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Abstract—In this paper, we apply the primal-dual decomposition
and subgradient projection methods to solve the rate-distortion
optimization problem with the constant bit rate constraint. The
primal decomposition method enables spatial or temporal predic-
tion dependency within a group of picture (GOP) to be processed
in the master primal problem. As a result, we can apply the dual
decomposition to minimize independently the Lagrangian cost of
all the MBs using the reference software model of H.264. Further-
more, the optimal Lagrange multiplier is iteratively derived
from the solution of the dual problem. As an example, we derive
the optimal bit allocation condition with the consideration of tem-
poral prediction dependency among the pictures. Experimental re-
sults show that the proposed method achieves better performance
than the reference software model of H.264 with rate control.

Index Terms—Bit allocation, H.264, primal-dual decomposition,
rate control, rate-distortion (RD) optimization, subgradient.

I. INTRODUCTION

A FTER rate-distortion (RD) optimization is introduced for
video compression using the Lagrange multiplier [1], [2],

there are many methods to reduce the complexity in deciding
macroblock (MB) modes, motion vectors (MVs) for a given La-
grange multiplier . Even though RD optimization method is
not mandatory for standard video compression, such as H.264
[3], it is the main part of video coding to improve the coding
efficiency [2], [4]. Therefore, we review the relation between
RD optimization and previous works. RD optimization with in-
equality constraint in a frame is mathematically formulated as
follows:

(1)

(2)

where is a vector of MB
mode, MVs, quantization parameter (QP) and reference frames
for inter prediction. is the number of MBs in a frame and

is the bit constraint of a frame. and are distortion
and coded bits of the th MB, respectively. The optimization
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problem (1) can be solved by the Lagrangian duality in order
to obtain the optimal solution if the problem is a convex opti-
mization problem and satisfies the Slater’s condition [5]. The
Slater’s condition is easily satisfied since there are vectors
which make sum of coded bits less than , but the problem
(1) mathematically is not a convex optimization problem since
distortion function is not a convex function [1] and
a feasible set is not a convex set [5]. However, the near
optimal solution of the primal problem (1) can be obtained
if duality gap is small [6]. Therefore, the Lagrange duality is
applied and the dual function of the primal problem (1) is

(3)

and its dual problem is

(4)

If we know the optimal solution of the dual problem, we can
obtain the solution of the primal problem (1) after solving (3).
However, in order to simplify the above optimization problems,
the relation between and QP was derived in [2], [7]–[9] and
estimation of from QP was studied in [10], [11]. The ref-
erence software model of H.264 (simply denoted as JM model)
[12] has the following relation:

(5)

(6)

where is a function of picture types (I, P, B), the number of
referenced frames and QP, and a and b are estimated using the
linear regression based on mean absolute difference (MAD) and
target bits. Equations (5) and (6) give estimated solution for
of the dual problem (4), that is, QP1 is estimated from (6) for
a given constraint and then is induced from (5). Thus,
JM model does not directly solve the dual problem (4). For a
given , JM model minimizes the Lagrangian function, that is,
solves the problem (3). However, if there is no bit constraint, we
can just choose any QP to derive from (5). Consequently, JM
model has two coding modes: one is a coding mode without a
rate constraint and the other is with a rate constraint.

Without a rate constraint, users just specify any QP and
group of picture (GOP) structure, and then JM model solves
the problem (3). As a result, users do not know how many bits
are generated after encoding. In this case, reference frames, QP,
and are given, the optimization variables are MB modes and
MVs for all MBs of a frame. This problem can be simplified

1For simplicity, we directly denote QP instead of Qstep in (6), and QP is
derived from the mapping between QP and Qstep.
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Fig. 1. Example of video streaming.

by the independent assumption among the MBs. Consequently,
the problem (3) is

(7)

where the optimization variables are MB mode and MVs for
each MB. This optimization problem is solved by the following
method. First, fix a MB mode of all the inter MB modes and then
find optimal MVs with or without considering both residual bits
and MV bits for the MB mode. Next, given the optimal MVs for
inter MB modes, find the optimal MB mode which minimizes
the Lagrangian cost , that is, among
the inter and the other MB modes such as intra MB and direct
MB modes. In order to reduce the loss of coding efficiency of in-
dependent assumption, [1], [13], [14] solve the dependent opti-
mization problem (3) using dynamic programming without con-
sidering frame-level dependency or . Reference [15] considers
the frame-level dependent coding problem using the Viterbi al-
gorithm (VA), but it considers that distortion and coded bits are
only function of QP.

