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Abstract

Delineating the roles of the user and the computer in a system is a central task in user
interface design. As interactive applications become more complex, it is increasingly difficult
to design interface methods that deliver the full power of an application to users, while
enabling them to learn and to use effectively the interface to a system. The challenge is
finding a balance between user intervention and computer control within the computer-user
interface.

In this thesis, we propose a new paradigm for determining this division of labor, which
attempts to exploit the strengths of each collaborator, the human user and the computer sys-
tem. This collaborative framework encourages the development of semi-automatic systems,
through which users can explore a large number of candidate solutions, while evaluating
and comparing various alternatives. Under the collaborative framework, the problem to
be solved is framed as an optimization problem, which is then decomposed into local and
global portions. The user is responsible for global aspects of the problem: placing the com-
puter into different areas of the search space, and determining when an acceptable solution
has been reached. The computer works at the local level, computing the local minima,
displaying results to the user, and providing simple interface mechanisms to facilitate the
interaction. Systems employing this approach make use of task-specific information to lever-
age the actions of users, performing fine-grained details while leaving the high-level aspects

to the user specifiable through gross interface gestures.
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We present applications of our collaborative paradigm to the design and implementa-
tion of semi-automatic systems for three tasks from the domain of graphic design: network
diagram layout, parameter specification for computer graphics algorithms and floor plan seg-
mentation. The collaborative paradigm we propose is well-suited for this domain. Systems
designed under our framework support an iterative design process, an integral component of
graphic design. Furthermore, the collaborative framework for computer-user interface de-
sign exploits people’s expertise at incorporating aesthetic criteria and semantic information
into finding an acceptable solution for a graphic design task, while harnessing a computer’s

computational power, to enable users to explore a large space of candidate solutions.
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Chapter 1

Introduction

In this thesis, we describe a new interface design paradigm for determining the division of
labor between people and computers, one which attempts to exploit the strengths of each
collaborator. We apply this approach to three distinct problems in the design of graphics,
presenting novel implemented systems for each problem.

1.1 Designing Graphics

Graphics are a rich medium available to aid both computers and people in their commu-
nication goals. A picture is worth the proverbial thousand words. As we move through
the Age of Information and into information overload the ability to organize and present
information graphically will be more important than ever. Moreover, as electronic presen-
tation of information becomes more prevalent, people will require more support in creating
and refining graphics on-line. Together, computers and users can often find solutions to
problems that neither could have discovered alone. The question is how to strike a balance
between user intervention and computer control.

As a result of computer support for the design and refinement of graphics, graphics are
becoming a more expressive and interactive medium. In turn, the number of possible
graphics, which we will call the design space, grows exponentially with the number of
parameters in the design. The complexity of the resulting design space increases as well,
making it difficult to explore design alternatives and thus to generate desirable graphics.
Many argue that the complexity of the design space is the root of the problem. While the
design space is indeed large and rich, this is not the inherent problem. The difficulty comes
in relying on the computer to navigate and explore the space, with little or no assistance
from a person. Problems arise from both the user and computer perspectives.

From the user perspective, people often do not know what they want in a graphic.
Although some graphics are better than others, it is often difficult to formalize (in a precise
manner) what is desired in a graphic. We refer to this as the problem of unquantifiable
output characteristics; it is the intangible qualities that lead people to prefer one display to
another. Next, even when people can enumerate desired characteristics, it is still difficult
for them to communicate this information to the computer. Communication is typically
done through an objective function (a mathematical specification of a desired graphic) or
through parameter setting. Neither of these methods is particularly convenient for people.

From the computer perspective, some problems are computationally hard. Optimally
labeling the point features of a map, for example, has been shown to be NP-hard (Marks and



Shieber, 1991). Other NP-hard design problems include page layout and pagination (Plass,
1981), and minimizing edge crossings and area of graphs (Johnson, 1982; Johnson, 1984).
As a result of such computational complexity, computers must rely on heuristics to generate
solutions to many problems. In addition, while people find it difficult to specify aesthetic
criteria mathematically, computers are not well equipped to evaluate aesthetic criteria as
part of their calculations. Computers may not have access to sufficient information to choose
between two design alternatives because arbitrary semantic information may be needed to
choose among several acceptable alternatives. In such cases, a person must often intervene
to decide between two or more equally correct solutions or design alternatives; computers
should not and cannot be expected to make this final determination.

The graphics design process, the sequence of actions taken in designing a graphic, should
be a dynamic process based on iterative refinement. It can be decomposed into two tasks:
conceptualization (selecting the objects to include, and how to organize them) and articula-
tion (determining precise locations of the objects). Applications need to support and assist
people in both tasks. The design process can also be characterized by the goals it is being
used to achieve. A person may be trying to instantiate a particular design; the goal is to
figure out how to get the computer to produce the graphic. Alternatively, the person may
be interested in exploring possible design alternatives. This type of browsing activity as-
sists a user in conceptualizing a particular design; viewing related graphics can help people
identify what they do (or do not) want in a graphic. The design process often involves both
tasks. A person may start with a particular design, but will often refine it after comparing
it to other graphics of its type. This interweaving of search and modification is the crux of
an iterative refinement process.

System designers must determine the roles of the user and computer in the graphics
design process. The question of how to assign responsibility within the graphics design
process is a difficult one to answer. In the following sections we examine the traditional
approach to this problem and its associated drawbacks. We then introduce a novel collab-
orative framework for determining the division of labor. We conclude with an overview of
the three graphics design tasks for which we have designed and implemented systems based
on this collaborative framework.

1.2 Traditional Approach

Historically people have relied upon the user interface as the single point of contact between
computers and people. The interface was thought of as “an input language for the user,
an output language for the machine, and a protocol for interaction” (Chi, 1985). This
view results in the traditional master-slave framework, in which the interface is a means
for people to control computers. Under this approach, the division of labor is such that the
user issues commands to the computer; the computer plays a passive role, responding to
the user’s actions.

Software packages for graphics design based on the master-slave framework range from
manual to automatic. 7Tool-based packages typify the manual end. They provide a user
with computer versions of real world artifacts, implemented with direct manipulation in-
terfaces. Drawing packages, for example, provide users art materials such as paper, pens,
pencils, paints, scissors, and paste. The computer acts as a recording device, merely noting
the solution that the user generated. Rather than aiding the design process, tool-based
applications may frustrate a user because of the difficulty of using commonplace tools in



an unfamiliar environment. Although computer-based graphics packages are often a step
up from the days of designing on paper, they place too much responsibility on the user,
and may be tedious to use. The user is responsible for both the conceptualization and the
articulation of the design, while the computer plays a passive role.

On the automatic end, oracle-based software employs complicated algorithms to relieve
people from having to do complex computations by hand. In such applications, the user
poses a question to the computer, and the computer provides “the answer”. Expert systems
are a common example of this approach. An expert’s knowledge and expertise is encoded
into a program which will then be used by non-experts to solve problems in a particular
domain. However, it is hard to know what question to ask, and difficult to state because
doing so requires setting various parameters or specifying an objective function. In such
automated applications, it is difficult to refine computer-generated designs. Editing is usu-
ally an indirect process  a user must tweak a variety of input parameters. Often a person
will not quite understanding the impact a change will have on the final layout. As a result,
people experience little control over the design process when using such black box software.

Software support for the design of graphics should provide people with mechanisms to
create, refine and generate new designs. The design process itself is inherently interactive.
As a result, software designers must take account of how easily and practically to incorporate
a user and the underlying computer application into an integrated system.! Although
systems fall on a spectrum from manual to automatic, little attention has been given to the
middle of the range. The source of problems at the endpoints (i.e. automatic and manual
applications) can be attributed to the failure of the system to delineate the roles of the
user and the computer in an effective and useful manner. In the traditional master-slave
framework, the software and its user are separate and independent components. As depicted
by the diagram in Figure 1.1, data moves through such a system in series, with only one
component working on the data at any given time. This pipe-lined approach enforces rigid
boundaries between a person and the computer. An alternative approach is to integrate
the two components, permitting them to work in parallel on the data. This approach is
shown in Figure 1.2; both the person and the computer are able to modify the data at
the same time, and both will see the results of the other’s actions. This makes for a more
collaborative and cooperative approach to design.

1.3 Collaborative Framework

The collaborative framework we propose views the interface as a means for people and
computers to collaborate on solving problems, rather than as a mechanism for people to
control computers. Its goal is to keep (or reintroduce) the user into the graphics design
process; both the computer and the user participate in the design process. The system
should be designed to exploit the strengths of each collaborator. People draw upon a broad
range of experience and often rely upon intuition when making decisions. Computers, on the
other hand, have a narrow area of expertise and greater computational power. Identifying
these competencies is a key component of the collaborative paradigm.
The collaborative paradigm we propose relies on two key components:

!Throughout this thesis we will use the term wuser to denote people, the terms computer, software, and
application to denote the machine, and system to designate the combination of user and computer together.
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e Division of labor: Defining a representation of the problem to be solved that naturally
decomposes into a portion that a computer is good at and a portion the user is better
able to perform.

e Communication: Designing languages and mechanisms to employ in transferring in-
formation between the person and the computer, specifying how much information to
exchange.

