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1
Chapter 1Overview \Of the above possible �elds the learning of languages wouldbe the most impressive, since it is the most human of theseactivities. This �eld seems however to depend rather toomuch on sense organs and locomotion to be feasible."|Alan Turing, 1948How do children learn to use verbs such as push and pull? They are able to doso after hearing just a few examples, even though di�erent languages classify actions quitedi�erently. The answer to this tantalizing question, we believe, is that the common substrateof the human motor control system drives children's rapid yet 
exible acquisition of thelexicon of action verbs in their native language. This hypothesis is explored by building acomputational model of motor control and word learning, and testing its acquisition of therelevant vocabulary from a range of the world's languages.As an interdisciplinary endeavor this dissertation addresses a wide audience, rang-ing from the arti�cial intelligence community to linguists, psychologists and neurobiologists.Accordingly, the material has been organized so that each chapter fully discusses one aspectof the model, including motivation, representations and algorithms, connectionist account,cognitive implications, limitations and extensions. For the sake of the computer scien-tist who wishes to cut to the chase, the core implemented computational ideas are alwaysgrouped into a single block within each chapter (usually in a single section). Machinelearning experts may wish to skip directly to Chapter 6 and Chapter 8.Chapter 2 begins by motivating the verb acquisition problem in detail. We seethat the English vocabulary for hand actions is quite rich, and furthermore that other



CHAPTER 1. OVERVIEW 2
Linking feature structure

Verbs

Labelling

Feature
Extraction

Execution
Guidance
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Motor Actions (X−Schemas)

Obeying

Figure 1.1: Top-level architecture of the verb learning model.languages of the world classify hand actions in signi�cantly di�erent ways. In that chapterwe present our philosophical stance toward the question of how children deal with thisvariety: bodily grounding of semantics constrains possible meanings. In this framework wepose a speci�c computational task: Given a set of pairings of actions and verbs, learn thebidirectional mapping between the two so that future actions can be labelled and futurecommands can be acted out.Figure 1.1 shows the architecture of our cognitive and computational model ofaction verb acquisition. As does the dissertation as a whole, the overview will proceed\bottom-up" through this diagram, and then move on to learning. For concreteness, asimpli�ed running example will be developed during the overview.Given the command-obeying component of the task, it is obvious that our so-lution must include an active motor control mechanism, not just passive descriptions ofactions. Chapter 3 presents executing schemas (x-schemas for short, shown at bottom ofFigure 1.1), our model of high-level motor control, where synchronization and parameter-



CHAPTER 1. OVERVIEW 3ization of lower-level motor synergies are the key issues. Consequently, the model makesthe strong claim that details of lower-level motor control are not linguistically relevant.X-schemas are described using the Petri net formalism (Murata 1989), allowing naturalexpression of concurrency and asynchrony. Generally there is a 1-to-1 mapping betweenx-schemas and goals. X-schemas for a variety of object manipulation tasks such as slidingand lifting are developed. For example:Example: A very simple x-schema for sliding an object on a tabletop mightlook like this:
start

Slide

PALM

GRASP

(dir, force)
MOVE doneThis x-schema begins by either grasping the object or placing the palmagainst it, and then proceeds to move it in a given direction with a givenforce.Interfacing the execution of these x-schemas to language (bidirectionally) is ac-complished by a set of special features called the linking feature-structure (linking f-structfor short, shown in center of Figure 1.1), described in Chapter 4. The linking f-structessentially summarizes the execution of an x-schema as a collection of features. A key con-sequence of the overall architecture is that all linguistically relevant aspects of x-schemasmust be represented in these features, which play the crucial role of further restricting thehypothesis space so as to render verb learning tractable (in terms of both computation timeand the number of training examples needed). In particular, the summarizing nature of thelinking f-struct allows the verb learning algorithm to avoid dealing directly with the time-varying activity of x-schemas. Linking features include the name of the executed x-schema(indicating intention), parameters such as force or direction, control 
ow patterns such asloop repetition, and perceptual information necessary to guide action. For example:



CHAPTER 1. OVERVIEW 4Example: Linking features, derived from our example x-schema and otherslike it, might include the following:
schema

slide, depress palm, grasp,
index up, down

low, med, high

forcedirectionposture

away, toward,Each column represents a feature. The upper box names the feature, andthe lower box lists possible values. Note that features can range from thex-schema name, to choices of hand posture, to parameters of the primitivesynergies such as direction and force.Next we turn to the semantic representation of verbs, the topic of Chapter 5.Since the model must be able to re-create appropriate actions for a given verb, we cannotjust represent the minimal abstractions needed to distinguish one verb from another. Ratherwe need to capture a richer \gestalt" representation, which is accomplished by a conjunctionof linking features called a word sense f-struct. In a word sense f-struct each feature canbe associated with multiple possible values, with varying strengths of association. Thispermits graded judgments and hence an ability to generalize. By treating these degrees ofassociation as probabilities, well-known statistical techniques can be brought to bear on theproblem. Sometimes, the uses of a verb are too varied to sensibly encode as a single (albeitprobabilistic) conjunct. For these cases, we employ multiple senses for a single word, asshown at the top of Figure 1.1. Labelling an action involves choosing the word sense f-structwhich most closely matches the linking f-struct resulting from the action, and emitting thecorresponding verb. Conversely, obeying a command involves choosing, for the given verb, aword sense f-struct whose features �t best with the current world state, and then copying theword sense f-struct's features into the linking f-struct in order to guide x-schema execution.Chapter 5 evaluates this model with respect to notions of human categorization includingprototype e�ects, basic-level e�ects and radial categorization. An example of the word senserepresentation follows:



CHAPTER 1. OVERVIEW 5Example: Simpli�ed representations for some senses of the verbs push andpull might look like this:
schema posture direction

slide     100%

PULL:  1 sense

grasp      80%
palm       20%

index        0%
down       10%
up           10%
toward    70%

PUSH:  2 senses
sense 1

schema direction

sense 2

schema posture

slide      100%
touch     100%
slide          0%

touch        0% grasp     10%
palm      60%

index     30%

away       50%

down       30%

toward      5%
up           15% index     10%

grasp       5%
palm      85% low         10%

high         60%
med         30%

forceposture

away       10%

touch        0%In use, the �rst sense of push generates sliding actions which usually use thepalm but in a suitable context might use the index �nger, and which tend tobe directed away from the body or downward. The second sense generatesactions such as pushing on a wall, in which there is no motion but insteada steady application of medium to high force, almost always involving thepalm posture. The single pull sense shown here generates sliding actionstoward the body using a grasp. In recognition mode, an occurrence of one ofthese three prototypical actions would strongly activate the correspondingsense, leading to production of the appropriate verb. Other actions wouldweakly activate multiple senses, in which case a verb is produced only if thewinner's activation exceeds a threshold.Finally we arrive at the core of the dissertation: the learning algorithm. Sincemuch of the model's structure (namely the x-schemas and linking features) is speci�edbefore learning, the learning process involves only generating an appropriate set of wordsense f-structs given the data. Chapter 6 begins with a review of the lexical acquisitionliterature, from which three important constraints are taken: children learn to label theirown actions, do so with little negative evidence, and exhibit fast mapping (learning from asfew as one example). This leads to the choice of Bayesian model merging for our learningalgorithm. One key property of this statistical approach to achieving good generalizationability is the use of a Bayesian criterion which explicitly speci�es the trade-o� between(1) a preference for a small number of word senses, and (2) the ability of a larger numberof senses to more accurately represent the training data. Another key property of modelmerging is that it captures \fast mapping" because new words are immediately modelledby a word sense which essentially copies the training example.



CHAPTER 1. OVERVIEW 6Example: As instances of pushing and pulling occur, a new sense is initiallycreated for each, closely matching the instance. In accordance with theformulas presented in Chapter 6, similar senses are then merged until onlythe three senses described above remain. Their probability tables re
ectthe instances merged to form them. The two senses of push do not mergebecause if they did, important correlations|e.g. that sliding pushes oftenuse the index �nger posture but touching pushes rarely do|would be lost.A sketch of a connectionist network version of the model, including this learningmethod, is presented in parts of Chapters 3 through 6, though it is mostly unimplemented.Recruitment learning, conjunctive \triangle units" and winner-take-all connectivity providethe mechanisms needed to implement the model.Chapter 7 presents a way to extend the model to handle verb complexes, bywhich we mean a verb plus any in
ections, particles or auxiliaries which help to specify theaction. Essentially this involves grouping the word sense f-structs into separate slots foreach grammatical position, and extending the labelling and obeying algorithms to executewithin each slot. When a verb complex is given as a command and its component wordsspecify con
icting feature values, the word with the more selective probability distributionis preferred. Interestingly, the learning algorithm can remain unchanged. However, a usefulheuristic is implemented to encourage the system to learn the typically relevant features ineach slot to speed learning of new words.Example: Assume we have several x-schemas for moving objects like theSlide x-schema described earlier, and we label actions with two words: averb and a directional modi�er. The resulting representation for a modi�erlike up might look like this:
schema posture direction

away         0%
toward      0%

UP:  1 sense

slide       10%

index     30%
grasp     35%
palm      35%

down         0%
up         100%depress   10%. . .

touch      10%The word codes very selectively for the upward direction and hence willoverride any weaker directional correlations in verbs such as those shownearlier. Push up therefore generates an action directed upward, not away.The model has been tested on a variety of verbs from languages such as English,Farsi, and Russian. Chapter 8 surveys these results, �rst with English verbs and thencrosslinguistically. Sensitivity to the several learning parameters is discussed, as well as



CHAPTER 1. OVERVIEW 7some categories which are not learnable by the model.Finally, Chapter 9 discusses the implications of our model, addresses some objec-tions, points out new questions it raises, and discusses related e�orts applying the x-schemaformalism to other domains. We conclude with some thoughts on real world uses of thiswork.
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Chapter 2Setting the Stage2.1 A Crosslinguistic Conundrum . . . . . . . . . . . 82.2 It's the Body, Stupid! . . . . . . . . . . . . . . . 112.3 The Task in Detail . . . . . . . . . . . . . . . . . 142.4 A Connectionist Commitment . . . . . . . . . . . 162.5 Related E�orts . . . . . . . . . . . . . . . . . . . 17\It takes . . . a mind debauched by learning to carry theprocess of making the natural seem strange, so far as to askfor the why of any instinctive human act."|William JamesHistorically, most of the e�ort in analyzing language has focused on its generativecapacity|how words are combined|treating the meanings of individual words as a com-paratively simple problem. This chapter argues that the issue of lexical semantics is itselfsubtle enough to warrant computational modelling, and proposes a methodology for theparticular case of action verbs.2.1 A Crosslinguistic ConundrumHave you ever considered the verbs you use to describe actions you perform withyour hands? Many people are surprised by the number of such verbs, and the subtledistinctions they make. Consider the following list, which is far from complete:



CHAPTER 2. SETTING THE STAGE 9get, seize, snatch, grab, grasp, pick (up), take, hold, grip, clutch,put, place, lay, drop, slam, release, let go, move, push, pull, shove,yank, slide, bat, 
ick, tug, nudge, lift, raise, hoist, lower, pass over,lob, toss, throw, 
ing, whip, chuck, hit, tap, rap, bang, slap, press,poke, punch, rub, shake, pry, turn (over), 
ip (over), tip (over),rotate, spin, twirl, handle, squeeze, pinch, tie, twist, bend, bounce,scrape, scratch, scrub, smear, crush, smash, shatter, scatter, spread(out/on), cut, slice, clip, wipe, brush, grind, tighten, loosen, open,close, insert, remove, hook, hang, balance, peel, (un)wind, dunk,(un)zip, juggle, knead, dribble, scribble, hand, pass, salute, caress,fondle, pet, pat, stroke, wave, point, hide, stack, touch, feel, reach(for), stop, help, resist, try, bump, slip, knock (over/down)There are some gross distinctions in meaning (e.g. possession changes vs. objectmovement vs. object manipulation) but also considerable variation of a subtler kind whichdoesn't so easily admit qualitative characterization (e.g. grab vs. seize, or raise vs. lift vs.hoist, or 
ing vs. toss).How could children possibly learn all these �ne distinctions? Maybe all theseconcepts are already in the child's mind|either pre-wired, or as a result of maturation orexperience|before the child begins to learn language. If so, the verb learning task wouldamount to a game of mix-and-match between verbs and concepts|a comparatively easytask. This has been proposed by Nelson (1973).But we will argue in this thesis that this can't be the case. A few examples ofsome conceptual distinctions made in other languages of the world should convince you. Thefollowing examples are from our own informal crosslinguistic survey of languages includingTamil, Cantonese, Farsi, Spanish, Korean, Japanese and Arabic:� THALLU & ILU (Tamil): These correspond roughly to pushing and pulling; how-ever, they connote a sudden action as opposed to continuous application of force andsmooth movement. The only way to get this latter meaning is to su�x a directionalspeci�er. Thus there is no way to indicate smooth pushing in an arbitrary direction.� HOL-DAADAN & FESHAAR-DAADAN (Farsi): These correspond to twodi�erent senses of push. Hol-daadan refers to moving an object away from oneself. (Itis actually closer to shove as it implies high force; there is in fact no word for gentleor continuous pushing, other than the generic move verb with a directional speci�er.)



CHAPTER 2. SETTING THE STAGE 10In contrast, feshaar-daadan refers to applying steady pressure to an unmoving object,e.g. pushing on a wall.1� PULSAR & PRESIONAR (Spanish): These verbs correspond to English press,but they make a distinction based on hand posture. Pulsar refers to pressing with asingle �nger, while presionar refers to pressing with the entire palm.� PUDI (Tamil): Pudi covers both obtaining an object, as well as continuing to holdan object. It connotes quickness in the �rst case, and exertion of force in the secondcase. It prefers the use of either a cupped palm supporting the object, or else a closed�st. Close English verbs are catch, clutch and restrain.� ZADAN (Farsi): This word refers to a large number of object manipulations whosecommon character seems to be the use of quick motions. The prototypical zadan is ahitting action, though it can also mean to snatch (ghaap zadan), or to strum a guitar(or play any musical instrument, for that matter!).� MEET (Cantonese): This verb covers both pinching and tearing. It seems toconnote forceful manipulation by two �ngers, yet it is also acceptable for tearinglarger items where two full grasps are used.� DROP: Neither Tamil nor Cantonese has a verb for gentle dropping. Both languagesinstead possess one verb for grip-release (i.e. let go) which does not specify whetherthe released object is otherwise supported, and another verb for throwing down, whichconnotes use of force.� VAIIE & PODU (Tamil): Both verbs can refer to putting an object down. Care-fully executed puts which ensure the object is placed securely use vaiie, althoughthis verb is perhaps closer to English keep, since its prototypical case refers simply tomaintaining an object in a given location, without expenditure of e�ort. Meanwhilepodu connotes a careless put|indeed it includes throwing the object down. Theredoes not seem to be an equivalent of place, connoting gentleness but focusing on therelocation of the object.1Daadan means to give. Hol is a noun for an outward movement, but it is not used alone. Feshaar is acommonly used noun for pressure.



CHAPTER 2. SETTING THE STAGE 112.2 It's the Body, Stupid!We have seen that languages are quite rich in verbs of hand action and also seemto vary widely. Yet children learn those verbs in their native tongue from a modest numberof samples and quickly generalize their words correctly (or near correctly). How?The answer explored in this dissertation is that the potential variety of lexicalizedaction categories is not in�nite, but instead is constrained by virtue of being grounded in theworkings of the human motor control system. Properly construed, this grounding greatlyrestricts the size of the hypothesis space for verb acquisition, rendering it tractable.In some sense it is an undeniable and obvious claim that language must ultimatelybe bodily grounded, since it is a human activity. What this dissertation attempts to dois to answer the question of how this grounding is important for computational models oflanguage. As I see it, there are three main aspects to bodily grounding as it applies to actionverbs: (1) neural constraints on information processing algorithms; (2) simple facts aboutthe structure of the body (e.g. arm, hand, �ve �ngers, etc.); and (3) organizing principlesof the motor control system (e.g. discrete coordination of simple synergies). These topicswill be the theme of the dissertation.Upon re
ection, it's not surprising that details of the motor system are implicatedin semantics: while abstract representations at the level of \CAUSE(POSSESS(x))" (suchas the conceptual dependency representation of Schank (1975)) may be useful for reasoning,they clearly are inadequate for actually performing the action via the arm and hand. Inthis thesis we will look at representations that do support driving actual behavior.The following excerpt from Webster's Ninth New Collegiate Dictionary corrobo-rates the view that motor control plays a central role in making some of the �ner distinctionsin English:



CHAPTER 2. SETTING THE STAGE 12\TAKE, SEIZE, GRASP, CLUTCH, SNATCH, GRAB mean to gethold of by or as if by catching up with the hand. TAKE is a generalterm applicable to any manner of getting something into one's pos-session or control; SEIZE implies a sudden and forcible movementin getting hold of something tangible or an apprehending of some-thing 
eeting or elusive when intangible; GRASP stresses a layinghold so as to have �rmly in possession; CLUTCH suggests avidity oranxiety in seizing or grasping and may imply less success in holding;SNATCH suggests more suddenness or quickness but less force thanSEIZE; GRAB implies more roughness or rudeness than SNATCH."Most of these distinctions could be made based on features such as speed, force, security ofgrip, and precision of motion. Going back to the crosslinguistic examples from the previoussection, it is clear that these distinctions, too, can usually be made in terms of motor controlfeatures, broadly construed to include both goals and those aspects of world state whichare directly relevant to carrying out actions.The in
uence of motor control and intentional activity in general on theories ofconceptual representation has a long history. Piaget is perhaps the best-known advocate,having developed a comprehensive theory of the development of abstract concepts via in-teraction with the world. Pinker, also, points out that children must certainly attend tointernal (and hence externally unobservable) variables such as goals in determining wordchoice, since often two di�erent words are uttered in the same world state. And Landau &Gleitman (1985) show that blind children learn language more or less normally despite theabsence of what is often assumed to be the primary semantic source|vision. For example,they found that blind children readily learn the verb look. But in their own behavior, ittranslates to haptic exploration (that is, using the sense of touch). The core meaning of theverb, they suggest, is \explore with the primary sense," certainly an action-oriented mean-ing. More recently, brain imaging studies (Damasio & Tranel 1993) have made a strong casefor the intimate connection between language and sensorimotor areas of the brain: verbsactivate motor control regions, while nouns do not.The study of embodied cognition generally is not a new enterprise. Johnson (1987)argues that human conceptualization is \imaginative" in the sense that our concepts tendto re
ect biases resulting from the human condition|whether perceptual or having to dowith the kinds of goals which people seek to achieve|rather than purely re
ecting anobjective structure to the external world. Lako� (1987) also argues persuasively for a \non-



CHAPTER 2. SETTING THE STAGE 13objectivist" basis for semantics. Ultimately, embodiment must be explained in terms ofneural structures. The role of connectionist modelling in this dissertation will be discussedshortly (x2.4).To be sure, only a subset of human concepts are directly bodily grounded. How-ever, as Lako� & Johnson (1980) further argue, these bodily concepts frequently underliemore abstract concepts metaphorically. A computational account of metaphor consistentwith this thesis has been developed by Srini Narayanan and is discussed in x9.5.The best-known example of the study of embodied cognition is work on basic colorterms, and we mention it here to make clear the kind of story we wish to tell. Berlin &Kay (1969) show that while languages di�er considerably in their \basic" terms for colors,there is an underlying pattern. In particular, given the number of basic color terms in alanguage, one can reliably predict what they will be. And for languages with fewer basiccolor terms (which thus cover wider ranges of the spectrum), the set of prototypes foreach color corresponds to the basic color terms of the richer languages. Why should thisbe? The punchline of the story is that in later work (Kay & McDaniel 1978), the spectralcharacteristics of some of the prototypes were found to be predictable from the physiologyof the visual system, which suggests why they might be so nearly universal. Recently, thiswork has been addressed in a computational framework by Lammens (1994). Lammenswas disturbed that the earlier accounts could not explain non-spectral colors like brownor white (the latter would activate all the prototypes!), and built a computational modelto investigate learning of colors. A key result of the work was that the correctness of thelearned categories depended upon the choice of color-space with which to represent the lightcollected by the camera. With a cognitively inspired color-space, reasonable learning resultswere obtained using an optimization procedure which �t a multi-dimensional Gaussian toeach color so as to maximize response to examples of the color while minimizing responseto examples of other colors.To avoid confusion, we point out that our notion of embodiment is somewhatdi�erent from that of Brooks (1986) and others in the autonomous robotics community,who emphasize the need for physically realizing robots in order to make progress in roboticcontrol. For them, embodiment primarily means confronting the details of the \real world"such as sensor errors and e�ector failures. These concerns are certainly an important com-ponent of embodiment, and indeed the design of our model of motor control is partially



CHAPTER 2. SETTING THE STAGE 14driven by such concerns. However, the perspective on embodiment taken here is that theseissues are secondary; the focus is instead upon the details of the structure of the humanbody and the principles of neural computation.With this mindset, then, I set out to �nd a suitable representation for motorcontrol and to see how it partially determines the course of action verb acquisition.2.3 The Task in DetailIn this study, the actions under consideration are limited to those of a single handby a person seated at a table, on which there may be zero or one simple geometric objectssuch as a cube or stick. The verbs studied are limited to those applicable in this world.The task is to build a computational model which meets the following requirement,for any single natural language:� Given: a training set consisting of pairs, each containing{ an action (represented by the motor control pattern which generates it){ a verb (as an atomic symbol)� Produce: a representation for the verb lexicon which allows{ appropriate labelling of novel actions{ appropriate obeying of verbal commands in novel world statesTo the extent possible, the trajectory of learning should re
ect the child's.The system should also be able to handle \verb complexes" such as keep pushing left.Since actions are represented as motor control activity, there is a methodologicalquestion of how to present them to native speakers in order to collect labels for the trainingdata. Ideally, an animation software package, such as Jack from Transom Technologies,would be used to translate model internals into an on-screen depiction of the correspondingaction. Informants viewing the animation could then con�dently label actions as well asevaluate the obeying of verbal commands. However, due to some di�culties in interfacingJack to the verb-learning software system we have developed, various shortcuts were used in



CHAPTER 2. SETTING THE STAGE 15the experimental work reported here. In some cases, the author's knowledge of the internalsof the model was used to physically demonstrate actions for speakers, or to label trainingdata directly. In other cases, informants were familiarized with the internals of the model.For more details, see x8.1.By its nature, this computational task forces any solution to strike a balancebetween two extremes. The learning requirement demands that any solution model stronginnate biases. Meanwhile, the crosslinguistic requirement guards against solutions withexcessive biases which oversimplify the task actually faced by children.It is critical to understand that our task de�nition speci�es that the child is as-sumed to be labelling his own actions, and therefore has access to his internal state duringthe performance of the action, including his intentions. This is in contrast to using visual in-put (i.e. watching a parent perform the action). Certainly it is a simpli�cation to pretend thechild never hears a verb in association with someone else's action rather than his own. Butit has been shown that the own-action case is indeed the most frequent (Tomasello 1992).Furthermore, there is impressive evidence that even neonates can map others' actions ontotheir own motor control system (Meltzo� & Moore 1977), so even for the other's-action case,the language-learning child may be inclined to consider motor parameters as the primarysemantic component.Another simpli�cation in our task is the pre-selection of the time window of activitylabelled by the verb. This is done to simplify the problem, but Tomasello (1992) providesevidence that children may have help in this regard, too, since most verb labels are utteredimmediately preceding the action, and for early verbs, the actions are usually short induration.Many other simpli�cations have been made to render the task manageable. Lin-guistic context is not modelled, even though it could contribute to learning individual lexicalitems. (But see Goldberg (1995) for arguments on the separation of verb meaning and gram-matical meaning, and the di�erent nature of verb meaning from grammatical meaning.) Thesocial domain is absent, restricting the vocabulary we can address. We avoid using objectswith functional signi�cance beyond their simple spatial qualities, to avoid representing thoseother qualities. We don't deal with deformable, liquid or jointed objects. Nor do we dealwith multiple objects or actions which involve both hands, or tools. We only consider ac-tions which do not involve planning, i.e. those whose \plan" is already wired as a motor



CHAPTER 2. SETTING THE STAGE 16control program (so we don't handle verbs like stack). Verbs are an open-class grammaticalcategory, making these somewhat arbitrary restrictions necessary.Lastly, I would like to emphasize that this project explores only the motoric com-ponent of the full semantics of action verbs. This re
ects a belief that the motor componentis central, but in no way does it represent a claim that the motor component is the fullstory.2.4 A Connectionist CommitmentThe role of connectionism in this work is very much tied up with the notion ofbodily grounding. Neural plausibility provides further strong constraints on how conceptsmay be represented and learned, and thus should inform serious cognitive modelling e�orts.Yet working at the connectionist level can be cumbersome. In this thesis, it hasproved useful to de�ne a number of computational tools which can be mapped to connec-tionist models, but to do most of the work at the higher, computational level. Indeed,our implementation of the verb learning system is done at this higher level. Throughoutthe thesis, we will provide sketches of connectionist networks which could implement ourrepresentations and algorithms. These sketches are intended to convince the knowledgeableconnectionist that they are implementable, but the networks have not been simulated incode. The important question is, what are the biological constraints which one shouldrespect when creating a connectionist network? What are the criteria for evaluating theneural plausibility of an algorithm? For high-level tasks such as language learning, preciseneuronal modelling would be hopeless. What we consider are some broad computationalconstraints imposed by neural structures in general (Feldman & Ballard 1982), including:� use of many parallel, simple, slow computing units� no central controller|local rules only� no passing of structures between computing units (simple messages only)� substantially less than full connectivity among computing units



CHAPTER 2. SETTING THE STAGE 17One decision in designing a neural network is whether to represent the \concepts"of the problem domain in a punctate manner (Feldman & Ballard 1982) where \grandmothercells" are assigned individually to the concepts2, or in a distributed manner where conceptsare represented by the activity of many neurons, each of which participates in many suchconcepts. The advantages of distributed representations (Rumelhart & McClelland 1986)include graceful degradation and the potential to allow learning algorithms to develop newfeatures, and for these reasons they have been the focus of neural network research. Yet,learning algorithms for distributed representations, such as backpropagation (Rumelhart &McClelland 1986) and its variants, virtually always involve gradual adjustment of weights,rendering them useless for tasks in which one-shot learning is desired. Accordingly, wewill focus on more punctate representations, which have the advantages of facilitating morestructured design and, as we will see, faster (if less 
exible) learning.Within the connectionist framework, a variety of techniques have been developed(Hertz et al. 1991). A few selections from this toolbox will prove useful in demonstrating theneural plausibility of the verb learning model developed in this thesis. At a low level, we willuse the notion that the activation level of a connectionist unit can represent an approximateprobability, or degree of belief, that the concept it represents is currently applicable. Wewill also make use of the notion of thresholding, in which evidence for a concept mustreach a certain level before the associated unit will �re. At a higher level, winner-take-allorganization will be used to select units which best �t data. Recruitment learning (Feldman1982) provides a weight update rule and network pattern which proves useful for one-shotlearning. And lastly, the notion of encoding bindings via temporal synchrony of separateunits (Shastri & Ajjanagadde 1993) is used in one connectionist implementation of motorschemas.2.5 Related E�ortsIdeas from a variety of �elds have been borrowed in this work. They are ac-knowledged along the way. This section highlights a small number of projects which haveattempted an overall task very similar to this one, and which therefore invite comparison.2It should be stressed that the punctate model does not demand that concepts are represented by a singlebiological neuron, but allows for a small, functionally distinct cluster of neurons.



CHAPTER 2. SETTING THE STAGE 18This architecture could be considered an implementation of learning proceduralsemantics, as pioneered by Winograd's SHRDLU system (Winograd 1973). SHRDLU wasa question-answering system which operated in the time-honored blocks world domain.The user could, for example, request that the system \Pick up the red block," and theappropriate object identi�cation and action would occur. If the request was ambiguous,the system might reply \Which one?" and could handle the simple response, \The bigone." Later, if asked \What are you holding?" it would respond \The big red block."The current work di�ers from SHRDLU in two important ways. First, it pays considerablymore attention to the �ne-grained motor details which can be involved in verb semantics.Winograd was not concerned with distinguishing push from shove, only with providinga set of qualitatively distinct actions and a single verb to map to each. It's not clear,for example, that SHRDLU could be straightforwardly recoded for an arbitrary naturallanguage, since his \procedures" might not correspond to action categories encoded byall languages. This was entirely appropriate, for his focus was at the system level, i.e.on demonstrating how simple models of semantics, along with simple models of parsingand inference, could combine to provide a system capable of understanding full discoursewhen the domain was suitably limited. The second important di�erence is that this thesisaddresses the problem of learning.Siskind (1992) built a system to learn to recognize action verbs in visual movies.Among the important contributions of this work is the identi�cation of contact, support andattachment relations as key features in understanding the scenes. A logical notion of eventswas used to discretize movies into \phases," which is not unrelated to the role played byx-schemas in the model proposed here. Yet di�culties arose from the use of necessary andsu�cient conditions as a lexical representation: neither defaults nor focus of attention couldbe expressed, and the system exhibited brittleness in the face of minor timing variations.Furthermore, the input was strictly visual and thus faced an unnecessarily hard problemcompared with our model which includes internal state of the actor.By far, the project most closely related to this thesis is the dissertation work ofRegier (1996). Both projects are part of the Neural Theory of Language Project (formallycalled \L0") (Feldman et al. 1996), and Regier essentially provided the model for the type ofresearch reported here. Regier built a model of the acquisition of spatial terms based uponfeatures derived from the structure of the human visual system. This structure was modelled



CHAPTER 2. SETTING THE STAGE 19as a connectionist network with subnets for computing orientation relations and center-surround relationships. During learning it would develop new features, such as contact orinclusion, that were necessary for the language it was learning. A backpropagation networkthen categorized these features into spatial terms such as in, over or through in English.The current thesis borrows from Regier the methodology of training a structured networkon lexical items from a variety of languages in order to force a balance between innateand learned structures. However, an important limitation of Regier's system is that it canfunction only as a recognizer; there is no way for it to produce a visual scene correspondingto a given spatial term. This de�ciency, it turns out, was the inspiration for my focus onactions|recognizing them, and carrying them out.
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CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 213.1 Human Motor ControlBefore focusing on the neural aspects of motor control, consider the hand and armand their behavior apart from neural control. All motion is the result of joint rotation.Muscularly, this rotation is accomplished by adjusting tension in opposing muscles, called
exors (e.g. biceps) and extensors (e.g. triceps), attached to each degree of freedom of eachjoint. The arm has two joints, the shoulder and elbow. The shoulder is a three-degree-of-freedom ball-and-socket joint, while the elbow can either hinge or pivot. The four �ngerseach contain two hinge joints with one degree of freedom each, and are attached to themetacarpals|the bones within the palm|via a bi-axial joint with two orthogonal degreesof freedom but no pivoting. Meanwhile the thumb, while possessing one fewer joint, enjoysa very 
exible saddle joint connecting at the proximal end of the metacarpal, facilitatingopposition. Proprioception|the perception of the body's own state|is accomplished bymuscle spindles which measure joint positions (the �nger muscles have some of the body'smost sensitive position sensors (Napier 1993)) and other types of sensors which measurejoint velocity. Various receptors embedded in the skin detect contact, pressure and shear.Controlling many joints at once is of course an exquisitely complex task, but thereare biological design principles which manage the complexity. The key idea is the notionof the motor synergy (Bernstein 1967), which is a sub-cortical continuous feedback controlcircuit for a stereotyped motion, which may be modulated by parameters. The simplestexample is the stretch re
ex, in which the stretching of either the 
exors or extensors (orsimulated stretching, such as the doctor's tap on the knee) causes those muscles to contract,to counteract the stretch. This feedback loop involves just two neurons, which extendfrom the spinal column to the limb. The stretch re
ex contributes to maintaining postureand is also a building block for higher-level synergies such as walking. Synergies can alsooperate across modalities. The 
exor re
ex rapidly retracts a limb that is experiencing pain.More amazingly, the scratch re
ex responds immediately to a localized itch by choosing asuitable end e�ector (hand or foot), moving it to the needed location, and initiating acyclic scratching motion.1 Many types of grasps are encapsulated as synergies. Cutkosky &Howe (1990) catalogs these grasps according to their uses, and argues that motion planninginvolves discrete choices amongst them.1See Kandel et al. (1991: Chapters 37{38) for a review of these and other motor re
exes.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 22The restriction on arbitrary joint movements implicit in the notion of synergiesis evident from experiments in bimanual coordination. Franz et al. (1991) has shown, forinstance, that subjects cannot draw a square with one hand while drawing a circle with theother. When the two hands do manage to engage in di�erent activities, they often bearcertain relationships to each other, such as mirror image activity.One consequence of the existence of such low-level synergies is that cortical controlof activity needs to control many fewer degrees of freedom, since it need specify only the\name" of the synergy and its parameters. While the idea remains controversial, so-calledcommand neurons which trigger a synergy by their activation have been located. For thesimple stretch re
ex, activation and parameterization are accomplished by speci�cation ofa single threshold. But even more complicated synergies can be modulated with a smallnumber of parameters. Cat locomotion, for example, can be driven by a single labelled line(i.e. axon) from cortex to a central pattern generator (CPG) which not only controls thespeed of the cat's gait, but also induces a switch to a di�erent gait (e.g. trot to gallop)as required to achieve the commanded speed (Shik & Orlovsky 1976) (reviewed in Kandelet al. (1991)). Parameters seem to be speci�ed separately from the coordinative structure,and often are encoded in an ensemble of neurons. For example, Georgopoulos (1993) hasdiscovered population coding of direction and force in motor cortex of behaving monkeys.According to this scheme, a precise parameter value is speci�ed by the sum of the varyingactivations of an ensemble of neurons which, individually, are only coarsely selective.This modularization of low-level continuous control loops allows motor cortex toconcentrate on higher-level concerns: the coordination of �ring of synergies. What types ofcoordination are required? The list obviously include sequentiality. Evidence that humansconstruct a sequential motor plan includes the work of Sternberg et al. (1978) on delays instarting or stopping typing sequences depending upon the length of the string to be typed.But the motor control system must also coordinate concurrent actions, as demonstrated byArbib et al. (1987) in the context of preshaping the hand during the movement of the handtoward an object to be grasped. Synergy �ring can be based not only on current perceptualinput but also on internal state. Central pattern generators are the simplest case of this;the e�ect of perceptual input is modulated by the state (or phase) of the central patterngenerator. Thus high-level controllers are not simple percept!synergy maps. The existenceof ballistic synergies (for actions which must be performed too quickly to allow for feedback



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 23control) necessitates a looping mechanism at the coordination level to implement successivere�nement. And lastly, the uncertainties of the world demand coordination of \emergency"error-correcting actions with the main sequence of actions. Motor representations withthese kinds of capabilities are referred to as motor programs and their study constitutes asigni�cant sub�eld of neuroscience (see e.g. (Pearson 1993)). The supplementary motor areaof the cortex appears to be implicated, since its activity increases with action complexity;its activity often precedes activity in primary motor cortex and initiation of movement;and cells in this area have been shown to be sensitive to ordering of actions about to beperformed (Tanji 1994).While most of motor cortex is active only when actions are being carried out(or are about to be carried out), the premotor area is active even when actions are onlythought about, including mental imagery or viewing another person acting (in which casethe phenomenon is called \mirroring" (Gallese et al. 1996; Grafton et al. 1996)). Theaccepted view is that this area is involved in planning action sequences. This fact nicelysupports related work (see x9.5) employing x-schemas for reasoning.In summary, then, the key properties of human motor control which we will capturein our representation are (1) synergies for continuous coordination of muscles during simpleactions, (2) limited parameterization of these synergies, and (3) serial, concurrent andasynchronous combination of these synergies to compose complex actions. For the curiousreader, Wing et al. (1996) provides a compendium of neurobiological and psychologicalresearch on hand movements. For a lighter survey on hands ranging from their evolutionto left-hand taboos see Napier (1993).23.2 A Petri Net ModelSeveral constraints, then, drive the representation of actions described in thissection. Logical descriptions are ruled out, since the representations must be able to supportreal-time control of the actions described. Traditional procedural attachment is ruled out,since \black box" controllers would not support the kind of inference about actions which isrequired in the language task. An inspectable yet active representation is needed, suggesting2In this work we won't address the issue of which portions of motor control are innate, maturationalor learned via experience. Huttenlocher et al. (1983) and Gopnik (1981) suggest, however, that lexicaldevelopment can be partly explained in terms of concurrent learning of language and motor competence.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 24a state machine formalism.3 In particular, the Petri net formalism has some desirableproperties and is our choice for implementing x-schemas.3.2.1 Synergies as building blocksThe Petri net formalism requires that there be a set of actions at the lowestlevel which are essentially atomic. In our x-schemas these will consist of actions which arehypothesized to be controlled by motor synergies as described in the previous section.4 Thisset has several properties. First, they form a limited set of distinct actions. Second, sincethey are atomic, the internal implementation of the primitive actions is irrelevant at thePetri net level. Generally these actions would be expected to be implemented as some formof continuous feedback controller. Third, most synergies have a small number of parametersto modulate their function. The following list includes all the synergies used in the examplesin this dissertation:3This idea is not new in robot control, e.g. Brooks (1986).4While the \synergies" proposed here are biologically plausible in some ways (as discussed shortly), theyare not taken directly from the motor control literature. Indeed, a full characterization of human motorsynergies remains an elusive goal.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 25List of Primitive SynergiesMOVE ARM (direction, force, duration): apply force to move thearm in a feedback-controlled mannerMOVE ARM TO (dest, [via]): ballistically move the arm to a targetlocation, passing through the via point if it is speci�edPIVOT WRIST (direction, force, duration): pivot the wrist aroundthe axis of the forearmGRASP: preshape a circular grasp for holding round or cubic objectsWRAP: preshape a grasp for holding long, thin objectsPALM: preshape the palm for 
at contact with an objectPLATFORM: preshape the palm to support an object from belowPINCH: preshape grasp for holding objects between the thumb and index�ngerAPPLY HAND: close the �ngers and/or move the palm until they contactan object which is in front of the handTIGHTEN GRIP: increment the gripping force of the �ngersRELEASE: open the hand, terminating any kind of gripPOINT: extend index �nger while closing other �ngersWhile the internals of these primitive synergies are not modelled here, a few pointsare in order. First of all, note that most of the synergies involve moving a body part intoa goal position or orientation. We will assume that invocation of one of these synergieswhen the body is already in the goal position is allowable and simply produces no motion.This assumption is compatible with several theories of motor control, including the springmodel (Latash 1993; Jeannerod 1988) which hypothesizes that movements are generated bysimply informing the muscles of their desired tension levels and then allowing the system to
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Figure 3.1: A taxonomy of Jack grasp synergies. Courtesy of the Center for Human Mod-eling and Simulation at University of Pennsylvania and Transom Technologies, Inc.relax to this state in accordance with the spring law. It is also compatible with comparatormodels (Jeannerod 1997: Chapter 6) in which cortex drives the muscles only until (or if)their perceived position di�ers from the goal position. The MOVE ARM TO synergy alsodemands a bit of explanation, since it seems to be missing some important parameterssuch as force or duration. The answer here is that we assume this synergy computes theseparameters in accordance with Fitts' Law (Fitts 1954), which is an empirically derived rulerelating force and duration to the accuracy requirements of a movement (determined bycontext or by the speci�city of the destination).Many of these synergies refer to types of grasps. This taxonomy roughly followsthat of Cutkosky & Howe (1990) as mentioned in x3.1. It turns out that the Jack simulator



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 27also follows this taxonomy, and Figure 3.1 portrays the full taxonomy. Our synergy set usesonly a subset of these grasps for simplicity.5Certainly, humans possess many more motor synergies relevant to hand actions.However, this set is large enough to make the points we want to convey.3.2.2 The Petri net formalismExecuting schemas, or x-schemas for short, is the name given to our motor controlrepresentation. In the current design they are modeled as Petri nets. Additionally, thereis a parameter-passing mechanism which operates in conjunction with the Petri formalism.Each x-schema is designed to achieve a given goal (such as obtaining an object) but mayrepresent multiple ways of achieving the goal, depending on the world state.The Petri net formalism (Murata 1989; Reisig 1985) conveniently expresses most ofthe needed properties for coordination of synergies, including concurrency and asynchrony.A Petri net consists of places and transitions with directed connections between them.Places may represent either perceived states of the world or internal state, and the currentstate is indicated by the presence of a token. When all of the places with connections to atransition possess tokens6, the transition is enabled and may �re, which involves consumingthose tokens and then depositing a token in each place with connections from the transition.Figure 3.2(a) shows a before-and-after view of the �ring of a single transition. Places aredrawn as circles, transitions as rectangles, and tokens as solid dots.All transitions in a Petri net operate in parallel. There is no global clock, nordo �rings get serialized. Each transition �res whenever it becomes enabled. In general,the delay between enablement and �ring is unpredictable, although the formalism allowsspeci�cation of probability distributions on the delays. But we do not use this feature here,and in our x-schemas all delays are assumed to be zero.In our use of Petri nets, a transition usually represents an action, namely theexecution of a primitive motor synergy. The action occurs exactly when the transition �res.These transitions are depicted with the name of the action inside the rectangle. Sometimes,5A more detailed model of grasping could, if necessary, be made. The grasp types above can be decom-posed using the opposition space and virtual �nger abstractions of MacKenzie & Iberall (1994).6Generally, only one token is required at each input place. Where more than one token is required, thenumber is indicated next to the incoming arc.
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(b)  A Petri net which executes A, B and C in sequence.