With a rate constraint, users specify the coded bit rate and
GOP structure, and then JM model solves the problem (7) with
independent assumption. Although and QP are obtained from
(5) and (6), bit constraint in (3) should be derived from
user bit rate constraint because user bit rate constraint is average
bits per second, but not MB-level or frame-level bit constraint.
Therefore, MB-level or frame-level which are generalized as a
basic unit (a group of MBs) [16], [17] and GOP-level bit con-
straints need to be derived from a given user bit rate constraint.
JM model uses the basic unit for a bit constraint. Without loss of
generality, the basic unit is considered as a MB or a frame in this
paper. If we find target bits for a basic unit, the other parameters
can be obtained from (5) and (6). References [16]–[19] show
how to estimate target bits of a basic unit from user bit rate con-
straint, video frame rate, buffer fullness, picture type and some
other information.

Even though rate control (RC) induces loss of performance
which will be shown in Section V, it is well known that RC algo-
rithms are necessary in the video streaming applications to sat-
isfy the network bit rate to avoid a buffer overflow or underflow.
In this section, we briefly mention necessity of RC with a simple
example of video streaming system in Fig. 1. The original video
sequences have constant bit rate according to the frame rate and
frame size but the output bit rate of video encoder becomes vari-
able bit rate since intra and inter prediction errors of each frame
highly depend on correlation among the frames and within a
frame. Thus, the variable coded bits should be smoothed out to

Fig. 2. Virtual buffer fullness with and without RC.

Fig. 3. PSNR of decoded sequences with and without RC.

the constant or variable network through the buffer as shown in
Fig. 1. The virtual buffer fullness which has negative fullness is
illustrated in Fig. 2 after encoding with and without RC. The de-
crease of buffer fullness indicates input rate of the buffer is lower
than output rate, otherwise, input rate is higher than output rate.
The buffer fullness of encoding without RC, that is, with QP
fixed for all frames highly fluctuates. The actual buffer fullness
is around zero before 70th frame since there is no negative buffer
fullness and then buffer fullness increases. This phenomenon re-
sults from increase of prediction errors due to the high motion
and scene change after 70th frame. Thus, video streaming ap-
plications without RC require a larger buffer to compensate bit
fluctuation. However, we do not know how large a buffer can
compensate the bit fluctuation before encoding the whole se-
quence. Furthermore, different sequences which may never be
coded before require different buffer size which is not known.
Therefore, encoder needs to control bit rate to prevent a buffer
overflow and underflow for given buffer limitation. Fig. 2 shows
that the coded bits of encoder with RC fluctuates within the
buffer limitation. Encoder with RC mainly changes QP in order
to control bit rate which induces larger change of quantization
distortion as shown in Fig. 3. Even though quality of coded se-
quences without RC is better due to the low variation of peak
signal-to-noise ratio (PSNR), the buffer management is required
and accomplished through RC for the bit constraint with min-
imum distortion. This operation is mathematically formulated
as a RD optimization problem (1).

However, JM model of H.264 mainly focuses on real-time or
low complexity rate control scheme with the constant or vari-
able bit rate constraint. Therefore, the rate control method in-
duces loss of coding efficiency, and it cannot tightly satisfy the
bit constraint which are shown in this paper. In case of nonreal
time applications with the constant bit rate constraint, the loss
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can be reduced. In this paper, we apply the primal-dual decom-
position and subgradient projection methods to solve directly
the problem (1) with the constant GOP bit constraint. Although
this method can be used for the optimal bit allocation of any
basic unit with consideration of spatial and temporal predic-
tion dependency, we show the frame-level bit allocation within
a GOP with considering temporal prediction dependency as an
example. Thus, we ignore spatial prediction dependency, that is,
MBs which have intra and spatial direct modes are independent.

