, spatial terms cannot always be reduced simply to motoric features. Work in
cognitive linguistics (Lakoff 1987) points to the need for “image schemas” for representing
spatial relationships. For example, to handle push around or lift through, we really need

an image-schematic representation of the desired path of motion. Connectionist models of
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image schemas (Regier 1996) differ from our x-schema representation substantially, and it is
an open question how to combine them—that is, how to translate an image schema into the
necessary motor parameters. More generally, it is unclear exactly what types of reasoning
should be performed down at the schema level as opposed to up at the feature level where

standard artificial intelligence techniques can be applied.

Chang (1997) has begun investigation into related issues in a study of the compo-
sitional semantics of aspect. Since its essence is event structure, aspect is quite amenable
to an x-schematic analysis, and often the relevant x-schemas are contributed by verbs. But
aspect depends on the arguments of verbs as well, and the semantic contribution of these
arguments can be image-schematic. For example, compare wash the cart, which can be
read as either perfective or imperfective, with push the cart, which is most naturally read
as imperfective.l It is the details of how the Pusi and WASH x-schemas interact with the
direct object cart that account for this difference. Namely, in the context of the Pusu
x-schema, the cart does not furnish a goal location. But by appending an additional ar-
gument, as in push the cart to the store, a perfective reading can be obtained. Here the
image-schematic content of the phrase to the store comes into play by suggesting a path

from source to goal.

In general, image schemas must “unfold” in coordination with x-schema execution.
Perhaps the solution lies in identifying key events in dynamic image schemas, such as “enter”
or “cross”. Then, dynamic image schemas could be modelled with Petri nets in which these

key events correspond to transitions.

9.5 X-Schemas for Abstract Thought

Of all the domains of human experience, why have we chosen to investigate motor
activity? The choice is not random. As was mentioned back in §2.2, Lakoff & Johnson
(1980) have shown that embodied concepts very often provide the grounding for more
abstract concepts, for example via conceptual metaphor. And so the hope is that our x-
schema representation might ultimately explain much more than how people communicate

about hand actions. Here are some examples of how.

! A standard test for the imperfective reading is the acceptability of appending for an hour to the phrase;
similarly, appending in an hour tests for the perfective reading. Either is acceptable with wash the cart, but
only for an hour works with push the cart.
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Active representations like x-schemas, while possibly originating in very concrete
motor activity, also have advantages for general knowledge representation, especially for
reasoning about processes. Suppose that the child were to notice certain patterns in his
motor schemas. He may then create a new, abstract x-schema which reflects this structure.
Such an abstract x-schema would represent the notion that actions must be enabled, may be
cancelled, usually proceed, are sometimes interrupted and sometimes complete. Narayanan
(1996) has designed such an abstract x-schema and shown convincingly that the linguistic
phenomenon of “aspect” (i.e. the distinction between had fallen, has fallen, was falling, etc.)

can be explained in terms of the activity of such an x-schema.

But simple abstraction is only one way in which motor representations can be
brought to bear on non-motor domains of reasoning. Metaphor is another. Consider the

following English phrases, none of which refers to actual hand actions:

grasp an idea get a grip on reality grapple with a problem
hold that thought slip my mind just drop the idea

let the issue go put someone down hit on an idea

push an idea (drug pusher) reach a conclusion pull for a candidate
offhand remark out of hand situation pick up on a fact
gripping movie it’s a pushover pressing business

pull off a stunt carry on heavy-handed tactics

Narayanan (1997) presents a model in which metaphorical expressions such as these
are understood via conceptual mappings between a “target domain” (such as thinking or
politicking) represented by features, and a “source domain” (motor actions) represented by
x-schemas. In a nutshell, a metaphorical sentence is understood by invoking an appropriate
metaphor, mentally executing the x-schema referred to by the metaphor, and then using the
mapping again to propagate the results of the mental execution back into the target domain.
Especially for complex process-oriented source domain mappings, the active nature of the
x-schema representation can provide much more efficient reasoning than re-representing the
x-schematic knowledge in a logical form in the target domain. The model is particularly
convincing for the case of novel metaphors, which are often understood immediately, and for
which one cannot argue for the existence of a separate target domain sense of the relevant

words.