As a concrete example, we will consider the graphic design problem of network diagram
layout 2 which is one of the applications we tested hypotheses on. For instance, organiza-
tional charts are a common class of network diagrams. Given a set of nodes and edges, a
person attempts to construct a diagram to communicate some information.

In designing a collaborative system, we must first find an appropriate representation of
the layout task that can be shared by the computer and its user. Based on the represen-
tation, we must then determine the division of labor between the computer and its user
for solving the problem. Computers are quite good at fine-grained placement of graphical
objects whereas a user may find pixel-accurate placement, requiring fine-grained mouse ges-
tures, extremely tedious. The user’s role is more appropriately the coarse-grained layout,
which will depend upon aesthetic and semantic judgments that may be difficult to specify
in a discrete form. This division of labor with computer working at the local level and user
more globally is typically a good match for the collaborators’ abilities.

The second question to be addressed is communication. The user needs to communicate
the global layout of the diagram to the computer. This goal might be achieved through a
direct manipulation interface in which the user creates and places the nodes and edges of
the diagram; most drawing and graphics packages utilize standard techniques for this task.
Note that the layout provided by the user is only an approximation of the desired layout
the user need not take the time and effort to place the objects precisely. The computer’s
job is to convert coarse-grained gestures into fine-grained placement, and to indicate to
people how this will be done. Many applications include a snap-to-grid feature which may
be used for this function — it relieves users from the burden of working at the pixel level
but enables them to understand (and predict) the actions taken by the application. The
computer may utilize graphical means to aid a user in understanding its behavior; the grid
used by the application may be visible, indicating to a user the closest point to the object
being manipulated. The mathematical calculations performed by the application are not,
however, revealed to the user.

The approach described in this thesis for utilizing the collaborative framework relies on
the notion of optimization; the problem to be solved is framed as an optimization task. The
original problem then becomes one of exploring a search space, determining local minima,
and evaluating alternative solutions. One challenge is determining the appropriate roles for
the person and the computer in the optimization task. We assign responsibility attempting
to leverage the strengths of both participants. The user is responsible for global aspects of
the problem: placing the computer into different areas of the search space, and determining
when an acceptable solution has been reached. The computer works at a more local level,
computing the local minima, displaying results to the user. In addition to establishing

2This task is also referred to as graph layout. We will use the terms interchangeably throughout this
thesis.



the division of labor, we must also provide simple interface mechanisms to facilitate the
interaction between user and computer.

Although others have used optimization in the design of graphics (Witkin and Kass,
1988; Poulin and Fournier, 1992; van de Panne and Fiume, 1993; Kawai, Painter, and Cohen,
1993; Schoeneman et al., 1993; Liu, Gortler, and Cohen, 1994; Sims, 1994; Tang, Ngo, and
Marks, 1995; Christensen, Marks, and Shieber, 1995; He et al., 1996; Edmondson et al.,
1997), they utilize a different division of labor between the computer and its user — the
computer traditionally attempts to calculate globally optimum solutions. In our approach,
however, the system is responsible for local optimization only. The user is responsible for the
global portion of the optimization, as well as evaluating different local minima to determine
an acceptable solution. The traditional approach to optimization in design is discussed in
more detail in Chapter 4.

1.4 Problem Domains

To explore this new methodology, we have examined three problems from the domain of
graphics design in detail: network diagram layout, parameter specification for representa-
tional graphics, and floor plan segmentation. Together these graphical design tasks provide
good coverage of the design of both informational and representational graphics. The three
systems we have developed illustrate the different strengths that a person and computer
may contribute to the collaborative effort.

Network diagrams are a common form of informational graphic, and constitute an area
in which it may be difficult for a person to define the aesthetic qualities desired in the final
design. Most research in network diagram layout has focused on automatic layout. We
have created an interactive constraint-based editor for network diagram layout, based on
the collaborative framework described above. Our system, GLIDE, improves upon general
constraint-based editors by providing a small but powerful set of specialized constraints
specifically designed for drawing network diagrams. GLIDE is the first system to support
people in specifying the visual organization of a diagram. The user provides an initial
layout and constraint set, which characterize the desired visual organization of the dia-
gram. The system then attempts to solve a constraint-satisfaction problem, by calculating
a local minimum using a mass-spring physical simulation. The process is both interactive
and iterative. GLIDE provides simple interface mechanisms for the user to create, view,
manipulate and remove constraints. The user may intervene as the system attempts to
provide a satisfactory layout, or once the system has finished. By using an intuitive local
constraint-satisfaction scheme whose behavior is predictable and easily visualized through
animation, GLIDE assists the user in understanding how to achieve a desired layout, and
exploring design alternatives.

Parameter specification is an especially challenging problem for many computer graphic
algorithms. Many techniques for generating representational graphics, such as volume ren-
dering and physically-based animation, rely on numerous parameters in order to generate
compelling images. The solution space of possible parameter settings and the corresponding
space of resulting images are both large and complex. It is difficult for people to understand
the impact and interaction of these parameters. In addition, many of these algorithms do
not run in real-time, making it difficult to incorporate them into an interactive system in
which a user is able to experiment with different settings. Our goal is to aid the user in
the task of parameter specification. Under our collaborative methodology, known as De-



sign Galleries, the system pre-processes the design space, but enables a person to explore
representative samples from the space in real-time. One interface approach uses a multidi-
mensional scaling technique to layout representative thumbnail images in a two dimensional
space. The user can then explore areas of interest within the layout in greater detail. This
user-directed search exploits people’s expertise at incorporating aesthetic criteria in evalu-
ating design alternatives, and utilizes a computer’s computational power in generating and
providing representative candidates distributed throughout the design space.

Floor plan segmentation addresses the problem of identifying partially and fully bounded
regions in a scanned bitmap image depicting a floor plan. The task of region segmentation,
like many graphic design tasks, can depend in the end on arbitrary semantic information
about the material depicted in the bitmap to which no purely syntactic method can be
sensitive. Because no fully automatic method is to be expected, we believe that it is crucial
to think of the task of region segmentation as being solvable only semi-automatically. Thus,
any system for region segmentation needs to be evaluated not only for how well it works in
an absolute sense, but also for how well any remaining problems (for there will be some)
can be easily handled by simple human interventions. Other systems for identifying regions
in a bitmap floor plan image place too much burden on the user; they require a person
to trace out regions of interest with the mouse. Our collaborative system automatically
extracts partially and fully bounded region definitions from a bitmap image. It suggests
these candidate regions to the user, who can then further subdivide a single region, or join
several regions into one region, using only gross mouse gestures. As our system requires
minimal input from a user, it is better suited for generating this type of representational
graphic.



Chapter 2

Background

In this chapter, we discuss three topics that serve as necessary background for this thesis.
First we define the term computer-user interface. We then expand upon the idea introduced
in Chapter 1 of design as an iterative process, and categorize graphics into two categories:
informational and representational. Finally, we provide brief discussions of existing software
packages for each category of graphic that incorporate some notion of collaboration into their
computer-user interface.

2.1 What Is An Interface?

The notion of a “user interface” emerged in the 1970’s during a time when computers were
beginning to be used in a commercial setting by ordinary people. Prior to that time, com-
puters were used primarily by specialists scientists and engineers who received special
training for using the computer. Computers were very costly; people’s time was an inexpen-
sive resource in comparison (Preece, 1994). Therefore, it was easier to adapt the people to
the computer than vice versa. As non-specialists began to interact with computers, however,
more attention needed to be given to the software and input/output devices that enabled
people to work with a computer. From an engineering perspective, the computer already
included a variety of interfaces, and so the user interface was simply another component
of the application. It was typically defined “to be all user and machine behavior that is
observable by an external observer” (Chi, 1985). In practice the interface was that which
was presented by the computer fo a user, rather than a user’s interface to the computer.
Note that this relationship is not symmetric, and the interface from the user to the com-
puter is not included in standard uses of the term “user interface”. Grudin (1993) provides
a detailed discussion on what is meant by the term “user interface” and why this term is
inappropriate in today’s computing environment.

In this thesis, we will use the term “computer-user interface” as it provides a more
accurate indication of our view of system design. We view the interface as the common
ground shared by the two collaborators in solving a particular problem. We define it to be
the mechanisms and procedures available to both the computer and its user. Although we
attempt to exploit human expertise (e.g. global problem solving, perceptual acuity), we do
not examine issues typically termed as human factors. Moran (1981) suggested a broader
use of the term “user interface” in which the perceptual and cognitive processes of the user
were included. Although such processes are important considerations, a formal analysis
of them is beyond the scope of this thesis. We do, however, informally incorporate some



psychological aspects into the determination of the appropriate roles of the person and the
computer in the collaborative framework.