(a)  A before-and-after depiction of a transition firing.
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      (or a random choice if both c1 and c2 are already true).
(c)  A Petri net which executes A when c1 becomes true, or B when c2 becomes true

(d) A Petri net which executes A and B concurrently (or, at least, asynchronously).

| |Figure 3.2: Some common Petri net constructs. (a) shows the simplest case of an enabledtransition �ring. (b)-(d) show constructs for sequentiality, branching and concurrency.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 29though, transitions are needed simply to move tokens without any corresponding action.These transitions are left unlabelled.When assembling these building blocks into working Petri nets, certain patterns ofnetwork structure prove particularly useful. For example, sequential actions are a commonrequirement. The Petri net implementing sequential �ring of transitions is depicted inFigure 3.2(b). The places between each pair of transitions serve to pass \control" fromone transition to the next. Placing a token in the left-most place, as shown, leads to theaction sequence A, B, C and leaves a token in the right-most place. Loops are anothercommon pattern, and are trivial to construct; if the �nal output arc of Figure 3.2(b) wereto connect back to the left-most place, the net would generate the sequence A, B, C, A, B,C, . . . . Another pattern, branching on perceptual conditions, is slightly more complex andis shown in Figure 3.2(c). Separate places encode the mutually exclusive set of conditions,such as \c1" and \c2". When the token is deposited in the start place, only the transitionconnected to the currently-true condition �res. If none of the conditions is true, the netsuspends until one becomes true. If the conditions are not mutually exclusive and morethan one is currently true, then one of the two enabled transitions is chosen at random to�re. Figure 3.2(d) shows how a Petri net can encode concurrency. A transition withno associated action (labelled \||" to indicate concurrency) is used to turn one token atthe start place into two tokens. The two tokens simultaneously enable transitions A andB, allowing them to �re simultaneously, or at least in an arbitrary order. Once two tokensarrive in the right-most place, we have a guarantee that both transitions have �red.Note that some places represent control 
ow, while others represent input from\outside" the net, i.e. perceptual information, which in
uences the course of action. Thislatter type will be discussed shortly.A simple extension to Petri nets allows weighted connections. A weight on aconnection into a transition speci�es the number of tokens which must be present in orderto enable the transition. A weighted output arc from a transition speci�es that multipletokens are emitted when the transition �res.
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abortFigure 3.3: Translating durative-action transitions into the standard Petri formalism withinstantaneous transitions.3.2.3 Durative actionsIn the Petri formalism, all transition �rings are instantaneous, and thus input to-kens are e�ectively consumed at the same time that output tokens are generated. Yet manyof the synergies de�ned in x3.2.1 do not execute instantaneously. In order to represent suchdurative actions as transitions, we must alter the semantics of transitions from the standardPetri model as follows. When a durative transition �res, it consumes its input tokens im-mediately, but does not deposit its output tokens until its action completes. Furthermore,we allow a special kind of connection from a place to a durative transition which aborts theaction-in-progress should a token become available before completion. These connectionsare drawn with a 
at bar at the \tip".Translating durative transitions back into standard Petri transitions can be ac-complished as shown in Figure 3.3. The translation assumes that the durative action canbe redescribed as a pair of instantaneous actions which initiate and abort the action, alongwith a place which detects when the action is done. In some cases the needed detector isalready explicitly modelled for other purposes (for example, detecting contact) but in othercases we would need to model new detectors (such as detecting that muscles have reached



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 31their set point). The translated network in Figure 3.3(b) operates as follows. When a tokenarrives in place A the \initiate" transition �res, invoking the corresponding synergy and im-mediately placing a token in the unlabelled place in the center of the �gure which indicatesthat the action is ongoing. In the usual case, the network then waits until completion of thesynergy is detected. At this time the unlabelled transition, \noticing" that the action wasongoing but is now done, �res and deposits a token in place B. However, if there exists an\abort" connection and it receives a token before the synergy completes, then the \stop"transition �res instead, aborting the synergy and depositing a token in place B.3.2.4 Accessing perceived world stateA central feature of an x-schema is that its execution path can be highly context-dependent, by virtue of having special places which receive tokens from external percep-tual sources. In practice, these perceptual places represent fairly high-level properties ofthe world, as opposed to, say, low-level visual details. Separate, unmodelled perceptualmechanisms are assumed to perform the appropriate computations over perceptual andproprioceptive inputs to generate these high-level properties. Such places have slightly non-standard behavior, in that the token is never depleted; if consumed by a transition, it isinstantaneously replaced (unless, of course, the world state changes). These percepts areboolean in nature. They are listed below.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 32List of Perceptual PlacesSMALL object size is small compared to handLARGE object size is large compared to handRESISTANCE detects a very high force opposing arm motionELONGATED object has a large length-to-width ratioSLIPPING detects a slipping gripSTABLE detects that the object is stably supportedGRIPPING detects that object is already held in grip (any type of gripincluding palm contact)AT GOAL detects whether object is at goal location or orientationNaturally, x-schema transitions can be enabled by either the truth or falsity ofthese conditions. To allow this, the model has separate places for both the true and falsecases. The need for inhibitory connections is thus removed, and the model also gains thecapability of representing the \don't know" condition. It is the (unmodelled) perceptualmechanisms' responsibility for ensuring consistency between the two contradictory places.Not all of the relevant features of the world are boolean, however. X-schemas willneed to make calculations, such as computing the force needed to move an object given itsweight and a desired acceleration. We posit, therefore, a small working memory where suchvalues are stored. Features contained in this area include:List of Perceptual Features (Quantitative)WEIGHT an estimate of the object's weightOBJLOC a vector indicating object position
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Figure 3.4: The Slide x-schema.3.2.5 The Slide x-schema in detailEach x-schema corresponds to a single Petri net, and in this section we will examinethe Slide x-schema in detail. It is shown in Figure 3.4.The Slide x-schema controls actions which move an object across the surface ofa tabletop. It begins when a token is deposited in the \start" place at the left-hand sideof the �gure. Its �rst transition essentially copies this token into two output places inpreparation for carrying out two concurrent synergies (the || symbol is a reminder of thisfunction). The two concurrent synergies are preshaping of the hand and moving the hand tothe object. The preshaping step is conditional on the size of the object, choosing a circular�ve-�ngered grasp if the object is small but a 
at palm if the object is large.Only when both actions have completed|enforced by an arc with weight of 2|does the x-schema proceed to the next step, actually applying the hand to the objectusing the preshaped grip. The APPLY HAND transition outputs two tokens. One of them�res the MOVE ARM transition which engages the arm in the continuous horizontal motionwhich is the central action of the x-schema. The direction of motion parameter is externallyspeci�ed. The force of motion may be externally speci�ed, or may be computed from thedesired acceleration and the estimated weight of the object. The duration of the movementmay be externally speci�ed, but otherwise a value is computed which is likely to land theobject near its goal location. However, if the object is observed to reach its goal positionbefore this duration, the movement will be aborted.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 34As an example of error recovery, note the piece of network above the MOVEARM transition in the top center of the �gure. At the same time that the MOVE ARMsynergy is executing, the second token emitted by the APPLY HAND transition makesits way to the place labelled \e". This enables the TIGHTEN GRIP transition to �reshould slipping of the grip be detected. This transition returns a token to \e" wheneverit executes, so that the x-schema remains prepared to tighten the grip further if moreslipping is detected. Importantly, this error-recovery mechanism operates without any otherinteraction with the rest of the x-schema; it is an \interrupt handler" in computer-systemsparlance. Once MOVE ARM is �nished, the error-recovery mechanism should be disabled.This is accomplished by the unlabelled transition following MOVE ARM, which consumesthe enabling token.When the arm motion is complete, the x-schema tests whether the object is nowin its goal position, and if so terminates by depositing a token in the \done" place. But ifthe goal has not been reached, the x-schema loops back to re-apply the hand to the objectand move it again, with the parameters of motion recomputed for the reduced distance tothe goal position.The above discussion is noncommittal about the source of some of the inputs usedto compute synergy parameters. The next chapter will discuss how x-schemas interact withlanguage and reasoning and use feature structures for this purpose. But for the remainderof this chapter the source of these inputs will remain implicit.3.2.6 Other x-schemasBesides the Slide x-schema described above, we have several others.The Lift x-schema (Figure 3.5) controls actions in which the vertical position ofan object is increased or the object is simply held in the hand. It has a similar structureto Slide, but involves some di�erent grasp types. In particular, cylindrical items arepicked up using a wrap grasp, while large objects are lifted by supporting them from belowusing the hand as a platform. The continuous arm motion step calculates its parameterssomewhat di�erently than in the Slide x-schema. First of all, the direction is upwards.More interestingly, the force parameter can be calculated to yield either a given upwardacceleration of the object, or else zero acceleration. With zero acceleration the x-schema
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at object. For around object (or any object rotated around an axis allowing smooth rotation), the durationparameter would instead be used to determine the duration of the pivot synergy.The Depress x-schema (Figure 3.7) is for use with a button. Hence, it hardcodesthe choice of shaping the hand with an extended index �nger. The pressing action isimplemented by a MOVE ARM synergy which relies on termination by detection of theincrease of resistance occurring when the button has hit the end of its travel. The subsequentMOVE ARM step removes the hand from the button by a small distance, allowing potentialrepetition (modelling the activity of an anxious elevator passenger).The Touch x-schema (Figure 3.8) encompasses a variety of behaviors and variesmore in structure from the other x-schemas. At the beginning, the x-schema chooses one oftwo basic routes (top vs. bottom of the �gure). The top route is chosen for slower touches.The hand may be shaped so as to use either the index �nger or the palm. Once the hand
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Figure 3.8: The Touch x-schema.arrives at the object and contact is made via the APPLY HAND synergy, the x-schemamay either simply delay for a variable duration (momentary vs. extended touching) or maymove the hand along the surface of the object, crudely implementing a feel (the hapticexploration of objects involves a host of strategies (Lederman & Klatzky 1996) which aren'tmodelled here at all). The bottom route, in contrast, generates a rapid ballistic motion ofthe arm during its approach to the object, and aims at a location slightly behind the objectto ensure that contact is made|resulting in hitting-like behaviors. The path by which theMOVE ARM TO synergy approaches the object can be in
uenced by speci�cation of a\via point" through which the path is constrained to travel. This allows anything fromstraight-on hitting to a sideways slap. Whichever route is chosen, the entire action may berepeated.7This set of x-schemas is capable of generating only a small fraction of possiblehand actions. However, the intent here is not to build an exhausive set of controllers, butrather just to include a wide enough range of action controllers to make a convincing casefor the approach to verb semantics presented in subsequent chapters.7The \repeat" and \not repeat" places are under the control of either linguistic input (see next chapter)or higher-level planning systems not considered here, such as the \aspect graph" of Narayanan (1996).



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 383.2.7 Multiple entry pointsA recurring pattern in the x-schema set is that they e�ectively have multiple entrypoints. This is a natural consequence of the goal-oriented nature of x-schemas and thefact that one can start toward a goal from varying distances (as measured in steps). Forinstance, Lift will skip the grip-acquiring step if the hand is already gripping the object,in which case its behavior might be described in English as raise or hold but not pick up.As shown in the Lift x-schema, as well as the Rotate and Depress x-schemas,multiple entry points have been implemented using \noticer" transitions which \fast-forward"the control 
ow past unneeded steps when tokens are present in the appropriate perceptualplaces (e.g. the \contact" place).Another strategy is to have true multiple entry points into x-schemas. In otherwords, we would declare a new x-schema Raise, which would happen to point to the middleof the Lift x-schema, yet would be treated as a separate x-schema by the rest of the verb-learning system. Such a strategy would facilitate learning the distinction between verbslike pick up and raise, while making it more di�cult to learn verbs which encompass eitherstarting point (as does lift for many speakers).3.2.8 What can't be encoded in x-schemas?What is the advantage of using a formalism such as Petri nets to encode x-schemaswhen, seemingly, one could just as well implement them as arbitrary computer programs?The di�erence is that, unlike an arbitrary procedure, a Petri net is analyzable. The typesof interactions between primitive actions are limited. Consequently, important properties,such as repetition or interruption, can be \pointed to," i.e. described by their networkpatterns. This analyzability derives partly from the restrictions the formalism places on theprocedures which can be encoded. For example, while a Petri net can encode concurrency,it cannot specify the details of two concurrent actions such as their relative rate or which�nishes �rst. Such representational restrictions render the learning of action categoriestractable, and constitute an interesting claim about what kind of details are semanticallysalient and which are semantically irrelevant.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 393.3 Connectionist AccountAs a plausibility argument, this section sketches an account of how standard con-nectionist techniques could be employed to model x-schemas. These ideas have not beenimplemented. First, we will present a simple approach which captures the control structureof Petri nets. Then we will overview a much more complex architecture which handlesparameter bindings as well as control 
ow.3.3.1 Petri net controlFor the most part, the Petri net formalism is a natural for connectionist imple-mentation. It is a graph structure with limited connectivity. Both transitions and placescan be represented as connectionist units. We will �rst describe the representation and thengive an example (which is illustrated in Figure 3.9).Transitions are the simpler case. Conceptually they can be implemented withsingle neurons (although for robustness reasons one would ultimately expect a cluster ofneurons). The incoming arcs of the transition correspond to the inputs to the neuron. Theweights of the neuron are all set to 1, and the threshold is set to the number of inputs. Theenablement of the transition corresponds to the simultaneous �ring of all the inputs to theneuron. Note that this is the only condition under which the neuron will �re, due to itshigh threshold. When it does �re, it does so for only a brief period. The output arcs of thetransition correspond to multiple branches of the output axon of the neuron.Places are somewhat trickier since they must be capable of storing tokens inde�-nitely between being deposited and being consumed. This can be modelled using a groupof neurons (minimally two) with mutual reinforcement. Such recurrent connections allowthe group to settle into stable states of activity, even after external excitatory or inhibitoryinputs have ceased. Using this design, the presence of a token corresponds to sustained ac-tivation of the group of neurons, and absence of a token corresponds to sustained inactivity.Depositing a token corresponds to incoming excitation that elevates the group to the activestate. Removing a the token corresponds to inhibitory activation that returns the groupto the inactive state. Outgoing axons from the group of neurons relay the current activitylevel to transitions so that they may determine whether to �re.
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Figure 3.9: An example connectionist implementation of Petri nets including one transitionand several places.When the transition actually �res, a mechanism is required to remove its inputtokens. This can be accomplished with backward connections from the transition unit to itsplace units. The backward connections supply su�cient inhibition to reset the place unitsto the inactive state. For transitions which �re instantaneously, the output axon of thetransition neuron can be used to accomplish the removal of the input tokens. For the caseof durative actions, the translation process described in x3.2.3 would be needed to allowthis procedure to work. One problem with this design is that there is a potential for raceconditions. If two transition neurons are competing for a token from a shared input place,it is possible that they will both �re before either gets a chance to remove the token. Theprobability of this occurrence is reduced if transitions have delay before �ring, but is noteliminated. It should be noted that the x-schemas presented above do not use this type ofnondeterministic competition for tokens.An example of these ideas is shown in Figure 3.9. Neurons in this and later �guresare drawn with a lobed side representing the dendritic tree, which is the \input" side of theneuron, while the \output" axon is drawn as a line emerging from the rounded side. In thecenter of Figure 3.9 is a neuron implementing a transition|in particular, the TIGHTENGRIP transition from the Slide x-schema. It accepts input from two groups of neurons,one which implements the \slipping grip" place, and the other which implements the place



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 41signifying that we currently care about stopping any slippage. The output of the transitionneuron projects to a third group of neurons which represent a place signifying that thegrip has been tightened. The output also projects back to the input places with inhibitoryconnections, indicated by round-tipped links. Lastly, the output projects to whatever motormachinery actually controls the grip force. Within each group of neurons implementing aplace, the recurrent connections are shown. External excitatory connections to and fromthe three place units are also shown.3.3.2 Passing parametersThe preceding section addressed the control portion of the x-schema model, butdid not address the problem of passing parameters within x-schemas. This section considerssome ideas for integrating parameter passing with control 
ow.One simple design strategy would be to keep the motor parameters separate fromthe connectionist Petri net controller. They would connect only to the primitive synergiesthey parameterize. Indeed, there is some evidence for this design, such as the experimentsof Georgopoulos (1993) which suggest that certain areas of motor cortex are dedicated torepresenting single parameters such as direction, independent of other aspects of the currentaction. With this design, when a transition �res it would trigger the corresponding motorsynergy (whose neural implementation we have not considered) and that synergy would\read" any needed values from the global parameter-storing area.But it's hard to envision how that solution could scale up to x-schemas in whichsome parameters might be used by more than one synergy during execution. For example,perhaps the arm must be moved with one force value, while the hand squeezes an objectwith a di�erent force value. This situation requires binding of parameter values to particulartransitions in the Petri net.To solve this binding problem, a connectionist action controller has been developed(Shastri et al. 1997) allowing parameters to be (1) passed into an x-schema, (2) propagatedwith potential modi�cation, and �nally (3) used to modulate primitive synergies. Themechanism builds on SHRUTI (Shastri & Ajjanagadde 1993), a connectionist system forlogical reasoning.8 This system is fairly complex and will not be described in detail here.8In fact, the controller mechanism can be integrated with the reasoning system, providing the necessarytools to build a full planning and execution system.
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CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 43The key idea, though, is that temporal synchrony is used to represent bindings. To use afamiliar example, the connectionist representation of the predicate loves(lover,loved)would include units for the two roles of the predicate. Other units represent atoms such asJohn or Mary. To represent the assertion loves(John,Mary), the lover unit �res at thesame time as the John unit, and the loved unit �res at the same time as the Mary unit. Thetwo synchronizations are kept distinct, and persist in a periodic manner while reasoning isperformed. Other units for the loves predicate detect whether all bindings are in placeand if so may trigger activation of related predicates such as alive(John). The collectionof units implementing a predicate are called a focal cluster.The key step in adapting SHRUTI to implement x-schemas is that these focal clus-ters can be used to represent \stages" of execution of an action (although they do not mapexactly to either transitions or places). Figure 3.10 shows a SHRUTI implementation of aPush x-schema. Focal clusters are drawn as ovals. A focal cluster is triggered when activa-tion arrives at its \?" unit. Thus, the whole x-schema is invoked by sending activation tothe \?" unit of its �rst focal cluster, shown at the bottom of the large hexagon (drawn withdotted line) in the �gure. Along with this start signal, the focal cluster receives parametersby virtue of the �ring of its role units (open circles in the �gure) in synchrony with otherunits in the overall system which represent the parameter values. Each focal cluster maytrigger a primitive synergy or perhaps a sub-schema, which eventually indicates completionby sending activation back to the \+" or \{" units of the focal cluster to indicate successor failure. The focal cluster then redirects this activation to the next stage of execution,perhaps to di�erent stages depending on whether \+" or \{" is activated. The primitivesynergy or sub-schema may also create new temporal bindings, thereby manufacturing newparameters for later steps of execution. (For example, in the �gure the LOCATE OBJECTsub-schema creates a new binding representing the object to be pushed.) The �nal step ofthe x-schema returns activation to the \+" or \{" unit of the initial focal cluster to indicatecompletion (thus the �rst focal cluster acts as both the \start" and \done" place).Although this connectionist representation does not directly mimic the places andtransitions of Petri nets, the mechanism is able to encode sequentiality, concurrency andasynchrony, and can capture all of the control patterns used in x-schemas presented in thisdissertation. It does su�er, however, from the same race conditions as the simpler designin the preceding section.



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 44The reader is referred to Shastri et al. (1997) for a fuller account of this architec-ture.3.4 Related Ideas in Arti�cial IntelligenceThe notion of \schemas" has appeared in the AI literature in various guises.One such notion, which came out of early work in planning, is the proceduralnet (Sacerdoti 1975). Procedural nets are a graphical, 
ow-chart-like representation ofan activity, and to this extent they resemble our x-schemas. A further similarity is thatprocedural nets include \split" and \join" nodes, allowing expression of parallelism.9 Themain di�erence between procedural nets and our x-schemas is one of emphasis. Whilex-schemas are primarily action controllers, procedural nets serve primarily as a workingmemory for a nonlinear, hierarchical planner, NOAH. NOAH constucts a plan by beginningwith a single node for the goal, and gradually re�ning portions of the net with more detailedsub-actions amongst which minimal ordering commitments are made. Thus the parallelismallowed by the split and join nodes is not intended for coordinating concurrent actions, butrather to express partial ordering of sub-actions. (Later addition of ordering constraints byvarious \critics" is a crucial part of the planning algorithm.) Since the net's main role is torepresent these ordering constraints, it omits much of the reasoning regarding the actionsit represents; a separate logical inference engine is used for this purpose. In contrast,our x-schema model aims to include reasoning within the Petri net formalism in orderto achieve the rapid responses needed during action execution. (To be fair, the inferencesperformed by our x-schemas are much simpler than those required for full-
edged planning|but that is part of the point of using what can be thought of as \compiled plans".) Lastly,since Sacerdoti's work precedes the era of conditional plans and integration of planningand execution, procedural nets do not include a mechanism for branching. The ability tochoose execution paths based on world state|and in particular to do so in an asynchronousmanner|is the biggest advantage of the Petri net formalism.In the robotic control world, our x-schemas are similar to the schemas of Arbibet al. (1987) in their state-machine-like character as well as their use of parallel mechanisms9On a technical note, it appears that Sacerdoti's system only constructs nets with nested parallelism,though the representation is not inherently limited in this way (nor are Petri nets).



CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 45for control and for passing parameters. Our x-schema design is also akin to the subsumptionarchitecture of Brooks (1986) in that multiple layers of control may execute concurrently(and also shares the �nite-state nature of each controller). Nilsson (1994) o�ers a slightlydi�erent perspective on schemas, in which a production system continuously monitors prim-itive actions and switches amongst them appropriately as relevant (and discrete) changesin world state occur.In the learning and sensorimotor representations world, x-schemas also bear aresemblance to the quasi-Piagetian schemas of Drescher (1991) in their use of essentiallyindependent primitive actions connected only by common preconditions and postconditions,which allows for very 
exible execution patterns depending on the vagaries of the world.Schema-like representations have also found application in modelling verb seman-tics in previous work. As part of the Jack project (Badler et al. 1993) (see x8.1.1), certaincoordinated activities such as grasping or walking are encoded using a construct calledparallel transition networks. These networks bear a passing resemblance to our Petri netrepresentation. However, practicality, not elegance, was the main design criterion, and as aresult they would make a less appealing semantic base than Petri nets. In particular, eachstate has hooks for including arbitrary Lisp code at each state, and also there are severalglobal mechanisms operating in concert (or cacophony?) with the local code in each state.Connectionist implementation of x-schema-like representations was the focus ofGoddard (1992), which represented various walking and running motions as cyclic sequencesof con�gurations and used these representations to recognize the motions in visual input.The intricate strategies for managing delays would likely prove useful in a strictly connec-tionist implementation of x-schemas.3.5 Thoughts on Hierarchical X-SchemasThe limitation of the above x-schemas to fairly simple actions raises the questionof how x-schemas for more complex actions could be constructed. More complex actionsare obviously necessary from the problem-solving point of view, but also potentially fromthe lexical-semantic point of view. For example, consider English verbs such as stack, tie orsharpen. In certain languages|serial verb languages in particular|verbs directly code forsequences of simpler actions, and thus clearly require an account of x-schema composition.
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CHAPTER 3. EXECUTING SCHEMAS FOR CONTROLLING ACTIONS 47The Petri net formalism can be extended easily to allow for hierarchical networks.An example is shown in Figure 3.11. Hexagons represent transitions which invoke entiresub-schemas rather than primitive synergies. Note how the Lift x-schema is called asone possible step in the more general Move x-schema depicted above it. An \umbrella" x-schema likeMove, which serves only to choose a more speci�c x-schema which is best suitedto the current goal, would facilitate learning general verbs like move. Without it, the systemmust learn the collection of x-schemas which are associated with move (Slide, Rotateand Lift in this illustration). This statistical determination would require a substantialnumber of training examples. But if the Move umbrella x-schema were present, the verbmove could simply map to this x-schema|a mapping which could be learned relativelyquickly. In e�ect, umbrella x-schemas could aid learning by pre-specifying collections ofspeci�c x-schemas which are likely to be linguistically relevant.Here are three approaches to handling more complex actions in the context of verblearning. One approach is to manually construct higher-order x-schemas such as the Moveexample just shown. Unfortunately, it would become impractical to design and hardwireinto the model such x-schemas as we scale up to ever more complex behaviors (as would benecessary, say, if we were to consider sentential as opposed to lexical meaning) because therange of possible behaviors is too large. A second approach would be to create a special set of\template x-schemas" which essentially provide a catalog of ways in which the lower-level x-schemas may be combined. We might have template x-schemas for executing two x-schemassequentially, for executing one x-schema conditional on successful execution of another, forrepeatedly executing an x-schema, and so forth. The major design problem any template-schema solution would have to solve is how to bind the appropriate sub-schemas to thetemplate x-schema for a particular invocation. The third approach, developed by Narayanan(1996), is similar to the template x-schema idea but proposes a single template whichcaptures the stages inherent in any process, such as enablement, interruption, completion,and so forth.
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Chapter 4Linking Actions and Verbs viaFeatures 4.1 Cognitive and Linguistic Motivation . . . . . . . 484.2 The Linking Feature Structure . . . . . . . . . . 504.2.1 The linking feature set . . . . . . . . . . . 514.2.2 Connecting to x-schemas . . . . . . . . . . 534.2.3 Deriving the feature set . . . . . . . . . . . 554.2.4 How many features? . . . . . . . . . . . . . 564.2.5 Why a separate linking structure? . . . . . 574.2.6 Static vs. dynamic . . . . . . . . . . . . . . 584.3 Connectionist Account . . . . . . . . . . . . . . . 58This chapter shows how the execution of the x-schemas presented in Chapter 3interacts with the language portion of the model via a restricted interface, called the linkingfeature structure.4.1 Cognitive and Linguistic MotivationThe case has been made that some details of motor control matter for verb seman-tics. Yet it's crucial to see that linguistic expression of motor control is restricted. Afterall, consider how hard it is to tell someone how to juggle, ride a bike or play hockey. Wedon't have conscious access to our stretch re
ex thresholds or motor unit activation levels.We often don't even have a good idea of our joint positions (Soechting et al. 1996). We



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 49certainly don't have conscious awareness of discrete action controllers and all their statechanges during behavior! This motivates the search for a limited set of features to repre-sent those aspects of x-schema execution which are relevant for distinguishing verbs. Thesefeatures will be the sole means by which verbs can \connect" to x-schemas.But which features to choose? One source of motivation is the linguistics literature.Talmy (1985) is the most comprehensive cataloging of features encoded by verbs and theirsatellites (which roughly correspond to the grammatical forms we consider in Chapter 7and call \verb complexes"). A key result for motion verbs|a category that overlaps ourdomain|is that a given language will tend to encode in its root verbs, along with the factof motion, only one of (a) manner/cause, (b) path, or (c) �gure. Other semantic categoriescan appear in verb roots as well, and Talmy has compiled a list which, considering onlythose items relevant to our simpli�ed domain, gives us the following sources of linguisticdistinction:1cause, manner, purpose (goal), �gure (for Atsugewi), path (in, out, up, down,past, through), polarity (occurrence vs. non-occurrence of key event), phase(start, stop, initiate, �nish), aspect (one-way, full-cycle, iterative, continuous,gradient), direction (deictic)A recurring pattern in action verbs also observed by Talmy is that verbs whichexpress manner tend not to express goal. For example, releasing and obtaining possessionare distinct goals and have distinct verbs (put and get) which don't express manner. If wewish to express that the manner is a twisting motion, we have only the verb twist ; the goalmust be expressed by a satellite, as in twist in and twist out.The above catalog tells us what kinds of features are semantically salient, butdoes not tell us the level of detail required. It is likely that the appropriate level is fairlyabstract. Talmy (1988) provides an account of how motoric features such as force maybe conceptualized in a schematic way for purposes of language. Mandler (1992) presentspsychological evidence that such schematizations are present before lexical developmentbegins. Jeannerod (1994), by way of some ingenious experiments with mental imagery of1The catalog is also important for its list of features which do not prove relevant to verb semantics.These include: resulting event subordinate to main event, ground alone, hedging, degree of realization, rate(Talmy claims it appears only in conjunction with other properties), spatial location of speaker or hearer,tense, speech act (e.g. declarative vs. imperative).



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 50actions, also demonstrates that only a subset of all the actual motor parameters are directlyavailable to consciousness; the others are \re-created" using typical|though not perfectlyreliable|relationships amongst parameters. For example, imagined duration of actions hasbeen shown to be a complex function of amount of force, radius of curvature of motion, ande�ort expended.In the next section we consider the projection of the above features onto ourrestricted domain of hand movements to help determine an appropriate set of linguisticfeatures. In doing so, we must be able to extract the features from the schematic represen-tations developed in the previous chapter.4.2 The Linking Feature StructureIn order to map to declarative linguistic representations, the execution of an x-schema is summarized in what we will call a linking feature-structure (f-struct for short).The linking f-struct (and other kinds of f-structs, as we will see later) are drawn as horizon-tally extended double-boxes, as can be seen at the top of Figure 4.1, which shows a subsetof the linking features we will use. Structurally, an f-struct is a list of (feature, value) pairs,and our use of the term \f-struct" is meant to facilitate compatibility with feature struc-tures as conventionally used in linguistics.2 Each (feature, value) pair occupies a column inthe double-box, with the feature name in the top box and the value in the lower box. (InFigure 4.1 several possible values are shown for each feature.)Crucially, the linking f-struct by virtue of its position in the overall architecture ofthe model provides a bidirectional interface between x-schemas and language. The featuresin the linking f-struct are connected to appropriate locations within the x-schema set (asindicated by dashed lines in Figure 4.1 and discussed later) so that when an x-schemaexecutes, appropriate values are placed in the linking f-struct. Similarly, when linguisticinput sets particular values in the linking f-struct, these values will then appropriately guidethe execution of x-schemas.The set of features is hardwired into the model, meaning it cannot change duringverb learning. Certain features may prove irrelevant for a given language, but no newfeatures can be added. Thus, the set of features represents a strong claim about what kinds2The actual features will, however, di�er from those conventionally used in linguistics.
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Figure 4.1: A linking feature structure (top) and its connection to the Slide x-schema.of properties of the execution of x-schemas can \matter" for the verbs we consider. Inreturn for this commitment, the small size of the linking f-struct (compared to the full setof possible properties of executing schemas) facilitates rapid learning.In summary, attempting to bridge the linguistic-motor gap with a simple staticfeature structure yields some signi�cant simpli�cations. This separation not only allowsnatural representations to be used on each side of the divide, but more importantly, it limitsthe hypothesis space while providing necessary access to active motor control machinery.4.2.1 The linking feature setThe following list summarizes the set of linking features used in the current model.Remember, the names of these features and their values serve only as identi�ers to aid us indiscussing them; they have no theoretical signi�cance and derive their meaning solely fromtheir grounding in x-schemas, which will be discussed next. The linking features dealingwith motor control are:� schema (slide, lift, rotate, depress, touch):Perhaps the most important linking feature. Speci�es the x-schema generating the ac-tion. Since x-schemas are generally goal-oriented, this feature also implicitly speci�es



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 52the goal.� posture (grasp, wrap, pinch, palm, platform, index):Refers to the con�guration of the hand while manipulating object. Usually determinedby which hand-preshaping primitive synergy is used during x-schema execution.� elbow (flex, extend, fixed):Qualitatively describes the elbow joint's direction of motion (or lack thereof) duringarm motion.� force (low, med, high):Speci�es the magnitude of e�ort applied to the muscles of the arm, discretized into3 levels. The force may be measured during arm motion (most x-schemas) or duringstatic application of pressure (e.g. the Touch x-schema). This feature could easilybe generalized to include �nger force to capture verbs like squeeze.� acceleration (zero, low, med, high):Speci�es the acceleration of an arm movement, discretized into three levels plus a zerovalue.� direction (away, toward, up, down, left, right):Gives the direction of motion, with respect to the body. Also used for rotation, inwhich case it refers to the direction in which the top of the object moves. Discretizedinto a small set of salient directions.� aspect (once, iterated):Re
ects whether the pattern of state transitions during execution involves repetitionof a loop. Loop detection is only a simple example of the kinds of aspectual distinc-tions which can be given precise speci�cation within the Petri net formalism. Therepresentational ideas have been worked out (Narayanan 1996), and learning suchsemantics for both inherent aspect and aspectual markers �ts the framework of thisthesis. However, implementation remains for future work.� duration (short, med, long):Speci�es the length of time to carry out a particular salient continuous synergy withinthe x-schema, discretized into 3 levels.



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 53The linking features dealing with perceived world state are:� depressible (true, false):True only if the object is button-like.� elongated (true, false):True for long, thin objects but not cube-like objects.� size (large, small):A coarse measure of object size.� contact (true, false):True if the hand contacts the object prior to x-schema execution.4.2.2 Connecting to x-schemasAs mentioned earlier, these features are abstract in that they are wired into mul-tiple x-schemas, and the roles played in di�erent x-schemas can di�er. The features alsomust act as both input to and output from executing schemas.We can return to Figure 4.1 for a depiction of how several of the linking featuresconnect to the Slide x-schema. The schema feature is associated with the presence of atoken in the start place of the x-schema. The posture feature is set according to whichpreshaping synergy executes|PALM or GRASP. The direction feature is associated withthe direction parameter of MOVE ARM, while the acceleration feature is related tothe force of the move via a calculation involving the object's weight. The aspect feature,which distinguishes iterated from non-iterated actions, is set according to whether the lower-rightmost transition �res since this is the mechanism by which the x-schema repeats thegrip-and-move sequence.The connections between the linking features and the other x-schemas di�er insometimes subtle ways. Figure 4.2 describes how the above linking feature set is hookedto the full x-schema set presented in the previous chapter. In particular, note that whilefeatures like acceleration and direction are linked to the object motion phase for mostx-schemas, they are linked to the hand's approach to the object for the Touch x-schema.
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X-schema:Feature: SLIDE LIFT ROTATE DEPRESS TOUCHschema identi�esthisx-schema identi�esthisx-schema identi�esthisx-schema identi�esthisx-schema identi�esthisx-schemaposture whilemovingobject whilemovingobject whilerotatingobject whilepressing duringcontactelbow whilemovingobject whilemovingobject N/A N/A duringapproachforce whilemovingobject whilemovingobject whilerotatingobject whilepressing duringcontactaccel whilemovingobject whilemovingobject whilerotatingobject duringapproach duringapproachdirection motion ofobject motion ofobject rotation ofwrist N/A of approachaspect grasp &moveobject move object grasp &rotateobject press &release approach &contactobjectduration of movingobject of movingobject of rotatingwrist hold-downphase contactphaseFigure 4.2: The di�erent roles played by the linking features in di�erent x-schemas.