The Petri net formalism can prove a useful modelling tool even in domains where
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one does not consider the eventual mapping down to motor activity. Dean Grannes has
investigated using Petri nets to encode the semantics of the ditransitive construction, which
connotes transfer. (For example, in John baked Mary a cake, it is the grammatical struc-
ture, not the verb bake or any of the other words, which indicates that the cake has been
given to someone.) As argued in Goldberg (1995: Chapter 2), the ditransitive can be con-
sidered a radial category with separate senses for different (but related) types of transfer.
Grannes used Petri net places to represent predicates involving possession, existence, inten-
tion, motion and obligation, and Petri net transitions to represent the modifications of these
predicates coded for by various action verbs and by the different senses of the ditransitive
construction itself. The result is a simple model which can determine the applicability and
semantic entailments of a range of usages of the ditransitive with action verbs. In a similar
vein Jonathan Segal has attempted to represent the semantics of modals (help, hinder, let,

etc.) using a Petri net representation of force dynamics.

If x-schemas are ultimately to be linked up with logical reasoning, we’ll need a
neural account of how that can be done. At the core of logical reasoning lies the notion
of variable binding, a traditionally difficult task for neural models. Shastri & Ajjanagadde
(1993) has proposed a clever solution which relies upon temporal synchrony. In §3.3.2 we
sketched out how this temporal binding mechanism can support an interface to x-schema

execution, but more work needs to be done.

9.6 The Real World

This thesis has been an exercise in basic science. Yet when wrapping up a piece of
work such as this, one can’t help but think about how it might eventually benefit the “real

world”. I'll conclude, therefore, with a brief and very speculative peek into the crystal ball.

One area is robotics, where space and action take center stage. For instance,
telerobotics, which traditionally involves controlling a remote robot via a visuo-motor loop,
could benefit in some circumstances from a natural language interface because it allows a
higher level of control. In a similar vein, programming industrial robots (e.g. for factory
assembly) could become accessible to non-experts if it could be done in natural language,

making flexibility more practical.

Looking much further out to the future, enormous medical benefits could result
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from a better understanding of how cognition is realized in the brain. Models such as ours
may serve to nudge the field of computational neuroscience in a direction leading toward an
understanding of language learning in which, for example, an overgeneralization syndrome
might suggest a drug treatment to adjust the level of a certain neurotransmitter. We’ll just

have to see.
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Appendix A

(Guide to the VerbLearn Software
System

This appendix describes the software system (creatively named “VerbLearn”)
which instantiates the model developed in this thesis. It is intended primarily as an overview
of the implementation work done in support of the dissertation. However, it also serves as
a (rather brief) user’s manual, and a guide to the source code which is an interesting
case study in the use of object-oriented design. The learning code is written in the new
object-oriented language Java, and is available to be inspected (or executed!) at the URL

http://www.icsi.berkeley.edu/ dbailey/verblearn.

An important note: This appendix describes functionality involving the Jack sim-
ulator. While the VerbLearn system is in many ways “Jack-ready”, the simulator has not
yet been interfaced to the system. Therefore, the reader should be aware that, wherever

Jack is involved, the described functionality is not yet available for use.

A.1 Data Files

The home directory of the VerbLearn system contains a number of subdirectories

which hold the data files needed to run the system.

The scenario/ subdirectory contains the specification of the collection of sce-

narios which drive training and testing. The top-level specification of scenarios is held in
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scenario/specs. For each scenario which will be supported by the Jack simulator (called
“grounded” scenarios), we specify the scenario name (arbitrary) followed by the name of a
Jack environment file and an initial goal f-struct. The Jack environment files are held in
the scenario/env/ subdirectory. A collection of named initial goal f-structs is held in the
scenario/goals file. In order to facilitate experimentation with the learning algorithm,
the system allows specification of “ungrounded” scenarios in the specs file. These consist
of the scenario name followed by two f-structs; the first specifies the initial world state, and

the second specifies the final linking f-struct. Here’s a sample scenario set specification file:

