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Although the dispersion of tissue is small and difficult to measure, 
it can be calculated from a knowledge of the tissue's attenuation. A 
minimum-phase function, which characterizes tissue dispersion was derived 
using the Hilbert transform. This function was incorporated into a tissue 
model which has a causal impulse response and from which accurate estimates 
of the slope of attenuation times path length can be extracted. 
Predictions of phase velocity closely match available dispersion 
measurements. The model suggests that phase velocity measurements must be 
much more accurate than attenuation measurements for a comparable 
description of tissue. 
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INTRODUCITON 

Ultrasonic tissue characterization requires localized measurement of 
ultrasonic parameters which can discriminate among different tissue types 
and their pathological states. Measurements of both transmitted and 
reflected ultrasound contain information concerning the status of localized 
tissue, such as specific acoustic impedance, attenuation coefficient, 
propagation velocity, scattering parameters, density, and bulk modulus 
(1.2). 

Correlation of changes in these ultrasonic properties with tissue 
pathology may yield indices of diagnostic significance. For example, in 
vitro studies Calderon and coworkers (3) found that 1 cm of malignant 
tumor, benign tumor, and normal tissue presented 19.5, 9.0 and 2.3 dB of 
attenuation at 2.25 MEz, respectively. Lele and coworkers (4) reported 
that the slope of attenuation-versus-frequency curves was different for 
different tissues, and that the slope for necrotic tissue was markedly 
steeper than that of healthy tissue of the same type. O'Donnell and 
coworkers (5) observed a correlation between the change in attenuation with 
frequency and the collagen content of dog myocardium. Furthermore, they 
observed changes in the slope with time after the onset of ischemia. In & 
- vivo studies Kuc (6) observed that inflamed livers exhibited lower than 
normal attenuation. whereas in cirrhotic livers attenuation was higher than 
normal. 

Many problems remain to be solved, however, before noninvasive 
quantification of ultrasonic tissue properties can be performed routinely. 
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We believe that an appropriate tissue model is basic to an understanding of 
the effects of inhomogeneities and dispersion on quantitative measurements. 
An accurate description of a single layer of soft tissue is essential 1) to 
allow accurate calculation of tissue properties based on signal features. 
and 2) to account for the effects of intervening layers of tissue on 
estimates of the properties of tissue regions remote from the transducer. 
Precise simulations of tissue effects may provide a step in the development 
of the nest generation of imaging systems, which may be able to determine 
acoustic properties of specific tissue regions, in addition to the usual 
mapping of tissue interfaces, during pulse-echo imaging. 

If soft tissue responds linearly to Ultrasound, then its behavior is 
fully described by either its impulse response in the time domain or its 
frequency response in the frequency domain. Of these descriptors only the 
magnitude of the frequency response of soft tissue is well known; the phase 
of the frequency response is not <7,8>. Limited experimental evidence 
shows that tissue is dispersive, but that the dispersion is small. It is 
on the order of 0.7 percent per frequency decade for an attenuation of 1 
dB/cm/MBz (7). Over the frequency range from 1-10 MEz, the phase of the 
frequency response is usually assumed to be linear (8). Unfortunately, if 
one makes the assumption of exponential attenuation in a dispersionless 
medium (constant phase velocity), the impulse response is non-causal. 

Certainly one would expect tissue response, or for that matter the 
response of any passive, memoryless, real-world, physical system to be 
causal. It is not in this case because the assumption of constant phase 
velocity is not valid. Our objective then was to synthesize the frequency 
response of a single layer of tissue from a knowledge of the magnitude of 
its response under the causality constraint and to use the resultant model 
to predict tissue behavior in both the time and frequency domains. In 
particular we 1) predict the impulse response of soft tissue, 2)  develop 
relations for estimating the product of the slope of attenuation and path 
length from the impulse response, 3 )  compare predicted and measured phase 
velocities, and 4)  determine error limits which must be achieved to obtain 
meaningful measurements of phase velocity. 

TISSUE MODELS 
Tissue is almost always assumed to respond linearly to diagnostic 

levels of ultrasound. This assumption appears to be valid because the 
signal levels used in diagnostic systems are small. The intensity of 
diagnostic ultrasound, which may have a frequency content ranging from 1 to 
20 MBz, varies from a few milliwatts/cm' for continuous-wave Doppler 
methods to a maximum of about 1000 watts/cma for pulse-echo methods ( 9 ) .  
Pulse-echo methods typically employ 1 ps pulses with pulse repetition 
frequencies up to 4000 Hz. With these parameters. diagnostic systems 
operate at average energy levels several orders of magnitude below those 
which produce structural changes ( 9 ) .  Thus, although nonlinear effects 
have been reported <lo>, for a wide range of clinical applications tissue 
responds linearly to ultrasound. In addition the nature of that response 
is not likely to change rapidly because during the 0.1 m s  that it takes 
ultrasound to propagate through about 15 cm of tissue, the fastest moving 
tissues. the heart valves, move less than 0.1 mm (11). Thus neither a 
change in tissue property nor a movement of a different type of tissue into 
an ultrasonic beam during one pulse period is likely. Therefore tissue may 
be thought of as a linear, time-invariant system. 

Any linear system is characterized by its frequency response. For an 
ultrasonic tissue model that response is the relation between the 
ultrasonic field after it has passed through a tissue specimen and the 
excitation into that specimen as a function of frequency. The logarithm of 
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H(w) = R(w)/E(w) 
Fig .  1 U l t r a s o n i c  t r a n s m i s s i o n  through a uniform, homogeneous l a y e r .  E ( o )  

and R(w) a r e  t h e  F o u r i e r  t ransforms of t h e  e x c i t a t i o n  e ( t )  and t h e  
response r ( t ) ,  r e s p e c t i v e l y .  For u n i t y  t r a n s m i t t a n c e  a t  each 
s u r f a c e  t h e  magnitude of t h e  frequency response H(o) of t h e  l a y e r  i s  
a f u n c t i o n  of i t s  t h i c k n e s s  x and i t s  s lope  of a t t e n u a t i o n  B. 

t h e  magnitude of t h e  frequency response i s  u s u a l l y  assumed t o  be a l i n e a r  
f u n c t i o n  of f requency f o r  a g iven  p a t h  length .  Indeed t h e r e  a r e  a number 
of experiments  which suppor t  a power-law dependence of a t t e n u a t i o n  on 
f requency where t h e  exponent of t h e  frequency term i s  n o t  s i g n i f i c a n t l y  
d i f f e r e n t  from u n i t y ;  t h e  c o n s t a n t  of p r o p o r t i o n a l i t y  i s  termed t h e  s lope  
of a t t e n u a t i o n  <4,7,12-14>. 