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 554.2.3 Deriving the feature setFirst and foremost, the feature set stands or falls based on its ability to supportsuccessful training on words from a variety of languages, and during its development it hasoften fallen. The current feature set is the product of an iterative experimental process.While this process di�ers from the analytical style common in linguistics, I feel that it hasequal legitimacy, even though our experimental capabilities prevent us from exploring thefull richness of human language use. The process has previously proved e�ective in workon spatial semantics (Regier 1996).That said, several in
uences have guided the search for the best feature set. Firstis the cognitive and linguistic data as reviewed earlier in x4.1.Another is the work of Agre & Chapman (1987) on so-called \indexical represen-tations". The essential idea is that rather than manage a large number of bindings, thereare special slots for the features of the object of interest in the current context, i.e. theaction currently being carried out. This served as motivation, for instance, for using a sin-gle abstract force feature which represents whatever force value is relevant in the currentsituation, by virtue of its connections to the x-schema set. Recently, Ballard et al. (1996)have argued that such representation schemes are used by humans and have their genesis inthe fact that bodily motions occur on approximately the same time scales as some reasoningtasks. For example, re-orientations of the hand or eye may be used to avoid having to storein memory certain bindings which can instead simply be perceived. The indexical repre-sentation view is also compatible with the neurobiological work cited earlier (Georgopoulos1993) on population coding of motor parameters, since representations which are spreadacross large numbers of neurons are not easily copied.And �nally, it must be confessed that the feature set is in
uenced by what iseasily computed from the x-schema set presented in Chapter 3. As a result, it is inevitablethat important features are missing whose lack would become evident with a more detailedand biologically accurate x-schema set. Moreover, additional features would doubtless beneeded to handle a broader range of actions, especially more complex actions. In the end,I believe the feature set is interesting for its 
avor and for the example it sets, and not asa claim about a complete and \true" set of features used by language.



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 564.2.4 How many features?In addition to which features to use, there is the question of how many. Recallthat it will be important to have a \moderate" number of features. An overly small setwould not be rich enough to represent all the conceptual distinctions found in languages.But an excessively large set (for example, a full trace of all token movements and synergyparameters in the x-schema set) would render learning intractable due to the \relevanceproblem"|the more features associated with each example of an action, the greater theburden upon the learning algorithm to determine which subset of features are relevant foreach category to be learned.But how to arrive at this mysterious number, \moderate"? The obvious possi-bilities are (1) guess a large number, then cut unneeded ones until learning becomes fastenough; and (2) start with the empty set, then add features only as necessary until the learn-ing algorithm can draw the necessary distinctions. In practice, I have generally worked witha set of 5 to 15 features at a given time, using fewer features when investigating the learningalgorithm's properties but more when attempting to fully model the verbs under study.A subtle point on this issue of feature set size is that a minimal feature set may notlead to a minimal lexicon. It is likely that some verbs have multiple possible descriptionsin terms of the features under consideration, and that some of these descriptions will beshorter than others. For example, perhaps heave can be distinguished from lift by somecombination of hand posture, object size, and acceleration, but the distinction mayhave a simpler description in terms of just the force involved. In this case, omittingforce from the linking feature set would be possible, but including it would lead to a morecompact representation for heave and lift. So, there is a bene�t to having a slightly largerthan minimal \menu" of features for the learning algorithm to choose from. The currentfeature set does indeed include correlated features, such as force and acceleration, andalso elbow and direction.On a related topic, it has been suggested that this attempt to �nd a small numberof universal linking features is reminiscent of work on \deep case" in linguistics (Fillmore1968). The goal of deep case was to delineate a small, �xed set of abstract frame-semanticroles (agent, patient, instrument, experiencer, etc.) which could serve as generalizations ofthe speci�c roles found in the various frames in our conceptual system. Then, grammatical



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 57constructions would need to tie syntactic categories such as subject or object only to thesedeep case roles, rather than to the individual roles in every frame. Moreover, the existenceof deep case would be a powerful clue about the structure of our conceptual system. Thelinking feature structure described in this chapter shares the goal of seeking a small numberof universal abstractions. But two important di�erences exist. First, the work on deep casefocuses on the structure of frames and hence is an attempt to arrive at the fundamentalstructure of our conceptual system. In contrast, I make no claim that action verb semanticfeatures will enjoy such generality. Second, the work on case is, in a sense, \object-oriented"(the �llers of roles tend to be physical entities), while many of the action verb linking featuresare instead \parameter-oriented" (e.g. force, duration).4.2.5 Why a separate linking structure?The reader may wonder why the linking f-structure deserves to be rei�ed as anactual structure in the model, as opposed to simply using a set of connections from the x-schema set into the representations of individual lexical items. The most important reasonfor this design choice is that features don't come directly from x-schemas, but rather areabstractions.As we saw in x4.2.2, linking features like direction can be bound to the direc-tion of hand motion in one x-schema, or the direction of object motion in another (seeFigure 4.2). The abstraction is accomplished by virtue of multiple connections to and fromthe x-schema set. Importantly, this abstraction should not be performed within the repre-sentation for each verb which encodes direction, since this needlessly increases the requiredneural connectivity. If we have n verbs using an abstraction, and m di�erent \groundings"of the abstraction in the x-schema set, then we would need n�m connections to implementthe model without a linking f-struct. With the linking f-struct, the number of connectionsis only n +m.A secondary reason for the use of separate structures for holding features is thatit will prove useful in scaling up the model, where the need to deal with more than onef-struct at a time will arise.



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 584.2.6 Static vs. dynamicIt is important to realize that, as it is used in the current model, the linking f-struct is a static structure. In other words, it summarizes the execution of an x-schema,rather than changing dynamically during execution. This clearly restricts what can berepresented about an x-schema execution, without resorting to features such as force-at-time-1, force-at-time-2, etc. But with this restriction comes a tremendous simpli�cation ofthe verb learning problem: classi�cation of sequences is generally regarded as more di�cultthan classi�cation of static feature vectors, especially when the sequences vary in length.And it is not unreasonable to assume that children compute a summary of atemporally extended action. After all, the child normally hears the verb label in advance ofthe action (Tomasello 1992), so he is alerted to begin storing a representation. Also, earlyverbs tend to correspond to short-duration actions. From an empirical standpoint, Regier'smodel (Regier 1996:Section 5.4) successfully learned motion senses of spatial terms usingstatic summaries of feature values. And that was accomplished by averaging over movieframes, with no notion of the key times during the movie. We have an easier time of it,since Petri nets already encode only the key events in the action.LimitationYet it must be admitted that for full modelling of language, a static structurewon't su�ce. Especially for multiple-sentence discourse understanding, it must be possibleto make reference to feature values bound to multiple points in time. A hybrid solutionwould be to create separate linking f-structs for di�erent points in time.4.3 Connectionist AccountThe connectionist representation of features is not particularly di�cult. It turnsout that the best strategy (and a biologically plausible one as well) is to use place coding(Feldman & Ballard 1982). That is, for each feature, there is a dedicated connectionist unit(i.e. a separate place) for each possible value of the feature. In Figure 4.3, the rectangularbox shows an example of place coding to represent the possible values of the force feature.For continuous-valued features (which we don't use in our implementation for simplicity, but
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Figure 4.3: The connectionist representation of a linking feature such as force, and itsconnection to motor control.which certainly exist), place coding forces us to discretize the range of the feature; however,by supplying varying degrees of activation to these discrete values we can still represent thecontinuous range. One fundamental advantage of place coding is that it avoids encodingfeature values as activation levels, which is prone to noise sensitivity and is also unnaturalfor nominal-valued (rather than numerical) features. Another advantage of a place-codeddesign is that feature values are never passed around. Since they are tied to particular units,feature values can be straightforwardly linked to their grounding by simple connections tothe relevant perceptual or motor apparatus, as we will show shortly.We now turn to connectivity. Within the network representing the possible valuesof a feature, we desire a winner-take-all (WTA) behavior. That is, only one value unitshould be active at a time, once the network has settled. And the active value should bethe one which is receiving the strongest evidential support from outside the WTA network.The winner-take-all behavior is achieved by inhibitory connections between each pair of



CHAPTER 4. LINKING ACTIONS AND VERBS VIA FEATURES 60value units in the network. These are shown by circular-tipped connections in Figure 4.3.Further details will be provided in x5.4 once we've laid out the full requirements which thesefeature networks must ful�ll.Here, instead, our focus is the connection from the linking feature value units tothe model of motor control, i.e. the x-schemas and primitive motor synergies. While there'snothing particularly clever required to do this, we should at least mention the several typesof connections which are used.Some linking features are used to parameterize a variety of primitive synergies.For example, our abstract force feature parameterizes synergies such as MOVE ARM andTIGHTEN GRIP. Thus, each value unit for this type of feature is connected to all of the syn-ergies which it can parameterize. This is the situation depicted in Figure 4.3 (although onlyone synergy|MOVE ARM|is shown). In the event that the currently executing x-schemashould trigger the MOVE ARM synergy, the neural circuitry implementing that synergywill detect the currently active force value unit and use it to control the muscles. Othersynergies which do not get triggered by the currently executing x-schema (say, TIGHTENGRIP) e�ectively ignore any activation from incoming feature value units.Other features, such as posture, serve to choose one primitive synergy versusanother. For these features, each value unit is connected to all those locations in the x-schema set which should activate that value (in this case, it's the transitions for executingthe corresponding hand posture synergy). The function computed by each value unit is atemporal OR: if any of these these connections is active at any time during the action beinglabelled, then the linking feature value unit will remain active at the end of execution.Another interesting case is the aspect feature. Its iterated value unit is con-nected to \backwards"-pointing arcs which construct loops in some of our x-schemas. Recallthat in any given execution, the loop may or may not be repeated. The iterated value unitcomputes a temporal OR (as described above) of the activity on this arc over the courseof x-schema execution. Its peer, the once value unit, is wired to �re by default, unlessinhibited by the iterated value unit.
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CHAPTER 5. WORD SENSES AND THEIR USE 625.1 Polysemy|Why Do Languages Have It?The model's verb representation (and learning algorithm) will deal centrally withpolysemy. Polysemy refers to the tendency of lexical items to possess multiple meanings,or senses, which are related to one another.1 Why should words have more than onemeaning? The non-linguist may consider this a strange phenomenon and an ine�cient wayfor language to operate. One may even doubt the correctness of this account of meaning.Yet, the linguistic evidence is fairly clear (Lako� 1987), and moreover is compatible withsome convincing evidence from psychology (Rosch 1977).The underlying issue is the structure of human concepts, and there are two relevantviews. Under the traditional set-theoretic view, as typi�ed by mathematical logic, a conceptis a simply set of entities, which can be therefore be described by giving the necessary andsu�cient conditions on membership. This tradition is prevalent in the �eld of semantics,which tends to favor concise and abstract meanings in the form of necessary and su�cientconditions. Such e�orts are commonly oriented toward �nding the minimal discriminantbetween a word and its contrast set, or determining which syntactic constructions a word canappear in. As it turns out, even for those tasks it is far from clear that this set-theoreticalapproach will work, due to its brittleness, context insensitivity, and lack of internal categorystructure.The contrasting view of conceptual structure takes into account the considerableevidence that some examples of a category are \better" that others. Such examples arecalled prototypes. This evidence suggests a representation of categories based on these pro-totypes, rather than on necessary and su�cient conditions, thereby capturing the internalcategory structure. Often prototypes will be related to each other in stereotyped ways, suchas metaphoric or image-schematic transformations. Thus, the full category representationinvolves the prototypes as well as the typed links connecting them. (See further discussionin x5.5, particularly x5.5.2.)The arguments on this issue are rather involved, but within the context of our handaction verb learning task the di�erence can be made rather clear. The key point is thatnecessary and su�cient conditions, since they must be true of all examples of a category,1When the meanings have no relation, such as the oft-cited example of river bank vs. �nancial bank, thephenomenon is called homonymy, and is not of interest here.



CHAPTER 5. WORD SENSES AND THEIR USE 63are necessarily rather abstract. Prototypes, on the other hand, are free to include speci�cdetails, since generalization is achieved by other means (e.g. by measuring similarities toprototypes). And for our verb learning task, in which we must interface our verb repre-sentation to actual grounded activity, we need a more prototype-like representation whichincludes the \full picture"|i.e. a conjunction of many features|especially for carrying outcommands. To actually drive behavior given a command, we must know all the relevantmotor parameters, not just those which distinguish the command from other verbs.And why does this lead to polysemy, i.e. multiple word senses? Some degree ofgeneralization can be achieved within a prototype by using graded response and/or removingfeatures with multiple allowed values. But this kind of generalization must be sharplylimited because it is at odds with the very speci�city which allows prototypes to successfullydrive motor behavior. Thus, to fully achieve the needed range of generality exhibited byverbs, one needs to employ several such senses|i.e. the verb's meaning is (roughly) thedisjunction of the senses. The richness of each sense and its inclusion of relevant worldstate leads to strong context sensitivity which proves useful in determining the appropriatesense of a verb when this is needed.This is not to say that necessary-and-su��cient-conditions descriptions of the verbsmodelled here would be impossible to derive. Moreover, such descriptions|even if onlyapproximately correct|may well prove important for abstract reasoning. While this dis-sertation does not include an account of such abstract concepts, nor of how they mightbe learned from the collection of prototypes we do model, such an enterprise would beworth pursuing. The important point for the current work, though, is that such abstractdescriptions alone would not su�ce for our task. Each language lexicalizes some x-schemaparameters and not others. Language-independent pragmatic rules are useful for �lling inunspeci�ed parameters, but cannot predict the linguistically coded parameters. In otherwords, the speci�c prototypes which are needed for obeying commands would not derivablefrom the abstract descriptions plus pragmatic rules, because these prototypes depend onthe vagaries of the particular language being learned.



CHAPTER 5. WORD SENSES AND THEIR USE 645.2 Structure of a Word SenseOur model represents verbs by a set of word sense f-structs. Like any f-struct, aword sense f-struct is a list of features; however, in this case the feature values are probabilitydistributions. The implemented system uses multinomial (i.e. discrete) distributions (evenfor quantitative features like force). Each word sense f-struct also contains a measureof its frequency of occurrence during learning. Word sense f-structs are drawn the sameway as linking f-structs are drawn, except the lower box shows probabilities on the values.For space reasons we often show only the mode value (the most probable value) and itsprobability. A verb's collection of senses is drawn in an oval. See the top of Figure 5.2 forexamples of two verbs totalling three senses.A word sense f-struct can be thought of as a conjunction of features, but more pre-cisely it is a probability distribution over possible linking f-struct settings that is restrictedin form by an assumption that the features are independent. The probability assigned bya word sense f-struct to a given linking f-struct can always be increased by choosing ahigher-probability value for any individual feature (assuming such a choice is available).Consequently, the highest-probability linking f-struct is the one which contains the modevalue for each feature. The probability values provide a form of graded membership whichfacilitates choosing the best-matching verb when none matches precisely. And the highest-probability linking f-struct acts as the prototypical example of the word sense|one canthink of the word sense as a cluster around this point in \linking f-struct space". Thisability to construct a prototypical example from a set of probability distributions is the keyto the model's ability to perform \reverse" mappings from verbs to linking features (andultimately actions).Due to the independence assumption, a single word sense f-struct is incapableof representing concepts such as \Slide with direction = away or else Depress withdirection = down" in which correlations exist between features. In these cases the conceptcan be represented only by multiple word sense f-structs (cf. push in Figure 5.2). Critically,since language never identi�es which sense of a word is being used, the choice of sense is ahidden variable which all algorithms must deal with.



CHAPTER 5. WORD SENSES AND THEIR USE 655.2.1 On the use of probabilitiesAt this point a few comments are in order on the use of probabilities in our modelof semantics. I would like to dispel any misconceptions that by using probabilities this workis o�ering a so-called objectivist account of semantics, in which categories are presumed tobe properties of the world and not of the mind. I would also like to argue more generallythat numerical measures are essential in semantics.First of all, let us review why there are numbers in the model in the �rst place.The key point is that we want all the language processes we model (labelling, obeying, andlearning) to be evidential in nature. That is, they must respond to context and to priorexperience in a graded manner; they must \weigh the evidence". This evidence comes in theform of associations, whose strengths are represented numerically. These strengths are par-tially determined by frequencies of events, and to this extent they may seem \objectivist".But it is important to understand that the \events" in our model are described solely interms of linking features which, through their connection to x-schemas and perception, rep-resent a bodily-grounded construal of the world. Moreover, the association strengths in ourmodel are also partially determined by various internal biases and expectations, removingthem even further from the objectivity of simple frequencies.In any neural implementation of the model, these numbers would be representedby activation levels and weights, and this will be considered in later sections. But neural orotherwise, the heart of any evidential system is the update rules it provides specifying howthe numbers get used and how they change during learning. In general, it is hard to discovergood update rules, or even to understand the properties which a given set of update ruleswill exhibit. One way to think about these numbers is to treat them as probabilities, aswe do here. What this means is that we restrict the update rules we will consider to thosewhich obey the laws of probability. In return, we get certain guarantees. For example, weare guaranteed that the numbers will remain in a bounded range (normally taken to be [0,1]). We also get access to a body of probabilistic literature which includes update ruleswith well-understood behavior.It is not claimed that any particular neural systems obey the laws of probability.2Rather, probability theory is simply something to leverage in the design of provisional2Nor is it clear whether human reasoning in general obeys the laws of probability. Tversky & Kahneman(1974) argue that it does not.



CHAPTER 5. WORD SENSES AND THEIR USE 66models|models which will ultimately be evaluated by their �t to the data, not by theirphilosophical commitments. Indeed, an important question is what kinds of approximationsare necessary to map probabilistically formal algorithms to known connectionist architec-tures. Aside from the objectivist vs. subjectivist issue, there is a more general questionabout the status of any numerical measure such as probability in semantics. When wesay that, e.g., push is associated with palm posture with probability 75%, what does thismean? Is all of this information part of the \semantics" of push, or is only the featurevalue palm part of the \semantics," while the 75% is just auxiliary information for use in\pragmatics"? My own view, similar to that of Wu (1992), is that the situation becomesclearer if we adopt the perspective of language use instead of language description. Fromthis view, language is a situated activity in which decisions must be made under real-timeconstraints. Situated language models may well not divide naturally into \semantic" and\pragmatic" components.Certainly, there is an intuitive sense in which it is unsatisfying to say that pushmeans \use the palm posture, probably". We know that there are certain circumstanceswhere the palm posture is called for and other circumstances where it is not, and an idealrepresentation should encode those conditions. However, the language learning child maynot always be privy to the appropriate conditions and thus may be forced to simply recordstatistics until he better understands his environment. And full understanding may be along time coming. In general, the tremendous di�culty of verifying or even representingall the preconditions of real-world rules is known as the \quali�cation problem" (McCarthy1977). Other approaches to this problem include default logic and nonmonotonic reasoning,but these mechanisms enjoy neither the formal simplicity nor the evidence-weighing abilityof probabilistic inference.A convincing case study of the power of probability theory in language modellingis Jurafsky's (1996) model of full-
edged parsing. Short-term memory allows only a limitednumber of parses to be considered in parallel. A probabilistic account can be given specifyingwhen constructions will be accessed, and when potential partial parses will be discarded.Such an account can explain certain psychologically observable e�ects such as the lengthsof \garden paths" in sentences which use infrequent constructions.
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PUSH:  2 sensesPUSH:  2 senses
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slide      100%
touch     100%
slide          0%

touch        0% grasp     10%
palm      60%

index     30%

away       50%

down       30%

toward      5%
up           15% index     10%

grasp       5%
palm      85% low         10%

high         60%
med         30%

forceposture

commonness  0.2 commonness  0.1Figure 5.1: Two senses of push with full speci�cation of their probability distributions.5.2.2 An illustration of two senses of pushThis section works through a simple illustration of word sense f-structs, to helpensure that readers understand the representation before we move on to how it supportslabelling and obeying and how it is learned. Figure 5.1 shows two senses of push as wordsense f-structs (these are copied from the Overview chapter).3First let's look at sense 1. We see that three linking features are involved: schema,posture and direction. To get a feel for this word sense f-struct, it is helpful to determineits prototypical example. By choosing the highest-probability value for each feature, wesee that the prototypical example is an execution of the Slide x-schema using a 
at palmposture to move an object away from the body. If the model were commanded to push anobject and this sense were chosen, this is the action that would result. The probability ofthis prototypical example can be computed from the distributions: 100% � 60% � 50% =30%. Changing any of the feature values will produce less-probable examples. Changingthe schema to Touch would yield zero probability. Changing posture or direction wouldlower the probability in a more gradual manner. Observe that while sense 1 prefers palmposture over the other possible postures, it doesn't insist. Index �nger posture is quiteacceptable. If we were designing word sense f-structs for Spanish, we would not have a wordsense like sense 1, because in Spanish, separate verbs are used for sliding using the palm vs.the index �nger (presionar vs. pulsar).Now let's turn to sense 2. By examining the feature distributions, we can observethat it represents the \apply pressure" sense of push, rather than the \move object" sensejust described. Most importantly, sense 2 codes for a di�erent x-schema: Touch. And it3Note that these are not quite the same senses portrayed in Figure 5.2.
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Figure 5.2: The full model as originally depicted in Figure 1.1 but �lled in with the Slidex-schema, several linking features and two verb representations.



CHAPTER 5. WORD SENSES AND THEIR USE 69does so absolutely, just like sense 1. Typically in our model, di�erent x-schemas will leadto separate senses. (Moreover, this is usually a good indication of a conceptual distinctionthat will be marked by separate verbs in some other language. In Farsi, sense 1 and sense2 correspond to hol-daadan and feshaar-daadan, respectively.) Like sense 1, sense 2 prefersthe palm posture, but its preference is stronger than that of sense 1. Additionally, sense2 codes for the force feature, preferring a medium to high value.Why are these senses kept separate, besides intuitively being distinct? If we wereto use just one sense, we would lose information. For instance, the probability distributionfor schema would become Slide 50%, Touch 50%; and the posture distribution wouldbecome palm 73%, grasp 8%, index 20%. We would be hiding the important fact that,for the verb push, index posture is reasonably compatible (30%) with Slide but not verycompatible (10%) with Touch.Lastly, note that the commonness of sense 1 (amongst all senses in the lexicon)is double that of sense 2. This plays a role when these push senses are competing againstsenses of other verbs to label a new action. Due to its greater commonness, sense 1 need notmatch the new action as closely as sense 2 would need to in order to beat its competitors.5.3 Labelling and Obeying AlgorithmsThe word sense f-struct representation for verbs supports the two basic require-ments for use of the verbs, namely labelling (in which a linking f-struct summarizing anx-schema execution must be labelled with the best possible verb) and obeying (in whicha verb must be translated into an appropriate linking f-struct that can guide x-schemaexecution). These two processes are represented by the upper two arrows in the architec-tural overview in Figure 1.1. For both cases the mappings between the linking f-struct andlinguistic utterances can be given a clean probabilistic account.5.3.1 Labelling algorithmFor labelling, the goal is to �nd the verb v with the highest probability, given thetrained model m and the linking f-struct l resulting from execution of an x-schema. Thatis, we seek
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Figure 5.3: Formulas used to determine the best label v for a given linking f-structure l.argmaxv P (v j l;m) (5.1)The computation of this probability is now described and is summarized in Figure 5.3. Asimpli�cation is employed in calculating the probability for a verb: the algorithm does notsum the probabilities of all the verb's senses s, but instead chooses the probability of themaximum-probability sense. This is a kind of Viterbi approximation (Viterbi 1967) and ismeant to re
ect the notion that only one sense is mentally \settled upon" in response to astimulus (an action in this case), so low probability on two senses is not equivalent to highprobability on one sense. The approximation isP (v j l;m)� maxs2v P (s j l;m) (5.2)To compute a value for P (s j l;m), we apply Bayes' rule. Bayes' rule is a simple tautologythat follows from the laws of probability, which expresses a conditional probability suchas P (H j D) in terms of its converse, P (D j H). In practice one of these probabilities isoften available but the other is desired; hence the rule's tremendous utility. It will be used



CHAPTER 5. WORD SENSES AND THEIR USE 71extensively in this dissertation, especially for learning. Bayes' rule is:P (H j D) = P (H) P (D j H)P (D) (5.3)Often H may range over multiple hypotheses while D is the available data and hence is�xed, in which case the denominator is constant and can be ignored, yieldingP (H j D) / P (H) P (D j H) (5.4)The probability P (H) is called a prior and often is determined subjectively. P (D j H) iscalled a likelihood and P (H j D) is called a posterior. Using Bayes' rule we can rewriteP (s j l;m) as follows: P (s j l;m) / P (s jm) P (l j s;m) (5.5)Finally, we have arrived at expressions which can be directly calculated from thestatistics contained in the word sense f-struct. P (s j m) is simply the frequency valuestored in the word sense as described in x5.2. P (l j s;m) is calculated directly from theper-feature probability distributions comprising the word sense, by multiplying together theprobabilities of the individual feature values in l (this is the independence assumption atwork). In a nutshell, the probability for a given word sense is the product of its commonnessand its �t to the current action.These calculations are incorporated into the LABEL algorithm presented below inpseudo-code form:44\Pseudo-code," a somewhat abstract level of algorithm description which is not tied to any particularprogramming language, will be used to describe all our algorithms. The  symbol stands for assignment ofthe value on the right-hand side to the variable on the left-hand side.



CHAPTER 5. WORD SENSES AND THEIR USE 72LABEL(linking f-struct l, model m) returns a verbfor each sense s of each verb v in m:prior  relative frequency of s amongst all senseslikelihood  product over each feature f in s of:sf 's likelihood of generating lfposterior  prior � likelihoodendforif (some sense's posterior �MinLabel)then return v corresponding to s with highest posteriorelse return nothingendifendThe main loop of the algorithm computes P (s j l;m) for every sense of every verbin the lexicon, according to the formulas just described. The if-statement then choosesthe sense with the highest probability and returns the verb associated with it|but onlyif the probability exceeds MinLabel, a tunable threshold. Note that since a word senseprovides no sharp boundaries on the category it represents, any action will have someresidual probability for any verb. So if MinLabel is set to 0, the LABEL algorithm is\forced choice"|that is, it is required to provide an answer no matter how bad it may be.Non-zero values forMinLabel provide a means for leaving unclassi�able actions unlabelled.55.3.2 Obeying algorithmOur word sense representation reveals an important advantage when we turn toobeying commands, which involves the reverse mapping from linguistic input to action. The�rst step of this process, which we discuss here, involves �nding the maximum probabilitymotor-parameter linking features p given the command verb v, the current world statelinking features w and the lexicon model m. That is, we seekargmaxp P (p j v; w;m) (5.6)The computation of this probability is now described and is summarized in Fig-ure 5.4. We begin with a simpli�cation similar to the one made in LABEL: we choose not to5The MinLabel parameter will take on more signi�cance when multi-word labels are considered in Chap-ter 7.
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w = world state componentFigure 5.4: Formulas used to determine the best motor parameters p for obeying a commandv given initial world state w.sum motor-parameter linking feature probabilities over all senses of v, but instead commitfully to a single sense|namely the sense which best �ts w, the initial world state. That is,we choose the sense s as follows: argmaxs2v P (s j v; w;m) (5.7)This expression is transformed via Bayes' rule:P (s j v; w;m)/ P (s j v;m) P (w j s; v;m) (5.8)At this point the computation of the prior can be performed by consulting s's frequencycount relative to the total frequency count of all senses of verb v, and the likelihood of theworld-state features can be computed from the per-feature probability distributions in wordsense s as was done for labelling.But our goal was p, not the maximal s. That is, we really want to �nd



CHAPTER 5. WORD SENSES AND THEIR USE 74argmaxp P (p j s; v; w;m) (5.9)This expression is maximized by choosing, for each motor-parameter feature distribution ins, the mode value. However, there are reasons not to retain the full set of motor-parameterfeatures, as will be seen shortly when we review the algorithm.Pseudo-code for the OBEY algorithm follows:OBEY(verb v, initial world state w, model m)returns motor-parameter linking featuresfor each sense s of v:prior relative frequency of s amongst senses of vlikelihood  product over each world-state feature f in s of:sf 's likelihood of generating wfposterior  prior � likelihoodendforif (some sense's posterior �MinObey)then let s be the sense with highest posteriorelse return nothingendifcreate an empty f-struct pfor each motor-parameter feature f :if (sf 's peakedness �MinSetFeature)then pf  sf 's mode valueendforreturn pendThe �rst phase of the algorithm can be thought of as a variant of the �rst step ofthe LABEL algorithm: we �nd the sense s (of verb v) which gives the highest probability tothe partial linking f-struct w containing the current world state. The e�ect of this procedureis to �nd the sense of the command verb which best �ts the current world state. As withLABEL, a tunable threshold is now employed: MinObey. If set to 0 the algorithm will beforced to attempt the action most compatible with the world state even if bad con
ictswith the world state are apparent, while a greater than 0 setting allows the algorithm tosay \Sorry, Dave, I can't do that."66With apologies to Arthur C. Clarke.



CHAPTER 5. WORD SENSES AND THEIR USE 75Assuming this test is passed, the next step is to extract the \prototypical" motor-parameter linking features from sense s; that is, for each motor-parameter linking feature,extract its mode value. However, an additional thresholding parameter is introduced here.The sense s may code strongly for some motor parameters, but weakly for others, and wedon't want to set features in the linking f-struct if s codes only weakly for them. We willde�ne a measure of peakedness of probability distributions, and only those features of swith peakedness exceeding MinSetFeature will be returned from OBEY to be set in thelinking f-struct.The peakedness measure used is the relative probability of the mode value (thehighest-probability value) and the runner-up (the second-highest-probability value). Thatis, peakedness = P (mode)P (runner� up) (5.10)This de�nition of peakedness is obviously only a heuristic since it involves only two of thevalues in the distribution. It was chosen for simplicity after two other simple de�nitionsfailed.5.4 Connectionist AccountWord senses can be fairly directly mapped into connectionist networks, by using amore localist style of encoding than that found in PDP-style representations. This sectionsketches such a connectionist architecture. The intent is to demonstrate the plausibility ofthe architecture. Full speci�cation of the architecture including precise activation functionsis not given and remains for future work.5.4.1 Triangle unitsThe essential building block is the triangle unit (Feldman & Ballard 1982; Diederich1988), shown in Figure 5.5(a). A triangle unit is an abstraction of a neural circuit whiche�ects a three-way binding. In the �gure, the units A, B and C represent arbitrary \con-cepts" which are bound by the triangle unit. All connections shown are bidirectional andexcitatory. The activation function of a triangle unit is such that activation on any two of
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BAFigure 5.5: (a) A simple triangle unit which binds A, B and C. (b) One possible neuralrealization.its incoming connections causes an excitatory signal to be sent out over all three outgoingconnections. Consequently, the triangle unit allows activation of A and B to trigger C, oractivation of A and C to trigger B, etc.Triangle units will be used here as abstract building blocks, but Figure 5.5(b)illustrates one possible neural realization. A single neuron is employed to implement thebinding, and each concept neuron projects onto it. Concept neurons are assumed to �reat a uniform high rate when active and all weights into the main neuron are equal. As aresult, each input site of the triangle neuron can be thought of as producing a single 0-or-1value (shown as lower-case a, b and c) indicating whether its corresponding input neuronis active. The body of the binding neuron then just compares the sum of these three valuesto the threshold of 2. If the threshold is met, the neuron �res. Its axon projects to allthree concept neurons, and the connections are strong enough to activate all of the conceptneurons, even those receiving no external input.A particularly useful type of three-way binding consists of an entity, a feature,and a value for the feature, as shown in Figure 5.6. With this arrangement, if posture andpalm are active, then "push" will be activated|a primitive version of the labelling process.Alternatively, if "push" and posture are active, then palm will be activated|a primitive
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"push"

palm

posture

Figure 5.6: Using a triangle unit to represent the value (palm) of a feature (posture) foran entity ("push").version of obeying. (But note that our �nal version of labelling and obeying will be morecomplex than this.)Generally, a set of these triangle units is connected in a winner-take-all fashionto ensure that only the appropriate binding reaches an activation level su�ciently high toexcite its third member. We will soon show how to do that for our language task.5.4.2 Complex triangle unitsBut �rst, we must introduce an extended version of triangle units. In the extendedversion, multiple connections are allowed on each side of the triangle. Furthermore, theseconnections can have varying strengths (in both directions). And lastly, these extendedtriangle units can have graded outputs rather than simple on/o� behavior. An example isshown in Figure 5.7(a), in which the B side has three connections and the C side has two.The variable weights are each indicated by a `w.' The extended triangle unit is useful whenmore than three entities must be bound, but there is a natural partitioning of the entitiesinto three groups. The function of the extended triangle unit depends on the weights;several usages can be delineated.One usage is where the desired binding is conjunctive over all the connected units(e.g. A, B1, B2, B3, C1 and C2), and the minimum condition for triggering the binding isthat all the units on any two sides of the triangle are active (e.g. A, B1, B2 and B3; or A, C1and C2). This functionality can be implemented by setting the incoming weights on each
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wFigure 5.7: (a) A complex triangle unit with multiple weighted connections per side. (b)One possible neural realization.side to 1=n, where n is the number of connections on the side, and adding a threshold of 1locally to each side of the triangle. The central activation function then remains identicalto that of the simple triangle unit. A \softer" version of the conjunctive triangle unit canalso be implemented, in which one or two missing concept units might lead to weak|butnon-zero|activation. Or, if the activation of concept units is variable, then the conjunctivetriangle unit can implement a trade-o� between the number of active inputs to a side, andtheir strength of activation. This kind of unit will be used in our connectionist architectureto implement the collection of features in word sense f-structs.Another usage is more disjunctive in nature: at any moment in time, we expectonly one concept unit per side to be active, but the activation of the triangle unit shouldbe in proportion to the weights on the links to the active units. (Naturally, in this case weexpect the weights to di�er from one another.) For example, suppose that B1 and C1 havestrong weights and B2, B3 and C2 have weaker weights. Then, should B1 and C1 becomeactive, A will be strongly activated. But if instead B1 and C2 should become active, then Awill be only weakly activated. The weighted connections also work in the outgoing direction:if A and C1 should become active, then activation will be sent to all of the B units, althoughB1 will receive more activation than B2 and B3. This type of triangle unit will be used inour connectionist architecture to implement probabilistic feature values.Once again, we are not focusing on neural realization here, but an example realiza-



CHAPTER 5. WORD SENSES AND THEIR USE 79tion of complex triangle units is shown in Figure 5.7(b). We retain the single-neuron designused for the simple triangle unit, but each of the three \lobes" of the neuron, correspondingto the sides of the triangle, must be considered as a full-
edged site (Feldman & Ballard1982).7 A site is a portion of a neuron's dendritic tree which computes its own local functionand passes only the result upstream to the neuron body. These local functions are indicatedby the `w' markings and the arrows pointing to the `a', `b' and `c' quantities summarizingthe response of each site. Another di�erence from the simple case is that the projectionsof the output axon back to the concept units involves storing another copy of the weights\w" in the concept units themselves. This is needed to implement graded activation of theconcept units for the disjunctive triangle units just described.5.4.3 Network architectureWe will now turn to the construction of a network architecture which implements(approximately) our multiple-sense verb representation and its associated algorithms forlabelling and obeying. The architecture is shown in Figure 5.8, whose layout is intended tobe reminiscent of the upper half of Figure 5.2.On the top is a \vocabulary" subnetwork containing a unit for each known verb.Each verb is associated with a collection of phonological and morphological details, whoseconnectionist representation is not considered here but is indicated by the topmost \blob"in the �gure. Each verb unit can be thought of as a binding unit which ties together suchinformation. The verb units are connected in a winner-take-all fashion to facilitate choosingthe best verb for a given situation.On the bottom is a collection of subnetworks, one for each linking feature. Thecollection is divided into two groups. One group|the motor-parameter features|is bidi-rectionally connected to the motor control system, as described in x4.3 but shown here as ablob for simplicity. The other group|the world-state features|receives connections fromthe perceptual system, which is not modelled here and is indicated by the bottom-right blob.Each feature subnetwork consists of one unit for each possible value. Within each featuresubnetwork, units are connected in a winner-take-all fashion. A separate unit representseach feature itself, apart from its possible values.7If the local thresholding of the conjunctive case is needed, then it may be more appropriate to useseparate neurons rather than sites.
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Figure 5.8: A connectionist version of the model, using a collection of triangle units for eachword sense.



CHAPTER 5. WORD SENSES AND THEIR USE 81The most interesting part of the architecture is the circuitry connecting the verbunits to the feature units. In the central portion of Figure 5.8 the connectionist represen-tation of two senses of push are shown,8 each demarcated by a box. Each sense requiresseveral triangle units with specialized functions.One triangle unit for each sense can be thought of as primary ; these are drawnlarger and labelled \push1" and \push2". These units are of the soft conjunctive typedescribed earlier, and serve to integrate information across the features which the sense isconcerned about. Their left side connects to the associated verb unit. Their right side hasmultiple connections to a set of subsidiary triangle units, one for each world-state feature(although only one is shown in the �gure). The lower side of the primary triangle unitworks similarly, but for the motor-parameter features (two are shown in the �gure). Recallthat, within each side, the weights are equal. However, their magnitude is set to re
ectthe frequency of the word sense: higher weights are used for more frequent senses, allowingthem to be activated more easily.Each subsidiary triangle unit is of the disjunctive type described earlier, and rep-resents its word sense's probability distribution for a single feature. Its right side connectsto the primary triangle unit. Its left side connects to the unit representing the feature itself(e.g. \force"). Most importantly, its lower side connects to each of the value units for thefeature. These connections have variable weights representing the preference of the wordsense for certain values over others. The response of a subsidiary unit is therefore gradedin response to the currently active value; and in the reverse direction, it is also capable ofactivating value units to di�ering degrees in accordance with the probability distributionembodied in the weights. In the �gure, high-probability links are indicated by thicker lines.Thus it can be seen that sense \push1" corresponds to pushing away a large object withmedium force, while sense \push2" corresponds to pushing away a small object with lowforce. (Clearly these ought to be combined into a single sense; this will be illustrated in thenext chapter.)Lastly, note that the primary triangle units are connected into a lexicon-widewinner-take-all network.8Naturally, the �gure illustrates only a subset of the actual features involved in push.