The term “human-computer interaction” was adopted in the 1980’s to characterize the
interdisciplinary research that addresses the design of interactive systems. Dix et al. (1993)
note “Human-Computer Interaction (HCI) is, put simply, the study of people, computer
technology and the ways these influence each other. We study HCI to determine how
we can make this computer technology more usable by people.” From this perspective,
the computer-user interface is extended to include both a person’s and a computer’s inner
processes; it is a medium that enables people and computers to collaborate:

“The computer is a tool, a complex artifact that can extend our reach. The
design discipline of human-computer interaction systematically applies knowl-
edge about human purposes, human capabilities and limitations, and machine
capabilities and limitations in order to enable us to do things we could not do
before. Another goal of HCI, as suggested in the definitions given above, is to
enhance the quality of the interaction between people and computers. We strive,
for example, to make technology easier for people to learn and easier for them
to use.” (Baecker et al., 1995)

The goal of computer-user interface design is to make software easier to use. Although
this may appear to be a simple goal, many of today’s applications are still incredibly difficult
to use and understand; they hinder rather than aid a user in doing some task. Two key
problems contribute to the difficulty: expectations and communication. The first problem is
the user’s expectations about a computer. Too often, the user just wants the computer to do
the right thing; the computer should figure out “the answer”. But what if there is more than
one answer? How should the computer choose between them? What if the computer cannot
find any answer, or it will take some unacceptably long time to find an answer? Should the
computer give up, or should it get some help from the user? Inappropriate expectations
may also contribute to the second problem — that of communication. Human-computer
interaction is a form of communication that should be facilitated by the interface. Neither
participant, however, is doing a particularly good job. In many applications, it is very
difficult for users to convey to a computer what they want it to do. Computers, in turn, do
not give understandable feedback to their users. Part of the communication problem arises
from the existence of two “views” of the world. For the computer, every detail, both data
and procedure, is specified formally and explicitly. For the user, the environment is not as
clearly defined — it includes both implicit and explicit information, and people are often
unaware of what guides their intuitions. The computer-user interface needs to provide a
mapping between the two views, making the transformation transparent to the user. Often,
a user is forced to work within the system view, using arcane commands, and setting various
parameters, without understanding their meanings.

Our work on collaborative computer-user interfaces addresses these two problems. First,
it helps to define a framework that better shapes the expectation of the user, namely that
the computer is a collaborator with whom the user can work to accomplish a particular
task. The computer is not a black box, or a magician that magically comes up with “the
right answer”. Rather it works with the user to reach an acceptable solution. Second,
the computer-user interface provides simple interaction mechanisms that facilitate the com-
munication between the two participants in the graphics design process. It makes a clear
distinction between the user’s and computer’s view; it hides implementation details that



should be transparent to people by automatically translating between these two views. Thus
the computer-user interface enables people to work in a more comfortable and appropriate
environment.

2.2 The Design of Graphics

In this section, we categorize graphics into two categories based on the level of abstraction
within the graphic. For each category of graphic, we describe related work for a sample of
design tasks.

Informational graphics, such as bar charts and network diagrams, are graphic elements
in which a conventional format is used to present a data set. Although the data for these
types of graphics are often derived from the physical world, they are presented by people
(and to people) at a more abstract level. There is not necessarily a literal correspondence
between properties of some real world object and those of the corresponding graphic ele-
ments. Typical graphic design problems involving informational graphics include tasks such
as page layout, hypermedia design, network diagram layout, and designing bar graphs and
charts.

Representational graphics are graphic elements used to model real world objects; peo-
ple have an existing model or idea from which they attempt to generate an electronic
counterpart.! The graphic represents an actual (or imagined) object, rather than abstract
data; graphical properties (e.g. distance, color, brightness) correspond literally (though
perhaps approximately) to their real world counterparts. Typical applications for this cat-
egory of graphic include CAD/CAM packages, animation, medical imaging, and virtual
reality environments.

2.2.1 Informational Graphics

Business or presentational graphics are a typical form of informational graphic; they present
abstract data using conventional formats such as charts or graphs, and are a useful medium
for both analyzing and presenting data. Systems need to support and assist the user in both
tasks of the design process: conceptualization and articulation. Ideally a person’s efforts
should be directed towards conceptualization, the more creative part of the design process
and a task better suited for people. We rely on the computer for articulation. In practice,
however, producing useful graphics is difficult, in large part due to the lack of support in
available software for these two component activities.

Current packages for creating informational graphics are of limited use for one of two
reasons. Many systems restrict users to a small set of static designs — a user selects a
style, and the system automatically displays the data using a predefined algorithm. This
inflexibility limits the user’s participation in conceptualizing a design, and can frustrate
people as they are unable to refine a design or generate variations of a given graphic.
Other applications provide a user with more freedom, serving merely as recorders of every
graphical aspect of the design, each one specified by the user at the level of primitive graphic

'In some applications, the object may not actually exist or even be part of the physical world. A CAD
package, for example, can be used to design a car that will be produced, but does not yet exist. An animation
may include mythical creatures, such as unicorns, or take place on an alien world that no human has actually
experienced. We include such cases under the broad category of representational graphics.
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operation. So much control is often a burden. The user is responsible for both phases of the
design, specifying the data, the graphical properties and relationships, and the placement
of all the graphical objects through tedious fine-grained mouse gestures.

Some previous research on “intelligent interfaces” has focused on fully automating the
design of presentational graphics (Mackinlay, 1986; Roth and Mattis, 1990; Seligmann and
Feiner, 1991) as a means for the computer to communicate information to its users. Al-
though such automated methods are useful in enabling computer applications to commu-
nicate information graphically to people, they are not optimal for human users who are
themselves designing graphics. People often incorporate aesthetic components into informa-
tional graphic design tasks. Such aesthetic considerations are often not taken into account
in automated systems. In the domain of network diagram layout, for example, automated
systems have focused on minimizing edge crossings and minimizing the total area used by a
layout. The visual qualities of a layout are not included in the computer’s calculations. A
computer is not well equipped to evaluate such aesthetic criteria as part of its calculations,
making it difficult or impossible for an automatic system to choose appropriately among
several acceptable alternatives. Thus, any system for creating, for instance, a network di-
agram layout, needs to support a user in refining and generating new solutions. Ideally, it
should incorporate the user into the design process itself. This is illustrated by the GLIDE
system described in Chapter 3.

Recent research on the interactive design of presentational graphics takes this approach,
and makes implicit use of collaboration between a user and the computer. The Gold System
(Myers, Goldstein, and Goldberg, 1994) supports users in designing business graphics. It
allows users to sketch a few instances of data elements using a standard drawing editor
interface. The system then automatically instantiates the rest of the data, based on the
users initial sketch. Because it allows the user to sketch an example of the desired graphic
(rather than precisely drawing all objects with exactly the right size and location), Gold
enables a user to generate graphics quickly and easily. In addition to producing standard
spreadsheet graphics, users are able create hybrid charts, impossible under other existing
packages. Gold also enables users to edit and refine an image, simply by redrawing desired
portions. The system updates the graphic accordingly.

Sage, SageBook and SageBrush (Roth et al., 1994) are another family of tools used
to create charts and graphs. Using SageBrush, users can assemble a graphic from scratch
by selecting various graphics, and assigning data to their various properties. SageBook
enables a user to browse existing designs, which they may use for inspiration, or as an
actual template for their own design, which they may then edit. Sage is a knowledge-based
tool for automatically designing graphics, and incorporates information from the other two
systems, providing users with a design environment suitable for novice and expert designers
alike. Both Gold and the Sage family exemplify the collaborative style interface we propose;
they minimize required user input, reduce user tedium, and provide powerful systems for
the design of graphs and charts. In Chapter 3 we examine network diagrams, a common
form of informational graphic for which most previous research has focused on automated
layout.

2.2.2 Representational Graphics

Research in the field of computer graphics has traditionally focused on the algorithms needed
to produce representational images and animations. Image rendering techniques, such as
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volume rendering and radiosity, focus on shadows and reflections for scene generation. An-
imations strive to be physically realistic, incorporating real-world physics and interactions
between objects; less emphasis has been placed on integrating these algorithms into inter-
active tools that would aid users in creating and designing such graphics. The master-slave
model of interface design dominates; people retain primary control of the design process,
with computers delegated to a secondary status.