Given a power-law response w i t h  l i n e a r  dependence of a t t e n u a t i o n  on 
f requency,  a l a y e r  of t i s s u e  may be c h a r a c t e r i z e d  by i t s  s lope  of 
a t t e n u a t i o n  v e r s u s  f requency p and i t s  t h i c k n e s s  x a s  shown i n  f i g u r e  1. 
I f  t h e  t r a n s m i t t a n c e  a t  bo th  s u r f a c e s  of t h e  t i s s u e  l a y e r  i s  u n i t y ,  t h e  
magnitude of t h e  frequency response f o r  t h i s  c o n f i g u r a t i o n  i s  u s u a l l y  
w r i t t e n  <8,15>, 

T h i s  well-documented e x p r e s s i o n  i s  t h e  b a s i s  f o r  e x i s t i n g  t i s s u e  models and 
f o r  t h e  d i s p e r s i v e  model t h a t  we propose i n  t h i s  paper .  

LINEAR-PHASE MODEL 

The phase v e l o c i t y  of t i s s u e  does not  change much w i t h  frequency,  so 
t h a t  t o  a f i r s t  approximation i t  i s  a c o n s t a n t  <7,16>.  I f  t h e  phase 
v e l o c i t y  Vp i s  assumed t o  be a c o n s t a n t ,  then  t h e  phase response i s  a 
l i n e a r  f u n c t i o n  of 

where rb i s  t h e  
magni tude of t h e  
frequency response 

This e x p r e s s i o n  i s  

frequency,  

e(w) = w r b X  , (2)  

b a l k  propagat ion  d e l a y  p e r  u n i t  l ength .  Combining t h e  
frequency response w i t h  t h e  l inear-phase term, t h e  

i s  

-Bx -jwrbx 
H(o) = e 2n e ( 3 )  

t h e  response assumed by Kak and Dines <8>.  Although J3q. 
( 3 )  i s  a good f i r s t  o r d e r  approximation t o  t h e  t r a n s f e r  f u n c t i o n  of t i s s u e ,  
t h i s  model's impulse response i s  non-causal because phase v e l o c i t y  i n  not  
r e a l l y  c o n s t a n t .  Even though t i s s u e  d i s p e r s i o n  i s  small ,  a small  change i n  
t h e  phase f u n c t i o n  can have a s i g n i f i c a n t  e f f e c t  on t h e  impulse response.  
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DISPBBSIVE TISSUE MODEL 
Because the dispersion of tissue is small, it is very difficult to 

measure (7). To our knowledge, only the measurements of dispersion in 
hemoglobin solutions by Carstensen and Schwan <16> and in dog myocardium by 
Bhagat and coworkers (13) have been reported. Thus because of very limited 
experimental evidence, one can assume that only the magnitude of the 
frequency response is known. Our task then was to aynthesize the frequency 
response of a layer of tissue from a knowledge of the magnitude of its 
response alone. 

It is well known that for a bounded. stable, minimum-phase system, 
the real and imaginary parts of its transfer function are related by the 
Hilbert transform. <17,18>. If the magnitude of the frequency response is 
square integrable and satisfies the Paley-Weiner condition, then a suitable 
imaginary term can be found, so that the system is causal. According to 
the Paley-Weiner condition the magnitude of the response must not go to 
zero faster than an exponential. To meet this condition we imposed a 
high-frequency limit on the magnitude of the response of tissue, i.e., on 
Eq. (1). (See Appendix A.) 

The Hilbert'transform gives the phase for a minimum-phase system, but 
any norminimum phase system can be described by the product of an all-pass 
function and a minimum-phase sytem (18). We assumed that the phase of the 
all-pass function of our tissue model had the same form as the linear-phase 
model. Thus as shown in Appendix A, the total phase for our  tissue model 
consists of a linear-phase term plus the minimum-phase relation given by 
the Hilbert transform: 

where rb is the bulk 
frequency response for 

delay and rm is the miminum-phase delay factor. 
the resultant causal system is 

The 

The frequency response differs from that of the linear-phase model by the 
presence of the final exponential term, whose argument is logarithmically 
dependent on frequency. The inclusion of this dispersive term makes the 
system causal. The effects of this term on the phase velocity are examined 
after we point out the marked differences between the linear-phase and 
Hilbert-dispersive models in the time domain. 

TIME-DOMAIN RESPONSE OF SOm TISSUE 

The response of a linear system to any excitation is the convolution 
of that excitation and the impulse response of the system, which is 
dependent only on system parameters. Proper processing of appropriate 
features of a system's impulse response allows determination of those 
system parameters, which in this case are the ultrasonic properties of 
tissue. 

IMPULSE BESPONSE 
Once the frequency response of a tissue model is established, its 

impulse response can be found by either analytically or numerically 
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4 ---- LINEAR-PHASE MODEL 

Mt) 
1.0- 1 ---- LINEAR-PHASE MODEL 

I 
I 
I - DISPERSIVE MODEL 

0.6 - I 

0.6- 

0.4- 

02- 

0 I 

6.2 6.4 6.6 6.6 7.0 7.2 
Fig. 2 Impulse response of both the linear-phase and Hilbert dispersive 

models. Slope of attenuation j3 was set at 0.1 /cm/MHz; path length 
was 1 cm. The bulk delay 5 was 6.67 ps/cm; the minimum-phase delay 
factor was 20. Amplitales were normalized to the peak of the 
linear-phase response. 

calculating the inverse Fourier transform of the frequency response. In 
this section we present and compare the impulse responses of the 
linear-phase and Hilbert dispersive models. 

