
A novel efficient encoding engine for CABAC

Evgeny Belyaev, Karen Egiazarian and Moncef Gabbouj

Department of Signal Processing, Tampere University of Technology, Finland

1. Idea description
All details related to the proposed approach can be found in this article (see it below).

E.Belyaev, A.Turlikov, K.Egiazarian and M.Gabbouj, An efficient adaptive binary arithmetic

coder with low memory requirement // IEEE Journal of Selected Topics in Signal Processing.

Special Issue on Video Coding: HEVC and beyond, 2013 (accepted).

In short, in our proposal we have replaced M-coder, which is an encoding engine of

CABAC, by our VSW-coder. In our case the reconstructed video for the corresponding

quantization parameter (QP) is identical for the original software and the proposed

software, so PSNR as well as SSIM values are also identical.

For the given video sequences and QP’s set, the proposed VSW-coder provides bitrate

savings from 0.22 to 1.03% on average (see Table I) at the same quality and has a

comparable computational complexity (see detailed computational complexity analysis

in the article below).

Table I. Bit rate savings (in %) depending on QP

 22 27 32 37

Akiyo 0.50 0.85 1.50 2.28

BasketballPass -0.10 0.07 0.38 0.78

BQMall 0.09 0.12 0.33 0.67

City 0.44 0.46 0.69 1.25

ElFuente 0.10 0.37 0.83 1.32

hall 0.45 0.57 1.08 1.68

Kimono1 0.16 0.20 0.43 0.90

MobileCalendar 0.68 0.70 0.93 1.51

ParkScene 0.21 0.16 0.43 1.03

PartyScene -0.01 -0.06 -0.05 0.06

PeopleOnStreet 0.21 0.19 0.22 0.33

RaceHorses 0.23 0.28 0.35 0.45

silent -0.11 -0.01 0.50 1.09

Average 0.22 0.30 0.59 1.03

2. Archive file description
The archive file includes original (folder HM-12.0-org) and proposed software (folder HM-

12.0-vsw) which we have used in our experiments as well as frame-by-frame results for

each video and QP (folder results). Taking into account that in latest versions of HM

software the encoding decisions is depend on encoding engine, we have modified the

original and the proposed software to have the same input for both encoders by setting

of m_entropyBits array to zero values in file ContexModel.cpp

1

An efficient adaptive binary arithmetic coder with
low memory requirement

Evgeny Belyaev, IEEE Member, Andrey Turlikov, Karen Egiazarian, IEEE Senior Member and Moncef
Gabbouj, IEEE Fellow

Abstract—In this paper we propose a novel efficient adaptive
binary arithmetic coder which is multiplication-free and requires
no look-up tables. To achieve this, we combine the probability
estimation based on a virtual sliding window with the approxima-
tion of multiplication and the use of simple operations to calculate
the next approximation after the encoding of each binary symbol.
We show that in comparison with the M-coder the proposed
algorithm provides comparable computational complexity, less
memory footprint and bitrate savings from 0.5 to 2.3% on
average for H.264/AVC standard and from 0.6 to 3.6% on average
for HEVC standard.

Index Terms—arithmetic coding, H.264/AVC, HEVC, M-coder.

I. INTRODUCTION

Adaptive binary arithmetic coding (ABAC) is an essential
component in most common image and video compres-

sion standards and several non standardized codecs such as
JPEG [1], JPEG2000 [2], H.264/AVC [3], HEVC [4] and
Dirac [5]. Arithmetic coders implemented in these codecs are
based on the so called Q-coder [6] which is a multiplication-
free adaptive binary arithmetic coder with a bit renormalization
and look-up tables used for multiplication approximation and
probability estimation.

The most efficient ABAC implementation is the M-
coder [7], which is the core of the Context-adaptive binary
arithmetic coding (CABAC) used in the H.264/AVC standard.
The emerging HEVC standard [4], [9] also uses the M-
coder as an encoding engine in CABAC, but in contrast with
H.264/AVC the context-modeling in HEVC is significantly
simplified. Therefore, the computation complexity and mem-
ory consumption portions of the M-coder in CABAC of HEVC
are higher than those in H.264/AVC.

Since the M-coder is a key component of the entropy
encoding in both compression schemes, the implementation of
ABAC with a smaller memory footprint, a lower computation
complexity and a higher compression efficiency remains an
important challenge.

There exist several approaches to improve the compression
efficiency of ABAC; however, all of them require either a
multiplication operation in the interval division part, or con-
sume additional memory. In H.264/AVC and HEVC standards,

Evgeny Belyaev, Karen Egiazarian and Moncef Gabbouj are with the
Department of Signal Processing, Tampere University of Technology, Finland,
e-mail: {evgeny.belyaev, karen.egiazarian, moncef.gabbouj}@tut.fi

Andrey Turlikov is with the Department of Safety in Information Systems,
Saint-Petersburg State University of Aerospace Instrumentation, Russia, e-
mail: turlikov@vu.spb.ru

CABAC first divides the input data into several non-stationary
binary sources using context modeling. Next, each binary
source is compressed by an M-coder which estimates the
probabilities using one state machine for binary sources with
different statistical properties. However, from a compression
efficiency point of view, it is better to find the trade-off
between adaptation speed and precision of the probability
estimation for each binary source. This task can be solved
by utilizing several state machines with different adaptation
speeds and precision of probability estimation [5], which
unfortunately leads to an increase in memory consumption for
storing different look-up tables. Another solution uses look-
up table-free approach based on virtual sliding window [10]
(VSW). In this approach, the probability estimation is cal-
culated using a simple rule with one parameter – window
length, and a trade-off is reached by assigning a specific
window length selected according to the statistical properties
of the corresponding binary source. The main disadvantage of
this approach is that a multiplication operation is required.
Improving of compression efficiency can be also achieved
by modification of the context modeling in CABAC [11],
[12], [13] but it also accompanied by significant increase of
computation complexity.