// Grounded scenarios:

gscl cube_hand_off slideflex
gsc2 cube_hand_touching slideflexslow
gsc3 button_hand_off depress

// Ungrounded scenarios:

uscl {size=large} {size=large schema=slide posture=palm force=med}
usc2 {size=large} {size=large schema=slide posture=palm force=high}
usc3  {size=large} {size=large schema=slide posture=palm force=med}
usc4 {size=large} {size=large schema=slide posture=palm force=high}
uscb  {size=small} {size=small schema=slide posture=grasp force=med}

The structure of the Jack environment files is determined by the Jack system and
is not discussed here. The goals file consists of a list of goal names (arbitrary), each followed
by an f-struct which specifies a minimal set of features needed to generate an action when
passed to Jack. It should therefore specify an x-schema name and any required parameters.

Here is a sample goals file:

// Goals

slideflex {schema=slide elbow=flex}
slideflexslow {schema=slide elbow=flex force=low}
depress {schema=depress}

When the VerbLearn system is run (see below), additional information about each
grounded scenario will be generated, including the initial world-state f-struct and the fi-
nal linking f-struct. The collection of these is stored in the files scenario/initial and
scenario/final. Each file consists of a set of pairs, where each pair contains a scenario

name and an f-struct. Here’s a sample final linking f-struct file:
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// Final links

scl {size=large
sc2 {size=large
sc3  {size=large
sc4 {size=large
scb  {size=small
sc6 {size=small

A movie of the action is also created and stored in the file scenario/movie/<scenario-

name>.

schema=slide posture=palm force=med elbow=extend}
schema=slide posture=palm force=high elbow=extend}
schema=slide posture=palm force=med elbow=extend}
schema=slide posture=palm force=high elbow=extend}
schema=slide posture=grasp force=med elbow=extend}
schema=slide posture=grasp force=high elbow=extend}

The param/ directory holds a collection of parameter files, each of which specifies

values for each of the algorithm parameters and lists the motor and world-state linking

features to use for learning. Here is an example parameter file:

// Default parameters

MinLabel
MinExplain
MinInterpret
MinSetFeature
MinMerge
ModelPriorWeight
BatchSize
TrainingPasses
AdaptVirtuals
VirtualInertia
MaxVirtual
VerboseSenses
TestRecognition

MotorFeatures {
schema
posture
elbow
force
aspect

}

WorldFeatures {
size
contact

(=N ¢ B¢ BN ]

0
0
0.
2
0
1

10

1
true
50

10
true
false

0.05 {slide 1ift depress}
{grasp palm wrap}
{flex extend fixed}
{low med high}

.5 {once twice many}

= e e

1 {small med large}
1 {true false}

A few further notes on this file. First, VerboseSenses and TestRecognition are

not true algorithm parameters, but are simply software control switches. VerboseSenses

controls how word senses are printed during training and inspection of the lexicon. If

true, full probability distributions are shown; if false, the system shows just the (non-

probabilistic) f-struct containing the mode value for each feature (so long as its probability
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exceeds MinSetFeature). TestRecognition, if set to true, will perform a recognition test
and report the percent correct after every merge during training. Next, in the list of motor
and world-state linking features, note the numbers listed between each feature name and
its list of possible values. These are the number of virtual samples to use for each possible
value in the feature’s probability distribution, when creating a new word sense. Lastly, note
that you cannot usefully add novel features to the model by merely inserting them into this
file. The appropriate changes would need to be made to the x-schema code to utilize (and

set) the new features.

The full set of scenarios can be divided into training, recognition-test, and obey-
test sets in different ways. This is done by creating multiple “dataset files” in the dataset/
directory. It is also legal for a dataset to omit some scenarios entirely. Here is a sample

dataset file:

// Dataset

train {sc1 sc2 sc3 scd4 scb sc6 sc7 sc8 sc9 scl0}
recognize {scll sc12 sc13 scl14}

obey {sc15 sc16}

A.2 Running the System

A.2.1 The main program

The VerbLearn system may be run as a Java applet over the Internet via the URL
mentioned earlier. Or, if you have your own local copy of the system, you may run it by
setting your current directory to the java/class/ subdirectory and then invoking the Java

interpreter with the classname VerbLearn as its only argument.