Linear-phase Model 

The impulse response of the linear-phase model (Eq. ( 3 ) )  with slope 
of attenuation j3 and thickness x was derived by Kak and Dines <8>.  They 
showed that 

This result is plotted in figure 2 for a slope of attenuation j3 of 
0.1 /cm/MEz and a phase velocity of 1500 m/s over a path length x of 1 cm. 
As expected for a linear-phase system, the impulse respone is symmetric. 
Unfortunately, it is also non-causal. It takes 6.67 ps for sound to travel 
1 cm at a velocity of 1500 m / s .  Note that the peak of the impulse response 
occurs at this time. Thus half the energy in h(t) appears before any 
output should exist. This contradiction occurs because the assumption of 
constant phase velocity is not valid. 

Hilbert Dispersive Model 

The impulse response for the Hilbert dispersive model was obtained by 
numerically calculating the inverse Fourier transform of its frequency 
response (Eq. ( 5 ) ) .  It is also shorn in figure 2. The time between 
samples of the calculated response was 2 ns. The response is causal; the 
lack of symmetry in its shape implies that dispersion is associated with 
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Fig. 3 Temporal and spatial characteristics of the impulse response of the 
Hilbert dispersive model. The slope of attenuation was set at 0.1 
/cm/MEz. Peaks of the responses for tissues whose thicknesses 
differed by about 15 mm were aligned within a 1 ps window to form 
the response surface. 

the system it represents. The peak is lower than that of the linear-phase 
model, but its duration is longer. These differences in shape occur 
because the frequency components of the propagating signal travel at 
difference velocities in the dispersive model. Higher frequencies travel 
slightly faster than lower ones. 

The propagation delay for the dispersive model is given by Eq. (4 )  
and contains the same bulk delay (6.67 ps/cm) as the linear-phase model 
plus a term dependent upon B. The value for tm, the minimum-phase delay 
factor was taken to be 20. It was found by comparing the minimum-phase 
term of the Hilbert model with that of a single-pole model for the same 
tissue <19>. This value for rm made the minimum-phase terms for the two 
dispersive models agree for a wide range of values of the slope of 
attenuation. Here the effect is that the peak of the non-causal. 
linear-phase model response and the rising edge of the Hilbert model 
response approximately coincide. The peak of the response for the 
dispersive system is at about 6.65 ps. which corresponds to a wavefront 
velocity of 1504 m/s. A similar result would have been obtained if 5 had 
been assigned so that the wavefront arrived at a time consistent witg the 
propagation delay of the high frequencies in the response. 

The temporal and spatial characteristics of the impulse response of 
the Hilbert dispersive model may be better appreciated in figure 3, where 
the response is shown as it propagates through increasing tissue thickness. 
At each thickness the rising edge changes more rapidly than the falling 
edge. Clearly the width of the response increases as path length 
increases. 

BSTIMATION OF THE AlTENUATION COEFFICIENT 

Kak and Dines <8> proposed a tissue characterization scheme based on 
the impulse response of soft tissue. Their tissue model was the 
linear-phase system whoae frequency response is given by Eq. ( 3 )  and whose 
impulse response is given by Eq. (6). They derived estimates for the 
product of the slope of attenuation B and the path length x from both the 
root-mean-square (RNS) duration and the peak value of the impulse response. 
Here we show that because the assumption of constant phase velocity in the 
linear-phase model is inconsistent with the form of the impulse response, 
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es t imates  based on t h a t  response a re  i n  e r ro r .  Those e r r o r s  a r e  quan t i f i ed  
i n  t h i s  s ec t ion  which a l s o  g ives  the  proper es t imates  of f3x from both the 
RMS dura t ion  and the  peak value of the  causal impulse response of the  
Hi lbe r t  d i spe r s ive  model. 

Energy 

The energy of t he  impulse response can be ca l cu la t ed  using Parseva l ' s  
Theorem 

Using the  magnitude of the frequency response assumed f o r  both the 
linear-phase and Hi lbe r t  d i spers ive  models (Eq. (1)). the  energy i s  

E = 1/$x . (8)  

Numerical i n t eg ra t ion  of the  square of the  Hi lbe r t  impulse response 
agreed wi th  the  energy determined by the  magnitude of the frequency 
response (Eq. ( 8 ) )  with in  0.4 percent.  The major source of t h i s  small 
e r r o r  was missing the  peak of the  response wi th  the  time quant iza t ion  
employed (2 ns). 

bot-Mean-Square Duration 

U S  dura t ion  D i s  a measure of the  length  of time t h a t  a s igna l  
p e r s i s t s .  When applied t o  the  impulse response, it may be thought of a s  an 
approximation t o  i t s  3 dB width. It i s  defined by Kak and Dines <8> a s  

where the  mean time t i s  

tc = (10) 

For the  linear-phase model Kak and Dines <8> evaluated the  RMS dura t ion  and 
showed it  t o  be 

This l i n e a r  r e l a t i o n  i n  f3x, the  slope of a t t enua t ion  times pa th  
length,  i s  p l o t t e d  i n  f i g u r e  4 ,  along wi th  the numerical eva lua t ion  of Bus 
dura t ion  f o r  the  Hi lbe r t  d i spe r s ive  model. Although both models give 
s t r a igh t - l i ne  r e l a t ionsh ips  passing through the o r i g i n  f o r  RMS dura t ion  
versus pa th  length,  the slopes d i f f e r .  The dura t ion  f o r  the Hi lbe r t  model 
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0 Oil 0:2 013 0:4 015 0.6 

Fig. 4 RMS dura t ion  of the impulse response a s  a func t ion  of px, the slope 
of a t t enua t ion  times path length.  The c rosses  were ca l cu la t ed  from 
the da ta  p l o t t e d  i n  f i g u r e  3. 

is  always g rea t e r  than t h a t  f o r  the  linear-phase model. A f i r s t  order 
polynomial f i t  of the  dura t ion  predic ted  by the  Hi lbe r t  model y i e l d s  

Recently Pohlig <20> has shown t h a t  the square of the  RMS dura t ion  of 
a s igna l  can be separated i n t o  the  sdm of two components, one the  square of 
the  dura t ion  of the  zero-phase (magnitude only) s igna l ,  and the  o ther  the 
variance of a weighted phase der iva t ive .  Furthermore. he showed t h a t  f o r  a 
given spec t r a l  magnitude, the s igna l  with the sho r t e s t  dura t ion  w i l l  have 
l i n e a r  phase. Therefore, the  observation t h a t  the  RMS dura t ion  predic ted  
by the  Hi lbe r t  model i s  longer than t h a t  of t he  linear-phase model is  t o  be 
expected . 