The rest of this paper is organized as follows. We introduce
iterative RD optimization with geometric interpretation in Sec-
tion II. In Section III, we explain primal-dual decomposition
and subgradient projection, and we apply these methods for
MB-level bit allocation of an intrasliced picture with indepen-
dent assumption. In Section IV, frame-level bit allocation is
considered with temporal dependency. Experimental results are
shown in Section V. Section VI concludes the paper.

II. ITERATIVE RATE-DISTORTION OPTIMIZATION

In this section, we solve the problem (1) for a given frame bit
constraint using the iterative RD optimization. The proce-
dure is explained with geometric interpretation which is shown
in Fig. 4. Here, we assume that RD function is smooth and con-
tinuous for simplicity. In Fig. 4, let ,
and be , and for frame-level
distortion, coded bits and the Lagrangian cost, respectively.
and are iteration indices and is where is the
solution of (3) at k iteration. For a given , JM model solves
the problem (3) that is equivalent to finding associated with
the point ( , ) at which is tangent to the RD
function [1]. It induces the minimum of for a given .
If the bit constraint is , and are the optimal
solutions of the primal problem (1) and dual problem (4), re-
spectively. Thus, RD optimization without a bit constraint can
always achieve the optimal solutions for a given with assump-
tion that the coded bits are constraint bits. If there is a bit con-
straint and , and are not the optimal so-
lutions of the primal problem (1) and dual problem (4). In this
case, we can use iterative methods to find the optimal solutions.
In Fig. 4, the dual function value of (3) which is marked
on the line of is . If we mathemat-
ically know the dual function, it is easy to find the solution of
dual problem (4) since the constraint is simple. From the optimal
dual solution , JM model can find the optimal primal solution.
However, it is difficult to find the dual function. Therefore, we
try a different which increases the dual function value. Fig. 4
shows that if is a little bit smaller than , is larger
than which means that is closer than to the optimal
solution of the dual problem (4). On the contrary, decreases
the frame-level Lagrangian cost from to .

In Section III, we discuss how to decide next iteration
from . After several iterations, if we find which maxi-
mizes the dual function, the optimal primal solution can
be found for a given . Then is since
is . It is well known result from the Karush–Kuhn–Tucker
(KKT) condition [5], [6]. However, the practical RD function is
not a convex function and not continuous. Therefore, we need
to find operational RD function which consists of convex-hull

Fig. 4. Geometric interpretation of iterative RD optimization.

points. Furthermore, there can be no feasible solution to satisfy
a bit constraint since are discrete. Therefore, we allow
constraint violation within some range and find the best solution
around a bit constraint. After several iterations, we can linearly
approximate the dual function as which is illustrated
in Fig. 4. If is obtained, QP can be derived from (5) or QP
can be an optimization variable in the problem (3) as discussed
in [7] and [8].

III. PRIMAL-DUAL DECOMPOSITION AND

SUBGRADIENT PROJECTION

In this section, we introduce the general framework to solve
optimization problems using the primal-dual decomposition [6],
[20], [21]. The primal decomposition corresponds to deciding
the optimal bit constraint of a basic unit. Dual decomposition
and the Lagrangian duality, as explained in previous section, are
equivalent to obtaining the optimal primal and dual solution for
the given optimal bit constraint as a result of the primal decom-
position. For convenience, we simplify the notation of problem
(1) as follows:

(8)

(9)

(10)

(11)

where which
is the optimal value of the problem (10). The original problem
(8) can be reformulated into the problem (9) by introducing
slack variable . Then the problem (9) can be decomposed into
two optimization problems (10) and (11) with respect to (w.r.t.)
optimization variables and , respectively. The decompo-
sition from problem (8) to problem (11) is called as a master
primal decomposition, and the decomposition from problem
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(10) to problem (13) is the dual decomposition. Problem (10)
is solved by the Lagrangian duality as follows:

(12)

(13)

(14)

(15)

(16)

where . Equa-
tions (13) and (15) are derived from independent assumption.
Problem (13) is solved by the RD optimization which is im-
plemented in JM model [12] and the dual problem (15) can be
solved by the subgradient projection method [6] as follows:

(17)

where is a positive step size at iteration and denotes
the projection onto the nonnegative orthant. The projection op-
eration guarantees that the Lagrange multipliers satisfy their
nonnegative conditions. The subgradient of is

which is derived in Appendix A. Therefore, the sub-
gradient of is just the difference between coded bits
and the constraint bits at iteration . If we substitute with

in (17), (17) yields

(18)

where is the coded bits for a given . Equation (18) indi-
cates that if coded bits are smaller than the constraint bits