Decreasing the computational complexity can be achieved
by modifying the renormalization procedure. In [14], a faster
renormalization method is proposed, but it is based on addi-
tional look-up tables. As an alternative to arithmetic coders,
range coders use bytes as output bit stream element and do
byte renormalization at a time [15], [16], [17], [18]. In [19] it
was shown that adaptive binary range coder allows to decrease
computation complexity. However, range coder is not efficient
for compression of small length binary sequences and it also
uses a multiplication in the interval division part of ABAC,
so it is not suitable for hardware applications. Additional
interesting direction of the computation complexity decrease
can be based on development of a CABAC with a parallelism
in data processing [20], [21].

Decreasing memory consumption of CABAC is also a very
important issue, especially for hardware implementation. That
is why a number of proposals for HEVC standard aim at
minimizing memory consumption. In [22] the new CABAC
architecture was proposed. This architecture reduces the mem-
ory requirement by 67%, but at the expense of 0.25–6.84%
coding loss. In [23] a reduction of initialization tables for
CABAC contexts lead to coding losses up to 0.4%. In [24]
the LPS range look-up table size was reduced by 34% without
any degradation of the compression efficiency. To reduce the

2

chip area for hardware implementations in [25], the authors
proposed to remove look-up tables, but had to introduce
multiplications.

In this paper, we present an efficient adaptive binary arith-
metic coder. The main contributions of the paper are the
following:

1) A new adaptive binary arithmetic coder is proposed
which, in contrast with the previous coders, does not
use multiplications nor any look-up tables1.

2) We evaluated the proposed coder’s performance and
show that it allows allows to easily control the trade-
off between the speed of probability adaptation and
the precision of probability estimation through a single
parameter, the window length. For software applications
we show that the proposed coder has comparable com-
putation complexity with M-coder.

3) Two application scenarios for the proposed coder are
investigated. In the first scenario, in comparison to the
M-coder the proposed coder provides bitrate savings
from 0.5 to 2.3% for H.264/AVC standard and 0.6–
3.6% for HEVC standard. In the second scenario, a
compression improvement of 0.3% in comparison to the
first scenario is achieved.

The rest of the paper is organized as follows. Section II re-
views the integer implementation of binary arithmetic coding.
Section III is dedicated to the look-up table-free probability
estimation of ones for a binary source. Section IV describes
the state-of-the-art adaptive binary arithmetic encoder imple-
mentations. Section V introduces the proposed multiplication-
free and look-up table-free adaptive binary arithmetic coder.
Section VI evaluates the performance of the proposed coder
and M-coder using three main features: coding redundancy,
speed of probability adaptation and computation complexity.
Two scenarios of usage of the proposed coder and compar-
ative results with the M-coder are presented in Section VII.
Conclusions are drawn in Section VIII.

II. INTEGER IMPLEMENTATION OF BINARY ARITHMETIC
CODING

Let us consider a stationary discrete memoryless binary
source with p denoting the probability of ones. In a bi-
nary arithmetic encoding codeword for a binary sequence
xN = {x1, x2, ..., xN}, xt ∈ {0, 1} is represented as
d− log2 P (xN) + 1e bits of a number

Q(xN) + P (xN)/2, (1)

where P (xN) and Q(xN) are the probability and the cumula-
tive probability of a sequence xN , respectively, which can be
calculated by the recurrent relations:
If xt = 0, then

{
Q(xt)← Q(xt−1)
P (xt)← P (xt−1)(1− p), (2)

1This result was briefly presented by the authors in [26]

if xt = 1, then
{
Q(xt)← Q(xt−1) + P (xt−1)(1− p)
P (xt)← P (xt−1)p.

(3)

In this paper we use “←“ as the assignment operation, “�“
and “�“ as left and right arithmetic shift, and “!“ as bitwise
NOT operation.

An integer implementation of an arithmetic encoder is based
on two registers: L and R size of b bits (see Algorithm 1).
Register L corresponds to Q(xN) and register R corresponds
to P (xN). The precision required to represent registers L and
R grows with the increase of N . In order to decrease the
coding latency and avoid registers underflow, the renormal-
ization procedure [27] is used for each output symbol (see
Algorithm 2).

Algorithm 1 : Binary symbol xt encoding procedure
1: T ← R×p
2: T ← max(1, T)
3: R ← R − T
4: if xt =1 then
5: L ← L+R
6: R ← T
7: end if
8: call Renormalization procedure

Algorithm 2 : Renormalization procedure
1: while R < 2b−2 do
2: if L ≥ 2b−1 then
3: bits plus follow(1)
4: L ← L − 2b−1

5: else if L < 2b−2 then
6: bits plus follow(0)
7: else
8: bits to follow ← bits to follow + 1
9: L ← L − 2b−2

10: end if
11: L ← L� 1
12: R ← R� 1
13: end while

III. PROBABILITY ESTIMATION

In real applications the probability of ones is unknown.
In this case for an input binary symbol xt the probability
estimation of ones p̂t is calculated and used in line 1 of
Algorithm 1 instead of p. One of the well known probability
estimation algorithms is based on a sliding window concept.
The probability of a source symbol is estimated by analyzing
the content of a special buffer [28]. This buffer keeps W
previously encoded symbols, where W is the length of the
buffer. After the encoding of each symbol the buffer’s content
is shifted by one position, a new symbol is written to the free
cell and the earliest symbol in the buffer is erased.

3

For the binary sources, the probability of ones is estimated
by the Krichevsky-Trofimov formula [29]:

p̂t+1 =
st + 0.5

W + 1
, (4)

where st is the number of ones in the window before encoding
the symbol with the index t.

The advantage of using a sliding window is the possibility
of a more accurate evaluation of the source statistics and a
fast adaptation to changing statistics. However, the window
has to be stored in the encoder and the decoder memory,
which is a serious drawback of this algorithm. To avoid
this, the Imaginary Sliding Window technique (ISW) was
proposed [28]. The ISW technique does not require storing
the content of the window, and instead, it estimates symbols
count from the source alphabet stored in the window.