More importantly, the expression f o r  the  RMS dura t ion  from the  
Hi lbe r t  model c o r r e c t l y  p r e d i c t s  t he  product px, whereas the  estimate given 
by the  linear-phase model i s  too  high. The e r r o r  i n  the  linear-phase model 
estimate i s  found by comparing the  two expressions f o r  the U S  duration. 
The dura t ion  of the  non-causal, linear-phase model y i e l d s  an estimate of px 
which i s  2.3 dB too high. 

Peak Value of the  Impulse Response 

The product of t he  slope of a t t enua t ion  and pa th  length px can a l s o  
be estimated from the  peak of the  impulse response. For the linear-phase 
model the  peak of i t s  non-causal impulse response a s  shown by Kak and Dines 
<8> i s  

The peak of t he  impulse response versus px f o r  both the linear-phase 
and Hi lbe r t  models i s  p l o t t e d  i n  f i g u r e  5. The peaks of the  causal H i lbe r t  
response a r e  taken from the  da ta  used t o  p l o t  f i g u r e  3. Both curves a r e  
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I PEAK OF h(t) x lo-' 

Fig. 5 Peak value of the impulse response as a function of px. the slope of 
attenuation times path length. The crosses were calculated from the 
data plotted in figure 3 .  

similar in shape. If we assume an inverse relation between peak value and 
the product of the slope of attennation and path length for the causal 
Hilbert model, then the constant of proportionality is 1.75. Thus 

hmM(tc) = 1.75/px . (14) 

If the peak value of the Hilbert response is indeed inversely 
proportional to px. then the difference in the logarithm of its peak 
response (Eq. (13 ) )  and that of the linear-phase model (Eq. ( 1 4 ) )  will be 
constant. The difference in logarithms is 

Peak values of the two models are plotted on a logarithmic scale in figure 
5 .  The difference is almost constant. Thus the assumption of an inverse 
relation for both models appears to be justified. 

Although the functional relation between peak value and px appears to 
be the same for both models, the constant of proportionality is not the 
same. There is a 1 .2  dB difference. The prediction by the Hilbert 
dispersive model is correct, so that the linear-phase model's estimate of 
fix based on peak value is 1.2 dB too high. 

Thus for both Bus duration and peak value estimates of the slope of 
attenuation times path length, the linear-phase model is in error whereas 
the Hilbert dispersive model correctly predicts the px product in the time 
domain. Table 1 summarizes the time-domain estimates given by both models 
along with the error in the non-causal, linear-phase model predictions. 
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Table 1. Determination of $x t he  slope of a t tenuat ion  times path length 
from the impulse response of s o f t  t i s sue .  

Linear-phase Dispersive Difference 
(non causa l )  (causa l )  

mode 1 model dB 

Energy 

RMS dura t ion  

Peak value 

1/$x 

$ d 2 n  

2/$x 

1/$x 

$x/4.8 

1.75/$x 

0 

2.3 

1.2 

PHASE VELOCITY OF Son  TISSUE 

I n  general  phase ve loc i ty  V (0) and the  phase 9(o) of the  frequency 
response a r e  r ec ip roca l ly  r e l a t ed :  

where o i s  
Eq. ( 4 ) .  
dispers ive  

the  angular frequency and x i s  the  path length.  As we showed i n  
the expression for the phase per u n i t  l ength  from the Hi lbe r t  
model i s  

where the term i n  the  square bracke ts  i s  the  propagation delay per u n i t  
1 eng th.  The propagation delay conta ins  a constant p lus  a 
frequency-dependent term. The amount of d i spe r s ion  i s  cont ro l led  by the  
frequency-dependent term. which says t h a t  the change i n  e i t h e r  phase or  
phase ve loc i ty  should be logar i thmica l ly  dependent on frequency. 
Nevertheless, because the d ispers ion  of s o f t  t i s s u e  i s  small, i .e.,  the 
phase ve loc i ty  i s  almost constant,  phase should be a near ly  l i n e a r  func t ion  
of frequency. The two components of the  phase of the  Hi lbe r t  d i spers ive  
model a re  p l o t t e d  a s  func t ions  of frequency in  f i g u r e  6 ,  which c l e a r l y  
shows t h a t  the  linear-phase term dominates t h e  d i spe r s ive  term. Even the  
d ispers ive  term which i s  dependent on the  product of frequency and the  
logarithm of frequency i s  very near ly  a l i n e a r  function. Figure 6 
emphasizes how small the d i spe r s ion  i n  t i s s u e  is. Yet, as we have seen, 
t h i s  small e f f e c t  i s  s ign i f i can t  i n  determining time-domain behavior. 
Although not apparent here,  logarithmic dependence on frequency i s  c l e a r l y  
seen i n  the  p l o t s  of phase ve loc i ty  which follow. 

I f  we combine Eqs. (16) and (17),  the  phase ve loc i ty  pred ic ted  by the 
Hi lbe r t  d i spers ive  model can be expressed as 

Clearly,  as o goes t o  zero, so does Vp(o) a s  given by Eq. (18) .  To 
complete the Hi lbe r t  d i spe r s ive  model, we must spec i fy  the phase ve loc i ty  
a t  low frequency. I f  the medium were d ispers ionless ,  l/Vp(o) would be 
constant and equal t o  5 I f  we assume i n  the  d i spe r s ive  case t h a t  Vp(o) 
is  f ixed  below someb'frequency and maintain consistency with the 
d i spe r s ion le s s  case, then 
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Fi&.  6 

and 

PHASE, radianslcm i 

Ot==-=== DISPERSIVE TERM 

Phase response of s o f t  t i s s u e  predic ted  by the  H i l b e r t  d i spe r s ive  
model. The linear-phase term dominates the  d i spe r s ive  term which i s  
dependent upon the  frequency times the  logarithm of frequency. 
Phase shown was predic ted  f o r  a 1 cm laye r  of t i s s u e  with a slope of 
a t t enua t ion  of 0.115 /cm/UBz (1 dB), a bulk de lay  of 6.67 ps/cm, 
and a minimum-phase delay f a c t o r  of 20. 