, the current Lagrangian multiplier decreases, otherwise,
increases. From the RD optimization, smaller increases the

coded bits. Therefore, the coded bits are getting close to the con-
straint bits after several iterations. The reason why we use the
subgradient instead of gradient is that the exact RD function is
not known and the operational RD function is a convex-hull of
the RD function which is not a smooth function. Consequently,
the step size is carefully selected since the subgradient direc-
tion is not always in increasing direction for any step size [6].

The master primal problem (11) is also solved by the sub-
gradient projection method. However, the constraint is not as
simple as in (17). The solution of the problem (11) is obtained
from two procedures. First, the optimization variables are
updated by the subgradient as follows:

(19)

and then is projected onto the feasible constraint set as

(20)

which is formulated from the fact that the projected point from
minimizes the distance between two points. This problem can

be solved using a very efficient algorithm discussed in [22]. The
subgradient of is shown in Appendix B. As a result,
the subgradient of at is where is the op-
timal dual variable of the sub-problem in (10), that is, the con-
vergent solution of (18) for a given after iterations. From
Appendix B, the subgradient is the lower bound of sensitivity
of the optimal dual function w.r.t. allocated bits as follows:

and from (19), . Consequently, more bits are
allocated to MBs or pictures (basic units) which have larger
since larger implies that distortion of a MB or a picture de-
creases further according to the unit bit increment of the con-
straint. Fig. 5 shows the geometric interpretation of subgradient
of . The optimal value can be rewritten as follows
for a given optimal dual variable (for simplicity, index is
omitted)

(21)

[5] indicates that the optimal coded bits of the problem
(21) satisfies the complementary slackness condition, that
is, . For , . Consequently,

. If we allocate more bits from to
, changes from to . If we set , the sensitivity

of the optimal value is

(22)

Thus, indicates that MBs or pictures which have larger can
reduce more distortion. As a result, if we reallocate bits, sum of
distortion can be decreased. Furthermore, all the subgradients of
MBs or pictures should be equal for the optimal bit allocation.
Because the sensitivity of the optimal values of all the MBs or
pictures are equal, there is no way to reallocate bits to decrease
sum of distortion. This can be clearly observed from (19) since

increase equally if their subgradient and step size are
equal, and then are projected onto the feasible set shown
in (20). The projected are the same as which results
from [22].

Here, we show experimental results of primal-dual decom-
position and subgradient projection with spatially independent
assumption for MB-level bit allocation within a intra frame of
QCIF size. Without a bit rate constraint, is decided from (5) for
a given QP and then JM model of H.264 solves the problem (7)
for all the MBs in a frame with independent assumption among
the MBs. In this case, JM model solves the problem of (8) using
a single Lagrange multiplier for all the MBs. With independent
assumption, it is optimal since the sensitivity of all the MB
is equal and as explained in Section II, the is optimal dual so-
lution by assuming that the coded bits are equal to the constraint
bits.

Now, we solve the same problem using the primal-dual de-
composition and subgradient methods with the bit constraint.
The bit constraint is given from coded bits of JM model after
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Fig. 5. Geometric interpretation of subgradient of q (y).

Fig. 6. MB bits of single � versus multiple �s.

Fig. 7. Single � versus multiple �s for all the MBs in a frame.

solving the problem of (7) (encoding a frame). Thus, we solve
the same problem with different methods. Consequently, each
MB has its own Lagrange multiplier from the problems (10)
and (11). Fig. 6 shows that total bits are equally divided into each
MB at the initial iteration. As a result, every MB has very dif-
ferent and distortion which are shown in Figs. 7 and 8. At the
next iteration, more bits are allocated to MBs which have larger

and on the other hand, fewer bits are allocated to MBs which
have smaller shown in Figs. 6 and 7. Distortion and are
smaller along with allocation of more bits. At the last iteration
which is marked as a diamond symbol in the figures, MB bits,
and distortion are almost equal between a single and multiple

since we solve the same problem using different methods.
The bits variation of MBs from 0 to 7 and MBs from 57 to 60
is almost equal from the initial to the last iteration (almost 300

Fig. 8. MB distortion of single � versus multiple �s.