Consider for example the domain of animation, a common form of representational
graphic. Almost twenty years ago Catmull (1978) described the early experiences of trans-
ferring cel animation to computers. Today computers are still delegated to the status of
recording devices when used in motion capture systems. People wearing sensors gener-
ate desired motions, while the computer records the locations of the sensors over time.
The computer uses the sensors to generate control-points for mapping the behavior onto
a user-supplied model, generating the corresponding animation. Although the results are
physically-realistic and visually plausible animations, the computer plays a passive role in
the process. Key-framing, another popular technique for animation, employs computers as
the in-betweeners, a role previously delegated to human apprentices. Computers interpolate
between user-specified key-frames to generate the twenty-four frames per second needed for
smooth animation. If computers generate an undesirable sequence of actions,? the anima-
tor will insert a new key-frame to further constrain the animation to be generated by the
computer. Computer-aided cel animation, motion capture and key-frame systems are all
implemented using a master-slave relationship. The computer’s power is focused on com-
puting and rendering specific animations which have been fully specified by users. People
typically have an idea of the animation they would like to generate, and their energies are
spent trying to convey the information to the computer.

This is not to say that computers have not had a major impact on animation; computers
do play an important role in today’s animations. Even limited automation offers a number of
benefits. In the fall of 1995, Walt Disney released Toy Story, the first full-length, all-digital
movie created entirely by artists using 3D computer graphics tools. The use of computers
reduced the number of animators used from over six hundred used on previous films, to one
hundred and ten (McWilliams, 1995). The point is that the role of the computer is that of
tool.

“Computer animation combines the skills of traditionally trained character
animators with the most sophisticated ‘pencils’ in the world. Using computers
as a tool, the filmmakers introduce a unique three-dimensional animation look,
with qualities of texture, color, vibrant lighting and detail never seen before in
traditional animated features.” (Anonymous, 1996)

Although computers are increasing productivity within the traditional domain of anima-
tion, they could be used to explore the animation design space rather than just rendering
a specified animation. Along with supporting traditional animators, such systems would
extend the accessibility of animation beyond specialized artists by focusing on the creative
process and moving beyond the production of the animation. The recruiting web page for
Pixar includes a banner with the slogan “Computers Don’t Animate, People Do!” (Pixar,

2The interpolation methods used in computer-aided key-framing are not without fault. Linear interpola-
tion, the simplest method, often results in physically unrealistic animations, or causes articulated figures to
behave in other visually unsuitable ways.
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1997) Although we don’t envision computers becoming animators in their own right, the
division of labor could be more equally distributed. Design Galleries, a family of applica-
tions discussed in Chapter 4, incorporate the collaborative approach we propose and are
appropriate for generating animations and other forms of representational graphics.

Not all graphics are ends unto themselves; a graphic may be an intermediary means
(or an interface) to another representation to be used in solving another problem. Many
CAD/CAM tools are used to create representational graphics which are then used to gen-
erate a specification to be used in the manufacturing process of the object. Architectural
drawings are a typical example — the “graphic” represents a building to be constructed
or modified. AutoCAD is a package that supports people (typically trained architects) in
manipulating a floor plan: either designing one from scratch or modifying an existing floor
plan that is already in an AutoCAD format. In many ways AutoCAD is comparable to
standard drawing packages in that it follows the master-slave paradigm; the application is
a drafting assistant that permits manual manipulation of the geometry within the design.
There is minimal collaboration on the part of the computer in that it maintains constraints
and provides an appropriate set of tools and objects for a person to design a building, but
the person is responsible for both conceptualization and articulation of the design. The
application provides little support for the creative aspects of design and exploring design
alternatives.

Kochhar (1990) emphasized the importance of browsing within the design process. He
developed FLATS, a system for automated floor plan layout (Kochhar, 1991) in which a
person provided an initial partial design and a set of criteria to which the final design must
adhere. The computer then generated a set of design alternatives for the user to browse
through; any of the resulting designs could be refined by the user and then used to generate
the next set of alternatives. This cycle is similar in nature to interactive evolution systems,
as described in Chapter 4. An important aspect of Kochhar’s work is its collaborative
nature. FLATS supported people in exploring design alternatives, and refining a design
through an iterative refinement process.

Finally we consider a system which employs a collaborative interaction mechanism to
help users generate a desired graphic. Baudel (1994) introduced a novel spline editing
technique aimed specifically at graphic designers. In traditional systems, splines are edited
by specifying control points and tangents for a curve. Artists, however, do not think in these
terms. The mark-based paradigm more closely matches an artists actions in the physical
world; a series of marks are used to refine an existing curve. This form of communication is
more natural to the target users, and illustrates the importance of communication within
the collaborate framework we propose. The division of labor is such that the user (in this
case an artist) is responsible for conceptualization (the general shape of the curve, and the
computer, articulation (the precise location of each point in the curve). The user indicates
the desired shape of a curve through a series of marks, rather than by manipulating one
or more control points, which correspond to the computer’s definition of the curve. The
naturalness of the interaction enhances its usability. This particular system attempts to
mimic the real world actions of a person. While such interfaces are useful in some situations,
they are not required by the collaborative framework suggested in this thesis.
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2.3 Summary

We view design as a two step iterative process involving conceptualization and articulation.
The goal of conceptualization is to determine which objects to include in a graphic, and
how to organize them, and under the collaborative framework is generally the responsibility
of the user. Articulation determines the precise locations and graphical properties of the
objects, a role given to the computer. In addition, the design process is often guided
by two strategies. Instantiation occurs when a person uses the computer to generate a
particular design. Browsing and exploration techniques are useful when a person has only
a vague notion of the desired graphic. This type of search helps overcome the problem of
unquantifiable output characteristics. People need not know or enumerate ahead of time
the desired quality of a graphic they need only recognize it when they see it. People
often employ both strategies in the design of graphics. In the following chapters we present
the three systems we have developed based on our collaborative framework.
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Chapter 3

(FLIDE

In this chapter we describe GLIDE (Ryall, Marks, and Shieber, 1996; 1997), an interactive
editor for network diagram layout. It is the first system to support users in specifying the
visual organization of a diagram. By using an intuitive local constraint-satisfaction scheme
whose behavior is predictable and easily visualized through animation, GLIDE assists the
user in understanding how to achieve a desired layout, and exploring design alternatives.
Such a division of labor — having the user work globally, while the system works locally —
exemplifies the collaborative approach proposed in this thesis.

3.1 Introduction

As described in Chapter 1, network diagrams are a form of informational graphic in which
a set of nodes and edges are arranged to construct a diagram that will communicate some
information. Entity-relationship diagrams, PERT charts, state transition diagrams, flow
charts, and organizational charts are common classes of network diagrams. The task of
network diagram layout (deciding which nodes and edges to use, and how to best arrange
them) is a good representative problem for designing informational graphics.

There are three main considerations for designing such graphics. First, syntactic criteria
define the well-formedness of a graph. For example, no two nodes should overlap. Next, lay-
out aesthetics, such as minimizing edge crossings, aid the readability of the graph. Finally,
perceptual organization assists people in the semantic interpretation of the diagram. This
last component is crucial for a person’s understanding of the information being presented
in a diagram. Inappropriate or misleading perceptual organization of a diagram has been
identified as a major cause of design flaws in informational graphics (Kosslyn, 1989; Marks
and Reiter, 1990).

Most small to medium sized graphs (i.e. those with fewer than 50 nodes) that appear
in publications or presentations are still drawn with the aid of fairly primitive commer-
cial drawing tools like Microsoft’s PowerPoint or Claris Draw. These manual tools provide
minimal support for aesthetic graph layout; a person is responsible for both the conceptual-
ization and the articulation of a layout, often working at a pixel level. Research in the graph
drawing community has neglected the issue of perceptual organization and has instead fo-
cused on optimizing layout aesthetics in automated systems. Thus, most graph-drawing
algorithms cannot support the exquisite symmetries, spacings, and alignments that graphic
designers utilize in professional-grade work. This kind of layout detail can be achieved in
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some constraint-based drawing systems, but the very general capabilities of such systems
tend to make them cumbersome for the specific task of graph drawing.

Our focus has been on an interactive system that supports users in specifying percep-
tual organization of network diagrams based on the collaborative paradigm proposed in
this thesis. We have built a system, called “GLIDE” (Graph Layout Interactive Diagram
Editor), for interactive graph layout that organizes the interaction in a more collaborative
manner than previous systems. We take advantage of user’s expertise at globally designing
the layout, and the computer’s computational superiority; the user is responsible for an
approximate layout of the nodes, and for specifying any desired visual organization. Under
this paradigm, the user has the flexibility to create interesting designs, without the bur-
den (and tedium) of having to precisely place every object in the layout. Using a direct
manipulation interface, the user can easily modify a layout, guiding the system to produce
a suitable graphic. GLIDE improves on general constraint-based systems by providing a
specialized set of constraints, simple mechanisms for a user to add and delete constraints,
and an intuitive method for solving the constraints. In addition, by incorporating anima-
tion into the process, GLIDE assists a person in understanding how to achieve a desired
layout. We describe our approach in the following section. We then walk through a sample
interaction between a person and GLIDE in Section 3.3 and provide the system design and
implementation details in Section 3.4. We compare GLIDE with existing approaches for
network diagram layout in Section 3.5.