1 - -  
VP(O) - 

= 1  - 
VP(O) 

(19) 

o < l  

Because we a r e  pr imar i ly  i n t e r e s t e d  i n  the  1-10 MEIz range, o = 1 is 
e s s e n t i a l l y  zero  frequency. The choice of 1 rad / s  a t  which t o  f i x  v e l o c i t y  
i s  convenient because it s i m p l i f i e s  Eq. (19) and makes t h e  phase v e l o c i t y  
a t  l o w  frequency the  same a s  t h e  phase v e l o c i t y  of t he  linear-phase model. 
m a t  choice, however, does not s t rong ly  influence the  value of Vp(0). 
Vp(0) w i l l  vary by only 2 2 percent,  i f  t he  frequency a t  which v e l o c i t y  is 
f ixed  v a r i e s  from 1.9 flz t o  0.52 YBz f o r  a bulk de lay  of 6.67 ps and a 
slope of a t t enua t ion  of 0.1 /cm/l(8z. 

PEASE VPLOCITY AT L W  FREQUENCY 

The phase v e l o c i t y  a t  lor frequency Vp(0) can be determined f o r  the  
H i l b e r t  d i spe r s ive  model, i f  t he  phase v e l o c i t y  is known a t  any o ther  
s i n g l e  frequency oo. Rearranging Bq. (20) y i e l d s  
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Table 2. Acoustic parameters of hemoglobin solutions. 

Yeasur ed Calculated 
(from Carstensen and from the Hilbert 
Schwan, <la>) dispersive model 

VP(O) ’b Bemog lob in B Phase 
Concentration Slope of Velocity Bulk 

Attenuation at 2 MEz Delay 
g/lOOcc /cm/HHz m/ s m/s PS 

8 .O 0.0077 1522.9 
13 .O 0.0128 1541.6 
19.2 0.0197 1562.8 
24 .O 0.0257 1582.2 
30.0 0.0344 1608.3 

1519.9 6.56 
1536.6 6.48 
1554.8 6.39 
1571.6 6.31 
1593.6 6.21 

The Hilbert dispersive model is complete once the bulk delay per unit 
length % is known. It is found from the expression for 5 in Eq. (4) and 
from the gefinition of V ( 0 )  in Eq. (19): 

P 

In order to determine whether or not Vp(0) from the Eilbert model was 
consistent with measurements that apply at low frequency. we analyzed the 
hemoglobin solutions <16> characterized in table 2 with o w  model. Vp(0) 
for these solutions increases linearly (r = 0.9991) with concentration, as 
shorn in figure 7. The least-squares fit for V ( 0 )  versus hemoglobin 
concentration is 

V ( 0 )  = 1493 + 3.32 [Hg] , (23) 

where [Hg] is hemoglobin concentration. Vp(0) at zero hemoglobin 
concentration is about 1493 m/s. The experimental value for the phase 
velocity of distilled water at 25OC is about 1497 m / s  <21>, a difference of 
only 0.2 percent. A straight-line fit of the phase velocity at 2 MEz 
versus hemoglobin concentration predicted the velocity in water to be 1491 
m/s. a 0.4 percent error. 

P 

P 

The least-squares fit of phase velocity versus hemoglobin 
concentration is consistent with the empirical relation between phase 
velocity at 1 MEz and tissue constituents reported by Goss and coworkers 
<22>. They showed that 

(24) 

where P is the wet weight percentage of globular protein, C is the wet 
weight percentage of collagen present in the tissue, and V is the velocity 
which is observed when P and C are zero. Note the similaqity in the slope 
for hemoglobin in Eq. (22) and that for globular protein in Eq. (23). A 
straight-line fit of the phase velocity of hemoglobin at 2 MEz versus 
concentration has a substantially different slope; it is 3.8. 

V (1 MEE) = Vo + 3.2 [P + 2.0 C] , P 
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Fig. 7 Phase ve loc i ty  a t  zero  frequency versus hemoglobin concentration. 

The c rosses  were pred ic ted  by the Hi lbe r t  d i spers ive  model; t h e i r  
values a r e  given i n  t ab le  2. The s t r a i g h t  l i n e  i s  a least-squares 
f i t  of those poin ts .  

Thus the  choice of l/.c a s  the  low frequency value f o r  the phase 
ve loc i ty ,  i n  add i t ion  t o  being a l o g i c a l  extension of the  d i spe r s ion le s s  
case,  is j u s t i f i e d  by i t s  success i n  matching measured data.  Moreover, the  
logarithmic f a c t o r  i n  Q. (211, the  expression f o r  l/Vp(O), improves o u r  
model's representa t ion  of the  phase ve loc i ty  a t  low frequency over merely 
using values measured a t  2 MEz t o  approximate low frequency behavior. 

TISSUE DISPERSION 

With the low frequency behavior of the  Hi lbe r t  model determined, we 
a r e  now i n  a p o s i t i o n  t o  examine phase ve loc i ty  a s  a func t ion  of frequency. 
I f  the  phase ve loc i ty  V p ( w )  decreases wi th  frequency, then the  d ispers ion  
i s  'normal'; i f  i t  increases  wi th  frequency the  d ispers ion  is 'anomalous' 
<23>. The behavior of t i s s u e  predic ted  by the  Hi lbe r t  model may be found 
by d i f f e r e n t i a t i n g  the  general  expression f o r  phase ve loc i ty  (Eq. (16) )  
with respec t  t o  w: 

inis (IerivaEive can us posr r ivc ,  n c g a r i v o ,  ur z c r u .  

1. V ' ( w )  = 0 i f  the  phase ve loc i ty  i s  constant.  
P 

2. V ' ( w )  > 0 if the  d ispers ion  i s  anomalous. 
P 

3 .  V ' ( w )  ( 0 i f  t he  d i spe r s ion  i s  normal. 
P 

< e ' w  
W 
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Fig. 8 Phase velocity of muscle and fat predicted by the Hilbert dispersive 
model. The slopes of attenuation of 0.161 /cm/MBz (1.4 dB) for 
muscle with insonification parallel to fibers and 0.069 /cm/MHz (0.6 
dB) for fat were taken from the compilation of Goss and cowokers 
(24). The data also permitted calculation of the bulk delays, which 
were 6.32 ps/cm and 6.73 ps/cm for muscle and fat, respectively. 
The minimum-phase delay factor for both muscle and fat was 20. 