Let us consider the ISW method for a binary source. Define
xt ∈ {0, 1} as a source input symbol with index t, yt ∈ {0, 1}
as a symbol deleted from the window after adding xt. Suppose
at every time instant a symbol in a random position is erased
from the window instead of the last one. Then the number of
ones in the window is recalculated by the following recurrent
randomized procedure.

Step 1. Delete a random symbol from the window

st+1 ← st − yt, (5)

where yt is a random value generated with probabilities




Pr{yt = 1} =
st
W
,

Pr{yt = 0} = 1− st
W
.

(6)

Step 2. Add a new symbol from the source

st+1 ← st+1 + xt. (7)

For the implementation of the ISW algorithm, a random
variable must be generated. This random variable should take
the same values at the corresponding steps of the encoder and
the decoder. However, there is a way to avoid generating a
random variable [10]. At step 1 of the algorithm let us replace
a random value yt with its probabilistic average. Then the rule
for recalculating the number of ones after encoding of each
symbol xt can be presented in two steps.

Step 1. Delete an average number of ones from the window

st+1 ← st −
st
W
. (8)

Step 2. Add a new symbol from the source

st+1 ← st+1 + xt. (9)

By combining (8) and (9), the final rule for recalculating
the number of ones can be given as follows:

st+1 =

(
1− 1

W

)
· st + xt. (10)

Equation (10) corresponds to the following probability
estimation rule:

pt+1 =

(
1− 1

W

)
· pt +

1

W
xt. (11)

IV. STATE-OF-THE-ART ADAPTIVE BINARY ARITHMETIC
CODER IMPLEMENTATIONS

A. Multiplication-free implementation based on state machine

One way for implementation of probability estimation can
be based on the state machine approach. Each state of this
machine corresponds to some probability value. Transition
from state to state is defined by the value of the input symbol.
This approach does not require multiplications or divisions
for probability calculation. In addition, the fixed set of states
allows to implement the interval division part of the arithmetic
coder without multiplications [6].

For example, let us consider a state machine based probabil-
ity estimation in state-of-the-art M-coder [7] from H.264/AVC
and HEVC standards. In the M-coder input symbols are
divided into two types: Most Probable Symbols (MPS) and
Least Probable Symbols (LPS). State machine contains 64
states. Each state s defines probability estimation for Least
Probable Symbol. Set of probability values {p̂0, p̂1, ..., p̂63} is
defined as:




p̂s = (1− γ)p̂s−1, where s = 1, ..., 63, p̂0 = 0.5,

γ = 1−
(
p̂min

0.5

) 1
63

, p̂min = 0.01875.
(12)

Probability estimation for symbol xt+1 is calculated as

p̂t+1 =

{
(1− γ)p̂t + γ, if xt =LPS,
max{(1− γ)p̂t, p̂min}, if xt =MPS, (13)

and implemented by using tables TransStateLPS[s] and
TransStateMPS[s] which contain number of the next probabil-
ities after compression of the current symbol. It is important
to notice that if we define γ = 1/W , then it is easy to see
that the probability estimation rule (13) is based on rule (11).

To remove the multiplication in line 1 of Algorithm 1, M-
coder uses its approximation [30]. After the renormalization
procedure in Algorithm 2, register R satisfies the following
inequality:

1

2
2b−1 ≤ R < 2b−1. (14)

From (14) it follows that a multiplication can be approximated
in the following way:

T = R× p̂t ≈ α2b−1 × p̂t, (15)

where α ∈ [12 , ..., 1). To improve the precision of the ap-
proximation, the M-coder quantizes the interval [122b−1; 2b−1)
uniformly to four cells. Then each multiplication of the
corresponding probability p̂s and the interval cell with in-
dex ∆ ∈ {0, 1, 2, 3} are stored in two-dimensional table
TabRangeLPS[s][∆] which contains 64×4 values.

Thus, the adaptive binary arithmetic coding algorithm in
H.264/AVC and HEVC standards is implemented in the fol-
lowing way (see Algorithm 3).

B. Look-up table-free implementation based on virtual sliding
window

Based on (10), a probability estimation using virtual sliding
window was proposed in [10]. Let us multiply both sides

4

Algorithm 3 : Binary symbol xt encoding procedure
1: ∆← (R− 2b−2)� (b− 4)
2: T ← TabRangeLPS[s][∆]
3: R ← R − T
4: if xi 6= MPS then
5: L ← L+R
6: R ← T
7: if s = 0 then
8: MPS ←!MPS;
9: end if

10: s←TransStateLPS[s]
11: else
12: s← TransStateMPS[s]
13: end if
14: call Renormalization procedure

of (10) by W :

s′t+1 =

(
1− 1

W

)
· s′t +Wxt, (16)

where s′t = Wst. Let us define W = 2w, where w is an
integer positive value. After integer rounding of equation (16),
we obtain

s′t+1 =





s′t +

⌊
22w − s′t + 2w−1

2w

⌋
, if xt = 1

s′t −
⌊
s′t + 2w−1

2w

⌋
, if xt = 0,

(17)

and the probability of ones is calculated as

p̂t =
s′t

22w
. (18)

Thus, the adaptive binary arithmetic coding algorithm based
on virtual sliding window is presented in Algorithm 4.

Algorithm 4 : Binary symbol xt encoding procedure
1: T ← (R× s)� (2w)
2: T ← max(1, T)
3: R ← R − T
4: if xt =1 then
5: L ← L+R
6: R ← T
7: s← s+ ((22w − s+ 2w−1)� w)
8: else
9: s← s− ((s+ 2w−1)� w)

10: end if
11: call Renormalization procedure

In comparison with the M-coder, Algorithm 4 provides
a better compression efficiency due to an assignment of a
specific virtual sliding window length selected according to the
statistical properties of the corresponding binary source [10]
and using multiplication in interval division part of the arith-
metic coder instead of its approximation. Nevertheless, using
this multiplications is not efficient, especially for a hardware
implementation.