Once running, VerbLearn presents the user with a HyperCard-like interface; i.e.
it consists of a number of windows only one of which is shown at a time and which are
selectable by a row of buttons across the top. We will now go through the windows and

their functionality.

The Generate Window is used when changes have been made in the specification
of the scenario set. It is used to request Jack execution of some of the defined scenarios
(by default just the unexecuted ones, but you may choose any or all of the Jack-grounded

scenarios if you like). When such an execution is performed, the initial Jack environment
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and the goal f-struct are read and passed to Jack. Jack then computes the initial world-state
linking f-struct, carries out the specified action, and finally returns the initial world-state
f-struct, the final full linking f-struct, and a movie file and these are added to the scenario
set. Once this procedure has been applied to a given scenario, it may then be used for

training or testing the model.

The Label Window is used to collect labels for scenarios for a given language. In
this window one first indicates which language to collect labels for, and then which scenarios
to label (by default all the unlabelled ones, but you may choose any or all of the executed or
ungrounded scenarios if you like). During labelling, each scenario is dealt with in turn, by
showing either its movie (if grounded) or its final linking f-struct (if ungrounded). A pop-up
window then prompts for a label. Multi-word labels are specified with a dash separating

the words, and these dashes are required even if some of the slots are to be left unlabelled.

Finally, with a collection of executed and labelled scenarios, we may proceed to
the Training Window. Here, we specify a language along with a parameter file and dataset
file. Also we specify an initial lexicon to use, normally “Empty” unless you wish to modify
a previously trained lexicon. The results of training are shown in the log subwindow, which
may be saved to disk. The current parameters and dataset may be inspected or modified
by clicking on the corresponding “View/Edit” buttons. If retraining, be sure to reset the

lexicon by again choosing the “Empty” lexicon setting.

Once training is complete, the resulting lexicon may be inspected in the Lexicon
Inspection Window. There, the upper subwindow shows the virtual sample values for each
slot (only interesting if adaptation of the virtual samples was turned on during training).
The lower subwindow shows the collection of senses for any word in the lexicon, by clicking
on the button for that word. The buttons are arranged in separate columns for each slot
in the lexicon. The “Change format” button can be used to switch between viewing full
probability distributions or simple f-structs for each word sense. This window is shown in

Figure A.1.

The Recognize Window is used to test the lexicon against the recognition test set
defined by the dataset chosen on the Training Window. For each test case, the desired
and actual labels are shown in the log window. Errors are flagged and the ratio of correct
cases is shown. Optionally you may choose to test recognition on a selected set of scenarios

and you will then receive a more detailed description of the labelling process for each one,
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|OMain ||OGenerate ||OLabeI ||0Train ||®Lexicon ||ORecognize ||00bey ||I:|Guit |

|Lexicon Inspection Window ‘

|Current language and # of slots: Englishl |

Lexicon highprior_B6-33 (22 senses):
Slat 0 virtuals: size=1.0 elongated=1.0 depressible=1.0 contact=1.0 schema=0.25 posture=1.0 elbow=1.0 force=1

¥

[hodel for push (2 senses):

push30 (19 ex) {

size {small=0476 large=0.523}

elongated {true=0.523 false=0.476}

depressible {true=0.047 false=0.952}

contact {true=0.238 false=0.761}

schema {slide=0.851 lit=0.012 rotate=0.012 depress=0.012 touch=0111}
posture {grasp=0.36 wrap=0.04 pinch=0.04 palm=048 platform=0.04 index=0.0
albow {flex=0.045 extend=0.818 fixed=0.136}

force {low=0.227 med=0.3 high=0.272}

accel {zero=0.043 low=0.260 med=0.521 high=0.173}

dir {avray=0.6 tovward=0.04 up=0.04 down=0.04 left=0.2 right=0.08}
aspect {once=0.761 iterated=0.235}

dur {short=0.409 med=0.227 long=0.363}

pushdd (7 ex) {

size {small=0.777 large=0.222}
elongated {true=0.111 false=0.555}
depressible {true=0.058 false=0.111}
contact {true=0.111 false=0.855}
schema {slide=0.030 lift=0.0:30 rotate=0.030 depress=0.678 touch=0.030}
posture {grasp=0.076 wrap=0.076 pinch=0.076 palm=0.076 platiorm=0.076 inc
elbow {flex=0.333 extend=0.333 fixed=0.333}

|| Toggle Werbosity || || Save Text Version of Lexicon... ||

Figure A.1: The VerbLearn software system, showing the Lexicon Inspection Window.
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including the posterior probabilities of each word sense in the lexicon.