3.2 Owur Approach

GLIDE is a constraint-based system designed specifically for drawing graphs. It incorporates
a small set of macro constraints, or Visual Organization Features (VOFs), (Marks, 1991;
Kosak, Marks, and Shieber, 1994), which are listed in Figure 3.1;! the application of each
VOF is illustrated by before and after layouts. VOFs are one mechanism for specifying
and incorporating the perceptual groupings of a graph, and VOFs have been incorporated
previously in a few fully automated graph layout systems (Kosak, Marks, and Shieber, 1994;
Dengler, Friedell, and Marks, 1993); GLIDE is the first to allow interactive specification and
manipulation of high-level VOFs such as these. In GLIDE, a user may apply and remove
any number of VOF's interactively.

GLIDE applies user-supplied VOFs by converting them into a set of spring forces affecting
the nodes in a graph drawing. Additional spring forces are introduced automatically to
preserve syntactic correctness of the drawing, such as preventing nodes overlapping other
nodes and edges. The user may also apply force directly to a node by dragging it with
the mouse; this is a convenient override mechanism. The nodes, which are modeled as
point masses, are moved by physical simulation into minimum-energy configurations. The
simulation of the mass-spring model is continuously animated, indicating to the user the
influence of the VOF's.

Incorporating animation into interfaces is not a new concept (Baecker and Small, 1990).
More recently, Thomas and Calder (1995) have demonstrated the usefulness of animation
in direct manipulation interfaces. Using physical characteristics such as inertia and gravity,
they provided substance to objects, creating better user feedback. Feedback is of course es-
sential to the success of direct manipulation interfaces; the use of animation in an interface

L All figures in this chapter were drawn with the GLIDE system, except for Figure 3.9.
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Figure 3.2: User intervention is required to find a globally optimal solution.

serves an important communication need. GLIDE exploits this approach in its implemen-
tation by continually animating the physical simulation of the mass-spring model. User
interactions are also animated. As the user moves a node, for example, its position is up-
dated in the physical simulation, causing the system to move other nodes as it attempts to
satisfy existing constraints.

Using a direct manipulation interface, a person may move nodes and groups of nodes,
along with adding and deleting any number of nodes, edges, or VOFs, to modify the diagram
and its layout. Such manipulations are useful not only for exploring design alternatives but
for providing “advice” to the system when it finds itself in a local optimum. Figure 3.2 is
a simple example. In Figure 3.2(a), we see three nodes, connected by two edges. The user
has added a single Alignment VOF to the set of nodes. The system attempts to satisfy this
constraint by moving the three nodes toward an implicit horizontal line running through
the vertical centroid of the three nodes; meanwhile, the syntactic constraint prohibiting
overlap provides a repulsive force between nodes and edges. In Figure 3.2(b), GLIDE has
moved node A down, and nodes B and C upwards. The three nodes cannot be aligned,
however, due to the edge between B and C. By manually moving A anywhere to the left of
B, as illustrated in Figure 3.2(c), the user obtains an optimized layout, such as the one in
Figure 3.2(d).

These interactions occur as the simulation is running, and allow the computer and
system together to collaborate in finding better global solutions to the implicit constraint-
satisfaction problem. Such advice is especially useful in cases of over- or under-constrained
designs. If a set of VOFs generates an over-constrained layout, GLIDE will find the nearest
stable configuration, which may satisfy different VOFs to varying degrees. The user, who
controls the design process at a global level (the choice of VOFs and the gross placement
of nodes in the diagram), can easily guide the computer to find more satisfactory solutions
and acceptable layouts by moving nodes or adjusting VOFs. In case of under-constrained
layouts with multiple solutions, again the user can provide advice to explore alternatives.

Although a weak mechanism for satisfying constraints, energy minimization through
physical simulation handles over-constrained systems gracefully, and provides an easily un-
derstood metaphor for the user. Thus, the use of a constraint-satisfaction scheme (mass-
spring simulation) that is intuitive and predictable, rather than one better at finding global
solutions, is deliberate. GLIDE is not intended to be good at globally satisfying the VOFs
by itself. Rather, it is intended to provide an interface that allows a useful collaboration
between user and computer in solving the layout problem. For this purpose predictability,
simplicity, and the compelling nature of the animation are far more important than global
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Figure 3.3: Scanned diagram on which the example was based.

optimality; these characteristics are an integral part of GLIDE’s collaborative nature. Par-
ticipant (computer and human) are given responsibility for what they do best, relying on
simple techniques to communicate with and guide each other.

3.3 Example Interaction

Unlike traditional master-slave interfaces in which the user makes a request and waits
for a response, GLIDE is an integrated system in which both the user and the computer affect
the state of the design at the same time. The system does not pause while the user adds
or moves nodes and edges, and applies or deletes VOFs. Likewise, the user can intervene
and continue to interact with the layout as the system adjusts nodes’ positions, attempting
to satisfy the various constraints specified by the user. It is exactly this animation and
simultaneity of action that makes GLIDE a compelling collaborative system, but that is
difficult to express (as we have below) through a series of static snapshots. Figures 3.4-3.8
show snapshots of various intermediary stages in the process of drawing a given graph.
Figure 3.4 depicts the entire system interface; other figures show only the canvas area.

For simplicity of exposition, the example interaction depicted here is based on a task
in which the user attempts to create a particular layout already envisioned, rather than
exploring alternative layouts. Our goal is to replicate the drawing in Figure 3.3 taken from
a paper by Norton, Szymanski, and Decyk (1995). In Appendix A, we use GLIDE to explore
design alternatives based on this same graph and to explore a data set previously unseen
by the user.

The first step in the drawing process is to place the desired number of nodes in approx-
imately the desired layout. To create a node, the user clicks the left mouse button on the
canvas area. As is standard in drawing tools, the user has control over a variety of graphical
properties of the nodes, including shape, font, background color, foreground color, border
color, and dimensions. These are derived from system defaults, which can be set by a user,
and modified at any time using an edit dialog window. Each node is automatically sized to
accommodate its label; if a node’s label is changed, the computer will automatically enlarge
a node to accommodate its new label. These capabilities are not depicted in the figures.
As the user adds more nodes, the computer is providing collaborative aid by automatically
enforcing prohibitions of overlapping nodes; nodes too close together will be repelled from
each other.

Edges, directed or undirected, linear or orthogonal, can be added between nodes. The
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user first clicks the left mouse button on the origin node. As the user drags the mouse to-
wards the destination node, GLIDE displays an edge (anchored at the origin node, and whose
head follows the mouse). Releasing the mouse button over the destination node causes an
edge to be added; releasing it elsewhere aborts the edge connection process. The computer
enforces prohibitions of node-edge overlaps; intersecting edges and nodes will be repelled
from each other. Figure 3.4 shows the layout after an initial node- and edge-placement
phase. Note the orthogonal edge between the “ParticleDistribution” and “Electron” nodes.
GLIDE will maintain the orthogonality constraint (comprising two alignment constraints)
throughout the design process.

To add a VOF to the layout, the user first selects a set of nodes using standard mouse
techniques such as clicking or region-dragging. The user may then apply one or more VOFs
to the set by pressing the appropriate push buttons, located on the right of the window in
Figure 3.4. In Figure 3.5, the user has applied a horizontal Alignment VOF to the second,
third, and fourth rows of nodes. As VOFs are applied to the nascent diagram, graphical
indicators of the constraints are added, as described in Section 3.4.3. In GLIDE, the graphical
VOF indicators are shown visually by a user-responsive highlighting mechanism that cannot
be replicated in static images. We therefore use node coloring and static icons to indicate
different VOFs in the figure; for instance, the grey rectangles in Figure 3.5 serve as a
graphical indicator of the Alignment VOFs.

The system satisfies these constraints using the mass-spring simulation described in the
next section. Indeed, movement of the nodes to satisfy the constraints would typically
proceed while the user is adding more VOFs. Figure 3.6 shows the stable configuration
that ensues after the three Alignment VOFs have been satisfied, along with three more
VOFs the user has added. On the right, the user has added a Hub Shape VOF, indicated
as a light gray circle. The center two nodes (dark gray) are to be vertically aligned. Finally,
the four nodes on the left have had a Symmetry VOF applied to them.

Once again, the system attempts to satisfy all constraints, both old and new, in deter-
mining each node’s placement. Figure 3.7 shows the updated node positions. Each row is
still aligned, and the new VOFs have been satisfied as well. In addition, the user adds three
text labels to the layout. Text labels are a specialized node type described in further detail
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below. The user has applied three more VOFs, which will better position each of the text
labels. The light-gray nodes on the left are subject to a Cluster VOF. The dark-gray nodes
on the bottom are to be horizontally aligned. The middle three nodes, shaded medium gray,
are to be evenly spaced. Figure 3.8 shows the final layout generated by the full set of nine
VOFs.