V. THE PROPOSED ADAPTIVE BINARY ARITHMETIC CODER

To eliminate the multiplication operation from Algorithm 4,
we use a similar reasoning as the one described in Section IV.
Let us multiply both sides of (10) by α2b−1:

s′t+1 =

(
1− 1

W

)
· s′t + α2b−1xt, (19)

where s′t = α2b−1st. After integer rounding of equation (19),
we obtain

s′t+1 =





s′t +

⌊
α2b−12w − s′t + 2w−1

2w

⌋
, if xt = 1

s′t −
⌊
s′t + 2w−1

2w

⌋
, if xt = 0,

(20)

Taking into account (14) and (15)

T = R× p̂t ≈ α2b−1 × p̂t =
s′t
2w
. (21)

To improve precision of the approximation (as in M-coder)
we quantize the interval [122b−1; 2b−1) to four points:

{
9

16
2b−1,

11

16
2b−1,

13

16
2b−1,

15

16
2b−1

}
. (22)

To implement this, we first calculate a state s′t using (20)
for α = 9

16 . Then we approximate the multiplication in the
following way:

T = R× p̂t ≈
s′t + ∆× 1

4s
′
t

2w
, where ∆ =

R− 2b−2

2b−4
.

(23)
Taking into account that the approximation of the multi-

plication is correct for p̂t < 2
3 [30], we should work with

p̂t ∈ [0, .., 0.5] and use the Most Probable Symbol and the
Least Probable Symbol. In our case, the MPS value should be
changed if

p̂t =
s′t
2w

1

α2b−1
> 0.5, (24)

or

s′t > α2b−22w. (25)

Thus, taking into account (20), (23) and (25), an adaptive
binary arithmetic coding is proposed in the following way (see
Algorithm 5):

Since ∆ ∈ {0, 1, 2, 3}, a multiplication in line 2 of Algo-
rithm 5 can be implemented based on conditional and addition
operations.

From Algorithm 5, it follows that if initial state s0 ≥ 2w−1−
1, then the minimum value of the probability estimation is

p̂min =
2w−1 − 1

α · 2b−1 · 2w . (26)

5

Algorithm 5 : Binary symbol xi encoding procedure
1: ∆← (R− 2b−2)� (b− 4)
2: T ← (s+ ∆× (s� 2))� w
3: T ← max(1, T)
4: R ← R − T
5: if xi 6= MPS then
6: L ← L+R
7: R ← T
8: s← s+ ((α2b−12w − s+ 2w−1)� w)
9: if s > α2b−22w then

10: MPS ←!MPS;
11: s← α2b−22w;
12: end if
13: else
14: s← s− ((s+ 2w−1)� w)
15: end if
16: call Renormalization procedure

VI. PERFORMANCE EVALUATION OF THE PROPOSED
CODER

A. Coding redundancy analysis

Let us assume that a stationary binary memoryless source
with probability of ones p is to be compressed. Then the
probability estimation process can be represented by the
Markov chain with a finite number of states. Therefore, a
coding redundancy r(p) caused by the probability estimation
precision can be calculated as:

r(p) =
∑

i

π(si) ·
(
−(1−p) · log2(1− p̂i)−p · log2 p̂i

)
−h(p),

(27)
where π(si) is a stationary probability of state si, p̂i is a
probability estimation value for this state, and h(p) is the
entropy of the source.

In practice, a coding redundancy also depends on the
number of bits b for representation of registers L and R [31].
Taking this into account, we estimate the coding redundancy
as

r(p) = lim
N→∞

(R
N

)
− h(p), (28)

where N is the number of input binary symbols and R is the
size of the compressed bit stream.

Table I show the coding redundancy (28) related to the
binary entropy for the M-coder and the proposed coder with
window lengths W = 24, 25 and 26, respectively. For both
coders we set the values b = 10 and N = 108.

First, one can see that the coding redundancy for the
proposed algorithm depends on the window length W : longer
window length provides less redundancy. Second, in most
of the cases, in comparison with the M-coder the proposed
coder exhibits a higher redundancy if W = 24 and a lower
redundancy if W = 26. For W = 25 it has a higher
redundancy for low probabilities and a lower redundancy
for high probabilities of ones. Finnaly, Table II shows the
minimum probability estimation value p̂min for both coders.
One can see that the proposed coder provides significantly less

p̂min value and; therefore, it is more efficient for compressing
low entropy sources.

TABLE I
CODING REDUNDANCY r(p) FOR THE M-CODER AND THE PROPOSED

CODER

p M-coder Proposed
coder W = 4

Proposed
coder W = 5

Proposed
coder W = 6

0 0.029 0.0039 0.0039 0.0039
10−5 0.0287 0.0037 0.0037 0.0037
10−4 0.0281 0.0034 0.0033 0.0033
10−3 0.0239 0.0021 0.0019 0.0016
10−2 0.0102 0.011 0.0078 0.0052
0.02 0.008 0.023 0.015 0.008
0.03 0.009 0.03 0.016 0.007
0.04 0.012 0.034 0.017 0.008
0.06 0.017 0.034 0.015 0.006
0.08 0.02 0.033 0.014 0.007
0.1 0.021 0.031 0.014 0.006
0.2 0.021 0.027 0.013 0.007
0.3 0.022 0.028 0.014 0.007
0.4 0.02 0.024 0.013 0.008
0.5 0.02 0.02 0.01 0

TABLE II
MINIMUM PROBABILITY ESTIMATION VALUE FOR THE M-CODER AND THE

PROPOSED CODER

coder p̂min

M-coder 0.01875
Proposed coder, W = 24 0.00152
Proposed coder, W = 25 0.00163
Proposed coder, W = 26 0.00168

B. Speed of probability adaptation analysis

In the case of non-stationary source compression, the coding
efficiency is highly depend on the speed of the probability
adaptation. For quantitative comparison for different probabil-
ity estimation algorithms, we propose the following approach.
First, the initial value of the probability estimation is set to
p̂0 = 0.5. Then, the binary source with probability of ones
p < 0.5 is generated and compressed. Finally, the speed of the
probability adaptation is defined as the inverse of the average
number of binary symbols t which are needed for the first
attainment of probability estimation value p̂t ≤ p.