CHAPTER 5. WORD SENSES AND THEIR USE 825.4.4 Labelling and obeyingWe can now illustrate how the network performs labelling and obeying. Essentially,these processes involve providing strong input to two of the three sides of some word sense'sprimary triangle unit, resulting in activation of the third side.For labelling, the process begins when x-schema execution and the perceptual sys-tem activate the appropriate feature and value units in the lower portion of Figure 5.8. Inresponse|and in parallel|every subsidiary triangle unit connected to an active feature unitweighs the suitability of the currently active value unit according to its learned connectionstrengths. In turn, these graded responses are delivered to the lower and right-hand sidesof each word sense's primary triangle unit. The triangles units become active to varyingdegrees, depending on the number of activated subsidiary units and their degrees of acti-vation. The winner-take-all mechanism ensures that only one primary unit dominates, andwhen that occurs the winning primary unit turns on its associated verb unit.For obeying, we assume one verb unit has been activated (say, by the auditorysystem) and the appropriate world-state feature and value units have been activated (bythe perceptual system). As a result, the only primary triangle units receiving activationon more than one side will be those connected to the command verb. This precipitatesa competition amongst those senses to see which has the most strongly active world-statesubsidiary triangle units|that is, which sense is most applicable to the current situation.The winner-take-all mechanism boosts the winner and suppresses the others. When thewinner's activation peaks, it sends activation to its motor-parameter subsidiary triangleunits. These, in turn, will activate the motor-parameter value units in accordance with thelearned connection strengths. Commonly this will result in partial activation on multiplevalues for some features. The winner-take-all mechanism within each feature subnetworkchooses a winner. (Alternatively, we might prefer to preserve the distributed activationpattern for use by smarter x-schemas which can reason over probabilistic speci�cation ofparameters. E.g., if all the force value units are weakly active, the x-schema knows it canchoose any suitable amount of force.)



CHAPTER 5. WORD SENSES AND THEIR USE 835.5 Some Cognitive Linguistics Issues ConsideredNow that we have fully speci�ed a model of verb representation and use, it is timeto take stock of how the model relates to some important ideas in linguistics. For example,evidence from cognitive linguistics (Lako� 1987) and also from psychology (Rosch 1977;Rosch et al. 1976) suggests that human categories exhibit internal structure that wouldnot be captured by the classical representation using necessary and su�cient conditions.Human categories exhibit prototype e�ects, radial structure and basic-level e�ects. We willsee that our model captures some of these phenomena, but falls short of a full account,suggesting some avenues for future work. On another front, the traditional linguisticsliterature decomposes meaning into pragmatics and semantics, each with its own properties.We will see that this distinction has a nice interpretation in terms of our model.5.5.1 Prototype e�ectsOne characteristic of human categorization is that it exhibits prototype e�ects.With one kind of prototype|graded prototypes|certain members of the category aremarked as especially \good" examples of the category and other members are judged by howmuch they di�er from the prototypical members. (In the psychology literature, degree ofprototypicality is measured by explicit ratings, by frequencies with which a member is listedas belonging to a category, or by reaction times for judging membership.) Our word senserepresentation exhibits several of the main graded prototype e�ects. Each sense implic-itly includes a prototype, namely the f-struct with maximum probability according to thedistributions in the word sense. The potential for multiple senses corresponds to multiple-prototype categories. Next, the probability distributions give a measure of the degree ofgoodness of a non-prototypical f-struct. Lastly, the connectionist implementation involvesa winner-take-all step which will converge more slowly for lower-probability f-structs thanfor higher-probability (i.e. prototypical) f-structs during categorization, in accordance withthe slower reaction times observed for classifying non-prototypical examples.



CHAPTER 5. WORD SENSES AND THEIR USE 845.5.2 Radial categoriesAccording to radial category theory, conceptual representations consist of not onlya set of graded prototypes, but also a structure connecting the various prototypes. Thecentral tenet of radial category theory is that the multiple prototypes of a category arenot arbitrary, but are related to each other in particular ways. These relations includeimage-schematic transformations, metaphorical links and metonymic links. If there is onecentral sense plus several others which each derive from the central sense by one suchtransformation, the category structure is radial, hence the term. However, other topologiesare possible.Beyond transformations relating verbal senses of a word, there is a wider range ofextensions which include changes in part of speech, and these also exhibit various regularities(Wilensky 1991). For example, part of the meaning of pocket as a noun carries over to itsinterpretation as a verb. Presumably there is a rule to the e�ect that a noun referring to\X" may also be used as a verb to denote some kind of action involving \X," subject tosome restrictions. In this example, combined with appropriate world knowledge, this ruleleads to the verb meaning \INSERT-INTO(POCKET)". This is an example of a metonymictransformation.The current model doesn't model such category structures, in that we have includedno account of these connections. For our relatively limited modelling task, we must askwhat bene�t is to be gained from representing the category structure as opposed to merelya catalog of possible uses.9 The primary bene�t may be greater compactness. One could,for example, represent the central sense just the way we have been doing in our model, butdelta code the other senses, i.e. represent them by the (presumably comparatively short)list of features on which they di�er from the central sense. This strategy would requiresigni�cant changes to our learning algorithm (Chapter 6) which would then be chargedwith the task of identifying which sense is central.A potentially more interesting version of radial category representation would beto explicitly represent a �xed set of transformations (at the feature level) motivated bylinguistic analysis. In such a model, each non-central sense would be represented simply by9Generativity is one potential bene�t. If the applicability conditions of the various transformations couldbe learned, then novel word extensions could be generated on demand. However this may not be feasible,since extended senses, while usually motivated, are not fully predictable.



CHAPTER 5. WORD SENSES AND THEIR USE 85a link to the sense it is derived from, plus the identity of the relevant transformation. Thisis e�ectively a procedural representation of the non-central senses, requiring the indicatedtransformation to be applied each time the sense is needed. The learning task in this caseis a very open question.Also open is the question of what sorts of transformations apply to the actiondomain. Metaphorical and metonymic links are quite numerous and often involve reason-ing outside the action domain, and thus are hard to incorporate into a learning story atthe present time. But we hope that, within the action domain, a relatively small list ofmotor-schematic transformations (analogues to the image-schematic transformations suchas end-point focus, mass-multiplex duality, etc. (Lako� 1987)) could be identi�ed by futurelinguistic research and used to construct a radial-category-based learning algorithm as justdescribed.5.5.3 Basic-level e�ectsAnother proposed structural characteristic of human categorization is that in thehierarchy of speci�c to general conceptual levels, there exists a privileged level called thebasic level (Rosch et al. 1976). Categories at the basic level (the standard example is\chair") enjoy a privileged position in that they are conducive to mental imagery yet areabstract enough to be useful for common reasoning tasks. The basic level is not the lowestlevel of the concept hierarchy|categories at the more speci�c \subordinate levels" exhibita �ne level of detail which is not essential for most reasoning (e.g. \ottoman"). Nor is thebasic level the highest level of the hierarchy|categories at these \superordinate levels" aretoo abstract for mental imagery (e.g. \furniture"). Basic-level categories are more easilylearned and are more commonly used in re
exive reasoning.There tends to be disagreement about exactly where the basic level lies in thevarious domains of human experience. This suggests that perhaps the basic level is notentirely universal, and thus not tied intimately to biology. Revisions to the original theoryshould allow for the basic level to be determined relative to experience. For an antiquefurniture salesperson, \ottoman" may be at the basic level. Such revised theories are stillat a preliminary stage; nevertheless, it is worth considering how the current model of actionscan be made to �t into the story.



CHAPTER 5. WORD SENSES AND THEIR USE 86First, consider how our model represents categories at varying levels of abstrac-tion. The simplest categories are those which simply code for a speci�c x-schema, suchas lift. These, we argue, correspond to the basic level. Choosing x-schemas appropriatelyto achieve your goals is the kind of everyday reasoning which characterizes the basic level.Furthermore, if we assume that mental imagery or gestalt perception of actions consistsof \mental" x-schema executions (i.e. disconnected from the muscles), then specifying anx-schema with no further constraints is the highest level at which such imagery could occur.Lastly, such categories are relatively easy to learn in our model, since only one feature|thex-schema name|is involved, and a single value is called for. (The learning algorithm isusually initialized with a predisposition toward peaked distributions for the schema featurebut broader distributions for the other motor-parameter features. See the next chapter fordetails.) At the subordinate level, we have categories which code for both a speci�c x-schema and some parameter values, such as heave which speci�es schema = Lift and force= high. Such categories are somewhat slower to learn, since probability distributions mustbe learned over multiple features, and motor-parameter features such as force are initiallybiased toward broad probability distributions (see next chapter). And the parameter prob-ability distributions may be more complicated than simply selecting a single value; if wehad a �ner resolution in our force feature, we might have to learn that heave calls for\force = 6 to 10, with 8 best" or somesuch.At the superordinate level, our model can learn categories which map to sets ofx-schemas. For example, move maps to any invocation of Slide, Lift, Drop, etc. Suchcategories are slightly harder to learn than basic-level categories since a broad probabilitydistribution for the schema feature must be learned (again, this is against the normal biastoward selecting a single x-schema). They become even more cumbersome, however, if thecategory speci�es parameter settings which di�er for the di�erent x-schemas, for in this casethe category can be represented only by multiple word senses.So far, we've been assuming that there are separate hierarchies for objects and foractions, each with its own basic level. Yet it may be fruitful to consider (action, object)pairings as basic, since actions and objects each clearly exert an in
uence on how the other isconceptualized. Such an interactionist account of basic-level phenomena, incorporating anx-schematic model of actions connected to some sort of a�ordances-based model of objects,



CHAPTER 5. WORD SENSES AND THEIR USE 87would be an intriguing modelling endeavor.5.5.4 PragmaticsIt has been argued that many apparent problems of semantics become simpler ifthe role of pragmatics is considered. Pragmatics refers to the role in interpretation playedby context|both linguistic and external. The model we have presented o�ers an illustrationof how world-state context e�ects can be separated from semantics, simplifying the latter.The key observation is that x-schemas can be heavily branched, allowing them tofunction in a wide variety of world states, yet most of this does not appear in the linkingf-struct and hence is not directly available linguistically. In the extreme case, a word likeslide can be represented merely by a pointer to the Slide x-schema; when carrying out aslide command all the movements, grip choices, obstacles avoided and other such decisionsare handled down at the x-schema level. Thus, a wide array of possible behaviors may beassociated with the verb slide while retaining a very simple semantic representation for theverb.5.6 Limitations of the ModelThe labelling and obeying algorithms assume independence amongst the linkingfeatures. Such independence assumptions are commonly needed to make probabilistic mod-els tractable. Fortunately independence often holds, and when it doesn't the model cancompensate by having a larger number of word senses. Yet clearly there is a cost to thesystem's inability to, e.g., represent in a single sense that both posture and size havebroad distributions but are highly correlated (e.g. small objects tend to be pinched butlarge objects tend to be grasped).So the limitation is not so much the independence assumption but the representa-tion itself, i.e. 
at attribute-value lists. Such a representation is vastly less expressive than,for instance, predicate calculus, since relationships amongst entities cannot be represented.The ability to represent something like \force is proportional to acceleration times objectweight" would allow richer concepts to be (naturally) represented.A di�erent limitation arising from the architecture of the system is that any er-



CHAPTER 5. WORD SENSES AND THEIR USE 88rors made by the OBEY algorithm (which, remember, chooses all linking features beforebeginning execution)|perhaps due to incorrect estimates of the world state|cannot beundone during execution. While x-schemas include branches for handling some anomalousconditions, there is currently no mechanism for discovering early in the x-schema executionthat the chosen verb sense is unimplementable and a di�erent sense should be chosen.With a richer representation system, the OBEY routine's very simple con
ict res-olution strategy could be replaced with an algorithm capable of general planning, which isindeed necessary even in interpreting simple verb phrases. Work in this area by Levison(1995) has investigated the role of objects in choosing among alternate realizations of a verb(e.g. open the door compared with open the jar or open the box (Levison 1993)). Levison'sObject Speci�c Reasoner demonstrates the importance of the planning level, thereby point-ing out some limitations to an approach such as ours with its restricted focus on the motorlevel.5.7 Continuous DistributionsCharacterizing probability distributions by multinomials over each possible valuebecomes unwieldy for inherently continuous-valued features when the granularity of dis-cretization is increased. In this case, it becomes highly desirable to �nd a functional formfor the distribution with a small number of parameters. When a distribution is modelledas a Gaussian, we no longer need worry that a particular value will, upon being absent inthe training data, receive low probability despite the presence of high probability on nearbyvalues. Continuous distributions are not included in the current version of the model, butwere included in an earlier version. The types of distributions that were found to be usefulwere Gaussians (for linear features such as force) and circular Gaussians (for features suchas direction).In a continuous probability distribution, the probability of any particular valueis zero; probabilities are meaningful only over an interval. Consequently, when calculatingthe probability of a particular feature structure given a word sense, we use a standardizedinterval for all the continuous features. In other words, a force value of 6.24 is interpretedas 6.24 � �, where � is �xed in advance. While the resulting probabilities will depend on



CHAPTER 5. WORD SENSES AND THEIR USE 89the arguably arbitrary choice of �, all relative probabilities are still legitimate, so the choiceof the best label for an action will not be a�ected. However, in LABEL and OBEY, theMinLabel and MinObey thresholds must be adjusted whenever the standard interval isadjusted, since they represent actual|not relative|probabilities.An approximation to Gaussians can be added to the connectionist account of wordsenses by modifying the connectionist network in x5.4 as follows. For each numerical feature,the value units are connected in a topographic fashion. That is, excitatory connections linkvalue units which represent quantities of similar magnitude, with stronger connections forvalues which are closer together. As a result, when activation is present on one value unit,nearby values will receive partial activation. This structure is needed because word sensetriangle units can not act like radial basis function (RBF) units (Moody & Darken 1988)commonly used in neural modelling to represent ellipsoidal regions in continuous spaces.RBF units rely on each continuous feature being represented by degree of activation ratherthan place coding. Since, with place coding, there is no way for word sense triangle unitsto \know" about the distances between the quantities represented by each feature value,we need the excitatory connections amongst value units to represent those relationships.Some pilot training experiments with Gaussian distributions revealed an importantlimitation imposed by such restrictions on the form of probability distributions. The wordin question was sideways (see Chapter 7 on including directional speci�ers in the model).The relevant feature was direction. Unlike away or toward, which prefer a single directionwith some amount of tolerance on each side, sideways has two best directions|left andright|but does not apply to intermediate directions. Such a bimodal distribution cannotbe modelled as a Gaussian. The result, during learning, was two separate senses, one forleft and one for right. While this may be acceptable for toy examples, it will not scale well,particularly if many features exhibit such bimodality. Simple mathematical models such asGaussians are convenient to design algorithms for, but don't capture the complexities oflanguage. *****In this chapter we have developed the idea that probability distributions overlinking features derived from x-schema execution can capture the needed functionality forboth labelling actions and carrying out verbal commands. But we were able to do so only



CHAPTER 5. WORD SENSES AND THEIR USE 90by positing multiple, conjunctive senses for each verb. In the next chapter, we will turn tothe question of learning these senses, including the important subproblem of determininghow many senses are called for.
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CHAPTER 6. VERB LEARNING 92and then reviews recent e�orts to borrow and adapt ideas from noun acquisition (e.g.Markman's principle of mutual exclusivity (Markman 1989)) to explain acquisition of otherparts of speech. One reason cited for the lack of research on acquiring verb semantics isthat verbs are seen as the stepping stone to acquisition of grammar, which of course haslong fascinated the research community and presents its own issues (such as understandingargument structure) which overshadow the inherent semantics of the verbs themselves.Another reason, though, is that the verb acquisition problem just seems harderthan noun acquisition. One di�culty arises from the temporal nature of actions. The ref-erent of an action verb is usually o�set in time from hearing the verb, unlike nouns wherethe parent can point to the object while vocalizing its label. Actions are also 
eeting, notavailable for extended contemplation the way a just-labelled object is. Another di�culty isthat action verbs involve not only perceptually available information (when watching some-one else act) but also proprioception of internal states (when acting oneself). In particular,many verbs imply goal-directedness and thus can't be properly learned until goal-directedbehavior begins! And lastly, in languages like English verbs are phonologically less salientthan nouns because they are buried in the middle of sentences rather than appearing atthe end. (Verbs appear to be learned earlier in verb-�nal languages like Korean (Gopnik &Choi 1995).)How does the child surmount these obstacles? On the issue of temporal di�culties,it has been found that in the formative second year of life children most often hear verbsfrom their mothers before the corresponding action (Tomasello 1992). Indeed, learning isslower if this condition is experimentally altered. Early verbs also typically label short-duration actions. These two facts simplify the task of segmenting the proper time windowfor the verb and alert the child to attend to important features of the action.1 The need toattend simultaneously to both action and speech is also relieved. Our model incorporatesthis simpli�cation by using a static linking f-struct which (1) summarizes (i.e. remembers)an action, (2) implicitly provides the proper segmentation, and (3) does not encode thetiming of the label relative to the action. On the issue of perception vs. proprioception,it turns out that a disproportionate fraction of children's early exposures to verbs refer totheir own activities rather than someone else's (Tomasello 1992; Huttenlocher et al. 1983).1But see Tomasello (1995b) for further pragmatic and social factors in determining proper reference foractions.



CHAPTER 6. VERB LEARNING 93Thus the di�cult correspondence problem can be delayed until later.2But there are other signi�cant obstacles that cannot be so easily explained in termsof restrictions on the task itself. These must be addressed by any proposed learning algo-rithm if it is to be psychologically plausible. One such obstacle is the accepted observationthat children generally receive negligible negative evidence during learning (for a review seee.g. Marcus (1993)). That is, they hear examples of words used properly, but don't hearimproperly used words and aren't corrected when they improperly use a word themselves.Basic results in computational learning theory (Gold 1967; Mitchell 1980) demonstrate thatlearning in this circumstance is impossible without a bias specifying preferences amongstthose concepts consistent with the data.Another obstacle|or challenge rather|is fast mapping, the ability of children tounderstand and use a word in a reasonable way after as few as one exposure to it from theparent (Carey 1978). (See Heibeck & Markman (1987) for a more recent treatment or Flavellet al. (1993: pages 301-302) for a thoughtful overview.) The key point of fast mapping isthat the child hazards a guess as to the relevant features of the single example rather thanwaiting to collect statistics across multiple examples. The guess may be based on linguisticcontext (\no it's not purple, it's mauve"), parental cues (pointing) or, as modelled here,innate biases regarding what is linguistically relevant.3These constraints together motivate the probabilistic model merging algorithmpresented next for the learning of action verbs.6.2 Learning Word Senses via Model MergingRecall that the learning task is to construct a model lexicon|that is, an appro-priate set of word senses for each verb|from a training set consisting of labelled actions.Each training example consists of a verb and a linking f-struct summarizing an action. Theverb representation consists of probability distributions, and thus we frame the problem ofverb acquisition in terms of probabilistic model inference. The basic idea is to start with alot of very speci�c senses for each verb, and then gradually merge them together to form a2The correspondence is also likely to be partially innate. Neonates are capable of mimicking facialexpressions (Meltzo� & Moore 1977).3It should be noted that while fast mapping is well-established for a few domains, it has not been carefullystudied for the case of verbs.
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longFigure 6.1: Learning two senses of push.smaller set of more general senses.6.2.1 An illustration of mergingWe will introduce the procedure by illustrating a hypothetical training run. Fig-ure 6.1 depicts how the learning of two word senses for push might proceed. Importantly,the �gure illustrates online learning: each training example is incorporated into the modelas soon as it occurs. In contrast, the algorithm description in the following sections is ori-ented toward the o�ine case, where all training examples are collected before any mergingoccurs (the description is cleaner this way), but the algorithm can operate in an onlinefashion.4 The left-hand side of each row in Figure 6.1 shows a linking f-struct for a newexample labelled push. The right-hand side shows the modi�ed semantic representation forpush after incorporation of the example.The �rst training example (which might correspond to pushing a cube across atable) necessarily entails creation of an initial word sense. This initial sense closely re
ectsthe example itself, except that the feature values are probabilistic. Each feature valueobserved in the example f-struct is assigned probability slightly less than 1.0 (they are4In particular, the fully-online case corresponds to setting the algorithm's BatchSize parameter to 1.



CHAPTER 6. VERB LEARNING 95shown as 0.9 in the �gure). The remaining probability is divided amongst the unobservedpossible values of the feature. A very modest amount of generalization has thus occurred.The second example of push is quite similar to the �rst, di�ering on only onefeature|duration. So, it is merged into the existing word sense, thereby generalizing thatsense's duration probability distribution.The third example corresponds to a di�erent kind of pushing, perhaps pushingagainst a wall. This example di�ers from the current word sense on almost every feature,and thus is deemed too di�erent for merging. Instead a new word sense is generated (shownin the right-most column).Finally, the fourth example arrives. It is a sliding motion like the �rst two exam-ples, but involves the index �nger posture. It is compared against both existing word sensesand is judged most similar to the left-hand sense. It is then merged with that sense. Sincethe schema and elbow features have been consistent for all three examples incorporatedinto this left-hand word sense, the probabilities on these feature values are now virtually1.0. The posture feature, however, has been generalized so that it favors palm but allowsindex. Duration, has proved not to be criterial for this word sense and has been dropped.6.2.2 A Bayesian criterionWe now turn to a more formal treatment of the learning algorithm. The learningtask is an optimization problem, in that we seek, amongst all possible lexicons, the \best"one given the training set. First o�, then, we must precisely de�ne \best": we wish to �ndthe lexicon model m which is most probable given the training data t. That is, we seekargmaxm P (m j t) (6.1)The probability being maximized is the a posteriori probability of the model, and ouralgorithm is a \maximum a posteriori (MAP) estimator" in statistics parlance. The funda-mental insight of Bayesian learning is that this quantity can be decomposed using Bayes'rule into components which separate the �t to the training data and an a priori preferencefor certain models over others. The calculations which follow are summarized in Figure 6.2.The �rst transformation is:
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CHAPTER 6. VERB LEARNING 97P (m j t) / P (m) P (t j m) (6.2)Let's begin with the second term, P (t j m). This term, the likelihood, is the probabilityof the model generating the data. It is a measure of the degree of �t of the model to thetraining data. To gain intuition for this, one should imagine a word sense f-struct with itsprobability distributions as a random generator of linking f-structs. The likelihood computesthe probability of the word senses in m generating exactly the set of linking f-structs foundin the training set t. Thus, we can rewrite the likelihood as follows:P (t jm) = Y(l;v)2tP (l j v;m) (6.3)The individual probabilities are computed using the same Viterbi-like approximation asused for labelling and obeying; that is,P (l j v;m) � maxs2v P (s j v;m) P (l j s; v;m) (6.4)and as before, the �rst term is computed from the sense s's stored frequency count and thesecond term is computed by consulting the probability tables in s for each feature in l andmultiplying.Now back to the �rst term in Equation 6.2, P (m). This term, the prior, is howsubjective preferences are hooked into the learning procedure. While any kind of probabilitydistribution over models can be used in the Bayesian framework, the current work will useonly one kind of prior. Our prior has two parts, one dealing with the structure of the lexiconmodel (ms) and one dealing with the probability distributions within each word sense, givena particular structure (m�): P (m) = P (ms) P (m� jms) (6.5)The structural component is used to express the subjective preference that, all elsebeing equal, we should prefer a model with fewer senses per verb. We use:P (ms) / e�ModelPriorWeight�jmj (6.6)



CHAPTER 6. VERB LEARNING 98where j m j denotes the number of senses in the lexicon model m and ModelPriorWeightis a tunable parameter which adjusts the strength of this bias toward fewer senses.5 Toturn the proportionality into an equality, a normalization must be included to ensure thatthe sum over all possible model structures equals 1. This normalization factor iseModelPriorWeight(1� e�ModelPriorWeight)Because of its exponential form, this structural prior has the characteristic thatthe ratio of the prior on an (i�1)-sense model compared to an i-sense model is independentof i and is always equal to eModelPriorWeight. This value e�ectively speci�es the maximumamount by which the likelihood is allowed to drop during each merge.The m� component takes the form of a Dirichlet prior6, a common choice of priorfor multinomial distributions because it is mathematically convenient and has an intuitiveinterpretation. The intuition behind the Dirichlet prior is that it acts as if a number ofvirtual samples had been observed prior to the actual observed samples. Typically thevirtual samples are distributed over the possible values of the multinomial for the purposeof avoiding \drastic" conclusions from limited data. The Dirichlet prior is parameterized,and the parameters e�ectively specify the number of virtual samples for each possible value.The greater the number of virtual samples, the more observations will be needed before theMAP estimate will converge to the frequencies observed in the data. Consider an example:we would not want to conclude that a coin is unfair (probability of heads equal to 1) basedon a single 
ip yielding heads! Instead, suppose we assign 5 virtual samples to each ofheads and tails. This constitutes an initial belief that the coin is fair (probability of headsequal to 5=10). A single 
ip yielding heads would then lead to an estimated probabilityof heads equal to 6=11, i.e. we are still more or less convinced the coin is fair. But if 100consecutive 
ips yield heads then this probability increases to 105=110 and we have prettymuch concluded the coin is unfair.The above calculations are summed up in the following pseudo-code for the sub-routine COMPUTE MODEL POSTERIOR:5This prior can also be thought of as a description length prior (Rissanen 1984) and the full algorithmcan be thought of as minimizing the combined description length of the lexicon model and the training set.6See Stolcke (1994:p. 23) for a well-written full de�nition of the Dirichlet distribution and discussion ofits properties.



CHAPTER 6. VERB LEARNING 99COMPUTE MODEL POSTERIOR(model m) returns a probabilityprior  e�ModelPriorWeight�jmjlikelihood  product over all examples (l; v) of P (l j v;m)return prior � likelihoodendIn summary, we have provided the groundwork for biased estimation of the trainingset labeller's lexicon, in accordance with a speci�ed subjective prior. The prior has astructural component that will be employed by the learning algorithm to make discretechanges in the model structure during search.6.2.3 Model mergingSo we know what we must maximize; what is our search procedure? We use modelmerging (Omohundro 1992), a hill-climbing algorithm which has proven useful in learningstochastic grammars and Hidden Markov Models. The idea is to start with a model whichgenerates exactly and only the training data, hence maximizing the likelihood. Then, themodel is transformed in discrete steps which increase the posterior probability, i.e. theproduct of the prior and the likelihood. Usually, each such step raises the prior but lowersthe likelihood. Eventually a step will occur where the increase in the prior is more thano�set by the decrease in likelihood, at which time the algorithm terminates.In general terms, the algorithm is:Model merging algorithm:1. Create a simple model for each example in the training set.2. Repeat the following until the posterior probability decreases:(a) Find the best candidate pair of models to merge.(b) Merge the two models to form a possibly more complex model, and removethe original models.In our case, \model" in the name \model merging" refers to an individual wordsense f-struct. Our learning algorithm creates a separate word sense for every occurrence of



CHAPTER 6. VERB LEARNING 100a word, and then merges these word sense f-structs so long as the reduction in the numberof word senses outweighs the loss of training-set likelihood resulting from the merge.A major advantage of the model merging algorithm is that it is one-shot. After asingle training example for a new verb, the system is capable of using the verb in a mean-ingful, albeit limited, way. Omohundro (1992) argues for the cognitive plausibility of thislearning strategy, which essentially calls for memorizing individual experiences when theyare few, followed by a gradual transition to postulating generalities as enough experiencesaccumulate to warrant it. Model merging is also relatively e�cient since it does not back-track. Yet it often successfully avoids poor local minima because its bottom-up rather thantop-down strategy is less likely to make premature irreversible commitments.One might ask, why merge at all? Why not just keep the initial set of wordsense f-structs? There are several answers. One is generalization; without the broadenedprobability distributions resulting from merging, the lexicon model would have no way ofextending its use of verbs (for both obeying and labelling) beyond the set of situations inwhich it has previously observed the verb used. Another is memory limitations; one cannotstore every instance of every word one hears! And lastly, concise representations are moresuitable for reasoning since they are easier to \inspect".6.2.4 Algorithm detailsWe now turn to details of our implementation of the model merging algorithmdescribed in general terms in the previous section.Creating initial word sense f-structsWe begin with the �rst step, which creates initial models corresponding to eachtraining example. The following pseudo-code describes how this is done:



CHAPTER 6. VERB LEARNING 101CREATE NEW SENSE(linking f-struct l, virtual samples table virt) returns a sensecreate an \empty" sense sexample-count of s 1for each feature f of l:create a probability distribution dfset each of df 's value counts to virtfadd 1 to df 's value count for the value of lfinsert df into sendforreturn send A very important point is that the initial word sense f-struct we create is notexactly the maximum likelihood sense for the observed linking f-struct. Instead, the initialsense incorporates a number of virtual samples for every value of every feature, e�ectively\blurring" the probability distributions. The virtual sample values are speci�ed in a tablevirt which has an entry for each feature. The virt table is speci�ed externally and thusprovides another way to tune our algorithms. For most training runs, we use a small valuefor the schema feature, since verbs often correspond to one particular x-schema. Largervalues are used for the other features.Two advantages follow from this step, which essentially inserts a little generaliza-tion right o� the bat. The basic point is that by adding the virtual samples the algorithmavoids zero probabilities on unseen feature values, and thereby allows probabilities overentire f-structs to be a useful metric of their similarity. When labelling, this metric makesit possible for a new verb supported only by such an initial sense to be chosen as the labelfor a linking f-struct even if the match is not perfect. In this way, fast mapping with mod-est generalization is achieved. And as we will see shortly, the ability to de�ne a cheaplycomputed similarity metric between word sense f-structs can speed up merging.Finding the best merge candidateNext, we consider how the algorithm will choose at each iteration which pairof word senses to merge. Merging can be performed only between senses of the sameverb. For a given verb, we generate all possible pairs of senses and then call the routineFIND BEST CANDIDATE MERGE with this set:



CHAPTER 6. VERB LEARNING 102FIND BEST CANDIDATE MERGE(set of senses S) returns two sensesfor each pair of senses a, b in S:for each feature f :compute ChiSquaref(af ; bf)endforsimilarityab  e�Pf ChiSquarefendforif (highest observed similarity exceeds MinMerge)then return a, b with highest similarityabelse return nothingendifendA couple points deserve comment. First, the routine uses a measure of similarityto choose the best merge pair. Ideally, we would calculate the new posterior which wouldresult from each potential merge, since that is the quantity we wish to maximize. However,this is prohibitively expensive. The similarity heuristic is intended to be a cheaper way toestimate the improvement in the posterior for a given candidate merge. Since the structuralprior depends solely on the number of word senses, any merge will increase it by the sameamount. Thus, the similarity heuristic is designed simply to minimize the loss in likelihood.The similarity measure used here is based on the chi-square statistic. The chi-square statistic of two distributions R and S is de�ned asChiSquare =Xi (Ri � Si)2Ri + Si (6.7)where i ranges over possible values of the distributions and Ri and Si represent the oc-currence counts for each value in the two distributions. This measure is similar to a leastsquares error function. A problem with this measure is that it is sensitive to di�erencesin the total number of samples in the two distributions. Often we will want to merge twoword sense f-structs which \cover" very di�erent numbers of examples, such as when a newsense has just been created for a new training example and the algorithm is attempting tomerge it into an already mature set of senses. So we cannot use the statistic in this form,but instead modify it so that Ri and Si represent probabilities of each value rather thancounts.



CHAPTER 6. VERB LEARNING 103The modi�ed chi-square statistic is applied to each individual feature. To achievean overall similarity statistic for two word senses, these measures for each feature aresummed, which is a reasonable combination function since the measure is additive in nature.Finally, the sum is pushed through the negative exponential function in order to yield ameasure which tends toward 1 for identical distributions and toward 0 for totally dissimilardistributions.Another noteworthy feature of FIND BEST CANDIDATE MERGE is that it em-ploys a similarity threshold, MinMerge. If the best candidate merge exhibits similaritylower than this threshold, then no candidate will be returned and merging will stop. Thisthresholding heuristic can be turned o� by settingMinMerge to 0 but often it proves usefulto set it to a small but positive value to �lter undesirable merges.The computation of similarities for every pair of senses is time-consuming. Ac-cordingly, the implemented version of FIND BEST CANDIDATE MERGE employs a priorityqueue to store these potential merges, ordered by their similarity, so that they needn't berecomputed each time merging is performed. The priority queue implementation has anadditional routine to update the queue after a merge: some old potential merges must bedeleted, and some new potential merges added.Performing the mergeOnce a candidate merge is selected, the actual merge operation goes as follows:PERFORM MERGE(model m, senses s1 and s2) modi�es mcreate an \empty" sense s12example-count of s12  sum of the example-counts of s1 and s2for each feature f of s1 and s2:create a probability distribution dffor each possible value v of f :df 's value count for v  virtf + sum of s1's and s2'sobserved value counts for vendforinsert df into s12endforremove s1 and s2 and add s12 to model mend



CHAPTER 6. VERB LEARNING 104Essentially, we just sum the counts on each value for each feature (and also sumthe counts of the number of examples incorporated into each sense). It is important to note,though, that it is only observed counts that are summed, not virtual counts, since otherwisemerged models could never generate more-peaked probability distributions than occur inthe initial senses. In the implementation this is accomplished by not actually storing thevirtual samples within the data structure for each distribution but rather by referring tothe global virt table as well as the local observed counts whenever probability calculationsmust be made.Top-level control and online learningWe �nally present the top-level control of the model merging algorithm:INCORPORATE EXAMPLE(linking f-struct l, verb v, model m) modi�es mCREATE NEW SENSE(l, m's virtual samples table virt)if (BatchSize senses have been created for v since last merge) thenloop:s1, s2  FIND BEST CANDIDATE MERGE(m's senses for v)if (s1 and s2 are null) then terminate loopold posterior  COMPUTE MODEL POSTERIOR(m)PERFORM MERGE(m, s1, s2)new posterior  COMPUTE MODEL POSTERIOR(m)if (new posterior is lower) then undo merge and terminate loopendloopendifendWhile the general model merging algorithm appears to require the full data set tobe present initially, this is not necessary. As can be seen above, our top-level algorithm waitsonly until BatchSize training examples have accumulated for a given verb before enteringthe main loop which performs iterative merging. Model merging has historically provenrobust to being used in a nearly online fashion, i.e. by using batch sizes of approximatelyten (Stolcke 1994).The main merging loop continually checks the model's posterior probability aftereach merge, and stops as soon as a merge reduces the posterior. This last merge is then\undone". This stopping criterion is not particular robust, since a single small \dip" in the



CHAPTER 6. VERB LEARNING 105posterior might terminate merging, even if many more merges could be performed whichwould increase the prior. An alternate version of the algorithm considers other potentialmerges when the best candidate merge fails. In practice, though, it was found that thesimilarity heuristic is actually quite good, and this extra level of robustness was unnecessary.6.2.5 Computational complexityFirst we consider the worst-case performance of model merging for the o�ine case,i.e. where all training data is available initially. In this case, the running time is of complexityO(n3) where n is the number of training examples. The reasoning is straightforward: atmost O(n) merges will be performed, and at each merge step there are O(n2) potential pairsof senses to evaluate as potential merges.The online case presents the potential for considerable improvement in e�ciency,since n above is replaced by the batch size b which is presumably much lower. This isassuming the number of senses in the lexicon (measured after each completion of the mergeloop for each batch) converges to a small constant. Intuitively, the algorithm will be fasterin the online case because we expect to never accumulate too many word senses at anygiven time, since a moderate amount of merging is expected after every batch of b trainingexamples is processed.6.2.6 Updating the virtual sample priorsAn optional �nal step has been added to the INCORPORATE EXAMPLE routineto speed learning of new verbs once a modest vocabulary has already been learned. Thekey insight here is that each language tends to code for certain features in its verbs. Forexample, English verbs commonly code for manner (implicating features such as posture)while Korean or Spanish verbs usually code for more spatial features such as direction.Children pick up on this sort of language pattern quite early (Choi & Bowerman 1991).These patterns are captured by modifying the virt virtual sample table. Suchmodi�cations a�ect the amount of generalization performed for each linking feature when anew verb is encountered and its initial word sense f-struct is created. Decreased generaliza-tion is appropriate for those features which have often proven relevant in previously learnedverbs. It is achieved by lowering the number of virtual samples for such features, thereby



CHAPTER 6. VERB LEARNING 106causing a new verb's initial word sense to stick more closely to the value found in its train-ing example. Conversely, increased generalization is appropriate for features which havepreviously proven irrelevant. It is achieved by increasing the number of virtual samples|inthe limit e�ectively ignoring the speci�c feature values found in future training examplesfor a new verb.To summarize: as a result of such modi�cations to virt during learning, newwords in a slot will more quickly converge on their relevant features, so long as they �t theestablished pattern.The heuristic used to adapt the virtual sample count virtf for a given feature f isas follows. We �rst de�ne a function which maps probability distributions df over f to an\e�ective" virtual sample count. Intuitively, the broader the distribution, the greater thenumber of e�ective virtual samples. The formula used isvdf = 1� Pdf (mode)nfPdf (mode)� 1 (6.8)where nf is the number of possible values of the feature f , and \mode" is the most probablevalue of df . Why is this a reasonable formula? The equation can be rewritten asPdf (mode) = vdf + 1nfvdf + 1 (6.9)Observe that this latter formula re
ects the algorithm used when forming each distributionin an initial word sense for a new verb. The bottom line, in other words, is that Equation6.8 computes the number of virtual samples which, if used in creating a new distribution,would assign the mode of the new distribution (i.e. the observed value) the same probabilitywhich it has in df .We then compute the average of these e�ective virtual sample counts for featuref across all verbs, weighted by the number of training examples supporting each verb.This average also includes the current value of virtf , weighted by a tunable parameterV irtualInertia (which thus speci�es the rate of adaptation of the virt table as a whole).The resulting value replaces the current value in virtf .A di�culty with this heuristic is that for a perfectly uniform probability distribu-tion, the e�ective virtual sample count is in�nite. To prevent setting virtf to in�nity, each



CHAPTER 6. VERB LEARNING 107e�ective virtual sample count is arti�cially limited to MaxV irtuals, yet another tunablealgorithm parameter.This procedure is summarized below as the routine ADAPT VIRTUALS:ADAPT VIRTUALS(model m) modi�es virtfor each linking feature f :wsum 0for each word sense s in m:wsum wsum + (min( 1�P (mode)nP (mode)�1 ;MaxV irtuals) � s's example-count)endforwsum wsum+ (virtf � V irtualIntertia)wsum wsum � (sum of example-counts + V irtualIntertia)virtf  wsumendforendThe routine is run after each merging loop during training.6.2.7 Summary of algorithm parametersAt this point we have concluded the presentation of all algorithms for verb useand learning. Since a fairly large number of algorithm parameters have been employed,a summary is in order. The full set of parameters, each with its range of allowed values,is summarized in Figure 6.3. Training results are reported in Chapter 8. The parametersettings for the main English training run in that chapter are shown in Figure 6.3 in thecolumn labelled \Typical".6.3 Alternatives to Model MergingWe've seen Bayesian model merging and its advantages, but we haven't yet dis-cussed other relevant learning algorithms and why they weren't chosen.Since ours is a connectionist enterprise, an obvious question is why we did notchoose backpropagation (Rumelhart et al. 1986)|the de facto neural network learningalgorithm|or one of its many variants. The primary di�culty lies with the network struc-



CHAPTER 6. VERB LEARNING 108Parameter Range Typical DescriptionMinLabel [0, 1] 10�7 Minimum P (word j action) re-quired to emit wordMinExplain [0, 1] 0.5 Minimum P (feature j sense) re-quired to explain away featureMinObey [0, 1] 10�7 Minimum P (sense j worldstate)required to use sense in settinglinking f-structMinSetFeature [1, 1] 1.5 Minimum \peakedness" of distri-bution required to set feature inlinking f-structMinMerge [0, 1] 0 Minimum similarity required be-tween two senses if they are to bemergedModelPriorWeight [0, 1] 4.5 Magnitude of preference for merg-ing relative to preserving likeli-hoodBatchSize 1, 2, . . . 1 Number of new instances of a wordto accumulate between mergingepisodesTrainingPasses 1, 2, . . . 1 Replicate training data this manytimesAdaptV irtuals true, false true Whether to adapt Dirichlet priorin each slot during learningV irtualInertia [0, 1] 50 E�ective number of samples sup-porting current virtuals whenadapting themMaxV irtual [0, 1] 10 Prevent uniform distributionsfrom causing in�nite virtualsvirt table [0, 1] schema: 0.05all others: 1.0 Number of virtual samples to addto each value of each feature ineach word senseFigure 6.3: Summary of parameters of the labelling, obeying and learning algorithms andtheir settings for the English training run.