3.4 System Design

From a user’s perspective, GLIDE is a simple high-level interface for adding and deleting
nodes and edges, and for applying and removing various VOFs, thereby inducing new
drawings. This facade is maintained by the underlying system, which is continually trans-
lating user actions into low-level constraints that it then tries to satisfy. In this section, we
describe the relationship between the high-level VOFs and the low-level constraint mecha-
nisms. In addition, we also describe how the constraints and constraint-satisfaction process
are made apparent to the user.
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3.4.1 Constraint Formulation

Constraints on graphs fall into two main classes, syntactic and semantic. As we have seen
in Section 3.3, syntactic constraints are introduced automatically by the system, while
semantic constraints (in the form of VOFs) are added interactively by the user. The system
transforms constraint instances from both categories into a mass-spring model as described
here.

Syntactic constraints are universal requirements necessary for a diagram to be well-
formed. The GLIDE system respects two such constraints (see Figure 3.9):

e Node-node overlap: Two nodes should not overlap. This constraint is enforced by
placing a spring between each pair of nodes. The spring’s rest length is the required
minimum distance between nodes, but it also has the property that its spring constant
reduces to zero when stretched beyond its rest length. The spring therefore only
applies force when the two nodes overlap, compressing the spring. Overlapping is
thus prevented, but movement apart is not penalized. This is one of several ways in
which the simulation is rendered nonphysical by generalizing the notion of a spring.

e Node-edge overlap: A similar spring is placed between each node-edge pair. Nodes are
the only objects to which force can be applied, so the goal of applying a force to an
edge is actually accomplished by applying half the force to each of the two nodes at
the edges’ endpoints. This disassociation between the spring’s conceptual endpoints
and the points of application of the spring’s force is another example of how our model
differs from more physically faithful mass-spring systems.

Applying these two syntactic constraints alone, the system enforces the well-formedness
of diagrams. Semantic constraints, expressed as VOFs, enhance the visual form of the
drawing. GLIDE supports the following VOFs, implemented with sets of springs as described
(see Figure 3.9):

e Alignment (horizontal, vertical, either): The set of nodes should be collinear and axis-
aligned. A spring with rest length zero is attached between each node and a virtual
axis-aligned line through the centroid of the nodes. Note that forces are applied only
to the nodes, and not to the virtual axis. In the case of a horizontal or vertical
Alignment VOF, the axis-alignment is to the respective axis. The third case uses the
axis to which the nodes are already most closely aligned.

e Equal Spacing (horizontal, vertical): The nodes should be spaced evenly along the
given axis. Spacing along the orthogonal axis is unconstrained. Adjacent pairs of
nodes are connected with springs whose rest length is the computed average distance
between adjacent nodes.

e Sequence (horizontal, vertical): The nodes should be ordered in the current sequence
along the given axis. Springs with a very short rest length and with asymmetric spring
constant (zero if nodes are in proper sequence, positive otherwise) are placed between
adjacent nodes in the sequence to keep them in order.

e (luster: The set of nodes should be clustered together. Springs with a short rest
length are placed pairwise among the nodes.
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Figure 3.9: Reduction of some sample VOFs to systems of generalized springs.

24




e Zone: The bounding box of the nodes should contain no other nodes. The bounding
box is treated as a “super-node,” the node-node overlap method is applied, and the
resulting forces are applied equally to the nodes comprising the zone.

e Symmetry (horizontal, vertical): The nodes should be symmetric about the given
axis. Each node is paired with the node closest to its reflection about the horizontal
or vertical line through the centroid of all the nodes. (A node may be paired with
itself if it is closest to its own reflection.) Equal and opposite forces are then applied
to the nodes in each pair to make them symmetric about the line of reflection.

e T-Shape: The nodes should form a T-shape, as in a tree diagram. The user specifies
which of the nodes is the parent. The T-shape VOF can be enforced as a combination
of Alignment and Equal Spacing VOF's for the children and an Equal Spacing VOFs
for the leftmost and rightmost children and parent.

e Hub Shape: The nodes should be placed radially equidistant on a circle. A central node
may optionally be specified by the user; if none is specified, a phantom node is added
at the center. Springs are placed between neighbors on the perimeter and between the
center node and each perimeter node with rest length equal to the calculated average
radius.

In addition, GLIDE introduces a new VOF to aid the user in interacting with the system.
The following VOF can be used to gain absolute control over the fine-grained position of
nodes.

e Anchor: A node should be located at the current position regardless of what other
forces in the physical simulation may be acting on it. Although this may be thought
of as infinitely increasing the mass of this node, the Anchor VOF is implemented by
calculating all forces as if under normal conditions (so that forces are still appropriately
placed on other nodes), and then ignoring anchored nodes when node positions are
updated.

Although the computer cannot move anchored nodes, a person may still move them
using the mouse. A useful technique is for a user to anchor two nodes to further constrain a
second VOF. Under a Hub Shape VOF, for example, the radius of the hub is determined by
calculating the average distance between the center node and each node along the periphery.
To obtain a specific radius, the user could anchor the center node along with one node on
the periphery. The user can then resize the hub by moving either of the anchored nodes.

Finally, GLIDE also provides a single diacritical VOF. A diacritical VOF does not provide
any constraint on the diagram, but merely augments the diagram with additional graphic
elements tied to aspects of the diagram layout. The diacritical VOF implemented at present
is the Frame VOF:

e Frame: The bounding box of the set of nodes is demarcated with a drawn frame.
As the nodes participating in a Frame VOF move, the frame repositions and resizes
itself accordingly. The user controls such properties of the frame as its color, padding
(distance added to the bounding box before being drawn), and whether the frame
is drawn as an outline or filled rectangle. The Zone VOF example in Figure 3.1 is
illustrated using a Frame VOF.
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The Frame VOF can be used in conjunction with a Zone VOF, but is distinct from it.
The topology of a graph often includes enclosures; a Frame VOF can be used to instantiate
this component.

3.4.2 Constraint Satisfaction

The fundamental low-level constraint mechanism is a spring that obeys Hooke’s Law;? graph
nodes move according to the forces acting on them, which result from the springs attached
to them. A mass-spring model for graph drawing was first proposed by Eades (1984), but in
his and most subsequent systems, the spring forces correspond to topological or geometric
properties of the graph. In the GLIDE system (and in the system of Dengler, Friedell, and
Marks (1993)), a more general notion of spring force is used. VOFs and syntactic constraints
are converted to spring forces as described in the previous section.

Our system uses a physical simulation as a constraint-satisfaction method. In addition to
spring forces, all nodes are subject to a global friction force for stability. This acts as a form
of damping, which prevents the system from oscillating wildly. Direct user manipulation is a
second mechanism for positioning nodes, although it is not treated as a force by the physical
simulation. The result of user movement is to directly reposition the node. As this occurs
during the physical simulation, however, the system will immediately reflect the updated
position. The spring forces are recalculated by the computer, giving the appearance that
the nodes have had new forces applied to them.

When GLIDE is first started, the physical simulation is at rest. The addition or deletion
of VOFs, nodes or edges, as well as direct object manipulation by the user all cause the
simulation to begin running. It runs until the system reaches a stable configuration, as
determined by a combination of total elapsed simulation time, and kinetic energy present in
the system; the simulation is guaranteed to run for some minimum time in order to ensure
that the forces in the system have had time to affect the masses to which they are attached.
The size of the time step in the simulation controls the animation presented to the user,
as well as the frequency with which the user can interact with the layout. For each time
step, the system calculates the forces on each nodes, which is used to update each node’s
momentum, which in turn is used to determine the new position for each node. The friction
applied at each iteration is determined by the maximum spring constant value for active
springs in that iteration it is intended as an approximation of critical damping.

Our first attempt at constraint satisfaction based on optimization was not as successful.
The approach was similar to that of Kosak, Marks, and Shieber (1994), utilizing an objec-
tive function which included a component for each VOF type. The system calculated the
local minimum for this function using Powell’s method (Press, 1988), a traditional numeric
optimization technique. The behavior of the system was not intuitive to people; they were
unable to predict the impact their actions would have. As this intuition is an integral part
of a collaborative system we turned to the mass-spring and physical simulation approach,
which is currently implemented in GLIDE.

2Hooke’s Law states that strain, the ratio of the change in length to the original length, is proportional
to the stress that produces it. (“Ut tensio, sic vis.” “As the elongation, so is the force.”)
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3.4.3 Visual Presentational Issues

A tremendous amount of flexibility is achievable using the VOFs above, in tandem with
adjustments to the graphical properties of nodes. For instance, tezt labels in diagrams can
be implemented without additional infrastructure. A text label is merely a node with a
transparent background and border. The label can be attached to other graphical objects
using a Clustering VOF for instance, as in Figure 3.8. Nonetheless, in keeping with the spirit
of the system providing high-level access to low-level infrastructure, and in contradistinction
to traditional drawing and constraint-based editing programs that provide uniform but low-
level access to their primitives, a notion of text label is provided in the GLIDE interface
directly to allow generation of such nodes easily.