For the phase given by the Hilbert dispersive model, the relationship 
between phase and its derivative is 

Because the slope of attenuation is always positive, the Hilbert model 
predicts that tissue dispersion will be anomalous. This prediction agrees 
with the limited measurements of tissue dispersion in existence <13,16>. 

PHASE VPLOCITY PREDICTED BY THE HILBEBT DISPERSIVE MODEL 

According to the Hilbert dispersive model phase velocity can be 
uniquely specified at all frequencies from a knowledge of the slope of 
attenuation alone if the phase velocity is known at just one frequency. 
The phase velocity at one frequency is used to fix the phase velocity at 
low frequency Vp(0) and thereby the bulk delay per unit length rb of the 
Hilbert model. Phase velocity predicted by the Hilbert dispersive model 
for muscle and for fat is plotted in figure 8. These curves were generated 
with the Hilbert model from slopes of attenuation compiled by Goss and 
coworkers (24). These values are listed in table 3. The phase velocity at 
1 MHz was used to calculate V ( 0 )  and the bulk delay rb. 

P 

Similar calculations were carried out using measurements of 
hemoglobin solutions at 25OC made by Carstensen and Schwan (16). Table 2 
shows the numerical values used in finding the phase velocity as a function 
of frequency for 5 hemoglobin concentrations. As shorn in figure 9 phase 
velocities cover almost a 100 m / s  range. The dispersion, however, is 
small, so that changes on the order of 1 m / s  are difficult to see on that 
scale. Figure 10 shows the dispersion for a 30g/lOOcc concentration on an 
expanded scale. The predicted dispersion covers a 2.1 m / s  range. Also 
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shown in figure 10 are the velocities measured by Carstensen and Schwan at 
5 frequencies. The small discrepancy at high frequencies may be due to the 
assumption of linear variation of attenuation with frequency. 

Recently, propagation velocity and attenuation measurements have been 
reported by Bhagat and coworkers <13> for liver and kidney tissue of 
Sprague-Dawley rats and for dog myocardium. Their results indicate that 
the propagation velocity for the above soft tissues lies in the range of 
1530-1580 m / s  and that the dispersion in the frequency range 1-10 MHz is 
about 1.5 percent for dog myocardium. They also found that attenuation was 

Table 3. Change in phase velocity. 

Measured parameters AV calculated from the 
Hilbert dispersive model 

Slope f3 V at AV(o)' AVf3(w)a AV 6 ( 0 )  

lPMHZ 1-10 MEz at 10 MEz Vp 
dB /cm/MBz m/ s m/ s m/s percent 

Hemoglobin <16> 
8g /1oocc 0.07 0.0081 1523 0.44 0.044 0.003 
30g /1oocc 0.3 0.035 1608 2.1 0.21 0.013 

Fat <24> 0.6 0.069 1419 3.6 0.36 0.024 
Muscle <24> 1.4 0.16 1566 9.2 0.92 0.059 
Cartilage <24> 5.0 0.58 1665 86. 8.6 0.520 
1 2 
Change over the 1-10 MHz range Change for a 10 percent change in B 
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Fig. 1 0  Phase v e l o c i t y  of a 30g/lOOcc so lu t ion  of hemoglobin predic ted  by 
the  H i l b e r t  d i spe r s ive  model. This p l o t  g ives  an expanded view of 
the  top curve i n  f i g u r e  9 ,  along wi th  the  phase v e l o c i t i e s  measured 
by Carstensen and Schwan (16). Measured phase v e l o c i t i e s  were not 
used t o  generate the  pred ic ted  curve. The bulk  delay rb, however, 
was determined from the  phase v e l o c i t y  a t  2 MBz, so t h a t  the 
pred ic ted  curve goes through tha t  da ta  poin t .  As shown i n  t a b l e  2 
the  slope of a t t enua t ion  p was 0.034 /cm/MBz; the  bulk de lay  r was 
6.56 ps/cm. b The minimum-phase de lay  f a c t o r  was 20. 

a near ly  l i n e a r  func t ion  of frequency i n  the  1-10 MBz range and t h a t  the  
slope of the  least-squares f i t  l i n e  was d i f f e r e r n t  f o r  d i f f e r e n t  t i s s u e  
types . We used the  slope of t he  least-squares f i t  of t h e i r  
attenuation-versus-frequency curves t o  f i n d  t h e  slope of a t tenuat ion .  We 
ca l cu la t ed  p of the  l e f t  ven t i cu la r  muscle of dog t o  be 0.154 /cm/MBz. The 
phase v e l o c i t y  of 1570 m / s  measured by Bhagat and coworkers a t  5 MBz gave a 
bulk  de lay  rb equal t o  6.33 ps/cm. The phase v e l o c i t y  found from these  
va lues  of p and r using the  H i l b e r t  model is p l o t t e d  i n  f i g u r e  11 along 
wi th  the  experimenial da ta  obtained by Bhagat and coworkers (13). The 
disperson predic ted  by the  H i l b e r t  model is  wel l  w i th in  the  experimental 
e r ro r .  It should be noted, however, t h a t  Bhagat and coworkers used the  
pulse-transit-t ime method t o  f i n d  the  phase ve loc i ty ,  so t h a t  t h e i r  
measurements s igna l s  had a 20 percent bandwidth, i.e.,  they were not s ing le  
frequencies.  Thus t h e  e r r o r  i n  t h e i r  es t imates  of phase v e l o c i t y  may be 
even g rea t e r  than t h e  e r r o r  ba r s  they showed. 