CHAPTER 6. VERB LEARNING 109ture which backpropagation presupposes. Hidden-node representations of one-way map-pings, such as those produced by backpropagation, are very di�cult to reverse (as is neededfor command-obeying in our task). The network structure does not include any reverseconnections which could represent the reverse mapping. If such connections were added,their weights would have to be learned independently of the forward connections. And sincethe hidden nodes do not correspond to any previously identi�ed features, it is impossibleto include pre-wired network structure to \interpret" them.Nonetheless, there is one way to attempt to reverse such mappings, called back-propagation through the inputs (Thrun 1992). Bailey (1992) attempted to use this techniqueto model the mapping from a spatial term to a mental image of its prototypical case, in thecontext of Regier's (1996) system. The technique involves applying a random input vector(i.e. image) to the trained network, computing the corresponding (bogus) output vector,and comparing it to the desired output (in which only the node for the desired spatial termis active). The error propagation formulas are then applied, but rather than treating theinputs as �xed and the weights as variable, we do just the opposite: the weights are treatedas �xed, and the input is modi�ed to reduce the error. The process is then repeated withthis slightly-improved input vector. Eventually the network will converge on an input vectorwhich minimizes the output error. If this error is low enough, we can conclude that theinputs now represent a good \mental image" of the spatial term. However, the success ofthis project was limited (the non-continuous features in the structured portion of Regier'snetwork could not be handled) and the cognitive plausibility of such an iterative procedureis rather lacking.Another reason to avoid backpropagation learning is that the trajectory of learningis typically quite slow, since weights are adjusted in small increments to avoid \hopping"over the correct solution. Indeed, typically backpropagation training involves many repeatedpresentations of the training set. So backpropagation is not capable of modelling fastmapping.Our multiple-word-sense representation can be viewed as a mixture model. Acommon algorithm for learning mixture distributions is the \Expectation-Maximization"or \EM" algorithm (Dempster et al. 1977). But the EM algorithm focuses on estimationof parameters and not learning of the structure which gives rise to the hidden mixtureparameters in the �rst place. Furthermore, implicit in EM is the notion that an observation



CHAPTER 6. VERB LEARNING 110may be \caused" by any of the mixture elements, so that the probability of an observationis the sum of its probability of being generated by each mixture element. And in adjustingeach mixture element, each observation is used (in proportion to its probability given thecurrent parameters of the mixture element). In contrast, in our language task, we assumethat cognitively one commits to a single sense when categorizing an observation, and hencewe do not want to sum the probabilities across all senses of a word, but rather we shouldlook only at the highest-probability sense.6.4 Connectionist AccountWe now turn to the issue of implementing the model merging algorithm in aconnectionist manner, so that we will have a uni�ed connectionist story for the entiresystem. The learning mechanism operates within the architecture described in x5.4, whichshould be understood before proceeding. And, just as was the case in x5.4, the ideas hereare intended as a plausibility argument and have not been worked out in full detail.Recall the neural plausibility criteria from x2.4. At �rst glance, the model mergingalgorithm of x6.2 does not appear particularly connectionist. Two properties cause trouble.First, the algorithm is constructivist. That is, new pieces of representation (word senses)need to be built, as opposed to merely gradually changing existing structures. Second,the criterion for merging is a global one, rather than depending on local properties ofword senses. Nevertheless, we have a proposed connectionist solution employing a learningtechnique known as recruitment learning.6.4.1 Recruitment learningRecruitment learning (Feldman 1982; Shastri 1988) assumes a localist representa-tion of bindings such as the triangle unit described in x5.4, and provides a rapid-weight-change algorithm for forming such \e�ective circuits" from previously unused connectionistunits. Figure 6.4 illustrates recruitment with an example. Recall that a set of triangleunits is usually connected in a winner-take-all (WTA) fashion to ensure that only one bind-ing reaches an activation level su�ciently high to excite its third member. For recruitment
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Figure 6.4: Recruitment of triangle unit T3 to represent the binding E{F{G.learning, we further posit that there is a pool of \free" triangle units which also take partin the WTA competition. The units are free in that they have low, random weights tothe various \concept units" amongst which bindings can occur. Crucially, though, they dohave connections to these concept units. But the low weights prevent these free units fromplaying an active role in representing existing bindings.This architecture facilitates the learning of new bindings as follows. Suppose, asin Figure 6.4, several triangle units already represent several bindings, such as T1, whichrepresents the binding of A, C and F. (The bindings for T2 are not shown.) Suppose furtherthat concept units E, F and G are currently active, and the WTA network of triangle unitsis instructed (e.g. by a chemical mechanism) that this binding must be represented. Ifthere already exists a triangle unit representing the binding, it will be activated by the�ring of E, F and G, and that will be that. But if none of the already-recruited triangleunits represents the binding, then it becomes possible for one of the free triangle units (e.g.



CHAPTER 6. VERB LEARNING 112T3)|whose low, random weights happen to slightly bias it toward this new binding|tobecome weakly active. The WTA mechanism selects this unit and increases its activation,which then serves as a signal to the unit to rapidly strengthen its connections to the activeconcept units.7 It thereby joins the pool of recruited triangle units.As described, the technique seems to require full connectivity and enough unre-cruited triangle units for all possible conjunctions. Often, though, the overall architecture ofa neural system provides constraints which greatly reduce the number of possible bindings,compared to the number possible if the pool of concept units is considered as an undi�eren-tiated whole. For example, in our connectionist word sense architecture, it is reasonable toassume that the initial neural wiring is predisposed toward binding words to features|notwords to words, or feature units to value units of a di�erent feature. The view that thebrain starts out with appropriate connectivity between regions on a coarse level is bolsteredby the imaging studies of Damasio & Tranel (1993) which show, for example, di�erentlocalization patterns for motor verbs (nearer the motor areas) vs. other kinds of verbs.Still, the number of potential bindings and connections may be daunting. It turnsout, though, that sparse random connection patterns can alleviate this apparent problem(Feldman 1982). The key idea is to use a multi-layered scheme for representing bindings,in which each binding is represented by paths amongst the to-be-bound units rather thandirect connections. The existence of such paths can be shown to have high probability evenin sparse networks, for reasonable problem sizes. These issues are not considered further inthis discussion.Complex triangle units, with multiple connections per side (see x5.4), present somespecial di�culties for recruitment learning. Consider �rst the case of the conjunctive styleof complex triangle unit, which must not only bind together a set of concept units, but mustalso partition them into three groups in the desired way. Since all the concept units areequally active at the time of recruitment, there is no way for a potential recruit to \know" ifit is wired for the desired partitioning. In this case, we must rely on the overall structure ofthe net to restrict the potential partitionings to those which are reasonable. For example,in our connectionist word sense architecture, this is easy to specify because each side of the7This kind of rapid and permanent weight change, often called long term potentiation or LTP, has beendocumented in the nervous system. It is a characteristic of the NMDA receptor, but may not be exclusiveto it. It is hypothesized to be implicated in memory formation. See Lynch & Granger (1992) for details onthe neurobiology, or Shastri (1997) for a more detailed connectionist model of LTP in memory formation.



CHAPTER 6. VERB LEARNING 113conjunctive triangle units used to represent word senses has a quite di�erent function.Next, consider the case of the disjunctive style of complex triangle unit. Thedi�culty here is in how the variable weights are set, at the neural level. The incomingweights are not problematic; we can employ an update rule which sets each weight to beproportional to the degree of activation of its input. The hitch is the outgoing weights, forthey are stored in|and hence must be updated by|the \concept" neurons, not the triangleunit's own neuron. We must, therefore, posit a non-local mechanism (e.g. chemical) forinforming all concept neurons that learning is taking place, and that if any of them shouldreceive input from a (newly recruited) triangle neuron, they should set their weight on thatsynapse in proportion to their own (not the triangle unit's) degree of activation.6.4.2 Merging via recruitmentThe techniques of recruitment learning can be put to use to create the word sensecircuitry shown earlier in Figure 5.8. The connectionist learning procedure does not exactlymimic the algorithm given above (more on that later), but is most similar to the online case(BatchSize = 1) illustrated back in x6.2.1.To illustrate our connectionist learning procedure, we will assume that the twosenses of push shown in Figure 5.8 have already been learned, and a new training examplehas just occurred. That is, the \push" unit has just become active, as have some of thefeature value units re
ecting the just-executed action.The �rst key observation is that when a training example occurs, external acti-vation arrives at a verb unit, motor-parameter feature value units, and world-state featurevalue units. This three-way input is the local cue to the various triangle units that adap-tation should occur|labelling and obeying never produce such three-way external inputto the triangle units. Depending on the circumstances, there are three possible courses ofaction the net may take:� Case 1: The training example's features closely match those of an existingword sense. This case is detected by activation of the primary triangle unit of thematching sense|strong enough activation to dominate the winner-take-all competi-tion.In this case, an abbreviated version of merging occurs. Rather than create a full-
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edged initial word sense for the new example, only to merge it into the winningsense, the network simply \tweaks" the winning sense to accommodate the currentexample's features. Conveniently, the winning sense's primary triangle unit can detectthis situation using locally available information, namely: (1) it is highly active; and(2) it is receiving activation on all three sides. The tweaking itself is a version of Hebb'sRule (Hebb 1949): the weights on connections to active value units are incrementallystrengthened. With an appropriate weight update rule, this strategy can mimic theprobability distributions learned by the model merging algorithm.� Case 2: The training example's features do not closely match any existingsense. This case is detected by failure of the winner take all mechanism to elevateany word sense above a threshold level.In this case, standard recruitment learning is employed. Pools of unrecruited triangleunits are assumed to exist, pre-wired to function as either primary or subsidiary unitsin future word senses. After the winner-take-all process fails to produce a winner fromthe previously-recruited set of triangle units, recruitment of a single new primarytriangle unit and a set of new subsidiary units occurs. The choice will depend onthe connectivity and initial weights of the subsidiary units to the feature value units,but will also depend on the connections amongst the new units which are needed forthe new sense to cohere. Once chosen, these units' weights are quickly set to re
ectthe currently active linking feature values, thereby forming a new word sense whichessentially is a copy of the training example.� Case 3: The training example's features are a moderate match to two(or more) existing word senses. This case is detected by a protracted strugglebetween the two partially active senses which cannot be resolved by the winner-take-all mechanism. Figure 6.5 depicts this case. As indicated by the darkened ovals, thetraining example is labelled \push" but involved medium force applied to a smallsize object|a combination which doesn't quite match either existing sense.This case triggers recruitment of triangle units to form a new sense as described forcase 2, but with an interesting twist. The di�erence is that the weights of the newsubsidiary triangle units will re
ect not only the linking features of the current trainingexample, but also the distribution of values represented in the partially active senses.
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CHAPTER 6. VERB LEARNING 116Thus, the newly recruited sense will be a true merge of the two existing senses (aswell as the new training example). Figure 6.5 illustrates this outcome by the varyingthicknesses on the connections to the value units. If you inspect these closely youwill see that the new sense \push12" encodes broader correlations with the force andsize features than those of the previous senses \push1" and \push2". In other words,\push12" basically codes for dir = away, force not high.How can this transfer of information be accomplished, since there are no connectionsfrom the partially active senses to the newly recruited sense? The trick is to useindirect activation via the feature value units. The partially active senses, due totheir partial activation, will deliver some activation to the value units|in proportionto their outgoing weights. Each value unit adds any such input from the various senseswhich connect to it. Consequently, each feature subnetwork will exhibit a distributedactivation pattern re
ecting an average of the distributions in the two partially activesenses (plus extra activation for the value associated with the current action). Thisdistribution will then be e�ectively copied into the weights in the newly recruitedtriangle units, using the usual weight update rule for those units.A �nal detail for case 3: to properly implement merging, the two original senses mustbe removed from the network and returned to the pool of unrecruited units. If theywere not removed, the network would quickly accumulate an implausible number ofword senses. After all, part of the purpose of merging is to produce a compact modelof each verb's semantics. But there is another reason to remove the original senses.The new sense will typically be more general than its predecessors. If the originalsenses were kept, they would tend to \block" the new sense by virtue of their greaterspeci�city (i.e. more peaked distributions). The new sense would rarely get a chanceto become active, and its weights would weaken until it slipped back into unrecruitedstatus. So to force the model to use the new generalization, the original senses must beremoved. Fortunately, the cue for removal is available locally to these senses' triangleunits: the protracted period of partial activation, so useful for synthesizing the newsense, can serve double duty as a signal to these triangle units to greatly weaken theirown weights, thus returning them to the unrecruited pool.Again, the foregoing description is only a sketch, and activation functions have notbeen fully worked out. It is possible, for example, that the threshold distinguishing case 2



CHAPTER 6. VERB LEARNING 117from case 3 could prove too delicate to set reliably for di�erent languages. These issues areleft for future work.Nonetheless, several consequences of this particular connectionist realization of amodel-merging-like algorithm are apparent. First, the strategy requires presentation of anintermediate example to trigger merging of two existing senses. The architecture does notsuddenly \notice" that two existing senses are similar and merge them.8 It is conceivablethat one could test for the presence of such a strategy in children. In other words, itmight be instructive to try to test whether leaps in generalization ability tend to occurshortly after presentation of intermediate usages of a word, as opposed to occurring after a\contemplative" phase, or in response to repeated occurrence of the original usages of theword. Another consequence of the architecture is that it never performs a series of mergesas a \batch". There is no \merge loop" as described in x6.2.4. On the other hand, the ar-chitecture does, in principle, allow each merge operation to combine more than two existingsenses at a time. Indeed, technically speaking, the example illustrated in Figure 6.5 is athree-way merge of \push1," \push2" and the current training example. The question ofthe relative merits of these two strategies is left unexplored.In summary, we have shown that the two seemingly connectionist-unfriendly as-pects of model merging|its constructiveness and its use of a global optimization criterion|can be overcome by using recruitment learning and a modi�ed winner-take-all mechanism.6.5 Overgeneralization and Contrast SetsNow that we have presented the full learning algorithm, we return to a few psy-cholinguistic issues and how they are re
ected in the model.A common pattern in early lexical development is overgeneralization, in which wordmeanings initially extend beyond the bounds of the adult meaning. The reader may objectthat our merging algorithm is a poor psychological model because it handles presentationof an initial example of a new word by creating a rather speci�c sense strongly re
ectingthe training example. The objection has some legitimacy for the case of comprehension8It is possible that an \imagination mode" could be implemented, in which the current senses would beused to generate imagined linking f-structs which then might trigger merging.



CHAPTER 6. VERB LEARNING 118(i.e. obeying commands), although it should be pointed out that early undergeneralizationpatterns have also been observed (Kay & Anglin 1982) and are harder to detect. It turnsout, however, that our model can capture early overgeneralization for the case of production(i.e. labelling actions), which is indeed where they are most prevalent. LABEL can emit averb (the best-matching one, of course) even if its probability is arbitrarily low, so longas the MinLabel parameter is set to a low value. Thus if the vocabulary|and hence thecontrast set (Clark 1987) for the new verb|is small, the verb may indeed exhibit plausibleovergeneralization in production, assuming theMinLabel parameter is tuned appropriately.ExtensionThis behavior suggests that it may be possible to extend our learning algorithmto take advantage of the current lexicon in learning new verbs. For example, suppose themodel has successfully learned push along with contrasting verbs such as pull or lift. Whenan example of a new verb, shove, is presented to the model, the algorithm might:1. Run the LABEL routine to determine that push is the closest existing verb and thematch is pretty good;2. Inspect the features of push and compare them to the new training example;3. Find the biggest di�erences between them, probably the acceleration feature in thiscase;4. Conclude that shove must code for those di�erences by the principle of contrast (Clark1987).In general, then, the reversibility of the features-to-verbs mapping opens the pos-sibility of discovering relationships between verbs (e.g. generalization, specialization, oppo-sition, etc.). Such information could then be leveraged to provide more speci�c negativeevidence than was possible in Regier's framework, in which each label was taken as mildnegative evidence for all other labels.
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Chapter 7Adding Verb Satellites7.1 The Nature of the Problem . . . . . . . . . . . . 1197.2 Slots: A Provisional Solution . . . . . . . . . . . 1207.2.1 Labelling and obeying . . . . . . . . . . . . 1227.2.2 Learning . . . . . . . . . . . . . . . . . . . 1257.3 Limitations of the Model . . . . . . . . . . . . . . 1267.4 Thoughts on Construction Grammar and Learning 128So far we've considered verbs in isolation. In this chapter, we provisionally extendour model to handle a wider range of linguistic forms. \Verb complexes" consist of averb root plus any associated a�xes, auxiliaries or particles (collectively called satellites byTalmy (1985)) which together specify the action, such as the four-component verb complexkeep pick-ing up. These are handled by adding multiple \slots" to the model.17.1 The Nature of the ProblemFirst o�, note that we could simply treat an entire verb complex as a single \word"and thereby continue to use our algorithms from the preceding chapters. But in doing so, wewould forfeit all the bene�ts which can follow from exploiting the compositional structureof verb complexes. Those bene�ts include, �rst of all, compactness. In a compositionalaccount the lexicon will be much smaller. A language with n verbs and m particles will1Full verb phrases are not considered since our focus is on linguistic elements which are fundamentallyabout action. Noun phrases, prepositional phrases, etc. certainly play a role in specifying actions, but thisis beyond the scope of this thesis.



CHAPTER 7. ADDING VERB SATELLITES 120have only n + m lexical items rather than a potential n � m lexical items. Moreover, aconsequence of a smaller lexicon is that the amount of data per lexical item will be muchgreater, allowing statistical techniques to home in better on the meaning of each. Perhapsmost importantly, learning separate semantics for each components permits the model toboth produce and obey novel combinations of words.Children certainly are inclined toward this \take it apart and look inside" ap-proach. In fact, one of the �rst morphological rules mastered by children|at around agetwo|is the -ing ending (Brown 1973), whose semantics are obviously related to action andprocess. So the big question is how to dissect a compositional meaning into its parts duringlearning, and then how to compose meanings from their parts during language use. Ifcompositionality were just a matter of forming a union of features, the problem would betrivial. But many other types of composition exist, in which one component overrides afeature from another, or modi�es a feature in some non-trivial way, etc. Fauconnier (1985)provides numerous examples and proposes the term \blending" to better re
ect the subtletyof the phenomenon. Weber (1994) developed a connectionist account of such blends as theyoccur in adjective-noun phrases. Wu (1992) worked on similar issues for noun compounds.It is far from obvious how to capture the full range of action description blends in the currentmodel. Yet it turns out that some easy cases can be handled by fairly simple modi�cationsto our architecture, to which we now turn.7.2 Slots: A Provisional SolutionOur partial solution can be summed up quite simply: we divide both linguisticinput/output, and our lexicon model, into \slots" corresponding to each of the grammaticalpositions (pre�x, root, particle, etc.) which we want to deal with. The term \slots" is chosento convey the idea that the model initially has no notion of the particular grammaticalrole played by any slot. The partitioning of an utterance into its various slots representsgrammatical knowledge which we are not modelling; this process is done by hand.Figure 7.1 shows a revised version of our model with two slots: Slot 1 is for verbroots, and Slot 2 is for particles and other directional speci�ers. It's important to notethat there is no structural distinction between the slots. And since our multiple-sense word
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CHAPTER 7. ADDING VERB SATELLITES 122representation does not involve any structure \connecting" the word senses, there is noapparent boundary between the slots when looking at the lexicon. The boundaries becomerelevant in two places: �rst, an utterance is chopped up and each word (or morpheme) isdelivered to its appropriate slot. Again, we don't model the details of this process and thegrammatical knowledge it would require. But the boundary is also relevant at the interfacebetween the lexicon and the linking f-struct, and this will be the focus of this chapter.We will now look at how the labelling, obeying and learning algorithms havebeen adapted to deal properly with slots. Except as noted, these algorithms have beenimplemented.7.2.1 Labelling and obeyingLabelling proceeds much as described earlier, except that it is repeated for eachslot. Here is the algorithm:LABEL MULTISLOT(linking f-struct l, model m) returns a verb complexcreate an empty verb complex vcloop:for each un�lled slot i in vc:best labeli  LABEL(mi, l)endforif (at least one non-empty label was collected)then choose best labeli with the highest probability and place it in slot i of vc,as long as its probability �MinLabelremove all features f from l with P (lf j best labeli) �MinExplainelse terminate loopendifendloopreturn vcendIn x5.3.1, our labelling algorithm was essentially \forced choice" in that the highest a pos-teriori label was always emitted (unless its posterior probability was less than MinLabel).We cannot, however, be quite so eager to �ll slots in a multi-slot label, lest we producepotentially redundant verb complexes such as shove hard or drop down. We also want toprefer short phrases such as pull to longer phrases such as slide toward. These problems



CHAPTER 7. ADDING VERB SATELLITES 123have been addressed previously in the natural language generation literature; here, we cap-italize on our use of probability to cleanly describe these preferences. Our algorithm worksby �lling slots one by one, and after each slot is �lled those features \explained" by the�ller are removed from the linking f-struct. The criterion for explaining away a feature isthat its probability given the label exceeds a tunable parameter, MinExplain. With thisprocedure, subsequent slots will be �lled only if there remain features which have not beenexpressed. With this scheme it is important that we �ll slots not in an arbitrary order,but rather by choosing at each step a label with maximal a posteriori probability, so thatthe features of the linking f-struct will be expressed with the smallest number of words.Accordingly the MinLabel parameter plays an even more important role than before, sinceit is now responsible not only for saying \I can't �nd a good label at all," but also is re-sponsible for deciding when enough slots have been �lled to adequately express the contentof the action.The algorithm for obeying a command by choosing suitable linking features mustalso change to handle verb complexes. Here is the changed algorithm:



CHAPTER 7. ADDING VERB SATELLITES 124OBEY MULTISLOT(verb complex vc, initial world state w, model m)returns motor-parameter linking featuresfor each slot i of m:for each sense s of vci:prior relative frequency of s amongst senses of vlikelihood  product over each world-state feature f in s of:sf 's likelihood of generating wfposterior  prior � likelihoodendforif (some sense's posterior �MinObey)then mark the sense with highest posteriorendifendforcreate an empty f-struct pfor each motor-parameter feature f :�nd the marked sense s with maximal peakedness for feature fif (sf 's peakedness �MinSetFeature)then pf  sf 's mode valueendifendforreturn pendThe essential problem is one of arbitrating con
icts amongst the multiple words (or mor-phemes) in the various slots. We have already seen how potential con
icts with the initialworld state are considered in choosing a \best" sense for a verbal command. In the multi-slot case this procedure is performed in parallel in each slot, resulting in a set of wordsenses. Now, since there is potential for con
ict amongst the senses, a mechanism is re-quired to resolve these con
icts on a feature-by-feature basis in order to reduce them to asingle (non-probabilistic) linking f-struct.This is accomplished as follows. Each linking feature is set by looking to the sensewith the most peaked distribution and choosing its peak value. This is only an approxi-mation to the more probabilistically correct approach of summing each sense's distributionfor the feature and then picking the mode of the summed distribution. The intuition hereis that the word sense which most strongly codes for the feature should have the privilegeof setting that feature, since that may well be the reason the word was included in thecommand. In the example in Figure 7.1, we assume that push codes for direction = away



CHAPTER 7. ADDING VERB SATELLITES 125but only weakly, whereas left codes for direction = left quite strongly. As a result, thedirection linking feature is set to left.7.2.2 LearningNo extensions were required to handle verb complexes (other than the simple stepof noting the correct slot for each new lexical item). The lexicon is simply that muchlarger to account for the new words. And each training example involves multiple calls toINCORPORATE EXAMPLE, one for each component of the verb complex.While changes may not be required, one straightforward change has been madewhich leverages the knowledge of words' slot position to speed up learning. In x6.2.6 wedescribed ADAPT VIRTUALS, an optional step modifying the virtual sample table virt. Inthe multi-slot case, we modify the algorithm to maintain one such table for each slot, inan array. Each is updated by ADAPT VIRTUALS to re
ect only those lexical items in itsown slot. In this way, the algorithm can learn the type of semantic information whichtends to be encoded in each slot. For example, after exposure to an English training set weexpect virt[root]schema � virt[particle]schema to re
ect the fact that the schema feature isusually coded by the verb root, not the particle. On the other hand, virt[root]direction �virt[particle]direction since direction is more commonly encoded in the particle than theroot.ExtensionIn order for a word to be learned correctly in the multi-slot case, the learningalgorithm must marginalize over many other words with which it may be used. Otherwise,it will be impossible to pick out the word's semantics from the semantics of those otherwords. For example, if up were observed only in conjunction with push, there would be noway to know that it encodes only a direction and not some of the other motor parameterswhich rightly belong to push. Only by observing lift up, hold up, pull up, etc. can thealgorithm home in on direction as the relevant feature.The training set, then, must re
ect this diversity of usage. Siskind (1995) discussesthe characteristics of so-called cross-correlational learning in detail. His conclusion is thatsuch techniques are feasible even given the limited amount of input a child receives. His



CHAPTER 7. ADDING VERB SATELLITES 126algorithm di�ers from ours in that it maintains two lists for each word|one for requiredfeatures and one for prohibited features2|and this facilitates elimination of possibilitieseven before the exact meanings of the words in an utterance are known.A similar technique, unimplemented at the current time, could be applied to ouralgorithm. Consider the case of training examples where the verb complex contains analready well-understood word (as measured, say, by the peakedness of its probability distri-butions) along with a less known (or totally new) word. In this case those features explainedby the known word can be removed from the linking f-struct, on the assumption that themulti-word label does not redundantly code for those features. Thus, the unknown wordwould gain an advantage in determining its relevant features.7.3 Limitations of the ModelThe above algorithms can handle some cases of compositional meaning, and theydo so without our having to introduce any notion of grammar into the system. Naturally,though, there are many examples of composition which cannot be handled by such a simplemodel. One limitation derives from our use of distinct slots as the sole way to representwhat is going on grammatically in an utterance. Such a representation cannot easily handlein
ections which modify the root (as opposed to appending to it) without manual \hacking"of the linguistic input so that the system will be able to recognize the root as familiar. Ingeneral, a fuller account of compositional meaning will require a serious model of syntaxand morphology.While OBEY MULTISLOT does a good job of con
ict resolution, it does only afair job of con
ict avoidance in choosing a sense for each word in the command. Polysemyinvolves not only the world state, but also the surrounding linguistic context. Some ex-periments with polysemy were performed in Regier's visual/spatial model by Zlatev (1992)(summarized in (Regier 1996:Section 7.1)) on recognizing spatial phrases consisting of averb and a preposition (e.g. be over vs. 
y over). Hierarchical cluster analysis of the re-sulting hidden layers revealed polysemous representations in which each sense of a word2In this sense the algorithm is reminiscent of version spaces (Mitchell 1982) although it adds a mechanismto handle noise.



CHAPTER 7. ADDING VERB SATELLITES 127corresponded to a di�erent linguistic context. That is, there would be a sense of over cor-responding to its use with be (the static sense of over), and another sense correspondingto its use with 
y (one of the dynamic senses of over). This suggests that linguistic con-text plays an important role in determining the intended sense of a polysemous word. Ourmodel certainly allows correlations between senses of a word and the surrounding linguisticcontext, but it turns out that it also requires that there be some correlated features of theinitial world state. This is the case because the OBEY MULTISLOT algorithm chooses thebest sense for each word based only on each sense's compatibility with the initial worldstate. To account for linguistic context e�ects, that algorithm would need to be extendedto minimize con
icts amongst word senses, not just between each word and the world state.This is a general constraint satisfaction problem and one can imagine a number of solutions(including recasting the word sense representation into the belief network formalism (Pearl1988)). Of course, any such algorithm will be iterative in nature and hence slower than thecurrent algorithm.3A common problem is found in verb complexes where a modi�er alters, but does notitself specify, the appropriate value of a feature. Here are some thoughts on how to handlesuch cases. We would need to build at least a small amount of grammatical knowledge intothe system: namely, we would need to distinguish the verb root slot, and classify the otherslots (adverbs for instance) as \modi�er slots". We would also need to allow a new kind ofvalue for features: namely, modi�cation rules. For example, the adverb hard could code forforce = "multiply root's value by 2".It's worth pointing out, though, that even with these extensions we are still a longway o� from handling all cases of action speci�cation. An interesting case in point is theverb stop when used as an auxiliary verb (Crangle & Suppes 1994: Chapter 7). In thesimplest case, the meaning is to abort an in-progress action (e.g. stop pushing), which canbe straightforwardly modelled in our x-schema formalism. Even here, there is the di�cultyof deciding whether to abort an in-progress primitive synergy (e.g. stop pushing), or whetherto stop at the x-schema level (e.g. stop picking up cubes, which perhaps should be obeyed by�nishing picking up the current cube but then terminating a loop before picking up anotherone). Harder still, though, is a command such as stop holding which in fact requires the3Another approach is to encode linguistic context directly into the semantic representation for each word,such as in Charniak (1993). In other words, we might add a used-with feature whose values range over thelexical items in adjacent slots (a so-called n-gram approach).



CHAPTER 7. ADDING VERB SATELLITES 128initiation of a new action (i.e. to put the object down). Narayanan (1996) and JonathanSegal have done work in this vein.7.4 Thoughts on Construction Grammar and LearningAll these limitations conspire to suggest the need to account for how grammaticalconstructions might be learned. The Construction Grammar framework (Goldberg 1995)has been chosen because it is compatible with the assumptions made in this model andmight even support learning using techniques similar to those used here for lexical learning.Verb acquisition has long been associated with grammar acquisition. Indeed, somemight �nd it strange for this thesis to have considered verb semantics independently of argu-ment structure. Controversy has continued over the direction of causality in the learning ofsemantics and syntax (the so-called \syntactic vs. semantic bootstrapping" debate betweenPinker (1989) and Gleitman (1990)). I believe that a Construction Grammar approach cansolve this dilemma.Construction Grammar replaces the traditional lexicon-grammar dichotomy witha continuum, ranging from the speci�c, such as lexemes and idioms, to the general, such as S! NP VP. In between there is scope for constructions which are somewhat rule-like but alsohave speci�c content|in both their surface forms and their semantics. For example, the\Way Construction" (She made her way through the crowd) includes syntactic elements likeverbs and noun phrases but also a particular lexeme (way); similarly it involves semanticcomposition of its components but also some additional content particular to the construc-tion (progress, e�ort, repetition). Importantly, Goldberg (1995) argues persuasively thatmuch of the semantics which have typically been associated with verbs (namely for dealingwith arguments) are more properly considered part of the semantics of the constructionsin which the arguments are couched. Our study of the inherent semantics of verbs|apartfrom their arguments|meshes nicely with this perspective.This perspective with its continuum of abstractness is also compatible with learn-ing theory. Furthermore, we have reason to believe our simple hand action framework is anappropriate one for study of early grammar learning: Slobin (1985) argues that the earliestgrammatical markings and rules acquired by children apply preferentially to \prototypical



CHAPTER 7. ADDING VERB SATELLITES 129events" such as a person manipulating a physical object.4 Such an approach, in which syn-tactic generality is achieved only gradually, is driven by semantics, and is focused aroundverbs, is taken seriously in the the psychology literature and is sometimes referred to as the\Verb Island Hypothesis" (Tomasello 1991). Indeed, in recent work, Tomasello has begunto describe verb islands simply as early constructions (Tomasello & Brooks (to appear)).How would such an approach work? If only we knew the set of constructions inadvance (syntactically, that is), then we could apply the same learning algorithms used thusfar to learn a sense or set of senses for each construction. But of course we don't have thisadvance information, and while we are busy searching for repeated syntactic patterns inthe training sentences, we must be careful not to lose the associated semantic information.The model merging approach may o�er a solution, and an initial attempt has been made byStolcke (1994: Chapter 5). We begin by creating a construction for every training sentence.Then we try to �nd both semantic and syntactic regularities, eventually leading to a mixtureof lexical entries, general syntactic constructions and intermediate constructions (such asthe Ditransitive or the Way Construction) with their syntactic and semantic selectionalconstraints.A di�culty of this approach is that, since the training data takes the form ofpairings of entire sentences with their semantics, it takes a long time and a lot of trainingdata before semantic information can be properly ascribed to the individual lexical items.Fortunately, the learning task faced by the child may not be quite so severe. Parents speak asimpli�ed language to their children, including many examples of one-word sentences. Thevalue of ordering a training set so it begins with simpler examples is well known (Elman1991). If the system sees enough such examples early on it may develop accurate semanticrepresentations of some lexemes and then be able to leverage this information in learninghigher-level constructions.The result of such learning would be a construction grammar augmented by prob-abilities re
ecting the training data. Such a grammar would be well suited to probabilisticparsing, which, as demonstrated by Jurafsky (1996), o�ers promise as a model of humanperformance in language understanding.4For more recent discussion of the semantics of grammatical forms see Slobin (to appear), which arguesthat rather than seeking an innate set of grammaticizable notions, we should think of grammaticizabilityas a continuum which, combined with linguistic experience, aids the child in determing the semantics ofgrammatical forms in his language.
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CHAPTER 8. LEARNING RESULTS 131state before the action takes place, and a �nal one which includes the initial world statebut also summarizes the action.Scenarios may be generated in two ways. For reasons of practicality, the majorityof scenarios have their initial and �nal linking f-structs generated directly by a programwhich randomly assigns values to each linking feature.1 This Generator program is tuned toyield a set of scenarios which covers a range of actions exhibiting the linguistic distinctionswe want to learn, and does so with appropriate relative frequencies. (In particular, theGenerator produces more Slide executions than any other x-schema, since the thesis hasfocused on these actions.) The Generator also uses a �lter to remove nonsensical scenarios.Once a collection of scenarios has been generated, the next task is to label them forthe various languages of interest. All languages share the same collection of scenarios; labelsare stored separately for each language.2 Labelling is based on the �nal linking f-struct.An intimate knowledge of the x-schema set and its interaction with the linking features isrequired in order to determine the action which would have generated the features; generallythis has been performed by the author or other researchers familiar with the model. In somecases the labels, too, have been provided by the author, based on interviews with languageinformants. In other cases, the author has \acted out" the indicated action for labelling bythe informant.The scenario collection can be partitioned arbitrarily into training set, recognition(i.e. labelling) test set, and command-obeying test set. These partitionings are stored sepa-rately from the scenarios themselves, to facilitate switching amongst di�erent partitioningsof the same set of scenarios. By changing partitionings, and in particular the relative sizesof the sets, one can get a feel for the robustness of results.The use of training scenarios is straightforward: for each scenario, the �nal linkingf-struct and its label are given to the model merging algorithm as a training instance, forconversion to a word sense and potential merging with existing senses.There are two ways to test the trained system: we can test recognition ability (la-belling novel actions) and we can also test command-obeying ability (given a label, produce1The other method of generating scenarios, still under development, is to use an animation package. Thisis discussed in the next sub-section.2Most training is done with single word labels corresponding to verb roots. When multi-slot training isdone, these multi-slot labels are stored separately from the single-slot labels|acting, in e�ect, as a di�erentlanguage.