Finally, the Obey Window is used to test the lexicon’s ability to obey verbal
commands. In one mode, it allows you to go through the current dataset’s obey test set,
evaluating each resulting linking f-struct by pushing it back through the recognizer and
comparing the emitted label to the original command. However, you may also choose to
have the Jack simulator animate the action resulting from the linking f-struct by selecting an

individual scenario and entering a command using the buttons in the upper right subwindow.

A.2.2 The scenario generator program

As described in §8.1, the set of scenarios used by the VerbLearn system can be
generated by a separate Generator program. This program can be invoked by setting your
current directory to the java/class/ subdirectory and invoking the Java interpreter with
the class name Generator, an initial scenario number, the total number of random scenarios
desired, and an optional constraint on the generated scenarios expressed as an f-struct of

the form ’featurel=valuel feature2=value2’. For example, the command

java Generator 100 10 ’schema=slide’

would create 10 scenarios, named sc100 through sc109, all of which involve the SLIDE

x-schema.

The scenario specifications are printed to the standard output (i.e. the screen).
In normal use, this output should be redirected to a file. This file can then replace, or be

appended to, the scenario/specs file.

A.3 Code Overview

This section provides a brief overview of the implementation of the VerbLearn
system. The linguistic component of the model—feature structures and model merging—is
coded in Java, and is described first. The partially-completed Jack setup to implement

x-schemas is then described.



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 191

A.3.1 Java Code

The Java source code for the VerbLearn system is contained in the java/ subdirec-

tory of the system, in three key files: Lexicon. java, Context.java and VerbLearn. java.

Lexicon. java contains the core algorithms of the model. They are organized in a
hierarchy of classes which reflects the structure of the model’s representations. At the top
level we have the Lexicon class, which supports the incorporation of new training instances,
the labelling of f-structs, and the interpretation of commands. It is essentially composed of
an array of Slot objects, and its routines for the most part are concerned with integrating
information across slots. For example, this class is responsible for assembling a multi-
word label by filling the best slot first, and is responsible for resolving conflicts between
words in a multi-word command. The Slot class implements the same three functions. A
Slot contains a set of Word objects as well as a table with the number of virtual samples
to use for each feature in a new word sense (and so the code for adapting the virtual
samples to reflect already-learned words is found here). A Word object contains a collection
of Sense objects and the major part of the model merging algorithm therefore occurs in
this class. It is necessary for this class to keep track of all training examples ascribed to
the word since it must compute the dataset likelihood during merging. While the Word
class supports both labelling and obeying, it does so with a single routine which takes an
Fstruct and returns a tuple containing the best-matching Sense along with the probability
of the Fstruct given that Sense. During labelling, this routine is given the final linking
Fstruct and we care only about the resulting probability. During obeying, it is given the
initial world-state Fstruct and it then essentially returns the most compatible Sense. The
Sense class represents a probabilistic feature structure. It has routines for creating initial
senses, merging and measuring similarity to other Senses, but these routines are essentially
loops over the Dist objects which represent the probability distributions for each feature.
This Dist class implements arbitrary discrete distributions by keeping frequency counts of
possible values as well as “virtual” counts. It implements measures of peakedness as well
as similarity to other Dists, as well as merging by summing counts. Finally, the Fstruct
class implements non-probabilistic feature structures and its only non-trivial routine is to

create an Fstruct from an array of Senses, which is used in multi-word obeying.