Even wi th  the  e r r o r  b a r s  shown i n  f i g u r e  11, p could vary 
considerably and t h e  pred ic ted  d i spe r s ion  would f a l l  wi th in  experimental 
l i m i t s .  For example, i f  t h e  5 MBz value f o r  phase v e l o c i t y  i s  used t o  f i x  
Vp(0) and vb, f3 could be increased t o  1.25 /cm/WIz before  Vp(o) exceeded 
t h e  upper e r r o r  l i m i t  a t  1 0  MEz. The slope of a t t enua t ion  could be 
increased t o  1.02 /cm/MBz before  Vp(o) f e l l  below the  lower e r r o r  l i m i t  a t  
2 WIz. Thus an e r r o r  of more than 500 percent i n  p i s  cons i s t en t  wi th  the  
e r r o r s  in phase v e l o c i t y  measured by Bhagat and coworkers. 
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Fig. 11 Phase velocity of dog myocardium predicted by the Hilbert 
dispersive model. The curve was predicted from a slope of 
attenuation $ of 0.154 /cm/MHz (1.34 dB) taken from measurements by 
Bhagat and coworkers <13>. The phase velocity at 5 MEz was used to 
determine the bulk delay r , which was 6.33 ps/cm. The 
minimum-phase delay factor was 28. 

We can use the Hilbert dispersive model to establish allowable errors 
in measurements of phase velocity by calculating dispersion over the 1-10 
MEz range and the change in phase velocity at a given frequency with a 
change in attenuation. We define the change in phase velocity over the 
range tol to o, as 

AV(o) = V (u,) - V (to1) . (30) 

Eq. ( 2 0 )  and assuming v (ol)V (to,) 2 Vs(wl) because dispersion is 

P P 

Applying 
quite small, P P P 

Dispersion expected over the 1-10 MEz range is listed in table 3 for 
hemoglobin solutions and various soft tissues which cover a wide range in 
the slope of attenuation. As Eq. (31) states and table 3 demonstrates, the 
amount of dispersion is proportional to the size of the slope of 
attenuation. 

Naturally the phase velocity predicted at a given frequency will 
change if the slope of attenuation changes. The sensitivity of the phase 
velocity to a small change in the slope of attenuation which might be 
caused by an error in the measurement of B suggests the accuracy needed in 
a phase velocity measuement to provide a representation of soft tissue 
equivalent to an attenuation measurement. We define the change in velocity 
at frequency o for a change in the slope of attenuation from fl, to p, as 
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I f  
low frequency (Eq. (21) ) .  then 

the  phase v e l o c i t y  a t  frequency oo is  used t o  f i x  t h e  phase v e l o c i t y  a t  

This  change i s  a l s o  l i s t e d  i n  t a b l e  3 f o r  a 1 0  percent change i n  the  slope 
of a t tenuat ion ,  t h a t  oo = 2n x 1 MHz and t h a t  the  change AV (0) 

occurs a t  o = 2n x 10 MHz. The percentage change i n  v e l o c i t y  i s  much kuch 
smal le r  than the  1 0  percent change i n  B which induced i t .  The r e s u l t s  i n  
t a b l e  3 suggest t h a t  the  e r r o r  i n  phase v e l o c i t y  measurements must be 2 t o  
3 orders  of magnitude smaller than t h e  e r r o r  i n  t h e  slope of a t tenuat ion ,  
depending on t he  s i z e  of p,  f o r  a comparable u l t r a s o n i c  cha rac t e r i za t ion  of 
s o f t  t i s sue .  

assuming 

DISCUSSION 

The H i l b e r t  model introduced th ree  c lose ly- re la ted  parameters. ’Iko 
appeared only i n  t h e  de r iva t ion  of t he  model. They were the  high cu tof f  
frequency oh and t h e  decay f a c t o r  y which were used t o  modify the  frequency 
response so t h a t  the  Paley-Weiner conditon was met ( see  Eq. (A4)). The 
t h i r d ,  the  minimum-phase delay f a c t o r  ‘c i s  dependent on both oh and y .  
There a re ,  of course, no measurements of these  l a t t e r  two quan t i t i e s .  I n  
t h i s  paper ‘c was i n fe r r ed  from p r i o r  knowledge. We matched t h e  phase of 
t he  H i l b e r t  :ode1 t o  t h a t  of another causa l  t i s s u e  model, a single-pole 
model <19>. Actually ‘c can be ca l cu la t ed  d i r e c t l y  from Eq. (As). The 
value of ‘c which we inperred from comparison t o  the  single-pole t i s s u e  
model, i .e..  20, i s  a l s o  obtained from Eq. (A91 i f  t he  cu tof f  frequency o h i s  50 MHz and the  decay f a c t o r  y i s  0.9. These va lues  a r e  appropr ia te  
choices both f o r  represent ing  t i s s u e  i n  the  1-10 MHz frequency range and 
f o r  s a t i s f y i n g  the  Paley-Weiner condition. The value of ‘cm can be kept 
equal t o  20 i f  both o and y a r e  increased toge ther .  We presume t h a t  f o r  a 
given value of ‘c y ban be made a s  c lose  t o  uni ty  a s  des i r ed  i f  oh i s  high 
enough. This r e s u l t  says t h a t  the  magnitude of t he  frequency response, a s  
modified i n  Appendix A t o  s a t i s f y  the  Paley-Weiner condition, can be made 
a r b i t r a r i l y  c lose  t o  the  expression usua l ly  assumed f o r  the  magnitude of 
t he  frequency response, namely Eq. ( 1 ) .  which was our s t a r t i n g  po in t  f o r  
the  H i l b e r t  model der iva t ion .  

m’ 

m 

m’ 

Because the  magnitude of t h e  frequency response given by E q .  (1 )  has 
considerable experimental support, i t  was t he  b a s i s  f o r  both the  
linear-phase and Hi lbe r t  d i spe r s ive  models. Only the  phase terms of the  
two models d i f f e r .  In t he  de r iva t ion  of our d i spe r s ive  model we noted t h a t  
any non-minimum phase system can be described by the  product of a 
minimum-phase func t ion  and an a l l -pass  function. The Hi lbe r t  transform 
gave the  minimum-phase component of t he  t o t a l  phase func t ion  of our model. 
We assumed t h a t  the  phase of the  a l l -pass  func t ion  was a l i n e a r  func t ion  of 
frequency, i .e. ,  t he  same func t ion  as t he  phase of t he  linear-phase model. 
Such an a l l -pass  func t ion  accounts f o r  the  delay encountered as ultrasound 
propagates through t i s sue .  Because the  linear-phase model i s  a good f i r s t  
o rder  approximation t o  the  frequency response of t i s s u e ,  we do not expect 
t he  phase of an a l l -pass  func t ion  represent ing  t i s s u e  t o  d i f f e r  by much 
from a l i n e a r  term. 