Similarly, a node with neither border, background, nor text is a kind of phantom node
that can be useful as a control point for other objects (edges between nodes or the bounding
box of Frame VOFs, for instance). It can serve as a way station between two other nodes.
By adding Alignment VOFs between the phantom node and each node to which it is con-
nected, the appearance of an orthogonal edge that turns at right angles is effected. Again,
phantom nodes and orthogonal edges are made explicit in the interface, though they re-
quire no additional infrastructure for implementation. The use of hidden objects to control
constraint-based layouts has been previously proposed. See Gleicher and Witkin (1994), for
example, for a discussion of alignment objects.

In addition to the graphical components of the diagram itself — the nodes, edges, and
frames  the interface uses visual means to present to the user the current set of VOF's that
are being applied to the diagram elements. Each VOF instance is indicated by a graphical
indicator in the display; the shape of the VOF indicator is similar to the icon on the corre-
sponding push button for adding that VOF. As a person moves the mouse over a particular
VOF indicator on the canvas, GLIDE highlights all participating nodes. Conversely, placing
the mouse over a node will highlight the VOF indicators for VOF instances in which that
node participates. Finally, placing the mouse over a VOF push button will highlight all
VOF indicators of the particular VOF type. These mechanisms enable a user to easily de-
termine the extent and impact of a particular set of layout constraints. The VOF graphics
are intended to provide visual feedback to people; they are not, of course, included in the
final output diagram.

GLIDE’s animation is also an integral part of its visual feedback. Both user and computer
actions are animated as the layout is displayed in the canvas area of the system. The physical
simulation continually updates the position of the nodes in the layout. Although they are
not graphically represented, the forces on a node become apparent to users as they try
to move various nodes. As a user moves one node towards another, the two nodes repel,
causing the node under user-control to seem heavier, moving more slowly, while causing the
second node to move away. As the user adds VOFs to the layout, other forces are created.
Giving nodes and edges “substance” through animation aids the user in understanding how
to manipulate the layout to obtain desired results.

Finally, the use of a local constraint satisfaction mechanism that animates its actions
provides users with a means for understanding the development of the layout. Dynamic
stability is concerned with minimizing the difference between successive layouts of the graph
(Tamassia, Battista, and Batini, 1989). Unlike many automatic graph layout algorithms
in which new layouts are generated without taking current node positions into account,
the mass-spring model used in GLIDE includes current node positions in determining new
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positions. Furthermore, changes in node position are made gradually, permitting users to
maintain their orientation with respect to the graph. Any large changes in successive layouts
are primarily due to user intervention. Thus, the collaborative nature of GLIDE aids in the
dynamic stability of the system as a whole.

In evaluating GLIDE as a collaborative system, we must examine the communication
mechanisms between it and its user. GLIDE’s animation, graphical indicators, and high-
lighting mechanism are at the heart of its visual feedback. User interaction utilizes simple
interaction mechanisms based on a direct manipulation paradigm; the user can manipulate
constraints, nodes and edges directly, guiding the system in its search for a locally optimum
layout. The effects of their actions are immediately apparent through the animation of the
simulation. Furthermore, although GLIDE is based on a physical simulation, it does not
necessarily expect the user to understand the underlying physics; users can have strong
intuitions about how the interface will behave based on analogy and experience with the
physical world.

3.4.4 Implementation

The interface for GLIDE is implemented in Tcl/Tk (Ousterhout, 1994), extended by a C
module to run the physical simulation for the mass-spring model. In order to support user
interaction the application must poll for user actions such as the addition or deletion of
nodes, edges or VOFs, or the repositioning of any object. Most user interaction causes a
change in the mass-spring configuration, and in turn a change in state for the simulator.
In theory the simulator should run until it reaches a stable configuration, restarting auto-
matically when a change in state occurs. In practice, however, such an implementation is
not easily achieved due to the Tcl/Tk internals. Therefore, in the current implementation
the simulator runs continually; while in an equilibrium state it continues to calculate forces
even though no change will be made in node positions.

Another important part of the physical simulator implementation are the spring con-
stants. These variables control the stiffness of the springs, and in turn the amount of forces
placed on the nodes. All of the VOFs except Cluster use fixed and equal spring constants.
The Cluster VOF is given a lower spring constant; the result is that Clustering constraints
in effect take lower priority than the others types of VOFs. This behavior matches most
users’ intuition about the system behavior. The result of applying both a Collinearity and
Clustering VOF should be to have a set of nodes positioned so that they are aligned and
close together. With an equal spring constant, the nodes would be unable to align them-
selves. In developing this system, we allowed users (i.e. the developers) to interactively set
spring strengths. While this functionality provides the user with more flexibility, it also
complicates the dialogue between the system and the user. As a result, GLIDE currently
prohibits users from varying spring strengths.

The two syntactic constraints use a spring constant that is higher than that of the se-
mantic VOFs. The stronger springs used to prevent overlaps induce greater forces, ensuring
the syntactic validity of the diagram. As noted, when two objects are not overlapping, the
spring constant goes to 0, in effect making the spring infinitely stretchable. In the imple-
mentation, we use a gridding system to track node and edge position. Rather than doing
the n? comparison of testing nodes pairwise for overlap, the system only tests nodes that
fall in the same region. A similar method is used to test for node-edge overlap. If (for
whatever reason) users want overlaps to occur, they may achieve this effect using anchors.
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GLIDE supports various modes of input and output. Users may save the structure and
layout of a particular graph into an ASCII text file, which contains the Tcl script necessary
to generate the layout. This file may be edited manually to make small changes in the
graph. The GLIDE system can read one or more of these files as input, enabling users to
modify an existing layout, or combine several graphs into one layout. Users may save an
image of the layout, which is generated in a PostScript or GIF format.

As previously discussed, GLIDE makes use of graphical indicators for representing VOF
instances, and phantom nodes as control points for other objects. These graphics are not
necessarily intended to be included in the final drawing. In fact, some users may prefer not
to see them during the layout and editing process. To accommodate both of these issues,
GLIDE offers multiple views to users, enabling them to turn off graphical indicators, phantom
nodes, or anchors on nodes in any combination. The highlighting mechanism described
above is still available to users; mousing over a node will highlight the graphical indicators
for any VOF instance that node participates in. Phantom nodes can be manipulated even
when they are not visible.

We have included standard drawing package functionality in GLIDE. Users can change
object characteristics (color, shape, fonts, etc), for entire classes of objects (by setting the
default value) or for individual objects via a pop-up menu; each object instance has a
specialized menu associated with it, providing easy access for users. GLIDE also supports
methods for cutting and pasting objects in the layout, including VOFs. The semantics are
such that all selected objects are copied if appropriate. If an edge is selected, for example,
without both its parents being selected as well, it is not included in the copy. For a VOF
instance, only a subset of nodes need be selected for the VOF to be copied. In the case of
a T-Shape VOF, however, if the root is not included, the instance is not copied. Cutting
and pasting cannot be used to apply a VOF to an existing set of nodes; adding a VOF
is accomplished by selecting the nodes and the appropriate pushbutton, as described in
Section 3.3.

3.5 Comparison to Existing Approaches

This section provides a comparison of GLIDE to drawing packages and systems from the
graph drawing and constraint-based editing communities.

3.5.1 Drawing Packages

At first glance, commercial tools such as Claris Draw, MacDraw, or Microsoft’s PowerPoint
seem an attractive alternative for drawing small to medium sized diagrams. Most provide
various polygonal shapes, text objects, and lines, and fixed templates such as trees. They
support people in creating and moving various objects, and often employ snap grids, which
let users place objects without the annoyance of having to work at a pixel level. In many
cases, they also provide mechanisms to enable users to align objects in the diagram. These
are typically one-time actions that can easily become “undone” by future user action. In
general, such drawing editors are primitive, and place too much onus on the user. Although
they enable a person to establish various relationships among objects in a drawing, they
do not maintain these relationships during the evolution of the drawing. In addition to
global control over the design, the user is responsible for all aspects of the layout process,
which is obviously undesirable. There is only minimal collaboration between the user and
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the computer in such systems — the snap gridding feature described in Section 1.3 is one
simple example.