Table III shows the average number of binary symbols
for the M-coder and the proposed coder with window
lengths W = 24, 25 and 26. First, one can see that the
adaptation speed for the proposed algorithm depends on the
window length W : a shorter window length provides a higher
adaptation speeds. Second, the adaptation speed of the M-
coder is less than the one for the proposed coder with W = 24

and higher for W = 25 and W = 26.

C. Computation complexity analysis

From Algorithms 1, 3, 4 and 5 it follows, that the number of
operations in the interval division part of an arithmetic coder
is directly proportional to the number of input binary symbols.

6

TABLE III
THE AVERAGE NUMBER OF BINARY SYMBOLS t WHICH IS NEEDED TO

TRANSFER FROM p̂0 = 0.5 TO p̂t ≤ p

p M-coder Proposed
coder W = 4

Proposed
coder W = 5

Proposed
coder W = 6

0.45 19 11 31 71
0.4 25 18 45 104
0.3 34 28 63 145
0.2 44 35 80 181
0.1 54 44 99 219
0.05 66 52 115 249
0.02 76 62 133 283

On the other hand, the number of times steps in lines 2–12
are used is proportional to the number of bits in the output
bit stream (see Algorithm 2). Let us define N as a number
of the input binary symbols, R as a size of the output bit
stream. Then, the complexity per input symbol for the binary
arithmetic coder C can be written as follows [19]:

C =
α ·N + β ·R

N
, (29)

where α is the computation complexity of the interval division
part per input binary symbol, β is the computation complexity
of the renormalization part per output binary symbol. For
arithmetic coder the output bit stream size

R = N ·
(
h(p) + r(p)

)
, (30)

where h(p) is an entropy of binary memoryless source with
probability of ones p, r(p) is an coding redundancy. Therefore,
the complexity per input symbol is a linear function of the
source entropy and coding redundancy:

C(p) = α+ β · (h(p) + r(p)) . (31)

From (31) it follows, that for zero-entropy source (h(p) = 0)
the complexity C(p) is the lowest possible and is mainly
determined by the complexity of the division part. With an in-
crease of h(p) the renormalization part is used more and more
often; therefore, the complexity also increases and reaches
the maximum value when h(p) = 1. Moreover, from the
model (31) it follows, that if everything else being equal, the
compression scheme which has a higher coding redundancy
has a higher complexity.

Table IV shows the complexity C(p) for the M-coder and
the proposed coder. In this work, as in many papers related
to complexity comparisons (see, for example [32], [33]), we
measure the complexity in CPU cycles. For the measurements
both coders were implemented as separate software programs
which include the encoding of a binary string only. For each
probability p we have generated N = 108 input binary
symbols and, then, the CPU cycles of Processor Intel Core i3M
2.1 GHz was measured by the Average CPU Cycles software2

First, one can observe that the complexity for the pro-
posed algorithm depends on the window length W , which
determines different coding redundancies: a longer window
length provides less redundancy and, as it is shown in the
model (31), less complexity. Second, the proposed coder has

2http://user.tninet.se/∼jad615g/averagecpu/

up to 18% less computation complexity for very low entropy
sources, because its minimum possible probability estimation
p̂min is more than 10 times smaller than in the M-coder
(see Table II). Therefore it has less redundancy r(p) and,
following model (31), the renormalization step is not so
often used as in the case of the M-coder, which explains
the lower complexity. Finally, for the remaining probabilities,
the complexity difference is in the range of ±5%, which
means that in these cases the complexities of both coders are
comparable.

TABLE IV
CPU CYCLES PER SYMBOL OF PROCESSOR INTEL CORE I3M 2.1 GHZ

FOR M-CODER AND THE PROPOSED CODER

p 0 0.05 0.1 0.2 0.3 0.4 0.5
Proposed coder, W = 4 15.5 28.3 35.4 45.1 51.7 56.5 56.6
Proposed coder, W = 5 15.5 27.6 34.7 44.5 50.2 55.2 55.3
Proposed coder, W = 6 15.5 27.4 34.3 43.4 49.1 54.3 54.0
Proposed coder, average 15.5 27.8 34.8 44.3 50.3 55.3 55.3
M-coder 19.0 28.1 35.5 45.9 52.3 55.3 53.7
Average gain, % 18.8 1.1 2.1 3.5 3.8 0.0 -3.0

VII. APPLICATION OF THE PROPOSED CODER IN
H.264/AVC AND HEVC STANDARDS

A. Scenario 1: Using fixed window length for all contexts

For practical experiments the proposed adaptive binary
arithmetic coder was embedded into the JM codec v.12.1 [34]
which is the reference software of the H.264/AVC video
coding standard and into the HM 3.0 reference software [8]
of the HEVC video coding standard. JM codec was used the
Main profile, while HM codec was running with the low-delay
configuration.

The initial state for each binary context was calculated as:

s0 = max
{

2w−1 − 1,
⌊
α2b−12wp̂0 + 0.5

⌋}
(32)

where p̂0 is the initial probability predefined in the standards.
In fact, the predefined initial probability can differ sig-

nificantly from the best initial probability for the current
binary source from the compression efficiency point of view.
Therefore, it is important to use a high speed of probability
adaptation at the initial stage of the coding, especially in the
case of compression of short binary sequences. Then it is better
to switch to a probability estimation with a lower adaptation
speed, but with a better precision of the probability estimation.
This approach is adopted in JPEG2000 [2] utilizing three
adaptation mechanisms, which are embedded into one state
machine. It has also been used in [10] by applying Krichevsky-
Trofimov formula at the initial stage of the coding. However,
in both cases, an additional table or a division operation is
needed.

In this paper we implement a similar idea in the following
way. First, for a binary sequence compression a small window
length W = 2w is used. After the compression of n1 binary
symbols the window length and the state s are increasing two
times to W = 2w+1 and 2s. Then, after the compression of n2
binary symbols the window length and the state are increased
two times again, and so on, until the maximum window length

7

is achieved. In this case, as it is shown in Section VI, a high
speed of probability adaptation is achieved by setting small
window lengths at the initial stage of coding and, then, a high
probability estimation precision is achieved by setting longer
window lengths.