Although the  phase func t ions  of the  linear-phase and H i l b e r t  
d i spe r s ive  models d i f f e r  i n  general ,  they a r e  the  same i n  a l o s s l e s s  
medium, where the  Hi lbe r t  model has l i n e a r  phase (see Eq. ( 4 ) ) .  Both 
models say t h a t  u l t r a s o n i c  waveforms should be delayed, but not changed i n  
shape as they propagate through a l o s s l e s s  medium ( B  = 0 ) .  I f  we consider 
t he  es t imators  of Bx given i n  t a b l e  1, we f i n d  t h a t  i n  a l o s s l e s s  medium 
the  RMS du ra t ion  of the  impulse response f o r  both models becomes ze ro  and 
the  peak value f o r  both becomes i n f i n i t e .  Thus i n  t h e  l o s s l e s s  case these  

372 
 at PENNSYLVANIA STATE UNIV on September 11, 2016uix.sagepub.comDownloaded from 

http://uix.sagepub.com/


DISPERSIVE MODEL FOR ULTRASOUND PROPAGATION 

estimators describe an impulse. If the impulse response is itself an 
impulse, then the waveform was indeed unchanged by propagation through 
lossless tissue. If the medium is not lossless, the Eilbert model says it 
must be dispersive and that the dispersion is anomalous. Dispersion is 
called anomalous if the group velocity is greater than the phase velocity. 
A low-loss transmission line is another example of a system in which 
dispersion is anomalous (26). 

According to the Hilbert mode1,the amount of dispersion expected for 
a given tissne sample can be quantified with E q .  (31) if the slope of 
attenuation fi  is known. O'Donnell and coworkers (25) quantified dispersion 
using the Kramers-Kronig relations. They predicted dispersion for two 
concentrations of hemoglobin (13 and 30g/lOOcc) measured by Carstensen and 
Schwan <16>. Our predictions for these and three other concentrations are 
shown in figure 9. The dispersion we measured from their curve for a 
concentration of 30g/lOOcc was 2.4 m / s .  The dispersion we predicted with 
Eq. (31) and plotted in figure 10 is 2.1 m/s. One would expect these 
results to be identical because the Kramers-Kronig relations and the 
Eilbert transform are equivalent <19>. O'Donne11 and coworkers, however. 
did not explicitly solve the Kramers-Kronig relation assuming a linear 
dependence of attenuation on frequency; they apparently integrated the 
attenuation a s  a function of frequency as measured by Carstensen and Schwan 
(16). 

If the assumptions of the Eilbert dispersive model are valid, then 
measurements of attenuation and phase velocity are not independent. We 
could just as easily have found, to within a constant, the attenuation of 
tissue from a knowledge of its dispersion (25). Careful measurements of 
phase velocity or time-of-flight over a wide frequency range are needed to 
verify more fully the predictions of the Hilbert model. If however, 
attenuation and phase velocity are indeed dependent on one another, 
measurement of either would give an equivalent description of tissue. 
Attenuation would, however, be the measurement of choice because 
measurement error can be 2 to 3 orders of magnitude greater than that 
required to get an equivalent description of tissue by measuring phase 
velocity or time of flight. 

CONCLUSIONS 

The Hilbert dispersive model is a phenomenological tissue model which 
successfully describes the interaction of ultrasound with tissue in both 
the time and frequency domains. It should be valuable in simulations used 
to aid in the design of transducer arrays and signal processing schemes for 
quantitative. tissue-imaging systems. 

In contrast to a linear-phase model the Hilbert model predicts a 
causal impulse response for tissue. Furthermore, both the BMS duration and 
peak value of the impulse response yield accurate estimates of the slope of 
attenuation times path length. Using only the slope of attenuation the 
Hilbert model can accurately predict tissue dispersion. The success of the 
model's predictions of dispersion suggests that attenuation and phase 
velocity measurements as functions of frequency are functionally related to 
within a constant. If indeed the frequency dependence of attenuation and 
the the frequency dependence of phase velocity can be inferred from one 
another, as given by the Eilbert dispersive model, then attenuation would 
be the measurement of choice. This choice follows because according to 
the model, phase velocity measurements must be much more accurate than 
attenuation measurements for a comparable description of tissue. 
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APPENDIX A 

DERIVATION OF TBB PBASE TPBY FOR CAUSAL RESPONSE 

A suitable phase function e(u) can be found for a linear system from 
the magnitude of its frequency response IH(u)l, so that the impulse 
response of the system is causal. The complete frequency domain 
description, the frequency response, can be written 

where 

If IH(o)l is square integrable (finite energy condition) and satisfies the 
Paley-Weiner conditon, then lE(o)l is the Fourier spectrum of a causal 
function <17,18>. To find 9(0) for such a function, we note that any 
non-minimum-phase transfer function can be written as the product of an 
all-pass function times a minimum-phase function (18). We assumed that the 
all-pass function in our tissue model fixed the propagation delay, i.e.. 
that the phase of the all-pass function was a linear function of frequency. 
The minimum-phase component of the total phase expression is given by the 
Eilbert transform 

Unfortunately the magnitude of the frequency response usually assumed 
for tissue (see 4. (1)) does not satisfy the Paley-Weiner condition. With 
a minor modification, however, it does. We must impose a high-frequency 
limit, beyond which the magnitude function does not go to zero faster than 
an exponential <27>. With this limit equal to oh and with y, which must be 
positive and less than one, as the factor which controls the rate of decay 
at high frequencies, the magnitude of the response becomes 

This choice of magnitude function satisfies the Paley-Weiner condition 
because the integral expression below is bounded: 

The finite energy condition is also met for this choice of lH(o)l: 

(AS) 

where r ( ' )  is a gamma function. 
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For IH(w)l as given in Eq. (41, emin(w) becomes 

If we require that w i  > >  us and if we let F = 11s as suggested by Seshu and 
Balabanian (17) in their discussion of the contribution to the phase of 
frequency components in the stop band of a low-pass filter, then 

where 

The total phase per unit length was found by adding the bulk delay term, 
we x (Eq. (211, of the linearphase model to the minimum-phase term (28) 
an3 dividing by the path length x: 

= we + o [ em - 1n(w)] . 
b na 
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