As you can see, each of the algorithms presented in Chapter 5 and Chapter 6 are
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in fact distributed over several classes. While this has an obvious downside (especially when
trying to present the algorithms in a non-object-oriented manner as done in those chapters),
it has proven quite natural for iterative refinement of the code, since all the routines that
operate at a given “level” are grouped together. For example, extending the model to handle
multiple slots involved only writing the Slot class and changing the Lexicon class to handle
an array of slots. Similarly, adding new probability distribution types (such as Gaussians)

would involve little more than adding new classes with the same interface as Dist.

Context.java implements classes which support the core classes” need for data
management. Most important is the Context object itself, which holds pointers to the
scenario set, current language, number of slots, Params, Dataset and Lexicon, and en-
sures that they (and their GUI manifestations) are kept in synchronization. The Scenario
class holds the various parts of a scenario as discussed in §A.1 and offers routines to de-
termine the scenario type (grounded, unlabelled, etc.). The collection of them is managed
by the ScenarioSet, which is largely concerned with disk file reading and writing. The
Param class manages algorithm parameters, their modification and reading/writing them
to disk. Dataset does similarly for the train and test sets. Finally, several smaller classes
(VerbComplex, CandidateSense and CandidateMerge) are essentially just strongly typed

tuples used in the core classes.

VerbLearn. java assembles all the above into a working application program or
applet. The VerbLearn class provides the entry point for both the application and applet
methods of invoking the system, sets up the GUI generally, and holds the Context as a
static variable for easy access by all other classes in the system. Separate classes then are
employed to set up each of the windows of the program, and these classes hold the top-level
loops for each of the major functions of the system. For example, the TrainPanel class
contains a train() routine which loops through the training set instructing the Lexicon
to incorporate each example. Lastly, some of the GUI components repeated on several

windows are implemented as separate classes, such as the LangChoice component.

In addition to these files, Jack.java contains several utility classes to allow a
VerbLearn application running on one machine to invoke and interact with a Jack process on
another machine. This involves a socket connection with a protocol for atomic transmittal
of strings. Finally, Utilities.java defines a number of general utility classes—the Java

library is still very young and sometimes needs a little help.
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The Generator program is contained in the file Generator. java, which defines the
single class Generator. The code in this class reads the parameter file param/default to
determine the set of linking features and their possible values. Random f-structs are then
generated. The most important function in this class is fix0rReject (), which is responsible
for reducing the chances of emitting nonsensical f-structs. This is accomplished through a
combination of: modifications of feature values; unsetting of features; and outright rejection
of some f-structs. This routine is the only place in the Java code of the VerbLearn system
which “knows” about the meanings of the linking features. For instance, fix0rReject()
will reject an f-struct which specifies a high force and a small size object, yet only a
low acceleration. Note that if new features are added to the system by inserting them
into the param/default file, you may need to modify this routine to ensure that the new
features interact sensibly with the previously existing features when generating your new

scenarios.

A.3.2 Jack Lisp Code

Schemas are implemented in Lisp, because this allows them to utilize some code
prepackaged with the Jack system which facilitates coordination of parallel and sequential
actions. These so-called “parallel transition networks” are related to Petri nets although

more powerful in general. The code for x-schemas is found in the schema/ directory.

Some support code for executing x-schemas in Jack is contained in the jack/
subdirectory of the VerbLearn home directory. Some of these are .jcl (“Jack Command
Language”) files for initializing the system, while others are .fig files which define the

objects used in our environment (such as the cube).

While the actual implementation of x-schemas in Jack Lisp does not precisely fol-
low the Petri net structure, an earlier implementation of x-schemas in the parallel language
pSather (Stoutamire 1995) did follow the formalism more closely. Places and transitions
were each implemented as a class. FEach primitive synergy was encapsulated in its own
class, as a subtype of Action, and each transition contained such an object. Parallelism
was achieved by running each transition as a separate thread, whose basic behavior was to
block until a token was present at each input place, then remove the tokens, tell its Action

object to execute, and repeat. While the pSather language already had facilities for block-
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ing on conditions such as presence of a token, it was necessary to extend the language to
allow blocking atomically on an array of such conditions, since transitions have a variable
number of inputs not known at compile time. While the parallel implementation allowed
clean expression of concurrency, it did render “simple” chores like resetting an x-schema

quite challenging.
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