Fig. 9. Overall distortion of single � versus multiple �s.

bits are different) as shown in Fig. 6. However, Fig. 8 shows that
decrease of distortion of MBs from 57 to 60 is much larger than
increase of distortion of MBs from 0 to 7 because MBs which
have larger , reduce their distortion more efficiently. Conse-
quently, sum of MBs distortion decreases after iterations which
is shown in Fig. 9, and overall distortion of primal-dual decom-
position method is almost equal to a single .

IV. FRAME-LEVEL OPTIMIZATION WITH

TEMPORAL DEPENDENCY

In the previous section, we assume that all the distortion and
coded bit function are independent. In this section, independent
assumption among the basic units is removed. Even though we
only consider a frame-level optimization problem with temporal
dependency among the frames within a GOP, there is no re-
striction in applying MB-level optimization with spatial depen-
dency. However, we still assume that all the MBs which have
spatial prediction dependency are independent for simplicity,
but temporal coding dependency is considered among the basic
units (frames). With this assumption, a single for all the MBs
in a frame is optimal which is explained in the previous section.

Equation (8) is reformulated for the frame-level optimization
with a GOP bit constraint as follows:

(23)
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Fig. 10. Mapping between GOP and primal-dual decomposition.

where

and where , , , and
are MB modes, MVs, QPs, and bits of reference frames for all
the MBs in a frame , is a GOP bit constraint and F
is the number of frames within a GOP. Distortion and bits

of a frame depend on all the MB modes, MVs and QPs,
as well as bits of reference frames. Therefore, every frame can
not be optimized independently in the problem (23) due to the
dependency of bits of reference frames .

Fig. 10 illustrates mapping between a GOP structure and
primal-dual decomposition. As a specific example, we only
consider the first GOP structure which starts with the instanta-
neous decoder refresh (IDR) frame (first B frames which are
denoted as are included from the second GOP) and the
close GOP which is that the last P frame within a GOP is not
used for a prediction of . However, the open GOP and any
number and prediction dependency of B and P frames within
a GOP are not limited to the frame-level optimization with
dependency. Here, all the B frames within a GOP are predicted
from the same reference frames I and P, and the P frame is
predicted from the I frame. When we perform the master primal
decomposition, dependency among the frames are considered.
As in Section III, slack variables are introduced for each
frame bits. Consequently, the problem in (23) is decomposed
into one master primal problem (25) and sub-problems (24)
which are solved by the Lagrangian duality

(24)

(25)

where are the optimal values of sub-problems
(24) for a given , and the reference frame bits are

where for B frames,
for the P frame and since the I frame has no refer-
ence frames. Comparing (23) with (24), we can recognize the
main benefit from the primal decomposition. In the formulation
(23), the reference frame bits prevents independent opti-
mization, but in the formulation (24), because given

, are due to the complementary slackness condi-
tion [5]. Independent optimization is clearer from the following
equations:

Therefore, we reuse the same reference software model of
H.264 to minimize the Lagrangian cost in problem (24) with
the consideration of dependency. Reference [15] also solves
the frame-level dependent coding problem using the VA, but it
considers that distortion and coded bits are only functions of
QP. Therefore, the problem can be trackable, but if distortion
and coded bits are a function of QP as well as MB modes, MVs
and , the number of states of the VA are too large which is not
trackable. In this paper, we do not separately consider effects
of all the parameters but are interested in allocating bits among
the frames. Given a bit constraint, all the parameters are only
optimization variables to satisfy the bit constraint. Especially,
temporal dependency among the frames only depends on the
prediction quality. Thus, the dependency among the frames is
processed in the master primal problem as shown in (25) which
is a much simpler optimization problem.

In order to solve the problem in (24), we use the Lagrangian
duality and subgradient projection which are explained in
the Section III. Therefore, we only discuss the master primal
problem (25) in this section. From Appendix C, the subgradi-
ents of w.r.t. B, P, and I pictures at
are

and

where ,

which shows that the variation of Lagrangian
cost of a frame w.r.t. the bit variation of its reference frame.
Thus, is generally negative because increasing of
reference frame bits induces decreasing of the Lagrangian cost
of the frame . As a result, the subgradients of referenced frames
which are used as reference frames for prediction are smaller
than independent frames for given equal . It means that more
bits are allocated to referenced frames from (19). This result
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Fig. 11. min L s ; ŷ of three B pictures and P picture at �̂(QP ).