Bitrate savings in percentage related to the M-coder for
different quantization parameters are presented in Tables V–
VI. In all cases the reconstructed video for the corresponding
quantization parameter (QP) is identical for the M-coder
and for the proposed coder. Practical results were obtained
for the first 60 frames of the test video sequences [35],
[36] with different frame resolutions: 352×288 (“Foreman“,
“Mobile“, “Akyio“, “Mother Daughter“), 640×480 (“Vas-
sar“, “Ballroom“), 704×576 (“City“, “Crew“) and 1920×1080
(“Pedestrian Area“, “Rush Hour“, “Station“, “Tractor“). In our
experiments, in case of H.264/AVC, for all contexts an initial
window length is W = 24, the maximum window length is
W = 26 and the values n1 = 24 and n2 = 48. In case of
HEVC, an initial window length is W = 23, the maximum
window length is W = 26 and the values n1 = 12, n2 = 24
and n3 = 48.

The results show that for fixed visual quality the pro-
posed adaptive binary arithmetic coder allows to decrease
the bitrate by 0.5–2.3% for H.264/AVC standard and 0.6–
3.6% for HEVC standard on average. Herewith, for low QP’s
(0–30) the bitrate savings is caused mostly by less coding
redundancy of window length W = 26, while for high QP’s
(40–50) the savings results mostly from the higher speed of
the probability adaptation, which is very crucial for encoding
of short binary sequences. It is important to notice, that for an
implementation of the proposed approach additional tables or
multiplication/division operations are not needed. Therefore, in
this scenario the computation complexity is comparable with
the M-coder.

TABLE V
BITRATE SAVINGS (IN %) COMPARED TO THE M-CODER FOR H.264/AVC

STANDARD IN CASE OF USING FIXED WINDOW LENGTH

QP 0 10 20 30 40 50
Foreman 0.93 0.46 0.43 0.10 0.02 0.15
Mobile 0.04 0.17 0.30 0.46 0.20 0.49
Akyio 0.85 0.43 0.12 -0.17 0.68 5.04

Mother Daughter 1.14 0.81 0.56 0.06 0.44 4.81
Vassar 1.35 0.77 0.81 0.42 1.72 8.25

Ballroom 1.23 0.66 0.62 0.50 0.51 0.84
City 0.79 0.53 0.58 0.73 0.60 1.24
Crew 1.01 0.43 0.73 0.59 0.79 1.58

Pedestrian Area 1.14 0.69 0.72 0.79 1.07 1.47
Rush Hour 1.19 0.87 0.88 0.98 0.97 1.46

Station 1.39 1.06 1.07 0.59 0.70 1.20
Tractor 1.02 0.53 0.61 0.79 0.84 0.96
Average 1.01 0.62 0.62 0.49 0.71 2.29

B. Scenario 2: Adaptive window length selection for each
context

As it was mentioned in the introduction, from a compression
efficiency point of view, it is better to find the trade-off be-
tween the adaptation speed and the precision of the probability
estimation for each binary source. In the proposed adaptive

TABLE VI
BITRATE SAVINGS (IN %) COMPARED TO THE M-CODER FOR HEVC

STANDARD IN CASE OF USING FIXED WINDOW LENGTH

QP 0 10 20 30 40 50
Foreman 0.64 0.58 0.32 0.18 0.80 2.76
Mobile 0.45 0.35 0.52 0.72 1.23 2.80
Akyio 0.75 0.73 0.63 0.74 2.07 6.18

Mother Daughter 0.74 1.06 0.89 0.89 2.21 5.54
Vassar 0.49 0.29 0.96 0.73 1.57 6.27

Ballroom 0.40 0.27 0.44 0.46 1.01 1.93
City 0.52 0.56 0.91 1.04 1.94 3.37
Crew 0.58 0.59 0.78 0.52 1.18 3.98

Pedestrian Area 0.72 0.75 0.61 0.66 0.87 1.54
Rush Hour 0.79 0.91 0.75 0.82 0.91 1.66

Station 0.78 1.01 0.87 0.62 0.95 2.72
Tractor 0.48 0.52 0.62 1.38 2.73 4.31
Average 0.61 0.63 0.69 0.73 1.46 3.59

binary arithmetic coder, this trade-off can be realized due to
an assignment of a specific window length selected according
to the statistical properties of the corresponding binary source.

In this paper we proposed to select the window length
adaptively during the encoding and decoding process. Let
us demonstrate this approach for the H.264/AVC standard.
First n1 + n2 binary symbols are coded and decoded by
the basic scheme described in Section VII-A. Then after the
processing each binary symbol, the encoder and the decoder
synchronously estimate the bit stream size r̂(w) for each
window length from the set W = 2w ∈ {24, 25, 26, 27}. To
accomplish this, Algorithm 5 with the virtual renormalization
procedure (see Algorithm 6) is applied for each window
length. Then after processing of n3 symbols the encoder and
the decoder uses the window length

w∗ = arg min
i∈{w}

r̂(i) (33)

until the end of the binary sequence.

Algorithm 6 : Virtual renormalization procedure
1: while R(w) < 2b−2 do
2: if L(w) ≥ 2b−1 then
3: r̂(w) ← r̂(w) + 1
4: L(w) ← L − 2b−1

5: else if L(w) < 2b−2 then
6: r̂(w) ← r̂(w) + 1
7: else
8: r̂(w) ← r̂(w) + 1
9: L(w) ← L(w) − 2b−2

10: end if
11: L(w) ← L(w)� 1
12: R(w) ← R(w)� 1
13: end while

Bitrate savings related to the M-coder in the case of adaptive
window length selection with n3 = 512 are presented in
Table VII. One can see that using different window lengths
decreases up to 0.3% the bitrate additionally in comparison to
the first scenario. On the other hand, because use of virtual
renormalization, the complexity of this approach is much
higher than the one in Scenario 1.