CHAPTER 8. LEARNING RESULTS 132an appropriate action). The use of recognition test scenarios is conventional: a scenario's�nal linking f-struct is given to the LABEL algorithm, and the result is compared to thestored label. The use of scenarios for testing the obeying of commands is more complex.The stored label is used as the command. It and the initial world-state f-struct are given tothe OBEY algorithm, which produces a full linking f-struct. This f-struct is in turn givento LABEL, whose output can be compared to the original command.3For testing of both recognition and obeying, there is a problem with this approachof comparison to the informant's label. Some actions may be good examples of multipleverbs. For example, a push is also a good example of a move. In this case, LABEL may emita reasonable label which happens to di�er from the stored label but is not truly an error.We do not have any quantitative way to discount this type of error. Instead we simplyinspect the posterior probabilities of all word senses and come to a qualitative judgment ofthe \desired" label's probability in terms of (1) how close it is to that of the emitted label,and (2) how strongly it stands out from the probabilities of inappropriate labels.8.1.1 Animating actionsAs mentioned in x2.3, the preferred method for collecting labels and comand-obeying judgments from informants would be to animate x-schema executions graphically.The Jack animation package (Badler et al. 1993), developed at the University of Pennsylva-nia and now sold by Transom Technologies, provides the tantalizing possibility of realisticdepiction of x-schema executions. Unfortunately, due to implementation di�culties andshortness of time, Jack has not yet been integrated into the verb learning system. However,work is still in progress on this front, and so it is worth reporting how Jack is envisionedto connect to the rest of the implemented model.Jack OverviewBy design, Jack 's main purpose is in evaluating the ergonomics of working envi-ronments such as cockpits or control panels. A human model can be placed into variouscon�gurations, and then various kinematic and dynamic properties of the posture can be3A better technique would be to execute the indicated x-schema to produce additional feature bindingsbefore passing the linking f-struct to LABEL.
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Figure 8.1: A typical Jack stillshot from a hand action animation.evaluated, as well as other concerns such as visibility as the head moves or turns.Jack is realistic in two ways. First, it models the biomechanics of the humanbody in intricate detail, including a fully jointed model, with appropriate joint limits andjoint strengths. See Figure 8.1 for a sample screen shot depicting Jack about to push acube. Second, the package contains a powerful inverse-kinematics engine which propagatesconstraints through all these joints so that, for example, a higher-force push will cause theshoulder to \lean in," and lifting a heavy object will cause the arms to pull in toward thebody. While aimed at this type of static analysis, Jack fortunately also provides thebuilding blocks needed to animate motions. The primitive commands available match wellto the primitive synergies we have posited in the model. This includes arm motions (suchas moving the wrist to a coordinate position, or maintaining the hand orientation) and ahost of hand postures roughly following the taxonomy in Cutkosky & Howe (1990) (suchas power, precision, hook, etc.). It's noteworthy that this con
uence arises from modellingbiomechanics alone|Jack is not at all concerned with modelling neural motor control.Other conveniences include object-oriented access to the world state, so that, for example,one can easily specify that a particular object should be grasped by a particular graspattachment point.



CHAPTER 8. LEARNING RESULTS 134Jack 's Role in Verb LearningEarlier in this section we described how scenarios are generated randomly by aGenerator program. With Jack connected to the system, there would be an alternativeway to specify scenarios. These \grounded scenarios" would be initially speci�ed by (1)a Jack environment �le which sets up an initial world state; and (2) a minimal motor-parameter linking f-struct needed to initiate an action. The Jack environments wouldinvolve an actor seated at a table, and the objects would perhaps be limited to a �st-sizedcube, a screwdriver-sized cylinder and a push-button. The action-initiating f-structs wouldbe designed based on intuition of what goals and parameters are needed to generate thedesired range of actions.These grounded scenario speci�cations would then need to be 
eshed out as follows.The Jack animator would load the initial world state. Then custom-written perceptualroutines would extract the initial world-state linking features needed by our model. A JackLISP implementation of the x-schema set would then issue simulator commands to carryout the action, with two important e�ects: the �nal linking features would be collected andstored, and the animation itself would be stored as a fairly realistic movie.Then, during the labelling process, these grounded scenarios would cause the storedmovie to be played, and the �nal linking features to be recalled. The informant wouldprovide a label for the movie which would then be associated with the linking features.During the command-obeying phase, grounded scenarios can be evaluated thesame way as ungrounded scenarios (i.e. by applying the LABEL algorithm to the generatedfeatures). However, an additional option is available: the linking f-struct can be used toanimate a novel action for visual inspection by the language informant.8.2 Results for English8.2.1 Training runApproximately 200 scenarios were created by the Generator program and labelledwith English verbs by the author. The range of actions led to the following vocabulary:



CHAPTER 8. LEARNING RESULTS 135push slide slap lift turnpull press hit pick up rollshove touch tap heaveyank feel poke holdThese verbs occur in the data with di�erent frequencies, ranging from push (47)and pull (18) to hit (5) and poke (4). This re
ects our concentration on the Slide x-schemaand results for these verbs should thus be taken more seriously than some of the less frequentverbs. The most successful training runs use approximately 85% of the data as trainingexamples, and the remaining 15% to test both recognition and command-obeying.Some experimentation with parameters was required to get good results. Theparameter settings for the training run we report on below are shown in the column la-belled \Typical" back in Figure 6.3. Note, in particular, the low values for MinLabel andMinObey. In fact, they both can safely be set to 0 for single-slot training; since all testscenarios include a label|and one which presumably is consistent with the scenario's initialworld state|the system can never improve its performance by refusing to guess a label orcarry out a command. The MinSetFeature parameter, however, works best when set toapproximately 1.5, which does prune a fair number of features from the linking f-structsused to obey commands. During learning, we chose not to use theMinMerge threshold (bysetting it to 0), instead trying all potential merges until one fails to increase the posterior.The strength of the prior is made relatively high by setting ModelPriorWeight to 4.5.O�ine learning is speci�ed by setting BatchSize to 1. Adaptation of the virtual sampletable is enabled, but the rate of adaptation is kept low by setting the V irtualInertia tothe relatively high value of 50. The initial virtual sample table includes a very low valuefor the schema feature (0.05) and a more moderate value (1.0) for all other features.Recall the steps in the learning procedure. First the algorithm creates new sensesfor each training example. Each new sense includes virtual samples. Incorporating a newsense of pull is reported in the training log like this:* Incorporating scenario sc15:Creating new sense pull3 (1 ex) {size {small=0.333 LARGE=0.666}elongated {TRUE=0.666 false=0.333}



CHAPTER 8. LEARNING RESULTS 136depressible {true=0.333 FALSE=0.666}contact {true=0.333 FALSE=0.666}schema {SLIDE=0.840 lift=0.04 rotate=0.04 depress=0.04 touch=0.04}posture {grasp=0.142 wrap=0.142 pinch=0.142 PALM=0.285 platform=0.142 index=0.142}elbow {FLEX=0.5 extend=0.25 fixed=0.25}force {LOW=0.5 med=0.25 high=0.25}accel {zero=0.2 LOW=0.4 med=0.2 high=0.2}dir {away=0.142 TOWARD=0.285 up=0.142 down=0.142 left=0.142 right=0.142}aspect {ONCE=0.666 iterated=0.333}dur {short=0.25 MED=0.5 long=0.25}}This format for describing word senses will be used extensively. First, notice that the senseis given a name composed of the verb itself followed by an arbitrary number (pull3). Inparentheses, the number of training examples from which the sense is derived is shown(here, naturally, it is 1). Then, for each linking feature, the full probability distributionis shown, and its mode value is displayed in capitals if the peakedness of the distributionmeets the threshold MinSetFeature. In all the output fragments in this chapter, asterisksat the left margin highlight important details discussed in the main text.Once all the new senses are created, the merge loop is run for each verb in suc-cession. During each iteration of these merge loops, the model's pre-merge posterior prob-ability is measured, the highest-similarity candidate merge is performed, and the posterioris measured again. An excerpt from the training log for push follows:* Starting merging for push (prior=6.63e-79 likelihood=4.19e-176 posterior=2.78e-254):* Merging push16 and push6 (similarity 1.0) to form push42 (2 ex) {size {SMALL=0.75 large=0.25}elongated {TRUE=0.75 false=0.25}depressible {true=0.25 FALSE=0.75}contact {true=0.25 FALSE=0.75}schema {SLIDE=0.911 lift=0.022 rotate=0.022 depress=0.022 touch=0.022}posture {GRASP=0.375 wrap=0.125 pinch=0.125 palm=0.125 platform=0.125 index=0.125}elbow {flex=0.2 EXTEND=0.6 fixed=0.2}force {low=0.2 MED=0.6 high=0.2}accel {zero=0.166 low=0.166 MED=0.5 high=0.166}dir {AWAY=0.375 toward=0.125 up=0.125 down=0.125 left=0.125 right=0.125}aspect {once=0.25 ITERATED=0.75}dur {SHORT=0.6 med=0.2 long=0.2}}* New push prior=5.97e-77 likelihood=1.80e-174 posterior=1.08e-250....* New push prior=1.22e-4 likelihood=3.53e-139 posterior=4.31e-143.* Merging push79 and push78 (similarity 0.070) to form push80 (29 ex) {size {small=0.516 large=0.483}elongated {true=0.516 false=0.483}depressible {true=0.064 FALSE=0.935}



CHAPTER 8. LEARNING RESULTS 137contact {true=0.258 FALSE=0.741}schema {SLIDE=0.822 lift=0.001 rotate=0.001 depress=0.035 touch=0.138}posture {grasp=0.4 wrap=0.028 pinch=0.028 palm=0.457 platform=0.028 index=0.057}elbow {flex=0.032 EXTEND=0.838 fixed=0.129}force {low=0.281 MED=0.468 high=0.25}accel {zero=0.060 low=0.333 med=0.454 high=0.151}dir {AWAY=0.529 toward=0.029 up=0.029 down=0.029 left=0.235 right=0.147}aspect {ONCE=0.806 iterated=0.193}dur {short=0.343 med=0.25 long=0.406}}* New push prior=0.010 likelihood=2.96e-141 posterior=3.25e-143.* Posterior decreased; removing push80 and restoring push79 and push78.* Stopped merging because the most plausible merge reduced the posterior.Eventually merging stops, often because the posterior has decreased, but some-times because only one sense remains. The reason for stopping is reported in the log, ascan be seen by the �nal lines in the excerpt.8.2.2 Tour of the learned lexiconAfter training, we are left with a lexicon model which includes a small number ofsenses for each verb|often only one sense. This section discusses the lexicon arising fromthe training run described above. The next section reports test results.The total number of senses is 21, down from 161 initial senses. This amounts toapproximately a factor of 8 reduction in the number of parameters being estimated, whichis crucial given the very limited amount of training data.As a by-product of merging, the learning algorithm has adjusted the virtual samplecounts for each feature. (Recall that these counts are used when a new verb arrives in thetraining data.) The new counts are an indication of what features have generally provenimportant for English verbs. Here they are:Slot 0 virtuals:size=1.99 elongated=2.13 depressible=0.424 contact=0.516schema=0.036 posture=0.480 elbow=2.58 force=1.07 accel=0.769dir=1.27 aspect=1.63 dur=2.10These numbers reveal that the schema feature has proven even more criterial thanit was pre-wired to be, since its virtual sample count has dropped to 0.036 from 0.05.So have contact and posture, which have halved their virtual sample counts from theirinitial setting of 1. Meanwhile, other features like size and duration have proven to beless important than initially guessed, doubling their virtual sample counts.



CHAPTER 8. LEARNING RESULTS 138When push comes to shove...We'll begin with our favorite verb, push. Three senses have been learned for thisverb, as shown below:Model for push (3 senses):push74 (12 ex) {size {SMALL=0.785 large=0.214}elongated {true=0.071 FALSE=0.928}depressible {TRUE=0.928 false=0.071}contact {true=0.071 FALSE=0.928}* schema {slide=0.004 lift=0.004 rotate=0.004 DEPRESS=0.983 touch=0.004}posture {grasp=0.055 wrap=0.055 pinch=0.055 palm=0.055 platform=0.055 INDEX=0.722}elbow {flex=0.333 extend=0.333 fixed=0.333}force {low=0.466 med=0.2 high=0.333}accel {zero=0.062 low=0.312 MED=0.5 high=0.125}dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}aspect {once=0.5 iterated=0.5}dur {SHORT=0.6 med=0.266 long=0.133}}push79 (8 ex) {size {small=0.4 large=0.6}elongated {true=0.3 FALSE=0.7}depressible {true=0.2 FALSE=0.8}contact {TRUE=0.7 false=0.3}* schema {slide=0.369 lift=0.006 rotate=0.006 depress=0.127 touch=0.490}posture {grasp=0.142 wrap=0.071 pinch=0.071 PALM=0.5 platform=0.071 index=0.142}elbow {flex=0.1 extend=0.5 fixed=0.4}force {low=0.181 MED=0.545 high=0.272}accel {zero=0.166 low=0.333 med=0.333 high=0.166}dir {AWAY=0.384 toward=0.076 up=0.076 down=0.076 left=0.230 right=0.153}aspect {ONCE=0.9 iterated=0.1}dur {short=0.363 med=0.090 long=0.545}}push78 (21 ex) {size {small=0.565 large=0.434}elongated {TRUE=0.608 false=0.391}depressible {true=0.043 FALSE=0.956}contact {true=0.086 FALSE=0.913}* schema {SLIDE=0.990 lift=0.002 rotate=0.002 depress=0.002 touch=0.002}posture {grasp=0.481 wrap=0.037 pinch=0.037 palm=0.370 platform=0.037 index=0.037}elbow {flex=0.041 EXTEND=0.916 fixed=0.041}force {low=0.333 med=0.416 high=0.25}accel {zero=0.04 low=0.32 MED=0.48 high=0.16}dir {AWAY=0.518 toward=0.037 up=0.037 down=0.037 left=0.222 right=0.148}aspect {ONCE=0.739 iterated=0.260}dur {short=0.333 med=0.333 long=0.333}}



CHAPTER 8. LEARNING RESULTS 139For the most part, the lexicon is distinguishing the senses based on the schema feature:we have a sense for Depressing a button (push74), a sense for applying pressure to anobject for a long time using the Touch x-schema (push79), and a sense for Slide actions(push78). As expected, the Depress sense codes for a depressible object while the othertwo senses do not. Other features also vary amongst the three senses. Push74 codes stronglyfor the index posture since that is the only allowed posture in our simple Depressx-schema. Push79 codes fairly strongly for the palm posture and long duration andexcludes iterated aspect, since other parameterizations of Touch actions usually leadto other verbs. Both push79 and push78 code for extending the elbow and the awaydirection, as expected. Yet not all the correlations seem plausible: for instance, push78codes more strongly for the grasp posture than the palm posture. And push79, despitecoding most strongly for the Touch x-schema, has merged with some Slide examples dueto coincident parameterizations.Next consider shove, shown below:Model for shove (1 sense):shove27 (14 ex) {* size {small=0.187 LARGE=0.812}elongated {true=0.375 FALSE=0.625}depressible {true=0.062 FALSE=0.937}contact {true=0.312 FALSE=0.687}schema {SLIDE=0.985 lift=0.003 rotate=0.003 depress=0.003 touch=0.003}* posture {grasp=0.15 wrap=0.05 pinch=0.05 PALM=0.65 platform=0.05 index=0.05}elbow {flex=0.058 EXTEND=0.588 fixed=0.352}* force {low=0.058 med=0.294 HIGH=0.647}accel {zero=0.055 low=0.166 med=0.277 HIGH=0.5}dir {away=0.35 toward=0.05 up=0.05 down=0.05 left=0.25 right=0.25}aspect {ONCE=0.625 iterated=0.375}* dur {SHORT=0.588 med=0.235 long=0.176}}It is similar to the third sense of push, most notably because it codes for the Slide x-schema. But it speci�es di�erent parameters. It codes for higher force, shorter duration,and is more likely to involve the palm posture and a large object. The senses shove27and push78 overlap signi�cantly, in that there are many actions which receive signi�cantposterior probability from both senses. It is only by virtue of the competition between sensesin the LABEL algorithm that a de�nite border between these two verbs is established.Two more related verbs are pull and yank :



CHAPTER 8. LEARNING RESULTS 140Model for pull (1 sense):pull25 (13 ex) {size {small=0.4 large=0.6}elongated {TRUE=0.666 false=0.333}depressible {true=0.066 FALSE=0.933}contact {true=0.133 FALSE=0.866}schema {SLIDE=0.984 lift=0.003 rotate=0.003 depress=0.003 touch=0.003}posture {grasp=0.315 wrap=0.052 pinch=0.052 PALM=0.473 platform=0.052 index=0.052}* elbow {FLEX=0.875 extend=0.062 fixed=0.062}force {low=0.25 med=0.437 high=0.312}accel {zero=0.058 low=0.352 med=0.411 high=0.176}* dir {away=0.052 TOWARD=0.631 up=0.052 down=0.052 left=0.157 right=0.052}aspect {ONCE=0.666 iterated=0.333}dur {SHORT=0.5 med=0.312 long=0.187}}Model for yank (1 sense):yank3 (2 ex) {size {SMALL=0.75 large=0.25}elongated {TRUE=0.75 false=0.25}depressible {true=0.25 FALSE=0.75}contact {true=0.25 FALSE=0.75}schema {SLIDE=0.911 lift=0.022 rotate=0.022 depress=0.022 touch=0.022}posture {GRASP=0.375 wrap=0.125 pinch=0.125 palm=0.125 platform=0.125 index=0.125}* elbow {FLEX=0.6 extend=0.2 fixed=0.2}* force {low=0.2 MED=0.6 high=0.2}accel {zero=0.166 low=0.166 med=0.333 high=0.333}* dir {away=0.125 toward=0.25 up=0.125 down=0.125 left=0.125 right=0.25}aspect {once=0.5 iterated=0.5}* dur {SHORT=0.6 med=0.2 long=0.2}}Both verbs code for Slide actions which involve a flexing elbow and are directed towardthe body, though yank 's correlation with this direction is weaker than one would expect.While yank3 does code more strongly than pull25 for short duration, this tendency isalso weak. And there is no appreciable increase in force for yank. These shortcomingsprobably result from the very small number of training examples that were labelled withyank. What's more, this small number leads to an exaggerated frequency ratio (13:2)between the two senses pull25 and yank3. As a result, yank is at a great competitivedisadvantage and will rarely be chosen as a label, even for actions which are better yanksthan pulls. Indeed, this happens in the test runs reported in the next section.The verb slide ought to have a more general meaning than any of these verbs.However, since it occurs in the training data only for actions which do not have a morespeci�c label, its learned meaning is skewed:



CHAPTER 8. LEARNING RESULTS 141Model for slide (1 sense):slide25 (13 ex) {size {small=0.6 large=0.4}elongated {true=0.6 false=0.4}depressible {true=0.066 FALSE=0.933}contact {true=0.133 FALSE=0.866}schema {SLIDE=0.984 lift=0.003 rotate=0.003 depress=0.003 touch=0.003}posture {GRASP=0.473 wrap=0.052 pinch=0.052 palm=0.315 platform=0.052 index=0.052}elbow {flex=0.187 extend=0.187 FIXED=0.625}force {low=0.25 MED=0.5 high=0.25}accel {zero=0.058 low=0.235 MED=0.529 high=0.176}* dir {away=0.052 toward=0.105 up=0.052 down=0.052 left=0.263 RIGHT=0.473}aspect {ONCE=0.933 iterated=0.066}dur {short=0.437 med=0.125 long=0.437}}Slide prefers left- or right-ward motion over motion toward or away from the body,instead of learning a uniform direction probability distribution. This won't a�ect labellingresults, since we prefer the more speci�c verbs when they are applicable. But it does a�ectobeying, because certain legitimate slides (e.g. movement toward the body) will not begenerated because they have low likelihood. In general, our architecture is not well suited tolearning a hierarchical vocabulary, as opposed to learning a collection of mutually exclusiveterms. A major design change would be needed to avoid this sort of problem.Lastly, the verb press is essentially a synonym of one of the senses of push (push74):Model for press (1 sense):press7 (4 ex) {size {small=0.333 LARGE=0.666}elongated {true=0.166 FALSE=0.833}* depressible {TRUE=0.833 false=0.166}contact {true=0.333 FALSE=0.666}* schema {slide=0.011 lift=0.011 rotate=0.011 DEPRESS=0.952 touch=0.011}* posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.1 platform=0.1 INDEX=0.5}elbow {flex=0.333 extend=0.333 fixed=0.333}force {LOW=0.428 med=0.285 high=0.285}accel {zero=0.25 low=0.25 MED=0.375 high=0.125}dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}aspect {ONCE=0.833 iterated=0.166}dur {short=0.142 med=0.428 long=0.428}}It codes for depressing a button with the index �nger, though its distributions on otherfeatures are somewhat di�erent from those of push74.



CHAPTER 8. LEARNING RESULTS 142Lifting Let us now examine a di�erent contrast set involving the Lift x-schema, includingthe verbs lift, heave, pick up and hold.Model for lift (1 sense):lift21 (11 ex) {size {small=0.461 large=0.538}elongated {true=0.384 FALSE=0.615}depressible {true=0.076 FALSE=0.923}contact {true=0.230 FALSE=0.769}* schema {slide=0.004 LIFT=0.982 rotate=0.004 depress=0.004 touch=0.004}posture {grasp=0.058 wrap=0.176 pinch=0.235 palm=0.058 PLATFORM=0.411 index=0.058}elbow {flex=0.214 extend=0.357 fixed=0.428}force {low=0.142 med=0.357 high=0.5}accel {zero=0.066 low=0.466 med=0.333 high=0.133}dir {away=0.058 toward=0.058 UP=0.705 down=0.058 left=0.058 right=0.058}aspect {ONCE=0.692 iterated=0.307}dur {SHORT=0.5 med=0.214 long=0.285}}Model for heave (1 sense):heave7 (4 ex) {* size {small=0.166 LARGE=0.833}elongated {true=0.5 false=0.5}depressible {true=0.166 FALSE=0.833}contact {true=0.166 FALSE=0.833}schema {slide=0.011 LIFT=0.952 rotate=0.011 depress=0.011 touch=0.011}* posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.1 PLATFORM=0.5 index=0.1}elbow {flex=0.142 extend=0.428 fixed=0.428}* force {low=0.142 med=0.285 HIGH=0.571}accel {zero=0.125 low=0.25 MED=0.5 high=0.125}dir {away=0.1 toward=0.1 UP=0.5 down=0.1 left=0.1 right=0.1}aspect {ONCE=0.666 iterated=0.333}dur {SHORT=0.428 med=0.285 long=0.285}}Model for pickup (1 sense):pickup17 (9 ex) {* size {SMALL=0.727 large=0.272}elongated {true=0.545 false=0.454}depressible {true=0.090 FALSE=0.909}* contact {true=0.090 FALSE=0.909}schema {slide=0.005 LIFT=0.978 rotate=0.005 depress=0.005 touch=0.005}* posture {grasp=0.066 wrap=0.333 pinch=0.266 palm=0.066 platform=0.2 index=0.066}elbow {flex=0.416 extend=0.166 fixed=0.416}force {low=0.25 MED=0.583 high=0.166}accel {zero=0.153 LOW=0.461 med=0.307 high=0.076}dir {away=0.066 toward=0.066 UP=0.666 down=0.066 left=0.066 right=0.066}aspect {ONCE=0.636 iterated=0.363}



CHAPTER 8. LEARNING RESULTS 143dur {SHORT=0.5 med=0.333 long=0.166}}Model for hold (1 sense):hold11 (6 ex) {size {small=0.5 large=0.5}elongated {true=0.125 FALSE=0.875}depressible {true=0.125 FALSE=0.875}contact {true=0.25 FALSE=0.75}schema {slide=0.008 LIFT=0.968 rotate=0.008 depress=0.008 touch=0.008}posture {grasp=0.083 wrap=0.083 pinch=0.333 palm=0.083 platform=0.333 index=0.083}elbow {flex=0.111 extend=0.111 FIXED=0.777}* force {LOW=0.666 med=0.222 high=0.111}* accel {ZERO=0.7 low=0.1 med=0.1 high=0.1}dir {away=0.083 toward=0.083 UP=0.583 down=0.083 left=0.083 right=0.083}* aspect {ONCE=0.875 iterated=0.125}* dur {SHORT=0.555 med=0.222 long=0.222}}Since all these verbs map to the Lift x-schema, they are di�erentiated only bythe parameterization of this x-schema. Lift is fairly general, but heave is more applicablewhen the object is of large size and it prefers actions with high force and the platformposture. Pick up (treated as a single word) is more particular than lift or heave about thehand not having initial contact with the object (which is usually small), and also rulesout the platform posture (instead preferring pinch or wrap). Hold di�ers from the othersby specifying zero acceleration (and corresponding low force), which, with the Liftx-schema, corresponds to keeping the object suspended in place|the appropriate meaningfor hold in our limited action domain. Being steady-state in nature, this action codes forthe once aspect. (It should also code for long duration but doesn't.)RotationThe verb turn leads to two senses:Model for turn (2 senses):turn26 (8 ex) {* size {small=0.1 LARGE=0.9}elongated {true=0.5 false=0.5}depressible {true=0.1 FALSE=0.9}contact {true=0.2 FALSE=0.8}* schema {slide=0.006 lift=0.006 ROTATE=0.975 depress=0.006 touch=0.006}* posture {GRASP=0.642 wrap=0.071 pinch=0.071 palm=0.071 platform=0.071 index=0.071}elbow {flex=0.333 extend=0.333 fixed=0.333}



CHAPTER 8. LEARNING RESULTS 144force {low=0.272 MED=0.545 high=0.181}accel {zero=0.083 low=0.416 med=0.416 high=0.083}* dir {away=0.214 toward=0.142 up=0.071 down=0.071 LEFT=0.357 right=0.142}aspect {ONCE=0.8 iterated=0.2}dur {short=0.363 med=0.272 long=0.363}}turn24 (6 ex) {* size {SMALL=0.875 large=0.125}elongated {true=0.375 FALSE=0.625}depressible {true=0.125 FALSE=0.875}contact {true=0.125 FALSE=0.875}* schema {slide=0.008 lift=0.008 ROTATE=0.968 depress=0.008 touch=0.008}* posture {grasp=0.083 wrap=0.083 PINCH=0.583 palm=0.083 platform=0.083 index=0.083}elbow {flex=0.333 extend=0.333 fixed=0.333}force {LOW=0.555 med=0.222 high=0.222}accel {zero=0.1 low=0.2 med=0.4 high=0.3}* dir {away=0.083 toward=0.25 up=0.083 down=0.083 left=0.166 right=0.333}aspect {ONCE=0.75 iterated=0.25}dur {short=0.333 med=0.444 long=0.222}}Both senses code for the Rotate x-schema. Both have fairly broad probability distributionsfor direction, as is appropriate for this rather general verb. So why two separate senses?The learning algorithm has noticed a strong correlation between object size and handposture, and separate senses are the only way to preserve the correlation. What thelearning algorithm doesn't know is that the Rotate x-schema is capable of choosing theproper posture based on the object size, and therefore omitting both these features andusing only a single sense would not degrade performance. In general, our architecture hasno way to convey which relationships amongst linking features are enforced at the x-schemalevel and hence needn't be learned.Hitting Executions of the Touch x-schema with high force and acceleration andshort duration lead to verbs like hit and slap:Model for hit (1 sense):hit9 (5 ex) {size {SMALL=0.857 large=0.142}elongated {true=0.285 FALSE=0.714}depressible {true=0.571 false=0.428}contact {true=0.142 FALSE=0.857}* schema {slide=0.009 lift=0.009 rotate=0.009 depress=0.580 touch=0.390}



CHAPTER 8. LEARNING RESULTS 145* posture {grasp=0.090 wrap=0.090 pinch=0.090 palm=0.272 platform=0.090 index=0.363}elbow {flex=0.2 extend=0.4 fixed=0.4}force {low=0.125 med=0.375 high=0.5}* accel {zero=0.111 low=0.111 med=0.111 HIGH=0.666}dir {away=0.125 toward=0.125 up=0.125 DOWN=0.375 left=0.125 right=0.125}aspect {ONCE=0.857 iterated=0.142}* dur {SHORT=0.625 med=0.25 long=0.125}}Model for slap (1 sense):slap7 (4 ex) {size {SMALL=0.666 large=0.333}elongated {true=0.5 false=0.5}depressible {true=0.166 FALSE=0.833}contact {true=0.166 FALSE=0.833}* schema {slide=0.011 lift=0.011 rotate=0.011 depress=0.011 TOUCH=0.952}* posture {grasp=0.1 wrap=0.1 pinch=0.1 PALM=0.5 platform=0.1 index=0.1}elbow {flex=0.142 extend=0.428 fixed=0.428}force {low=0.142 med=0.285 HIGH=0.571}* accel {zero=0.125 low=0.125 med=0.25 HIGH=0.5}* dir {away=0.1 toward=0.1 up=0.1 down=0.1 left=0.2 RIGHT=0.4}aspect {once=0.5 iterated=0.5}* dur {SHORT=0.571 med=0.285 long=0.142}}Hit is interesting because it includes signi�cant probability for the Depress x-schema,which corresponds to usages such as hit the button. This turns out to be the more commonusage in the training set, hence the higher probability on Depress than Touch, andthe mild tendency for the object to be depressible. The posture feature also becomesmuddled, since the Depress cases involve the index �nger while the Touch cases involvethe palm. This correlation is lost, unfortunately, because these two types of actions havemerged into a single word sense. (Presumably a large portion of the other features happenedto be set identically amongst the training examples for this verb, causing the merge to lookarti�cially attractive. This is an example of how the algorithm can be overly sensitive toits tunable parameters, in this case ModelPriorWeight.) The sense for slap, on the otherhand, su�ers no such ambiguities, and codes strongly for Touch and the palm posture.Appropriately, it also keys in on the direction of approach of the arm, requiring a sidewaysapproach (direction of left or right).Other verbs involving the Touch x-schema include touch, poke and tap:Model for touch (1 sense):touch17 (9 ex) {



CHAPTER 8. LEARNING RESULTS 146size {SMALL=0.636 large=0.363}elongated {true=0.454 false=0.545}depressible {true=0.090 FALSE=0.909}contact {true=0.090 FALSE=0.909}schema {slide=0.005 lift=0.005 rotate=0.005 depress=0.005 TOUCH=0.978}posture {grasp=0.066 wrap=0.066 pinch=0.066 palm=0.266 platform=0.066 INDEX=0.466}elbow {flex=0.166 EXTEND=0.583 fixed=0.25}force {low=0.5 med=0.416 high=0.083}accel {zero=0.076 low=0.461 med=0.384 high=0.076}dir {AWAY=0.333 toward=0.066 up=0.066 down=0.133 left=0.2 right=0.2}* aspect {ONCE=0.818 iterated=0.181}dur {SHORT=0.583 med=0.25 long=0.166}}Model for poke (1 sense):poke5 (3 ex) {size {small=0.4 large=0.6}elongated {true=0.2 FALSE=0.8}depressible {true=0.2 FALSE=0.8}contact {true=0.2 FALSE=0.8}schema {slide=0.015 lift=0.015 rotate=0.015 depress=0.015 TOUCH=0.938}posture {grasp=0.111 wrap=0.111 pinch=0.111 palm=0.111 platform=0.111 INDEX=0.444}elbow {flex=0.166 EXTEND=0.666 fixed=0.166}* force {low=0.166 med=0.166 HIGH=0.666}accel {zero=0.142 low=0.142 med=0.142 HIGH=0.571}dir {AWAY=0.333 toward=0.111 up=0.111 down=0.111 left=0.222 right=0.111}* aspect {once=0.6 iterated=0.4}dur {SHORT=0.666 med=0.166 long=0.166}}Model for tap (1 sense):tap7 (4 ex) {size {small=0.5 large=0.5}elongated {true=0.333 FALSE=0.666}depressible {true=0.333 FALSE=0.666}contact {true=0.333 FALSE=0.666}schema {slide=0.011 lift=0.011 rotate=0.011 depress=0.247 TOUCH=0.717}posture {grasp=0.1 wrap=0.1 pinch=0.1 palm=0.2 platform=0.1 INDEX=0.4}elbow {flex=0.333 extend=0.333 fixed=0.333}* force {LOW=0.714 med=0.142 high=0.142}accel {zero=0.25 LOW=0.5 med=0.125 high=0.125}dir {away=0.111 toward=0.111 up=0.111 DOWN=0.333 left=0.111 right=0.222}* aspect {once=0.333 ITERATED=0.666}dur {SHORT=0.714 med=0.142 long=0.142}}Touch and poke are quite similar, though poke encodes higher force and is much lesscommitted to the \once" aspect than touch is. Tap also distinguishes itself based onaspect, though in this case it is the iterated value which is called for. Low force is alsoimportant for tap, and it prefers the down direction compared to poke's preference for



CHAPTER 8. LEARNING RESULTS 147away. Lastly, an intuition which cannot be captured using our primitive Touch x-schemais that poke prefers motion of the arm while tap prefers 
exion and extension of the index�nger.Patterns in the lexiconTo summarize this tour of the lexicon, we call attention to several patterns. Per-haps the most prevalent pattern is that very few senses code for more than one x-schema.This is a direct result of using fewer virtual samples for the schema feature than for theother features, discouraging merging of actions involving di�erent x-schemas. The resultis appropriate, since the other motor features (and the initial world state features too, forthat matter) tend to correlate with the choice of x-schema.Another pattern is that most verbs collapse down to a single sense. Partly, this isan artifact of our limited range of available x-schemas. I believe that with a richer range ofactions, many more verbs would require multiple senses.8.2.3 Test resultsRecognition test resultsTo evaluate this learned lexicon, we test its ability to label the remaining 15% ofthe data. Here is the result:Beginning recognition test...Scenario sc6: desired=push, output=pushScenario sc12: desired=push, output=pushScenario sc18: desired=pickup, output=pickupScenario sc24: desired=feel, output=feelScenario sc30: desired=shove, output=shoveScenario sc36: desired=heave, output=lift *ERROR*Scenario sc42: desired=hold, output=holdScenario sc48: desired=slide, output=push *ERROR*Scenario sc60: desired=slap, output=slapScenario sc66: desired=pull, output=pullScenario sc72: desired=turn, output=turnScenario sc78: desired=pull, output=pullScenario sc84: desired=push, output=pushScenario sc90: desired=press, output=pressScenario sc96: desired=turn, output=turnScenario sc102: desired=pickup, output=pickupScenario sc108: desired=pull, output=pullScenario sc114: desired=lift, output=lift



CHAPTER 8. LEARNING RESULTS 148Scenario sc120: desired=hold, output=holdScenario sc126: desired=poke, output=pokeScenario sc132: desired=pull, output=pullScenario sc138: desired=pull, output=pullScenario sc144: desired=push, output=pushScenario sc150: desired=turn, output=turnScenario sc156: desired=tap, output=touch *ERROR*Scenario sc162: desired=slide, output=slideScenario sc168: desired=yank, output=pull *ERROR*Scenario sc174: desired=press, output=push *ERROR*Scenario sc180: desired=push, output=pushScenario sc186: desired=heave, output=lift *ERROR*Scenario sc192: desired=press, output=push *ERROR*Scenario sc198: desired=push, output=pushCorrectly labelled 25 of 32 test scenarios (78%).Recognition test done.A recognition rate of 78% is achieved. Realize that with an 18-word vocabulary,the \chance" recognition rate would be about 6%. Nonetheless, higher recognition rateswould have been preferable. We can at least attempt to learn about the errors. In almostall cases, they involve subtle distinctions, not major goofs. For example, consider scenariosc186. Here are the posterior probabilities of all word senses in the lexicon for this action:Scenario sc186: desired=heave, output=lift *ERROR*sense = tap7, prior = 0.024, likelihood = 1.09e-8, posterior = 2.72e-10sense = roll3, prior = 0.012, likelihood = 1.62e-7, posterior = 2.02e-9sense = slap7, prior = 0.024, likelihood = 1.48e-8, posterior = 3.69e-10sense = push74, prior = 0.074, likelihood = 5.32e-11, posterior = 3.97e-12sense = push79, prior = 0.049, likelihood = 6.42e-8, posterior = 3.19e-9sense = push78, prior = 0.130, likelihood = 2.24e-8, posterior = 2.93e-9sense = hold11, prior = 0.037, likelihood = 3.70e-6, posterior = 1.38e-7* sense = pickup17, prior = 0.055, likelihood = 7.63e-5, posterior = 4.26e-6sense = feel5, prior = 0.018, likelihood = 6.25e-7, posterior = 1.16e-8sense = press7, prior = 0.024, likelihood = 2.05e-8, posterior = 5.11e-10sense = turn26, prior = 0.049, likelihood = 2.20e-7, posterior = 1.09e-8sense = turn24, prior = 0.037, likelihood = 4.92e-9, posterior = 1.83e-10sense = yank3, prior = 0.012, likelihood = 7.32e-8, posterior = 9.09e-10sense = poke5, prior = 0.018, likelihood = 2.31e-8, posterior = 4.31e-10* sense = lift21, prior = 0.068, likelihood = 4.94e-4, posterior = 3.37e-5sense = hit9, prior = 0.031, likelihood = 2.89e-9, posterior = 8.99e-11sense = pull25, prior = 0.080, likelihood = 4.08e-9, posterior = 3.29e-10* sense = heave7, prior = 0.024, likelihood = 4.01e-4, posterior = 9.98e-6sense = slide25, prior = 0.080, likelihood = 1.82e-8, posterior = 1.47e-9sense = touch17, prior = 0.055, likelihood = 5.02e-8, posterior = 2.80e-9sense = shove27, prior = 0.086, likelihood = 5.47e-9, posterior = 4.76e-10Note that the correct label, heave, has barely lost out to the actual label, lift (by a factorof about three). Pick up is also competitive (which is reasonable, since it is a related verb),being within a factor of ten, but all other word senses are far behind. Most of the errors in



CHAPTER 8. LEARNING RESULTS 149this training run are like this. Speakers are likely never to be perfectly consistent in theirlabelling of actions, rendering errors of this sort inevitable. However, it is also possible thatthe errors are exacerbated by the small amount of training data that was used. So, while itis probably appropriate to \discount" most of these errors, I would prefer to test on moredata before drawing this conclusion.Command-obeying test resultsNow consider command-obeying. We use the same 15% of the data as used forrecognition testing. The labels in the data are used as commands, which are interpreted inlight of the initial world state features in each scenario. The resulting linking features arelabelled, and the label is compared to the initial command. Results follow:Beginning obey test.Scenario sc6: command=push, output=pushScenario sc12: command=push, output=pushScenario sc18: command=pickup, output=pickupScenario sc24: command=feel, output=feelScenario sc30: command=shove, output=shoveScenario sc36: command=heave, output=lift *ERROR*Scenario sc42: command=hold, output=holdScenario sc48: command=slide, output=slideScenario sc60: command=slap, output=slapScenario sc66: command=pull, output=pullScenario sc72: command=turn, output=turnScenario sc78: command=pull, output=pullScenario sc84: command=push, output=pushScenario sc90: command=press, output=push *ERROR*Scenario sc96: command=turn, output=turnScenario sc102: command=pickup, output=pickupScenario sc108: command=pull, output=pullScenario sc114: command=lift, output=liftScenario sc120: command=hold, output=holdScenario sc126: command=poke, output=pokeScenario sc132: command=pull, output=pullScenario sc138: command=pull, output=pullScenario sc144: command=push, output=pushScenario sc150: command=turn, output=turnScenario sc156: command=tap, output=tapScenario sc162: command=slide, output=slideScenario sc168: command=yank, output=pull *ERROR*Scenario sc174: command=press, output=push *ERROR*Scenario sc180: command=push, output=pushScenario sc186: command=heave, output=lift *ERROR*Scenario sc192: command=press, output=push *ERROR*Scenario sc198: command=push, output=pushCorrectly recognized 26 of 32 obeyed commands (81%).Obey test done.