Fig. 12. log min L s ; ŷ and its linear fit at �̂(QP ).

matches with intuition, that is, referenced frames are more im-
portant than nonreferenced frames because they are used for pre-
diction. As explained in Section III, the subgradients of all the
frames are equal for the optimal bit allocation. Therefore, the
relation among the of pictures is derived as follows:

(26)
where , and , .
Consequently, . This result explains the reason
why JM model uses different of in (5) for different pic-
ture types as well as the number of prediction dependency. Fur-
thermore, if B frames are used for prediction, the referenced B
frames have different from nonreferenced B frames. How-
ever, current JM model [12] uses the same default value for I
and P pictures.

The remain problem is how to estimate the quantity of
. We experimentally estimate it as shown

in Figs. 11 and 12. Fig. 11 represents the Lagrangian cost
variation of three B pictures and one P picture according to
the variation of I reference frame bits for a given . Even
though the Lagrangian cost does not monotonically decrease,
it mainly exponentially decreases and sum of the variation
of the Lagrangian cost is closer to exponential decrement
which is shown in Fig. 12. Exponential decrement explains
that bits of reference frames (quality of reference frames) are
more important at low bit rate, that is, at large . As a result,

is modeled as where
and are constants.

Fig. 13. Experimental environment.

Fig. 14. � of frames with independent assumption.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of two coding
modes of JM model [12] with the proposed method (H.264 En-
coder primal-dual optimizer) which is illustrated in Fig. 13.
We set in JM model without Rate Control (RC) and
then the coded bits after encoding are used for the constraint
bits. Initial QP is set 35 to JM model with RC and proposed en-
coder as shown in Fig. 13. In JM model with RC, the initial QP
is used to code I and P pictures in first GOP such that RC algo-
rithm is only applied for B pictures. However, proposed encoder
ignores initial QP.

1) Experiment 1: We assume all the frames are independent.
Therefore, a global for all the frames within a GOP induces an
optimal bit allocation since all the frames have equal . In order
to compare the performance, we set equal of (5) of JM model
for all the picture types according to independent assumption.
A GOP consists of one I and P pictures and seven B pictures
with the GOP structure of Fig. 10. Fig. 14 shows that in JM
model without RC, every frame has equal and the proposed
method also has equal after iterations, but JM model with RC
has different , especially at the last B frame. Figs. 15 and 16
illustrate coded bits of each frame and its Y-PSNR(dB), respec-
tively. JM model without RC and the proposed method show al-
most the same performance since they solve the same problem.
However, JM model with RC predicts encoded bits and QP to
satisfy bit constraints. Its dual variable is derived from (5).
Consequently, it has some performance degradation. In order
to compare exact performance, the proposed method does not
perform QP optimization to minimize the Lagrangian cost. QP
is derived from using (5). Thus, the proposed method uses
the identical optimization variables (MVs, MB modes) which
are the same in JM model without RC. The proposed method
derives the similar results of JM model without RC. However,
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Fig. 15. Encoded frame bits with independent assumption.

Fig. 16. Y-PSNR(dB) of frames with independent assumption.

Fig. 17. � of frames with temporal dependency.

Fig. 16 shows that proposed method has higher PSNR than JM
model with RC.

2) Experiment 2: In this experiment, we consider temporal
dependency among the frames within a GOP. Therefore, of
(5) of JM model is set to have different values [12]. Proposed
method performs QP optimization within at center QP which
is derived from which gives more achievable bit region. Here,
we only show the last iteration. Fig. 17 shows the different
among I, P, and B pictures. All the B pictures have the same

except JM model with RC. Thus, bit allocation of JM model
with RC for B frames is not optimal. Proposed method uses dif-
ferent for I and P pictures as a result of (26), but JM model
without RC uses the same for I and P pictures. Figs. 18 and 19
show that proposed method uses similar total bits and achieves
higher PSNR than JM model with RC. Fig. 20 illustrates the
overall encoded bits and Y-PSNR(dB). The bits of JM model
without RC are constraints to JM model with RC and the pro-
posed method. The dependent constraint bits (coded bits of JM

Fig. 18. Encoded frame bits with temporal dependency.