8

TABLE VII
BITRATE SAVINGS (IN %) COMPARED TO THE M-CODER IN CASE OF

ADAPTIVE WINDOW LENGTH SELECTION FOR EACH CONTEXT

QP 0 10 20 30 40 50
Foreman 1.01 0.56 0.44 0.10 0.02 0.15
Mobile 0.05 0.25 0.37 0.50 0.21 0.48
Akyio 0.89 0.45 0.12 -0.17 0.68 5.04

Mother Daughter 1.26 0.92 0.59 0.06 0.39 4.81
Vassar 1.56 0.94 1.00 0.43 1.63 8.33

Ballroom 1.42 0.83 0.71 0.51 0.52 0.83
City 0.88 0.63 0.73 0.82 0.72 1.32
Crew 1.14 0.60 0.85 0.63 0.82 1.61

Pedestrian Area 1.34 0.90 0.88 0.91 1.22 1.68
Rush Hour 1.41 1.09 1.06 1.13 1.11 1.75

Station 1.69 1.30 1.35 0.70 0.87 1.42
Tractor 1.18 0.70 0.76 0.91 0.93 1.11
Average 1.15 0.76 0.74 0.55 0.76 2.38

VIII. CONCLUSION

A new efficient multiplication-free and look-up table-free
adaptive binary arithmetic coder was presented. In comparison
to the M-coder it has the following advantages:

1) It does not use any look-up tables allowing a reduction
in memory consumption or chip area in a hardware
implementation.

2) It provides a simply mechanism to control the trade-
off between the speed of probability adaption and the
precision of probability estimation through a single
parameter, the window length.

3) It provides bitrate savings from 0.5 to 2.3% for
H.264/AVC standard and from 0.6 to 3.6% for HEVC
standard on average and has a comparable computational
complexity.

4) It does not require any changes in the context-modeling
and can be easily embedded for performance improve-
ment to any compression scheme which is based on
binary arithmetic coding.

Taking into account these advantages, the proposed coder
can be more preferable for a future image and video coding
standards or non standardized codecs.

REFERENCES

[1] ITU-T and ISO/IEC JTC1, “Digital Compression and cod- ing of
continuous-tone still images“, ISO/IEC 10918-1 - ITU-T Recommenda-
tion T.81 (JPEG), 1992.

[2] ITU-T and ISO/IEC JTC 1, “JPEG 2000 Image Coding System: Core
Coding System, ITU-T Recommendation T.800 and ISO/IEC 15444-1“
JPEG 2000 Part 1, 2000.

[3] D. Marpe, H. Schwarz, T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard“, IEEE
Transactions on Circuits and Systems for Video Technology, vol.7.
pp.620–636, 2003.

[4] V. Sze, M. Budagavi, “Overview of the High Efficiency Video Coding
(HEVC) Standard“, IEEE Transactions on Circuits and Systems for Video
Technology, Vol.22, Iss.12, pp. 1649–1668, 2012.

[5] H. Eeckhaut, B. Schrauwen, M. Christiaens, J. Van Campenhout, “Tuning
the M-coder to improve dirac’s entropy coding“, WSEAS transactions on
Information Science and Applications, pp. 1563–1571, 2005.

[6] W. Pennebaker, J. Mitchel, G. Langdon, R. Arps, “ An overview of the
basic principles of the q-coder adaptive binary arithmetic coder“, IBM J.
Research and Development, vol.32, pp.717–726, 1988.

[7] D. Marpe, T. Wiegand, “A Highly Efficient Multiplication-Free Binary
Arithmetic Coder and Its Application in Video Coding“, IEEE Interna-
tional Conference on Image Processing, 2003.

[8] High Efficiency Video Coding, http://www.h265.net/

[9] V. Sze, M. Budagavi, “High Throughput CABAC Entropy Coding in
HEVC“, IEEE Transactions on Circuits and Systems for Video Technol-
ogy, Vol.22, Iss.12, pp. 1778–1791, 2012.

[10] E. Belyaev, M. Gilmutdinov, A. Turlikov, “Binary arithmetic coding
system with adaptive probability estimation by Virtual Sliding Window“,
Proceedings of the 10th IEEE International Symposium on Consumer
Electronics, pp.194–198, 2006.

[11] D. Karwowski, M. Domanski , “Improved context-adaptive arithmetic
coding in H.264/AVC“, 17th European Signal Processing Conference,
2009.

[12] T. Nguyen, H. Schwarz, H. Kirchhoffer, D. Marpe, T. Wiegand, “Im-
proved context modeling for coding quantized transform coefficients in
video compression“, Picture Coding Symposium, 2010.

[13] K. Vermeirsch, J. Barbarien, P. Lambert, R. Van de Walle, “Region-
adaptive probability model selection for the arithmetic coding of video
texture“, 2011 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2011.

[14] D. Hong, A. Eleftheriadis, “Memory-Efficient Semi-Quasi Renormaliza-
tion for Arithmetic Coding“, IEEE Transactions on Circuits and Systems
for Video Technology, vol. 17, pp. 106–109, 2007.

[15] M. Schindler, “Byte oriented arithmetic coding“, Proceedings of Data
Compression Conference, 1998.

[16] D. Subbotin, “Carryless Rangecoder“, 1999. http://search.cpan.org/src/
SALVA/Compress-PPMd-0.10/Coder.hpp.

[17] P. Lindstrom, M. Isenburg, “Fast and Efficient Compression of Floating-
Point Data“, IEEE Transactions on Visualization and Computer Graphics,
Vol.12, Iss.5, pp.1245 – 1250, 2006.

[18] A. Said, “Comparative analysis of arithmetic coding computational
complexity“, Hewlett-Packard Laboratories Report, HPL-2004-75, 2004.

[19] E. Belyaev, A. Veselov, A. Turlikov and Kai Liu, “Complexity analysis
of adaptive binary arithmetic coding software implementations“, The 11th
International Conference on Next Generation Wired/Wireless Advanced
Networking, 2011.

[20] S. Chen, S. Chen, S. Sun, “P3-CABAC: A Nonstandard Tri-Thread
Parallel Evolution of CABAC in the Manycore Era“, IEEE Transactions
on Circuits and Systems for Video Technology, Vol.20, Iss.6, pp.920 –
924, 2010.