CHAPTER 8. LEARNING RESULTS 150Note that the success rate of 81% is higher than that for recognition. In other training runs,it is often signi�cantly higher. The explanation is that the motor-parameter linking featuresof obeyed actions are generated by the model itself, via the interpretation of the command.The resulting actions thus basically correspond to the prototypes embodied in the lexicon.So it is not surprising that the model is in turn able to recognize these prototypical actionsvery successfully.As was the case for recognition testing, the errors observed above are all cases inwhich both the actual and desired labels are plausible.An example of command-obeyingTo illustrate how the model chooses an appropriate interpretation of a commandverb (i.e. a sense which best �ts the initial world state), we will go through how the learnedlexicon handles a push command in several initial world states.We �rst give the push command in scenario sc41, which has the following initialworld state:{size=small elongated=false depressible=true contact=false}The important cue is that the object is depressible, and the obeying algorithm correctlychooses the Depress sense of push, as can be seen from the resulting linking feature in-structions to the x-schema execution system:Linking f-struct (pre-execution):{size=small elongated=false depressible=true contact=falseschema=depress posture=index accel=med dur=short}The next push command is given in scenario sc6, which has a di�erent initialworld state:{size=large elongated=false depressible=false contact=false}In this case, the Slide sense is chosen:Linking f-struct (pre-execution):{size=large elongated=false depressible=false contact=falseschema=slide elbow=extend accel=med dir=away aspect=once}In either case, the x-schema which is chosen to execute has its proper parametersset, since these were learned separately for each of the two senses.



CHAPTER 8. LEARNING RESULTS 151Trajectory of learningHow does the model's posterior probability, and also the recognition rate, changeas merging proceeds? The plot in Figure 8.2 shows these statistics for the training runwe have been considering. The plot re
ects only the model for the verb push. The x-axisranges from before merging begins until after it is done (40 merges total).The top plot displays, on a logarithmic scale, the push model's posterior probabilityas well as its prior probability and likelihood (recall posterior / prior � likelihood). Asexpected, the prior probability steadily increases during merging|indeed it is perfectlylinear on this log plot, since the prior is just an exponential function of the (steadily-decreasing) number of word senses. The likelihood also increases initially, but eventuallydecreases. Why does the likelihood not drop until near the end of the training period?The explanation is that initially, there are a very large number of word senses (one foreach example), and these give rise to a large number of \simple" merges of identical ornearly-identical senses. These merges tend to increase the likelihood since they decrease therelative importance of the virtual samples (with their \fuzzifying" e�ect) in those senses.Only after these easy merges are performed do dissimilar senses begin to merge. Sincefewer senses exist at this point, fewer merges will occur during this generalization-inducing,likelihood-dropping phase. Turning to the third curve, the posterior can be seen to increasemonotonically, as required by our learning algorithm. It can also be seen to level o� towardthe end due to the decreasing likelihood.During this process, the recognition rate increases from 83% to 100%. Since thereare only six test scenarios for push (�ve of which are recognized correctly from the start), thiscurve is rather abrupt and certainly does not tell us much about recognition performancein general. The important points are (1) that the recognition does not drop despite theshrinking of the model, and (2) that at some point the generalization ability of the modeldoes in fact increase to cover the sixth test scenario.To get a better handle on how generalization ability (as re
ected in the recognitionrate) relates to the number of word senses, a series of training runs were performed withdi�erent settings of theModelPriorWeight parameter. The result is a collection of lexiconswith di�ering numbers of word senses. And since they are fully trained, we can then test eachlexicon on the full set of recognition test scenarios, and thus obtain more reliable numbers.
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Figure 8.2: Plot of the push model's prior, likelihood and posterior probabilities, as well asthe recognition rate, as merging proceeds.
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CHAPTER 8. LEARNING RESULTS 1548.3 Crosslinguistic Validation8.3.1 FarsiThe Farsi language exhibits some non-English-like distinctions within the sphereof actions represented by push, press, pull and their ilk. A subset of 61 of the scenariosused for the English training run were labelled with four Farsi verbs4 and the system wastrained using the same parameters used for English.Farsi distinguishes two of English's familiar senses of push. One verb, hol daadan,encodes away-directed motion. Another verb, feshaar daadan, encodes applying force with-out motion. They are learned as follows:Model for hol_daadan (1 sense):hol_daadan17 (9 ex) {size {small=0.181 LARGE=0.818}elongated {true=0.272 FALSE=0.727}depressible {true=0.090 FALSE=0.909}contact {true=0.181 FALSE=0.818}* schema {SLIDE=0.978 lift=0.005 rotate=0.005 depress=0.005 touch=0.005}* posture {grasp=0.133 wrap=0.066 pinch=0.066 PALM=0.6 platform=0.066 index=0.066}elbow {flex=0.083 EXTEND=0.833 fixed=0.083}* force {low=0.083 med=0.166 HIGH=0.75}accel {zero=0.076 low=0.076 MED=0.538 high=0.307}* dir {AWAY=0.666 toward=0.066 up=0.066 down=0.066 left=0.066 right=0.066}* aspect {ONCE=0.909 iterated=0.090}dur {short=0.166 med=0.333 LONG=0.5}}Model for feshaar_daadan (2 senses):feshaar_daadan74 (26 ex) {size {SMALL=0.714 large=0.285}elongated {true=0.035 FALSE=0.964}depressible {TRUE=0.964 false=0.035}contact {true=0.142 FALSE=0.857}* schema {slide=0.001 lift=0.001 rotate=0.001 DEPRESS=0.992 touch=0.001}posture {grasp=0.031 wrap=0.031 pinch=0.031 palm=0.031 platform=0.031 INDEX=0.843}elbow {flex=0.333 extend=0.333 fixed=0.333}force {low=0.413 med=0.310 high=0.275}accel {zero=0.133 low=0.266 MED=0.433 high=0.166}dir {away=0.166 toward=0.166 up=0.166 down=0.166 left=0.166 right=0.166}aspect {ONCE=0.642 iterated=0.357}dur {SHORT=0.517 med=0.310 long=0.172}}4Three of these four labels are in fact composed of multiple words. However, they were treated as singleverbs in this training run, as indicated by underscores in the transcripts.



CHAPTER 8. LEARNING RESULTS 155feshaar_daadan73 (12 ex) {size {small=0.5 large=0.5}elongated {TRUE=0.642 false=0.357}depressible {true=0.071 FALSE=0.928}contact {true=0.357 FALSE=0.642}* schema {slide=0.004 lift=0.004 rotate=0.004 depress=0.004 TOUCH=0.983}* posture {grasp=0.055 wrap=0.055 pinch=0.055 PALM=0.722 platform=0.055 index=0.055}elbow {flex=0.2 extend=0.466 fixed=0.333}force {low=0.4 med=0.266 high=0.333}accel {zero=0.062 LOW=0.437 med=0.25 high=0.25}dir {away=0.235 toward=0.058 up=0.058 down=0.294 left=0.176 right=0.176}aspect {ONCE=0.928 iterated=0.071}* dur {short=0.266 med=0.2 LONG=0.533}}These verbs are distinguished mainly by the fact that they map to di�erent x-schemas. Holdaadan maps to the Slide x-schema, while feshaar daadan has two senses, one mappingto Touch and another mapping to Depress. Both hol daadan and the Touch sense offeshaar daadan code strongly for the palm posture. The Touch sense of feshaar daadanrequires long duration and cannot be iterated; it is similar to English lean. Hol daadancodes movements away from the body, requires high force, and prefers quick motions butdoes allow more continuous pushing. A closely related verb, pas zadan, parameterizes Slidedi�erently:Model for pas_zadan (1 sense):pas_zadan9 (5 ex) {size {small=0.142 LARGE=0.857}elongated {TRUE=0.714 false=0.285}depressible {true=0.142 FALSE=0.857}contact {true=0.142 FALSE=0.857}schema {SLIDE=0.961 lift=0.009 rotate=0.009 depress=0.009 touch=0.009}posture {grasp=0.090 wrap=0.090 pinch=0.090 PALM=0.545 platform=0.090 index=0.090}elbow {flex=0.125 EXTEND=0.75 fixed=0.125}* force {low=0.375 med=0.375 high=0.25}accel {zero=0.111 LOW=0.555 med=0.111 high=0.222}dir {AWAY=0.545 toward=0.090 up=0.090 down=0.090 left=0.090 right=0.090}* aspect {once=0.285 ITERATED=0.714}* dur {SHORT=0.75 med=0.125 long=0.125}}It shares the preference for the away direction and the palm posture, but prefers lowerforce and short duration. It allows an iterative interpretation whereas hol daadandoes not.The closest equivalent to pull in Farsi is keshidan:



CHAPTER 8. LEARNING RESULTS 156Model for keshidan (1 sense):keshidan17 (9 ex) {size {small=0.545 large=0.454}elongated {true=0.454 false=0.545}depressible {true=0.090 FALSE=0.909}contact {true=0.090 FALSE=0.909}schema {SLIDE=0.978 lift=0.005 rotate=0.005 depress=0.005 touch=0.005}posture {GRASP=0.466 wrap=0.066 pinch=0.066 palm=0.266 platform=0.066 index=0.066}elbow {FLEX=0.833 extend=0.083 fixed=0.083}* force {low=0.25 med=0.333 high=0.416}accel {zero=0.076 low=0.230 med=0.384 high=0.307}dir {away=0.066 TOWARD=0.666 up=0.066 down=0.066 left=0.066 right=0.066}* aspect {ONCE=0.909 iterated=0.090}* dur {short=0.25 MED=0.5 long=0.25}}Compared to pull, keshidan codes for higher force and longer duration. It also prefersthe once aspect. In some respects it resembles English haul.8.3.2 RussianThe next language we consider is Russian. From the perspective of our model,Russian is interesting because its verbs almost always appear with pre�xes and su�xes.Thus, we have used Russian as a testbed for the multi-slot version of our model as presentedin Chapter 7. The results are mixed.The same set of 200 scenarios described above was labelled by a Russian informant.The set of labels used was as follows:5Pre�xes Roots Su�xespo- pere- pri-no- ot- pod- trogat tolknut davit zhat dvinutstuknut derzhat tyanut vernut tknut -ut -atAs might be expected, the di�erent grammatical positions tend to encode di�erentaspects of the semantics of actions. In particular, it is clear that the su�xes code forperfectiveness. The verb roots tend to code for goals, posture and e�ort. The pre�xes tendto encode more image-schematic features such as paths. We will soon see how the modelcaptures these tendencies.5Note that, in the process of dividing the labels into three slots, some liberties have been taken withspelling. In particular, verb root labels retain a su�x when they would be di�cult to recognize without it.



CHAPTER 8. LEARNING RESULTS 157TrainingTraining the model on this data proceeded di�erently than it did for English andFarsi in several respects. First, there are e�ectively three times as many training examplesfor Russian than for the other languages, since each training example involves incorporatinga new instance for each of the three components of its label. Training times grew accordingly.Secondly, since there are only two possible su�xes each of them occurs quite oftenin the training set. The o�ine version of the model merging algorithm, since its runtimecomplexity is cubic in the number of training examples (see x6.2.5), proved intractable. Itwas essential to utilize the BatchSize parameter to implement online learning; a batch sizeof ten turned out to produce reasonable results and greatly speeded up learning.Satisfyingly, it did not prove necessary to modify the value ofModelPriorWeight,even in the face of these di�erent training set statistics. This is an encouraging sign thatthe model merging criterion is robust to such variations. This kind of robustness would beessential in modelling a wide range of languages.Tour of the learned lexiconWe will not present the entire learned lexicon here, but rather just mention somehighlights. One of the more interesting results is the representation for the imperfectivesu�x -at. It is learned as follows. (To save space, this section will present word senses bysimply listing the set of feature values which would be used for obeying a command.)Model for at (4 senses):at58 (11 ex){elongated=false depressible=false contact=false schema=liftaccel=med dir=up aspect=iterated dur=short}at79 (5 ex){size=small elongated=false depressible=true contact=falseschema=depress posture=index force=high aspect=iterateddur=short}at78 (22 ex){size=large depressible=false contact=false schema=slideposture=palm aspect=iterated dur=short}at51 (2 ex){elongated=true depressible=false contact=false schema=touchposture=palm accel=low aspect=once dur=long}



CHAPTER 8. LEARNING RESULTS 158In the judgment of the informant, imperfectiveness corresponded to two types of x-schemaexecution. One type corresponded to iterated but brief motions, and the other type cor-responded to non-iterated but long-duration motions. In order to capture this dependencebetween the aspect and duration features, multiple senses are required. Observe thatat51 encodes non-iterated but long actions. The other three senses encode iterated shortactions. Unfortunately the model has not seen enough data to generalize over some of theother features, resulting in the three separate senses for the case of iterated short actions.This does not negatively impact recognition performance, though, as will be shown shortly.The learned representations for the verb roots are generally acceptable, in that theappropriate correlations are captured. However, a large number of spurious associations arealso picked up. It is not clear if more data would help. Several examples are listed here. Tobegin, consider the roots tolknut, which corresponds to crude and forceful pushing involvingobject motion, and dvinut, which is used for \calmer" sliding motions. They are learned asfollows: Model for tolknut (1 sense):tolknut31 (16 ex){size=large depressible=false contact=false schema=slideposture=palm force=high accel=med aspect=once}Model for dvinut (3 senses):dvinut21 (1 ex){size=small elongated=true depressible=false contact=trueschema=touch posture=palm elbow=fixed force=medaccel=med dir=away aspect=once dur=long}dvinut95 (30 ex){size=small depressible=false contact=false schema=slideposture=grasp elbow=extend aspect=once}dvinut94 (16 ex){size=large depressible=false contact=false schema=slideposture=palm force=med dur=short}Tolknut31 properly codes for the Slide x-schema, the palm posture, and high force. Incontrast, dvinut codes for a less restrictive set of Slides, since it is modelled by a sense(dvinut95) involving the grasp posture as well as a sense (dvinut94) involving the palmposture. High force is not coded for by either sense.



CHAPTER 8. LEARNING RESULTS 159Consider another example, the verb root stuknut. It corresponds to English hit orslap, and is learned as follows:Model for stuknut (2 senses):stuknut27 (10 ex){size=small depressible=false contact=false schema=touchposture=palm force=high accel=high dur=short}stuknut24 (4 ex){size=small elongated=false depressible=true contact=falseschema=depress posture=index force=high aspect=iterateddur=short}This verb is learned rather well. The �rst sense, stuknut27, encodes high-speed Touchesusing the palm, which corresponds to either English hit or slap depending on the directionof approach of the arm|which the sense properly does not code for. The other sense,stuknut24, codes for hitting a button. It insists on high force, which is correct since adi�erent Russian verb root (zhat) is used to refer to gentler button-pushing, as can be seenin the �rst sense for zhat shown below:Model for zhat (2 senses):zhat25 (12 ex){size=small elongated=false depressible=true contact=falseschema=depress posture=index force=low aspect=oncedur=short}zhat8 (1 ex){size=large depressible=false contact=false schema=slideposture=palm force=high accel=high dir=towarddur=short}Pre�xes prove to be the most troublesome in Russian, due to the inadequaciesof our linking features for representing image-schematic concepts. For example, the pre�xpod- can mean \under" or \a little". It is learned as shown below|no such image-schematicpattern is obvious. (Although, again, the representation does a passable job in recognitiontesting as reported shortly.)Model for pod (3 senses):pod57 (3 ex){size=large depressible=false contact=false schema=slideposture=palm elbow=flex accel=med dir=toward}



CHAPTER 8. LEARNING RESULTS 160pod66 (8 ex){size=small depressible=false contact=false schema=liftaccel=low aspect=once}pod58 (22 ex){size=large depressible=false contact=false schema=liftposture=platform dir=up aspect=once dur=short}Lastly, let us examine the virtual sample counts in each of the three slots of themodel, to see how they have adapted in response to the training data:Slot 0 (prefix) virtuals:size=3.46 elongated=3.48 depressible=0.024 contact=0.225schema=0.065 posture=0.188 elbow=2.71 force=1.54 accel=0.723dir=1.72 aspect=0.977 dur=2.19Slot 1 (root) virtuals:size=1.13 elongated=5.07 depressible=0.057 contact=0.322schema=0.002 posture=0.119 elbow=4.33 force=0.903 accel=0.722dir=2.39 aspect=1.57 dur=1.47Slot 2 (suffix) virtuals:size=6.13 elongated=2.62 depressible=0.023 contact=0.148schema=0.078 posture=0.272 elbow=3.75 force=2.26 accel=0.778dir=1.98 aspect=0.075 dur=3.75This array of numbers is a far cry from representing a clear-cut decision about the semanticroles played by the three slots. But we can see that a few trends have been partially pickedup. For instance, note that slot 1 (the verb root slot) codes much more strongly for theschema feature than the other two slots, as we would expect given the tendency for Russianverb roots to encode the goal and overall type of action. Slot 2 (the su�x slot) codes muchmore strongly for the aspect feature than the other two slots, which is consistent with itsrole as a perfectiveness marker. Lastly, slot 0 (the pre�x slot) appropriately codes moststrongly for direction|which is one of the more image-schematic of the model's linkingfeatures|although the actual virtual sample count is not as low as one might have expected.In summary, the three-slot Russian lexicon appears to have been learned somewhatless cleanly than one-slot English or Farsi. The question then is, how does its recognitionperformance compare?Recognition testingThe model was tested on the 33 test scenarios with the following results:



CHAPTER 8. LEARNING RESULTS 161Beginning recognition test...Scenario sc6: desired=ot-dvinut-ut, output=ot-tolknut-ut *ERROR*Scenario sc12: desired=ot-dvinut-at, output=ot-dvinut-atScenario sc18: desired=pod-nyat-ut, output=pod-nyat-utScenario sc24: desired=-trogat-at, output=po-trogat-at *ERROR*Scenario sc30: desired=ot-dvinut-at, output=ot-dvinut-atScenario sc36: desired=pod-nyat-ut, output=pod-nyat-utScenario sc42: desired=pod-derzhat-ut, output=pod-derzhat-utScenario sc48: desired=pere-dvinut-ut, output=pere-dvinut-utScenario sc54: desired=po-dvinut-ut, output=po-dvinut-at *ERROR*Scenario sc60: desired=-stuknut-ut, output=pri-stuknut-ut *ERROR*Scenario sc66: desired=pri-dvinut-at, output=pri-dvinut-atScenario sc72: desired=ot-katit-ut, output=pere-katit-ut *ERROR*Scenario sc78: desired=pri-dvinut-ut, output=pri-dvinut-utScenario sc84: desired=pere-dvinut-ut, output=po-dvinut-ut *ERROR*Scenario sc90: desired=na-zhat-ut, output=na-davit-ut *ERROR*Scenario sc96: desired=po-vernut-ut, output=po-vernut-utScenario sc102: desired=pod-nyat-at, output=pod-nyat-atScenario sc108: desired=pri-dvinut-ut, output=pri-dvinut-utScenario sc114: desired=pod-nyat-ut, output=pod-nyat-utScenario sc120: desired=pod-derzhat-ut, output=pod-derzhat-utScenario sc126: desired=-tknut-at, output=na-stuknut-at *ERROR*Scenario sc132: desired=pri-dvinut-ut, output=na-dvinut-ut *ERROR*Scenario sc138: desired=pri-dvinut-ut, output=pri-dvinut-at *ERROR*Scenario sc144: desired=na-zhat-ut, output=na-zhat-utScenario sc150: desired=pere-katit-ut, output=pere-vernut-ut *ERROR*Scenario sc156: desired=-trogat-at, output=na-stuknut-at *ERROR*Scenario sc162: desired=po-dvinut-at, output=po-dvinut-atScenario sc168: desired=pod-tyanut-ut, output=pri-vernut-ut *ERROR*Scenario sc174: desired=na-zhat-at, output=na-zhat-atScenario sc180: desired=-stuknut-at, output=na-zhat-at *ERROR*Scenario sc186: desired=pod-nyat-ut, output=pod-nyat-utScenario sc192: desired=na-davit-ut, output=na-davit-utScenario sc198: desired=po-dvinut-ut, output=po-dvinut-utCorrectly labelled 19 of 33 test scenarios (57%).Recognition test done.The �rst thing to notice is that the overall recognition rate is somewhat lowerlower than it is for English and Farsi. There are several reasons for this. The �rst reasonis that the three-slot recognition task is simply much harder than the one-slot recognitiontask. While random guessing on the 18-verb English vocabulary would yield a recognitionrate of 6%, the random guessing rate for the Russian data, with its 7 possible pre�xes, 10roots, and 3 su�xes (including the possibility for null pre�xes and su�xes), is less than0.5%. Viewed in this light, the results look rather good.A more serious problem, though, is that it proved impossible to set the MinLabelparameter appropriately. Several of the test examples require the pre�x slot to be leftun�lled, which can only be accomplished by setting MinLabel above 0. However, any



CHAPTER 8. LEARNING RESULTS 162setting of MinLabel which accomplished this goal exhibited the unfortunate side-e�ect ofomitting too many labels, often including verb roots. In other words, this parameter is verybrittle. A related problem occurred regarding the MinExplain parameter. Recall thatthe multi-slot labelling algorithm always �lls the slot for which it has found the highest-posterior-probability label, and then removes (or \explains away") the features stronglycoded for by that label before going on to �ll the next slot. MinExplain de�nes the criterionfor which features will be removed. Since many word senses are coding for spurious featuresalmost as strongly as for the proper features, this parameter, too, has proven brittle. Whenset too low (e.g. less than 0.8 or so), features which are spuriously correlated with thelabel in one slot get explained away and then are not available to help choose the labelfor the remaining slots. This problem manifests itself most clearly by producing drasticallyincorrect verb root labels|errors which do not occur if MinLabel is set to a very high value(e.g. 0.95, which virtually disables the explaining away strategy).One hypothesis|although it is only a hunch|is that if explaining away were tobe utilized during learning, then it would prove more e�ective during testing. The reason isthat fewer spurious correlations (hopefully) would make their way into the learned lexicon,and therefore explaining away during recognition would remove only the proper features.This remains to be implemented and tested.VariationsAn interesting question is how the performance on verb roots alone compares tothe one-slot training reported in earlier sections. If we examine the above trace and countas errors only those scenarios for which the verb root label is wrong, we obtain a recognitionrate of 81%. This is in line with the earlier one-slot results.To further investigate this issue, the Russian training data was stripped of allpre�xes and su�xes and used to train a one-slot model. This strategy for obtaining one-slot data is somewhat suspect. For example, an action labelled hold down may well belabelled press, not hold, when the informant is requested to give one-slot labels. But thestrategy is convenient and allows us to get a rough measure of what kind of performancemight be obtained with \real" one-slot labels. As it turns out, the recognition errors for



CHAPTER 8. LEARNING RESULTS 163this one-slot model are identical to the errors on the verb root slot in the three-slot lexicon(and thus are also comparable to the English results).Finally, there is the question of what improvment is obtained by dividing the multi-word Russian labels into slots compared to treating them as wholes. To get a measure ofthis improvement, a one-slot model was trained with the three-slot labels, except each labelwas treated as a single \verb". The resulting lexicon consisted of 43 total word senseswhen trained using the same algorithm parameters as English. This is a few more than thetotal number of senses in the three-slot lexicon. One would expect much lower recognitionperformance, though, since the one-slot model is not generative, i.e. it cannot form novelcombinations of roots, pre�xes and su�xes. However, the recognition performance obtainedwas 54%|comparable to the three-slot case. This appears to be due to there being lessproductivity within the labelled data than was expected. Most of the target labels in therecognition test had in fact appeared in the training data. Whether this would remain truewith more data or more actions is unknown.8.3.3 Other crosslinguistic examplesA number of other interesting crosslinguistic examples have come to the author'sattention,6 but have not been trained on due to either lack of full data for the language,or lack of time. Nevertheless, many of these examples seem to be representable|or nearlyrepresentable|within the model developed here, and so are worth reporting. This section,then, presents some of these examples along with guesses as to how they might be repre-sented in terms of our linking features. These guesses are based on the informal descriptionsof the verb meanings provided by informants. They are written here in an abbreviated formfor clarity and to emphasize that they are hypothetical.Postural coding in Korean and SpanishA variety of languages distinguish actions based upon hand posture. Consider twoexamples from Korean, um kyo gi da and dul da. Both are similar to English hold. But umkyo gi da codes speci�cally for holding a small object with the �ngers wrapped around it,while dul da codes for heavier objects held with a 
at hand. They might be represented as6Many of them thanks to Carol Bleyle's interviews with her ESL students.



CHAPTER 8. LEARNING RESULTS 164follows: Model for um_kyo_gi_da:{size=small schema=lift posture=grasp accel=zero}Model for dul_da:{size=large schema=lift posture=platform accel=zero}Note that the grasp posture is not quite right for um kyo gi da; to perfectlycapture this expression, we would need to further re�ne the posture feature to includemore of the postures shown in Figure 3.1.Another example from Korean is the case of kon dur ida compared with tu chi da.The �rst refers to tipping an object over using one �nger, while the latter refers to tippinga large object. These might be represented as follows:Model for kon_dur_ida:{size=small schema=rotate posture=index}Model for tu_chi_da:{size=large schema=rotate posture=`grasp or palm'}A very interesting example from Korean is kul ri da, which refers to rolling anobject o� of the hand (and then across a surface, normally). Representing such an actionis beyond the capabilities of the current set of x-schemas and linking features.Turning to Spanish, we have two related verbs, pulsar and presionar. Pulsar refersto pressing with one �nger (especially a button), while presionar refers to pressing with thepalm. These verbs map to the Depress and Touch x-schemas, respectively, and shouldcorrespond approximately to the two senses of Farsi feshaar daadan shown earlier.Lastly, Spanish distinguishes general hitting (pegar) from hitting with a 
at palm(golpear). This distinction can easily be captured by the posture feature; in one case theprobability distribution is broad, while in the other case it is highly peaked around the palmvalue.Aspectual coding in Tamil, Korean and JapaneseAnother type of distinction found in verbs from some languages involves aspect.In particular, some verbs code for repetition of short-duration actions while other verbscode for a smooth and continuous version of the same basic action.



CHAPTER 8. LEARNING RESULTS 165This shows up, for example, in the Tamil verbs for pushing (thallu) and pulling(ilu). Whereas most English speakers assume a continuous motion by default, the Tamilverbs, when used alone, strongly suggest a sudden motion, and may even suggest repetitionof the sudden motion. (The repetition can be emphasized by reduplication|i.e., with thallu-thallu.) In order to suggest continuous motion, a directional su�x can be added, such as-po (away) or -wa (toward). Thallu might be represented as follows:Model for thallu: {schema {SLIDE=0.9 ...}posture {PALM=0.9 ...}duration {SHORT=0.5 med=0.3 long=0.2}aspect {once=0.4 ITERATED=0.6}}Meanwhile, the su�x -po might be represented as:Model for po: {direction {AWAY=0.9 ...}duration {short=0.1 med=0.3 LONG=0.6}aspect {ONCE=0.8 iterated=0.2}}Note that this su�x codes not only for direction but also for the once aspect and a longerduration. Moreover, its probability distributions for these two features are more peakedthan those of thallu, allowing it to override the values suggested by thallu.Korean makes a similar distinction in its expressions for poking. Gi ru da refersto a single poke, while maani gi ru da refers to poking repeatedly. Again, an a�x plays therole of overriding the aspect setting of the root verb. Japanese, too, makes this distinctionin its poking verbs. In this case, the force parameter is also implicated. Tsuku refers toa single poke, which may use any amount of force. Tsutsuku, on the other hand, codes forrepeated poking but only with low force.Directional coding in SpanishSpanish has several verbs for tipping an object over. Volcar refers to tipping anobject onto its side, while volver is used for tipping an object onto its back. Finally, poneral reves refers to tipping an object upside down. Our model's direction feature could beused to distinguish the �rst two verbs, if objects were always placed in a canonical position.



CHAPTER 8. LEARNING RESULTS 166However, in order to capture the full generality of these verbs, the model would need tobe augmented with a notion of deixis. In other words, it would need a mechanism fordetermining the appropriate point of view for determining the \back" vs. the \side" vs. the\top" of an object.Some generalizations in Tamil and ArabicMany of the examples presented thus far code for rather speci�c actions. But thereare other verbs which refer to broad classes of actions. Interestingly, even these very generalverbs can di�er signi�cantly from the general verbs of English (such as move).One such example is the Tamil verb pudi. This verb covers catching, holding andrestraining. It de�nitely codes for high force, and its connotation of restraint suggests azero acceleration. Yet this verb can be used for carrying an object, so this is not quiteright. Another example is Arabic erme al callem, which can cover English drop, throw,knock over and tip over. All of these involve an object in free-fall, suggesting an importantlinking feature not presently in the model. More importantly, both dropping and knockingover an object are (or can be) unintentional actions. The current model, due to its focusupon actions which correspond to single, entire, intentionally-executed x-schemas, is notyet equipped to deal with such verbs.8.4 Sensitivity to ParametersThe results reported above were obtained after a certain amount of tuning of thevarious parameters of our labelling, obeying and learning algorithms. Since robustness tosuch parameters is a desirable quality in any learning system, we review here the sensitivityof these various parameters on the above examples.For review, all the parameters of our labelling, obeying and learning algorithmsare summarized in Figure 6.3.In practice, the MinSetFeature has been the most troublesome. Recall that thisparameter speci�es the minimum peakedness a feature's probability distribution must havein order for the mode value of that distribution to be included in the prototype. If set



CHAPTER 8. LEARNING RESULTS 167too high, statistically signi�cant patterns may get omitted from the linking f-struct. Toolow, and merely-loosely-correlated features may get set, which can potentially overspecifyx-schema parameters to the point where successful execution is impossible. The problem ispartly due to the peakedness metric's failure to take into account the number of possiblevalues for a feature: if the mode and runner-up have nearly equal probability (say 0.4 and0.35), this ought to generate a very low peakedness for a feature with three possible values,but a fairly high peakedness if the feature has 10 values. In our experiments we have erredon the side of a high setting for MinSetFeature to be sure to exclude weakly correlatedfeatures. As a result, the latter case presents problems. For instance: if all examples of liftexhibit forces of 1 or 2 (roughly similar number of each), while examples of heave exhibitforces of 4 or 5 (also roughly similar numbers of both), then we would like to have thissigni�cant correlation re
ected in the linking f-struct when obeying commands. However,the peakedness measure will return a low value in each case and so the force feature willnot be set. We have considered other peakedness measures but they have had their ownproblems.The MinMerge parameter is used to cut o� merging when the best candidatemerge consists of two senses of insu�cient similarity (according to the heuristic describedin x6.2.4). Since the similarity metric is sensitive to the peakedness of the probabilitydistributions, so is MinMerge. While this is largely appropriate, it does lead to a certainamount of �ddling which is dependent upon the number of identical training examples inthe training set (varied with the TrainingPasses parameter): the more there are, themore peaked the distributions will become before non-trivial merges are considered, andthus the less likely they are to be judged similar enough to merge. Moreover, the valuesin the virt table are also implicated in the peakedness of probability distributions. Theinterdependence of all these algorithm parameters makes �ne-tuning di�cult.TheMinLabel parameter has caused few problems, but this is partly an artifact ofthe type of training that has been performed. Most training has been with a single slot, usingrecognition test examples which do in fact have a reasonable label. Under these conditionsany adequately low setting of the MinLabel parameter produces acceptable results.Another class of parameters is the initial settings of the virt table containing thenumber of virtual samples to use in probability distributions for each linking feature ina new word sense. Since in most languages there is a tendency for verbs to code for the



CHAPTER 8. LEARNING RESULTS 168schema feature (more so than for the various features encoding x-schema parameters) it hasproven useful to begin training with a smaller virtual sample count for that feature thanfor the others.Finally, there is the question of sensitivity to the contents of the training set. Inother words, for the modest-sized training sets which we have been able to work with, towhat extent do variations a�ect the resulting lexicon? One observed e�ect is that it isimportant to \shu�e" the training data to ensure that the training and test sets end upcontaining examples that were labelled at a variety of times during the several-hour sessionwith the informant. The labelling process itself seems to induce re�nements of informants'ideas about these action verbs and thus they may label di�erently toward the end of thesession than toward the beginning. For the labelling done by the author, an improvementof approximately 10% in recognition testing was made by this kind of shu�ing.8.5 Unlearnable CategoriesNow that we've seen a range of word meanings capturable by our model, it's worthpausing to review the kinds of concepts which are not learnable. Unlearnable concepts fallinto three categories.The �rst type of unlearnable concept is one that depends on mechanical details ofactions which are not representable at the schema level. For example, the Slide x-schemainvolves parallel invocation of an arm movement with a hand preshaping. The schemathen speci�es that grasping should not occur until both these actions are completed. Butthere is no way to specify exactly how these two actions should interrelate. As a result,if some language were to make a linguistic distinction based on whether the preshapingoccurs toward the beginning of the arm motion vs. toward the end of the arm motion, ourmodel would fail to capture it. If such distinctions were to occur frequently, it would be arather fundamental type of failure, since it would argue against the appropriateness of ourx-schema representation as a basis for the semantics of action terms.A second type of unlearnable concept is one whose basis is present in the x-schemalevel, but which cannot be represented in word senses because the linking feature structuredoes not contain the appropriate features. For example, our model includes an aspectfeature with values once and iterated which are set according to whether the x-schema



CHAPTER 8. LEARNING RESULTS 169traverses a loop. We can imagine that some language might make more re�ned aspectualdistinctions, such as distinguishing a few repetitions from many repetitions. Our linkingfeature interface would not be able to re
ect this distinction. Part of the scienti�c aimof this project has been to determine the set of relevant features, so such discoveries aresigni�cant. However, such modi�cations to the set of linking features do not invalidate ourmodel, and indeed are inevitable when surveying more languages (or when expanding thex-schema set to cover a wider range of actions).A third type of concept is not strictly unlearnable, but instead is di�cult to learn,because the resulting representation is unnatural (i.e. has a low prior). These concepts arethose in which there are strong dependencies amongst the features, so that when expressedin disjunctive normal form there are a large number of disjuncts (i.e. word senses). Forexample, a word which codes for force = high when elbow = extend but force = lowwhen elbow = flex cannot be represented in a single word sense. It is always possible toremedy this problem by introducing a new feature which expresses the appropriate abstrac-tion. But there is a cost, because adding features exacerbates the \relevance problem" asdescribed in x4.2.4. Fortunately, these cases so far seem rare. One example is the Russiansu�x -at, which is an imperfective marker. Imperfectiveness can map to long durationwhen the aspect is once, or it can map to iterated aspect when the duration is short.Thus, this su�x is modelled using multiple senses.8.6 ShortcomingsIn recognition testing, many of the apparent errors encountered are in fact casesin which a relatively speci�c label is emitted but the informant had supplied a relativelygeneral label. In other words, the \error" is simply a matter of multiple applicable labelsand human labellers might exhibit the same behavior. In these cases it is necessary toinspect the posterior probabilities of all word senses to determine whether the general labelalso receives high probability. In most cases it does, although a quantitative analysis hasnot been made.Another type of recognition error often encountered is the emission of a commonword when a less common (and usually more speci�c) word is desired. This happens whenthe desired word is so uncommon in the training set that even its high likelihood of gen-



CHAPTER 8. LEARNING RESULTS 170erating the linking f-struct is not enough for it to win over the more common word. Theproblem can be exacerbated if the desired word is so uncommon that it doesn't even haveenough training examples to generate a nice peaked distribution, in which case it may noteven generate a particularly high likelihood when it sees its prototypical case. One couldattempt to address this problem by partially smoothing out the strong relative frequenciesobserved in the training data by using some sort of damping function on the occurrencecounts. Indeed, it is psychologically plausible that children place low signi�cance on rela-tive frequencies, especially once the words in question have been learned well (Dan Slobin,personal communication).Sometimes the model will learn multiple senses where we might expect only one.Multiple senses are required when two features can each take on a range of values but theyare strongly correlated. In this case, the correlation can be captured only by multiple senses,e.g. one sense with posture = palm and size = large and another sense with posture =pinch and size = small. Intuitively, we would prefer a single sense which simply encodes\use a posture appropriate for the object size". But such a concept is beyond the power ofour representation.Due to the vagaries of the non-backtracking search procedure|especially if theMinMerge parameter is set too high|training can occasionally produce more word sensesthan desired. An excessive number of senses is unappealing not only because it is counter-intuitive. It can also cause failure to label legitimate occurrences of the verb. The reason isthat, since the overall frequency of the verb is \spread out" over its many senses, each indi-vidual sense has a low frequency count and is therefore at a disadvantage when competingagainst senses of other verbs. \Divided we fall..."