Fig. 19. Y-PSNR(dB) of frames with temporal dependency.

Fig. 20. PSNR versus bit with dependent and independent cases.

model without RC) increase since of I and P pictures become
smaller. Due to RD optimization, smaller increases coded
bits. In the independent experiment, proposed method allows
a constraint violation within 5% of allocated bits for I picture
and 2% for P and B pictures. In the dependent case, 2%, 1%,
and 1% constraint violations are allowed for I, P, and B pic-
tures, respectively. Therefore, the dependent experiment meets
more tightly bit constraint. Small bit constraint violation is al-
lowed to consider the convex-hull point around the constraint.
JM model with RC does not satisfy the constraint well in addi-
tion to having lower PSNR. These experiments are applied to
various sequences which have different motion activity and dif-
ferent resolutions. Tables I and II show that proposed method
achieves similar coded bits and PSNR with JM model without
RC which is optimal results with independent assumption. JM
model with RC has larger loss at high motion sequences such
as Football and Bus and high resolution sequences of Paris and
Tempete. This phenomena is similar to results with temporal

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 23, 2009 at 16:47 from IEEE Xplore.  Restrictions apply.



AN AND NGUYEN: ITERATIVE RATE-DISTORTION OPTIMIZATION OF H.264 WITH CONSTANT BIT RATE CONSTRAINT 1613

TABLE I
CODED BITS AND THEIR DIFFERENCE RATIO (%)

WITH INDEPENDENT ASSUMPTION

TABLE II
PSNR (DECIBELS) AND THEIR DIFFERENCE WITH INDEPENDENT ASSUMPTION

TABLE III
CODED BITS AND THEIR DIFFERENCE RATIO (%)

WITH TEMPORAL DEPENDENCY

dependency which are shown in Tables III and IV. The pro-
posed method achieves higher PSNR within the bit violation
constraint. The different GOP structure which consists of one
I and 15 P pictures is tested and the results are presented in Ta-
bles V and VI. JM model with RC achieves better results in I and
P GOP than in I, B, and P GOP structure since reference frames
are close to the current frame. However, the proposed method
consistently shows good results.

VI. CONCLUSION

In this paper, we propose a general framework to solve a RD
optimization problem by using the primal-dual decomposition
and subgradient projection methods. As a result of primal de-
composition, we can use the same reference software model of

TABLE IV
PSNR (DECIBELS) AND THEIR DIFFERENCE WITH TEMPORAL DEPENDENCY

TABLE V
CODED BITS AND THEIR DIFFERENCE RATIO (%)

WITH TEMPORAL DEPENDENCY

TABLE VI
PSNR (DECIBELS) AND THEIR DIFFERENCE WITH TEMPORAL DEPENDENCY

H.264 to solve the sub-optimization problems with considera-
tion of prediction dependency. Furthermore, optimal bit allo-
cation condition is derived under prediction dependency. Ex-
perimental results show that the proposed method is promising
in compensating loss of coding gain for nonreal time applica-
tion with the constant bit rate. However, the complexity of en-
coder increases proportionally to the number of iterations and
the number of iterations highly depend on the initial values.
Therefore, JM model with RC can cooperate with the proposed
method for initial values of iteration which reduces the number
of iterations. This work will be considered as future work. In this
paper, we derive the optimal bit allocation condition but need
further research how to estimate variation of the Lagrangian
cost according to the reference bits. As a result, we can adap-
tively change weight of to both JM model without RC and JM
model with RC. It will increase coding efficiency without con-
sideration of iteration.
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APPENDIX A

Subgradient of : It is reformulated from [6] for
this paper’s notation

where . Thus, the sub-
gradient of at is .

APPENDIX B

Subgradient of : It is reformulated from [6] for this
paper’s notation

where . The
subgradient of optimal dual function at is .

APPENDIX C

Subgradient of : (see the equation
shown at the bottom of the page) where

, and

and

and R is the number of reference frames. In this paper, bits
of the reference frames of B picture are and and
the reference frame bit of P picture is from Fig. 10. Conse-
quently, the following equation is derived:
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