[21] K. Sarawadekar, S. Banerjee, “An Efficient Pass-Parallel Architecture for
Embedded Block Coder in JPEG 2000“, IEEE Transactions on Circuits
and Systems for Video Technology, Vol.21, Iss.6, pp.825 – 836, 2011.

[22] V. Sze, A.Chandrakasan, Joint Algorithm-Architecture Optimization of
CABAC to Increase Speed and Reduce Area Cost, IEEE International
Conference on Acoustics, Speech and Signal Processing, 2011.

[23] K.Sugimoto, A.Minezawa, S.Sekiguchi, K.Asai, T.Murakami, Reduction
of initialization tables for CABAC contexts, Input Document to JCT-VC
JCTVC-H0646, 2012.

[24] T.Chuang, C.Chen, Y.Huang, and S.Lei, CABAC with a Reduced LPS
Range Table, Input Document to JCT-VC JCTVC-F061, 2011.

[25] C. Rosewarne, Modified probability update and table removal for multi-
parameter CABAC update, Input Document to JCT-VC JCTVC-H0140,
2012.

[26] E.Belyaev, A.Turlikov, K.Egiazarian and M.Gabbouj, An efficient
multiplication-free and look-up table-free adaptive binary arithmetic coder
// 2012 IEEE International Conference on Image Processing, 2012.

[27] A. Moffat, R. Neal, I. Witten, “Arithmetic Coding Revisited“, ACM
Transactions on Information Systems, vol. 16, pp. 256–294, 1998.

[28] B. Ryabko, “Imaginary sliding window as a tool for data compression“,
Problems of Information Transmission, pp. 156–163, 1996.

[29] E. Krichevski and V. Trofimov, “The performance of universal encod-
ing“, IEEE Transactions on Information Theory, vol. IT-27, pp. 199-207,
1981.

[30] D. Taubman and M. Marcellin, “JPEG2000: Image Compression, Fun-
damentals, Standards, and Practice“, Kluwer Academic Publishers, 2002.

[31] B.Y. Ryabko, A. N. Fionov, “An efficient method for adaptive arith-
metic coding of sources with large alphabets“, Problems of Information
Transmission, vol.35, No. 4, pp. 95–108, 1999.

[32] C.Grecos, M.Yang, “Fast inter mode prediction for P slices in the H264
video coding standard“, IEEE Transaction on Broadcasting, vol.51, No.
2, pp. 256–253, 2005.

[33] W.Lee, H.Choi, S.Wonyong, “Fast Block Mode Decision for H.264/AVC
on a Programmable Digital Signal Processor“, IEEE Workshop on Signal
Processing Systems, 2007.

[34] H.264/AVC JM Reference Software, http://iphome.hhi.de/suehring/tml/
[35] MVC test sequences, http://www.merl.com/pub/avetro/mvc-testseq/

orig-yuv/
[36] Xiph.org test media, http://media.xiph.org/video/derf/

9

Evgeny Belyaev (M’12) received the Engineer de-
gree in automated systems of information processing
and control and the Ph.D. (candidate of science)
degree in technical sciences from State Univer-
sity of Aerospace Instrumentation (SUAI), Saint-
Petersburg, Russia, in 2005 and 2009, respectively.
He is currently a Researcher with the Institute of
Signal Processing, Tampere University of Technol-
ogy, Finland. His research interests include real-time
video compression and transmission, video source
rate control, scalable video coding, motion estima-

tion and arithmetic encoding.

Andrey Turlikov is a professor at the Department
of Information Systems and Data Protection of St.
Petersburg State University of Aerospace Instrumen-
tation, St. Petersburg, Russia. Since 1987 he has
been involved in teaching activity. He is the author
of more than 100 research papers and has been
the invited speaker at the number of international
symposiums and seminars. His research interests
cover multi-user telecommunication systems, real-
time data transmission protocols, reliability theory,
and video compression algorithms.

Karen Egiazarian (SM’96) was born in Yerevan,
Armenia, in 1959. He received the M.Sc. degree in
mathematics from Yerevan State University in 1981,
the Ph.D. degree in physics and mathematics from
Moscow State University, Moscow, Russia, in 1986,
and the D.Tech. degree from the Tampere University
of Technology (TUT), Tampere, Finland, in 1994.
He has been Senior Researcher with the Department
of Digital Signal Processing, Institute of Information
Problems and Automation, National Academy of
Sciences of Armenia. Since 1996, he has been an

Assistant Professor with the Institute of Signal Processing, TUT, where he is
currently a Professor, leading the Computational Imaging Group. His research
interests are in the areas of applied mathematics, signal processing, and digital
logic.

Moncef Gabbouj (F’11) received the B.S. degree
in electrical engineering from Oklahoma State Uni-
versity, Stillwater, in 1985, and the M.S. and Ph.D.
degrees in electrical engineering from Purdue Uni-
versity, West Lafayette, IN, in 1986 and 1989,re-
spectively.

He is currently an Academy of Finland Professor
with the Department of Signal Processing, Tampere
University of Technology, Tampere, Finland. He was
the Head of the department from 2002 to 2007. He
was on sabbatical leave at the American University

of Sharjah, Sharjah, United Arab Emirates, from 2007 to 2008, and a Senior
Research Fellow with the Academy of Finland, Helsinki, Finland, from 1997
to 1998 and in 2008. He is the Co-Founder and Past CEO with SuviSoft Oy,
Ltd., Tampere. From 1995 to 1998, he was a Professor with the Department
of Information Technology, Pori School of Technology and Economics, Pori,
Finland, and from 1997 to 1998 he was a Senior Research Scientist with the
Academy of Finland. From 1994 to 1995, he was an Associate Professor with
the Signal Processing Laboratory, Tampere University of Technology. From
1990 to 1993, he was a Senior Research Scientist with the Research Institute
for Information Technology, Tampere. His current research interests include
multimedia content-based analysis, indexing and retrieval, nonlinear signal
and image processing and analysis, and video processing and coding.