171
Chapter 9Final Thoughts9.1 Summary . . . . . . . . . . . . . . . . . . . . . . 1719.2 Contributions . . . . . . . . . . . . . . . . . . . . 1729.2.1 Computer science . . . . . . . . . . . . . . 1729.2.2 Cognitive modelling . . . . . . . . . . . . . 1739.3 Some Objections Considered . . . . . . . . . . . 1759.4 New Questions . . . . . . . . . . . . . . . . . . . 1769.4.1 Classi�ers . . . . . . . . . . . . . . . . . . . 1769.4.2 Reversatives . . . . . . . . . . . . . . . . . 1779.4.3 Speech acts . . . . . . . . . . . . . . . . . . 1789.4.4 Probabilistic linking f-structs . . . . . . . . 1789.4.5 X-schema learning . . . . . . . . . . . . . . 1799.4.6 Integrating x-schemas with image schemas 1799.5 X-Schemas for Abstract Thought . . . . . . . . . 1809.6 The Real World . . . . . . . . . . . . . . . . . . . 182\People are more than curious about language; they arepassionate. . . . Chances are you would never have made itto the last chapter of a book about the human hand."|Steven PinkerThis �nal chapter takes stock of the model we've developed and suggests somenew avenues of inquiry.9.1 SummaryThis dissertation has explored the hypothesis that in order to explain acquisitionand use of action verbs, motor control must be integrated with language. We have presented



CHAPTER 9. FINAL THOUGHTS 172a model of lexical semantics for hand actions, which is embodied in the sense that it is inti-mately connected to a model of how those actions are actually controlled. We have providedan account of how such a semantics might be learned within a connectionist framework.The model was developed by building a system which, from a set of (action,verb) pairingsfrom any of a variety of natural languages, learned to both label novel actions and obey ver-bal commands. Use of an active, Petri net representation called executing schemas provedessential for controlling actions. A hardwired mechanism for extracting a set of speciallinking features was then employed to provide the semantic building blocks. These linkingfeatures involved hand posture, joint motions, force and aspect. This traditional featuralrepresentation facilitated use of a Bayesian probabilistic learning algorithm, model merging,which displayed a number of desirable properties, including rapid learning of plausible wordmeanings and learning of an appropriate number of separate word senses. A moderate-sizeEnglish vocabulary was learned, as well as some interesting distinctions from a handful ofother languages.Despite its successes, it's important to emphasize that the model is still quiteprovisional and no strong claims are being made about its cognitive validity. The isolationof verb learning from other cognitive activities is arti�cial; the learning results are limited;and indeed it is quite possible that the known constraints from computer science, linguisticsand psychology aren't su�cient to converge upon the \correct" model of verb learning atthe current time. Nevertheless, I feel the model does have something to o�er to the studyof cognitive science. The following sections attempt to place the model into this broaderscienti�c context.9.2 Contributions9.2.1 Computer scienceIn the arti�cial intelligence literature there has been a longstanding divide betweendeclarative and procedural representations. Declarative representations do not specify thealgorithms which operate over them, imbuing them with a certain 
exibility and the abilityto focus on what is true rather than on how to reason. Yet with this 
exibility can comeine�ciency. Procedural representations solve the e�ciency problem by directly hard-coding



CHAPTER 9. FINAL THOUGHTS 173the solution to a given task, but when interfaced with a declarative system, they becomeunanalyzable \black boxes," and hence have tended to be used only for simple functionswhich can be treated as atomic within the overall declarative framework. This thesis hasinvestigated the use of a restrictive formalism for procedures|Petri nets|and has shownhow it can facilitate the de�nition of a featural interface between such nets and moretraditional declarative representations.The thesis has also demonstrated how learning can be performed in a connectionistframework yet, unlike most neural network algorithms in the style of backpropagation, stillretain the very valuable property of bidirectionality. Learning of bidirectional maps iscrucial for tasks in which the resulting concepts must support not only recognition but alsoreasoning, acting or imagery.The thesis is also an example of learning in the face of no negative evidence.Previous work on this problem has focused on rule induction such as grammar learning.The use of a Bayesian approach to lexical acquisition has shown that these techniques canalso be e�ective in the semantic domain where the structures to be learned are not rule-like.9.2.2 Cognitive modellingDespite the successes of our model at its assigned task, we must be careful not tojump to the conclusion that we've discovered how children learn these action verbs. Forone thing, it's perfectly possible that a completely di�erent approach might work equallywell. Even more importantly, we can't be sure that the task we sectioned o� for ourselvescorresponds to a \module" in children's overall learning strategy. In other words, we don'teven know that we have considered the right input/output for verb learning, never mindthe right algorithms!Our hope is simply that having taken into account many of the known constraints,our model provides insights into these psychological processes. In turn, we hope this com-putational insight will spur further empirical research, so that future models will convergeon the truth. In that spirit, then, let's look at some predictions suggested by the model,and consider how it may open new avenues of inquiry into semantics.Most fundamentally, we hope we have presented a plausible account of how se-mantics for action-oriented words may be bodily grounded via a connection to the mo-



CHAPTER 9. FINAL THOUGHTS 174tor synergies which drive behavior. An important implication of the model is that x-schema internals|such as stretch receptor activation levels or detailed patterns of musclecontractions|are not available at the linguistic level, leading to the prediction that no lan-guage will contain verbs referring to these details. In other words, the model predicts thatcoordination and parameterization are the appropriate level for linguistic access to motorcontrol. The model, by showing the importance of motor control to semantics, also serves topartially explain the results of Huttenlocher et al. (1983) showing children's early tendencynot to generalize action verbs beyond their own activity. If, for example, the visual e�ectsof actions were primary, one might expect the child not to di�erentiate so strongly betweenhis own and his parent's actions, since both are observed via the same visual mechanism.Our use of adjustable priors over which features are likely to be relevant in eachpart of a verb complex predicts that children should be slower to learn words which violatethe patterns represented by those priors. Choi & Bowerman (1991) report such results forKorean vs. English. The model predicts that this e�ect should become more pronouncedas the vocabulary expands and these priors become stronger.Our category representation comes down strongly on the side of richly detailed,embodied, gestalt-like prototypes, with generalization achieved largely through the use ofmultiple such prototypes and graded boundaries. Having made this perspective on catego-rization computationally explicit ought to facilitate fair comparison of this approach withthe more traditional necessary-and-su�cient-conditions approach.Predictions, though, are not the only contribution to cognitive science. It is myhope that this work has suggested a novel approach to semantic analysis which may provefruitful in some circumstances. For example, in the course of building the model the elbowfeature (which encodes whether the elbow joint 
exes or extends during motion of the arm)turned out to be useful for discriminating pushes and pulls. It was arrived at by consideringthe x-schematic grounding of those verbs, and solves some di�culties with previous analysesinvolving solely external properties such as center of mass and direction of motion. Moregenerally, it is hoped that the model o�ers a concrete scienti�c language in which onecan express neurally plausible representations of events|including motor actions but alsoless bodily grounded kinds of events|in a way which permits analysis, comparison, andintegration into models of learning and processing.



CHAPTER 9. FINAL THOUGHTS 1759.3 Some Objections ConsideredMany potential objections have been considered in the preceding chapters. Thissection brie
y considers a few remaining issues.� What if some languages code for smooth (or �ner-grained) coordination of synergiesrather than just the discrete kinds of coordination expressible in Petri nets?The current x-schema formalism can partially accomplish smooth coordination byintroducing rate parameters. Then, two synergies can be smoothly coordinated bypassing this rate parameter to both of them. Fine-grained coordination can always beimplemented by introducing new (and otherwise unmotivated) triggering conditions.For example, if it proves important to capture the idea of preshaping the hand exactlywhen it has travelled halfway to the target object, one could add a new place to thePetri net which receives a token when the arm has travelled halfway. This place wouldthen serve as the precondition for the preshape synergy. Both of these techniques aread hoc. If they should prove to be necessary very often, it would be a sign that theunderlying formalism should be changed.� Isn't model merging a greedy algorithm subject to local minima?Yes. The e�ect is mitigated, however, by the nature of the merging approach. Sinceit is possible to accumulate a number of training examples before merging occurs,the likelihood of making premature commitments is reduced. Of course, storing theseexamples requires memory. Fortunately, in practice, collecting even relatively smallnumbers of examples (e.g. a dozen) between merging episodes seems to overcome localminima, and so we needn't posit cognitively implausible memory capacity in order toavoid local minima.Nevertheless, it would be trivial to add backtracking to the merging process. But thiswould come at quite a price in terms of runtime complexity, since the algorithm wouldlose its monotonic character.� Why should words be represented by distinct senses as opposed to some sort of con-tinuum?For one thing, Lako� (1987) convincingly shows how categories exhibit structure,including multiple senses and the relations between them. However, since I haven't



CHAPTER 9. FINAL THOUGHTS 176modelled such inter-sense relations in this thesis, the question remains. The answer,I believe, is that separate representations of each sense is one of only two ways tocapture multiple sets of correlations amongst features in a way which allows retrievalof the features given the category. The other way is to use a basin-of-attractionapproach as seen with Hop�eld nets (Hop�eld 1982). However, such a net wouldrequire iterative activity in order to \settle" upon a prototype, which is probably tooslow to be cognitively plausible.� Isn't there more to action verbs than motor control?To more fully capture the (concrete) uses of these words, I think the next importantstep is to look at planning, e.g. Levison (1995). It is possible that higher-level x-schemas can be used to seamlessly integrate motor control with some sort of reactiveplanner, but I have done no work in this direction.� What about qualia, i.e. what it \feels like" to push something?The model o�ers no clues on this perplexing philosophical problem.9.4 New QuestionsAs any cognitive model should, our verb acquisition model suggests a number ofquestions for cognitive science. Some important ones have been discussed already, including:how to explicitly represent the image-schematic transformations which link the multipleprototypes of a radial category (x5.5.2), how to improve learning by recognizing contrastsets within the lexicon (x6.5), and how to extend the model to learn constructions (x7.4).This section discusses some others. I don't have the answers to these questions|I want toconvince others to go and �nd them!9.4.1 Classi�ersLet's start with a fairly speci�c but intriguing issue. We have seen how handposture has proven to be an important determinant in a number of verbs and how it relatesto x-schema activity. But hand posture (and motor behavior more generally) might haveimplications beyond verbs. In particular, many languages employ classi�ers which must be



CHAPTER 9. FINAL THOUGHTS 177attached to nouns. A small number of classi�ers are used for all objects. Generally, linguistshave sought to characterize the semantics of object classi�ers in terms of geometry, such as\long thin object". The question then arises, why those geometric abstractions? Perhapsthe choice of abstractions can be better understood by examining how classi�ers correlatewith the motor activities involved in manipulating the objects. Perhaps \long thin object"should be better thought of as \objects held with a prismatic grasp"; other classi�ers maycorrespond to power grasps vs. precision grasps. Even if this perspective does not lead toany cleaner a description of the classi�er categories, it could serve as an explanation forthem.9.4.2 ReversativesReversatives present an intriguing challenge to the model. Consider the Englishpre�x un-. Why can we form verbs like unzip and unbutton, while others like unpush orungrasp are impossible? Perhaps some kind of account could be developed in terms ofx-schemas.One such hypothesis would be that the semantics of un- fundamentally involvesthe reversal of an x-schema which involves attainment of a goal state. Put another way,only resultative root verbs can take the un- pre�x. Exploring the meaning of this claim interms of our model would involve formulating a precise de�nition of resultatives in terms ofpatterns of x-schema execution. The abstract x-schematic aspectual model of Narayanan(1996)|which includes a state for achievement of a result|may be a starting point for suchan analysis.To carry this idea forward (pun intended), one would need to build x-schemaswhich allow bidirectional execution, which might well require extensions to the currentformalism. Yet it seems to be within the spirit of the representation. First, though, itwould be prudent to investigate how reversatives work in other languages. In the WestAfrican language Wolof, for instance, there is a common reversative su�x which seems tobe more productive than English un-. For example, the su�x is applied to the \put" verb(teg) to form the \get" verb (tiggi) (Kevin Moore, personal communication).



CHAPTER 9. FINAL THOUGHTS 1789.4.3 Speech actsAnother area of inquiry involves speech acts. To make our task feasible we havesimpli�ed reality in many ways. In focusing on what kinds of actions a verb can refer to,we've ignored why the child might choose to communicate something about his actions atall. It is unclear how the model would change if we were to take into account motivationsto communicate. For example, perhaps words uttered before carrying out an action areintended to declare goals, while verbs uttered during an action tend to comment on manner.If so, this fact is a candidate for pre-wiring into the model to aid learning. Another example:the present model has no built-in knowledge of the Gricean principle that one generallyaims to communicate information which is unlikely to be shared by the listener (Grice1975). Incorporating expectations about the listener's knowledge would a�ect the LABELalgorithm in ways which would be interesting to investigate.9.4.4 Probabilistic linking f-structsAs discussed in x8.6, a verb may correlate with a given feature without necessarilyspecifying only one possible value for that feature. For example, lift may encode force= low or med while heave may encode force = med or high|clearly the verbs di�er onthis feature. Yet, since neither verb codes strongly for a single force value, it's possible thatforce will be left unset when the system obeys a lift or heave command. The di�culty liesin the fact that in the current model, each feature in the linking f-struct can be set to onlyone value, and so obeying a command requires making an all-or-none decision whether to seteach feature. This decision is based on whether the word sense codes for the feature with apeakedness exceeding the thresholdMinSetFeature. As a result, the model is very sensitiveto this threshold, often erring on one side or the other. Sometimes it leaves features unset,ignoring signi�cant correlations. Other times, it sets too many non-obligatory features,overly constraining x-schema execution, possibly to the point of causing execution failure.The model could therefore be improved by allowing the linking f-struct|the soleinterface between language and action|to be probabilistic itself. By doing so, the all-or-none decision described above would be unnecessary. Furthermore, x-schemas would havean indication of the strength of commitment to the given feature settings required by thecommand. So, for the above example, when the Lift x-schema discovers the object is too



CHAPTER 9. FINAL THOUGHTS 179heavy to lift with force = low, it would know whether and how much it could increase theforce and still comply with the command.9.4.5 X-schema learningLet's turn now to a larger issue: x-schema learning. Our model has assumed thata set of x-schemas exists prior to verb acquisition and does not change during acquisition.Now one obvious avenue of inquiry is how x-schemas are acquired in the �rst place. Whilesome simple ones are probably innate, others are obviously learned from experience. Theappropriate learning paradigm is probably reinforcement learning, except for those caseswhere a parent shows the child the reasons for his failures. The acquisition of statefulaction policies like x-schemas|rather than simple world-state-to-action maps|is as yet anunsolved problem.But another aspect of the x-schema learning story is how the learning process mightinteract with language learning. First, one could try to model the e�ects of ongoing motordevelopment during language learning (e.g. Gopnik (1981)). More speculatively, perhapsthe very labelling of multiple types of actions (a push, a pull, a lift, etc.) with the verb movemight trigger the creation of a new higher-level Move x-schema which selects one of themore speci�c x-schemas based on world state. Or, perhaps two x-schemas sharing the samelabel might be merged into one, thereby sharing substructures for handling contingencies,etc. In either case the result may be that the child may become more 
exible in choosingactions even in purely non-linguistic settings. Such learning would be an incarnation of the(very controversial) Sapir-Whorf hypothesis (Whorf 1956).9.4.6 Integrating x-schemas with image schemasIn Chapter 7 we presented a simple model capable of combining prepositions withverbs. In that chapter, the semantics of spatial terms were modelled using the same motoricfeatures used for verbs. In some cases, such as push left or pull up, this proved adequate.However, spatial terms cannot always be reduced simply to motoric features. Work incognitive linguistics (Lako� 1987) points to the need for \image schemas" for representingspatial relationships. For example, to handle push around or lift through, we really needan image-schematic representation of the desired path of motion. Connectionist models of



CHAPTER 9. FINAL THOUGHTS 180image schemas (Regier 1996) di�er from our x-schema representation substantially, and it isan open question how to combine them|that is, how to translate an image schema into thenecessary motor parameters. More generally, it is unclear exactly what types of reasoningshould be performed down at the schema level as opposed to up at the feature level wherestandard arti�cial intelligence techniques can be applied.Chang (1997) has begun investigation into related issues in a study of the compo-sitional semantics of aspect. Since its essence is event structure, aspect is quite amenableto an x-schematic analysis, and often the relevant x-schemas are contributed by verbs. Butaspect depends on the arguments of verbs as well, and the semantic contribution of thesearguments can be image-schematic. For example, compare wash the cart, which can beread as either perfective or imperfective, with push the cart, which is most naturally readas imperfective.1 It is the details of how the Push and Wash x-schemas interact with thedirect object cart that account for this di�erence. Namely, in the context of the Pushx-schema, the cart does not furnish a goal location. But by appending an additional ar-gument, as in push the cart to the store, a perfective reading can be obtained. Here theimage-schematic content of the phrase to the store comes into play by suggesting a pathfrom source to goal.In general, image schemas must \unfold" in coordination with x-schema execution.Perhaps the solution lies in identifying key events in dynamic image schemas, such as \enter"or \cross". Then, dynamic image schemas could be modelled with Petri nets in which thesekey events correspond to transitions.9.5 X-Schemas for Abstract ThoughtOf all the domains of human experience, why have we chosen to investigate motoractivity? The choice is not random. As was mentioned back in x2.2, Lako� & Johnson(1980) have shown that embodied concepts very often provide the grounding for moreabstract concepts, for example via conceptual metaphor. And so the hope is that our x-schema representation might ultimately explain much more than how people communicateabout hand actions. Here are some examples of how.1A standard test for the imperfective reading is the acceptability of appending for an hour to the phrase;similarly, appending in an hour tests for the perfective reading. Either is acceptable with wash the cart, butonly for an hour works with push the cart.



CHAPTER 9. FINAL THOUGHTS 181Active representations like x-schemas, while possibly originating in very concretemotor activity, also have advantages for general knowledge representation, especially forreasoning about processes. Suppose that the child were to notice certain patterns in hismotor schemas. He may then create a new, abstract x-schema which re
ects this structure.Such an abstract x-schema would represent the notion that actions must be enabled, may becancelled, usually proceed, are sometimes interrupted and sometimes complete. Narayanan(1996) has designed such an abstract x-schema and shown convincingly that the linguisticphenomenon of \aspect" (i.e. the distinction between had fallen, has fallen, was falling, etc.)can be explained in terms of the activity of such an x-schema.But simple abstraction is only one way in which motor representations can bebrought to bear on non-motor domains of reasoning. Metaphor is another. Consider thefollowing English phrases, none of which refers to actual hand actions:grasp an idea get a grip on reality grapple with a problemhold that thought slip my mind just drop the idealet the issue go put someone down hit on an ideapush an idea (drug pusher) reach a conclusion pull for a candidateo�hand remark out of hand situation pick up on a factgripping movie it's a pushover pressing businesspull o� a stunt carry on heavy-handed tacticsNarayanan (1997) presents a model in which metaphorical expressions such as theseare understood via conceptual mappings between a \target domain" (such as thinking orpoliticking) represented by features, and a \source domain" (motor actions) represented byx-schemas. In a nutshell, a metaphorical sentence is understood by invoking an appropriatemetaphor, mentally executing the x-schema referred to by the metaphor, and then using themapping again to propagate the results of the mental execution back into the target domain.Especially for complex process-oriented source domain mappings, the active nature of thex-schema representation can provide much more e�cient reasoning than re-representing thex-schematic knowledge in a logical form in the target domain. The model is particularlyconvincing for the case of novel metaphors, which are often understood immediately, and forwhich one cannot argue for the existence of a separate target domain sense of the relevantwords. The Petri net formalism can prove a useful modelling tool even in domains where



CHAPTER 9. FINAL THOUGHTS 182one does not consider the eventual mapping down to motor activity. Dean Grannes hasinvestigated using Petri nets to encode the semantics of the ditransitive construction, whichconnotes transfer. (For example, in John baked Mary a cake, it is the grammatical struc-ture, not the verb bake or any of the other words, which indicates that the cake has beengiven to someone.) As argued in Goldberg (1995: Chapter 2), the ditransitive can be con-sidered a radial category with separate senses for di�erent (but related) types of transfer.Grannes used Petri net places to represent predicates involving possession, existence, inten-tion, motion and obligation, and Petri net transitions to represent the modi�cations of thesepredicates coded for by various action verbs and by the di�erent senses of the ditransitiveconstruction itself. The result is a simple model which can determine the applicability andsemantic entailments of a range of usages of the ditransitive with action verbs. In a similarvein Jonathan Segal has attempted to represent the semantics of modals (help, hinder, let,etc.) using a Petri net representation of force dynamics.If x-schemas are ultimately to be linked up with logical reasoning, we'll need aneural account of how that can be done. At the core of logical reasoning lies the notionof variable binding, a traditionally di�cult task for neural models. Shastri & Ajjanagadde(1993) has proposed a clever solution which relies upon temporal synchrony. In x3.3.2 wesketched out how this temporal binding mechanism can support an interface to x-schemaexecution, but more work needs to be done.9.6 The Real WorldThis thesis has been an exercise in basic science. Yet when wrapping up a piece ofwork such as this, one can't help but think about how it might eventually bene�t the \realworld". I'll conclude, therefore, with a brief and very speculative peek into the crystal ball.One area is robotics, where space and action take center stage. For instance,telerobotics, which traditionally involves controlling a remote robot via a visuo-motor loop,could bene�t in some circumstances from a natural language interface because it allows ahigher level of control. In a similar vein, programming industrial robots (e.g. for factoryassembly) could become accessible to non-experts if it could be done in natural language,making 
exibility more practical.Looking much further out to the future, enormous medical bene�ts could result



CHAPTER 9. FINAL THOUGHTS 183from a better understanding of how cognition is realized in the brain. Models such as oursmay serve to nudge the �eld of computational neuroscience in a direction leading toward anunderstanding of language learning in which, for example, an overgeneralization syndromemight suggest a drug treatment to adjust the level of a certain neurotransmitter. We'll justhave to see.
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Appendix AGuide to the VerbLearn SoftwareSystemThis appendix describes the software system (creatively named \VerbLearn")which instantiates the model developed in this thesis. It is intended primarily as an overviewof the implementation work done in support of the dissertation. However, it also serves asa (rather brief) user's manual, and a guide to the source code which is an interestingcase study in the use of object-oriented design. The learning code is written in the newobject-oriented language Java, and is available to be inspected (or executed!) at the URLhttp://www.icsi.berkeley.edu/~dbailey/verblearn.An important note: This appendix describes functionality involving the Jack sim-ulator. While the VerbLearn system is in many ways \Jack -ready", the simulator has notyet been interfaced to the system. Therefore, the reader should be aware that, whereverJack is involved, the described functionality is not yet available for use.A.1 Data FilesThe home directory of the VerbLearn system contains a number of subdirectorieswhich hold the data �les needed to run the system.The scenario/ subdirectory contains the speci�cation of the collection of sce-narios which drive training and testing. The top-level speci�cation of scenarios is held in



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 185scenario/specs. For each scenario which will be supported by the Jack simulator (called\grounded" scenarios), we specify the scenario name (arbitrary) followed by the name of aJack environment �le and an initial goal f-struct. The Jack environment �les are held inthe scenario/env/ subdirectory. A collection of named initial goal f-structs is held in thescenario/goals �le. In order to facilitate experimentation with the learning algorithm,the system allows speci�cation of \ungrounded" scenarios in the specs �le. These consistof the scenario name followed by two f-structs; the �rst speci�es the initial world state, andthe second speci�es the �nal linking f-struct. Here's a sample scenario set speci�cation �le:// Grounded scenarios:gsc1 cube_hand_off slideflexgsc2 cube_hand_touching slideflexslowgsc3 button_hand_off depress// Ungrounded scenarios:usc1 {size=large} {size=large schema=slide posture=palm force=med}usc2 {size=large} {size=large schema=slide posture=palm force=high}usc3 {size=large} {size=large schema=slide posture=palm force=med}usc4 {size=large} {size=large schema=slide posture=palm force=high}usc5 {size=small} {size=small schema=slide posture=grasp force=med}The structure of the Jack environment �les is determined by the Jack system andis not discussed here. The goals �le consists of a list of goal names (arbitrary), each followedby an f-struct which speci�es a minimal set of features needed to generate an action whenpassed to Jack. It should therefore specify an x-schema name and any required parameters.Here is a sample goals �le:// Goalsslideflex {schema=slide elbow=flex}slideflexslow {schema=slide elbow=flex force=low}depress {schema=depress}When the VerbLearn system is run (see below), additional information about eachgrounded scenario will be generated, including the initial world-state f-struct and the �-nal linking f-struct. The collection of these is stored in the �les scenario/initial andscenario/final. Each �le consists of a set of pairs, where each pair contains a scenarioname and an f-struct. Here's a sample �nal linking f-struct �le:



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 186// Final linkssc1 {size=large schema=slide posture=palm force=med elbow=extend}sc2 {size=large schema=slide posture=palm force=high elbow=extend}sc3 {size=large schema=slide posture=palm force=med elbow=extend}sc4 {size=large schema=slide posture=palm force=high elbow=extend}sc5 {size=small schema=slide posture=grasp force=med elbow=extend}sc6 {size=small schema=slide posture=grasp force=high elbow=extend}Amovie of the action is also created and stored in the �le scenario/movie/<scenario-name>. The param/ directory holds a collection of parameter �les, each of which speci�esvalues for each of the algorithm parameters and lists the motor and world-state linkingfeatures to use for learning. Here is an example parameter �le:// Default parametersMinLabel 0.01MinExplain 0.5MinInterpret 0.5MinSetFeature 2.0MinMerge 0ModelPriorWeight 1.0BatchSize 10TrainingPasses 1AdaptVirtuals trueVirtualInertia 50MaxVirtual 10VerboseSenses trueTestRecognition falseMotorFeatures {schema 0.05 {slide lift depress}posture 1 {grasp palm wrap}elbow 1 {flex extend fixed}force 1 {low med high}aspect 1.5 {once twice many}}WorldFeatures {size 1 {small med large}contact 1 {true false}} A few further notes on this �le. First, VerboseSenses and TestRecognition arenot true algorithm parameters, but are simply software control switches. VerboseSensescontrols how word senses are printed during training and inspection of the lexicon. Iftrue, full probability distributions are shown; if false, the system shows just the (non-probabilistic) f-struct containing the mode value for each feature (so long as its probability



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 187exceeds MinSetFeature). TestRecognition, if set to true, will perform a recognition testand report the percent correct after every merge during training. Next, in the list of motorand world-state linking features, note the numbers listed between each feature name andits list of possible values. These are the number of virtual samples to use for each possiblevalue in the feature's probability distribution, when creating a new word sense. Lastly, notethat you cannot usefully add novel features to the model by merely inserting them into this�le. The appropriate changes would need to be made to the x-schema code to utilize (andset) the new features.The full set of scenarios can be divided into training, recognition-test, and obey-test sets in di�erent ways. This is done by creating multiple \dataset �les" in the dataset/directory. It is also legal for a dataset to omit some scenarios entirely. Here is a sampledataset �le:// Datasettrain {sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10}recognize {sc11 sc12 sc13 sc14}obey {sc15 sc16}A.2 Running the SystemA.2.1 The main programThe VerbLearn system may be run as a Java applet over the Internet via the URLmentioned earlier. Or, if you have your own local copy of the system, you may run it bysetting your current directory to the java/class/ subdirectory and then invoking the Javainterpreter with the classname VerbLearn as its only argument.Once running, VerbLearn presents the user with a HyperCard-like interface; i.e.it consists of a number of windows only one of which is shown at a time and which areselectable by a row of buttons across the top. We will now go through the windows andtheir functionality.The Generate Window is used when changes have been made in the speci�cationof the scenario set. It is used to request Jack execution of some of the de�ned scenarios(by default just the unexecuted ones, but you may choose any or all of the Jack -groundedscenarios if you like). When such an execution is performed, the initial Jack environment



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 188and the goal f-struct are read and passed to Jack. Jack then computes the initial world-statelinking f-struct, carries out the speci�ed action, and �nally returns the initial world-statef-struct, the �nal full linking f-struct, and a movie �le and these are added to the scenarioset. Once this procedure has been applied to a given scenario, it may then be used fortraining or testing the model.The Label Window is used to collect labels for scenarios for a given language. Inthis window one �rst indicates which language to collect labels for, and then which scenariosto label (by default all the unlabelled ones, but you may choose any or all of the executed orungrounded scenarios if you like). During labelling, each scenario is dealt with in turn, byshowing either its movie (if grounded) or its �nal linking f-struct (if ungrounded). A pop-upwindow then prompts for a label. Multi-word labels are speci�ed with a dash separatingthe words, and these dashes are required even if some of the slots are to be left unlabelled.Finally, with a collection of executed and labelled scenarios, we may proceed tothe Training Window. Here, we specify a language along with a parameter �le and dataset�le. Also we specify an initial lexicon to use, normally \Empty" unless you wish to modifya previously trained lexicon. The results of training are shown in the log subwindow, whichmay be saved to disk. The current parameters and dataset may be inspected or modi�edby clicking on the corresponding \View/Edit" buttons. If retraining, be sure to reset thelexicon by again choosing the \Empty" lexicon setting.Once training is complete, the resulting lexicon may be inspected in the LexiconInspection Window. There, the upper subwindow shows the virtual sample values for eachslot (only interesting if adaptation of the virtual samples was turned on during training).The lower subwindow shows the collection of senses for any word in the lexicon, by clickingon the button for that word. The buttons are arranged in separate columns for each slotin the lexicon. The \Change format" button can be used to switch between viewing fullprobability distributions or simple f-structs for each word sense. This window is shown inFigure A.1.The Recognize Window is used to test the lexicon against the recognition test setde�ned by the dataset chosen on the Training Window. For each test case, the desiredand actual labels are shown in the log window. Errors are 
agged and the ratio of correctcases is shown. Optionally you may choose to test recognition on a selected set of scenariosand you will then receive a more detailed description of the labelling process for each one,
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Figure A.1: The VerbLearn software system, showing the Lexicon Inspection Window.



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 190including the posterior probabilities of each word sense in the lexicon.Finally, the Obey Window is used to test the lexicon's ability to obey verbalcommands. In one mode, it allows you to go through the current dataset's obey test set,evaluating each resulting linking f-struct by pushing it back through the recognizer andcomparing the emitted label to the original command. However, you may also choose tohave the Jack simulator animate the action resulting from the linking f-struct by selecting anindividual scenario and entering a command using the buttons in the upper right subwindow.A.2.2 The scenario generator programAs described in x8.1, the set of scenarios used by the VerbLearn system can begenerated by a separate Generator program. This program can be invoked by setting yourcurrent directory to the java/class/ subdirectory and invoking the Java interpreter withthe class name Generator, an initial scenario number, the total number of random scenariosdesired, and an optional constraint on the generated scenarios expressed as an f-struct ofthe form 'feature1=value1 feature2=value2'. For example, the commandjava Generator 100 10 'schema=slide'would create 10 scenarios, named sc100 through sc109, all of which involve the Slidex-schema.The scenario speci�cations are printed to the standard output (i.e. the screen).In normal use, this output should be redirected to a �le. This �le can then replace, or beappended to, the scenario/specs �le.A.3 Code OverviewThis section provides a brief overview of the implementation of the VerbLearnsystem. The linguistic component of the model|feature structures and model merging|iscoded in Java, and is described �rst. The partially-completed Jack setup to implementx-schemas is then described.



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 191A.3.1 Java CodeThe Java source code for the VerbLearn system is contained in the java/ subdirec-tory of the system, in three key �les: Lexicon.java, Context.java and VerbLearn.java.Lexicon.java contains the core algorithms of the model. They are organized in ahierarchy of classes which re
ects the structure of the model's representations. At the toplevel we have the Lexicon class, which supports the incorporation of new training instances,the labelling of f-structs, and the interpretation of commands. It is essentially composed ofan array of Slot objects, and its routines for the most part are concerned with integratinginformation across slots. For example, this class is responsible for assembling a multi-word label by �lling the best slot �rst, and is responsible for resolving con
icts betweenwords in a multi-word command. The Slot class implements the same three functions. ASlot contains a set of Word objects as well as a table with the number of virtual samplesto use for each feature in a new word sense (and so the code for adapting the virtualsamples to re
ect already-learned words is found here). A Word object contains a collectionof Sense objects and the major part of the model merging algorithm therefore occurs inthis class. It is necessary for this class to keep track of all training examples ascribed tothe word since it must compute the dataset likelihood during merging. While the Wordclass supports both labelling and obeying, it does so with a single routine which takes anFstruct and returns a tuple containing the best-matching Sense along with the probabilityof the Fstruct given that Sense. During labelling, this routine is given the �nal linkingFstruct and we care only about the resulting probability. During obeying, it is given theinitial world-state Fstruct and it then essentially returns the most compatible Sense. TheSense class represents a probabilistic feature structure. It has routines for creating initialsenses, merging and measuring similarity to other Senses, but these routines are essentiallyloops over the Dist objects which represent the probability distributions for each feature.This Dist class implements arbitrary discrete distributions by keeping frequency counts ofpossible values as well as \virtual" counts. It implements measures of peakedness as wellas similarity to other Dists, as well as merging by summing counts. Finally, the Fstructclass implements non-probabilistic feature structures and its only non-trivial routine is tocreate an Fstruct from an array of Senses, which is used in multi-word obeying.As you can see, each of the algorithms presented in Chapter 5 and Chapter 6 are



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 192in fact distributed over several classes. While this has an obvious downside (especially whentrying to present the algorithms in a non-object-oriented manner as done in those chapters),it has proven quite natural for iterative re�nement of the code, since all the routines thatoperate at a given \level" are grouped together. For example, extending the model to handlemultiple slots involved only writing the Slot class and changing the Lexicon class to handlean array of slots. Similarly, adding new probability distribution types (such as Gaussians)would involve little more than adding new classes with the same interface as Dist.Context.java implements classes which support the core classes' need for datamanagement. Most important is the Context object itself, which holds pointers to thescenario set, current language, number of slots, Params, Dataset and Lexicon, and en-sures that they (and their GUI manifestations) are kept in synchronization. The Scenarioclass holds the various parts of a scenario as discussed in xA.1 and o�ers routines to de-termine the scenario type (grounded, unlabelled, etc.). The collection of them is managedby the ScenarioSet, which is largely concerned with disk �le reading and writing. TheParam class manages algorithm parameters, their modi�cation and reading/writing themto disk. Dataset does similarly for the train and test sets. Finally, several smaller classes(VerbComplex, CandidateSense and CandidateMerge) are essentially just strongly typedtuples used in the core classes.VerbLearn.java assembles all the above into a working application program orapplet. The VerbLearn class provides the entry point for both the application and appletmethods of invoking the system, sets up the GUI generally, and holds the Context as astatic variable for easy access by all other classes in the system. Separate classes then areemployed to set up each of the windows of the program, and these classes hold the top-levelloops for each of the major functions of the system. For example, the TrainPanel classcontains a train() routine which loops through the training set instructing the Lexiconto incorporate each example. Lastly, some of the GUI components repeated on severalwindows are implemented as separate classes, such as the LangChoice component.In addition to these �les, Jack.java contains several utility classes to allow aVerbLearn application running on one machine to invoke and interact with a Jack process onanother machine. This involves a socket connection with a protocol for atomic transmittalof strings. Finally, Utilities.java de�nes a number of general utility classes|the Javalibrary is still very young and sometimes needs a little help.



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 193The Generator program is contained in the �le Generator.java, which de�nes thesingle class Generator. The code in this class reads the parameter �le param/default todetermine the set of linking features and their possible values. Random f-structs are thengenerated. The most important function in this class is fixOrReject(), which is responsiblefor reducing the chances of emitting nonsensical f-structs. This is accomplished through acombination of: modi�cations of feature values; unsetting of features; and outright rejectionof some f-structs. This routine is the only place in the Java code of the VerbLearn systemwhich \knows" about the meanings of the linking features. For instance, fixOrReject()will reject an f-struct which speci�es a high force and a small size object, yet only alow acceleration. Note that if new features are added to the system by inserting theminto the param/default �le, you may need to modify this routine to ensure that the newfeatures interact sensibly with the previously existing features when generating your newscenarios.A.3.2 Jack Lisp CodeSchemas are implemented in Lisp, because this allows them to utilize some codeprepackaged with the Jack system which facilitates coordination of parallel and sequentialactions. These so-called \parallel transition networks" are related to Petri nets althoughmore powerful in general. The code for x-schemas is found in the schema/ directory.Some support code for executing x-schemas in Jack is contained in the jack/subdirectory of the VerbLearn home directory. Some of these are .jcl (\Jack CommandLanguage") �les for initializing the system, while others are .fig �les which de�ne theobjects used in our environment (such as the cube).While the actual implementation of x-schemas in Jack Lisp does not precisely fol-low the Petri net structure, an earlier implementation of x-schemas in the parallel languagepSather (Stoutamire 1995) did follow the formalism more closely. Places and transitionswere each implemented as a class. Each primitive synergy was encapsulated in its ownclass, as a subtype of Action, and each transition contained such an object. Parallelismwas achieved by running each transition as a separate thread, whose basic behavior was toblock until a token was present at each input place, then remove the tokens, tell its Actionobject to execute, and repeat. While the pSather language already had facilities for block-



APPENDIX A. GUIDE TO THE VERBLEARN SOFTWARE SYSTEM 194ing on conditions such as presence of a token, it was necessary to extend the language toallow blocking atomically on an array of such conditions, since transitions have a variablenumber of inputs not known at compile time. While the parallel implementation allowedclean expression of concurrency, it did render \simple" chores like resetting an x-schemaquite challenging.
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