3.5.2 Graph Drawing Algorithms

Battista et al. (1994) compiled an annotated bibliography of over three hundred papers
describing systems and algorithm for drawing graphs. Most of these papers cover algorithms
for fully automatic graph layout. There is a considerable additional literature on graph-
drawing algorithms, but it also mostly concerns non-interactive techniques for automatic
graph layout (Tamassia and Tollis, 1994; Brandenburg, 1995; North, 1996). Various systems
have been built that also use such automatic layout algorithms. DAG (Ganser et al., 1993),
for example, is a system that draws directed graphs. It is available to users via an e-mail
server, and returns output in either PIC or PostScript form; as a result, people cannot
fine-tune the results to better meet their needs. Automatic algorithms and systems are
inappropriate for use in a network-diagram design tool; they allow no user input in solving
a problem whose aesthetic and combinatorial difficulty make it crucial that people be allowed
to participate.

Several tools for the interactive editing of graphs have evolved from the graph drawing
community. These include Edge (Newbery, 1988), daVinci (Frohlich and Werner, 1994),
GraphEd (Himsolt, 1994), its successor Graphlet (University of Passau, 1997), and com-
mercially available software from Tom Saywer (Tom Sawyer Software Corporation, 1991).
Recently Bridgeman, Garg, and Tamassia (1996) have provided a web-based service to
serve as a test bed for comparing different automatic layout algorithms. In general, these
graph layout and editing systems include a limited graph editor, which support the user in
modifying the syntactic structure of the diagram (adding and deleting nodes and edges),
in fine-tuning node placement, and in editing various attributes of the graphical objects
(color, shape, size, fonts, etc). Most of these systems then use automatic layout routines to
determine a final layout. Such systems are useful for drawing larger graphs; people may not
know the structure of a diagram and an automatic layout may help them make sense of the
data, enabling them to determine a desirable organization for the diagram. In such cases,
automatic layout often provides a starting point for exploring design alternatives. These
editors, however, restrict node movement and are too inflexible for small and medium sized
networks; they do not support users in generating aesthetically pleasing layouts. In some
sense they are comparable to typical spreadsheet graphics packages in that they enable
users to make sense of large data sets; they share the drawback that the computer limits
a user to pre-defined styles, which may or may not be what the user had in mind. Most
importantly, they do not support the specification of perceptual organization.

Marks (1991) addressed the importance of perceptual organization in his thesis in which
he described ANDD, an implemented system for automatic layout of network diagrams, and
introduced the notion of wvisual organization features (VOFs) which can be used to char-
acterize the perceptual organization of graphs. Subsequently, Kosak, Marks, and Shieber
(1994) incorporated VOF's into another system for network diagram layout that relied on a
massively parallel genetic algorithm in which an objective function was specified to evaluate
the quality of the layout. VOFs have also been incorporated into another fully automated
graph layout system (Dengler, Friedell, and Marks, 1993) which utilized a generalized spring
algorithm to solve them. In all cases, the VOF set to be applied was provided as part of the
specification of the graph. In contrast, GLIDE enables users to interactively specify desired
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VOFs; users may also interact with the GLIDFE system to aid it in solving the constraints.

Bohringer and Paulisch (1990) suggested the use of constraints to enable users to provide
semantic information to guide automatic layout algorithms. They extended the Edge sys-
tem (Newbery, 1988) to provide a small set of low-level constraints, which users could apply
interactively by filling in a form. In this system, constraints were specified in one step and
then applied (as a result of the user pushing an apply button) as a second step. Likewise,
as users removed constraints (by pushing a button for each constraint), they would again
need to activate the constraint solver manually to generate a new layout. The three basic
constraints types were for absolute positioning, relative positioning, and clusters; these are
only a subset of the constraints supported by GLIDE. Each constraint instance could be
assigned a priority by the user. The system utilized a global constraint satisfaction mech-
anism. In the case of inconsistent constraints, the system deactivated constraints based on
their priority, attempting to keep higher priority constraints over those with lower priority;
among inconsistent constraints with equal priority, the system would select randomly which
constraint to deactivate. Although the authors note that deactivated constraints were ig-
nored during the evaluation of the constraint network, there is no discussion of how or if a
deactivated constraint becomes reactivated. To support users in debugging the constraints,
the system provided a query button, which would indicate to users if a particular constraint
were being met. The system integrated the use of constraints into the Sugiyama layout
algorithm?(Sugiyami, Tagawa, and Toda, 1981). GLIDE improves upon this system by pro-
viding a larger set of high-level constraints to users, a more intuitive satisfaction mechanism,
and a computer-user interface with easier interaction mechanisms.

3.5.3 Constraint-Based Editors

Constraint-based drawing editors are perhaps one of the oldest ideas in computer graphics.
Sutherland’s Sketchpad (1963) introduced the notion of interactive graphics and incorpo-
rated the ideas of direct manipulation, and constraint-satisfaction. Subsequent research
led to systems such as ThingLab (Borning, 1979) and Juno (Nelson, 1985); these early
systems provided a limited set of graphic primitives and constraints. Juno2 (Heydon and
Nelson, 1994) expanded upon this work. This system is a double-view drawing editor, which
presents the user with a WYSIWYG graphical representation, along with a text-based ver-
sion of the program used to generate the image. Modifying either view updates the other
accordingly. This approach is appealing because it provides an intuitive interface for both
programmers and non-specialized users. Converge (Sistare, 1990; Sistare, 1991) is a sys-
tem in which three-dimensional constraints and the geometry to which they are applied
are presented together in a single graphical framework; it presents constraints to the user
by superimposing graphical icons onto the geometry. Many other systems have employed
constraint-based techniques. The work of Hower and Graf (1995) provides a comprehensive
bibliographic survey of constraint-based techniques and their application to a variety of
tasks such as computer-aided design, graphics, layouts and user interface design.

Because they maintain relationships by enforcing various constraints throughout the
editing process, constraint-based editors have the potential for a more balanced collab-
oration than traditional drawing packages that typically only provide one-time actions.

This algorithm is used for laying out directed graphs by introducing dummy nodes to split edges so that
nodes can be assigned to levels in a hierarchy.
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Although constraint-based techniques have been utilized in numerous systems, they have
enjoyed only limited success. This is in part due to the difficulty in creating, solving and
presenting constraints to the user (Gleicher and Witkin, 1994). We consider three key
questions surrounding the design of constraint-based system:

e Which constraints will be supported by the system?
e How will the constraints be established?
e What happens in the case of conflicting constraints?

Constraint-based systems are often overly general and complex, making them cumber-
some for specific tasks, such as drawing network diagrams. In most systems, constraint
selection (i.e. the set of constraints the system will support) is based on orthogonality and
coverage, as opposed to convenience for the particular higher-level task at hand. GLIDE im-
proves upon these systems by providing a small but powerful set of constraints specialized
to support the drawing of graphs, and simple interface mechanisms for the user to create,
view, manipulate, and remove constraints. Note that although GLIDE provides specialized
constraints for network diagram layout, it does not provide guidance to the user in applying
them appropriately. Such considerations typically fall in the domain of graphic design. The
division of labor in GLIDE relies upon humans for this particular expertise. An interesting
extension might be to incorporate design advice into the system. This modification would,
however, change the very nature of the collaboration between the computer and its user.

Although three previous systems (Marks, 1991; Kosak, Marks, and Shieber, 1994; Den-
gler, Friedell, and Marks, 1993) incorporated VOFs into their diagrams, these were auto-
matic systems; the constraints were not specified interactively by users. GLIDE is the first
system to support users in specifying the visual organization of a diagram. The system
provides a natural and powerful vocabulary whereby users can easily express the desired
perceptual organization of graph layout. The VOFs provide for proximity relationships,
alignment, axial and radial symmetry, sequential ordering of a layout, and other commonly
used patterns found in graph layout. In addition, GLIDE introduces the use of a diacritical
VOF, which provides additional graphic support to users, along with a meta-VOF, which
enables users to better guide the system in articulating the layout of the graph.

People often have a difficult time understanding how a constraint-based system works.
Because the mathematical methods used for constraint satisfaction are not necessarily easily
understood, and due to the complex interaction of some constraints, it is often unclear to a
user how and why the system moves from one configuration to another. Furthermore, some
sets of constraints are unsatisfiable. Many methods do not degrade gracefully under such
conditions, and are unable to show a user how to remedy the situation. On the other hand,
when a design is under-constrained, multiple layouts will satisfy the given set of constraints.
Without user guidance, the system would need to guess which one a user wanted.

Nonetheless, constraint-based systems, if extended to allow collaboration on the setting
up and solution of the constraints are a viable alternative for graphic design tasks such as
network-diagram layout. Indeed, the paradigm that we propose in this thesis is just such
an alternative.
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3.6 Summary

Network diagrams are a common form of informational graphic and constitute an area in
which it may be difficult for a user to define the aesthetic qualities desired in the final
design. In particular, perceptual organization is a key for human understanding of such
diagrams. Previous work on graph drawing has focused on syntactic criteria and layout
aesthetics in automatically laying out a graph. Because most interactive graph drawing
tools rely primarily on these automatic algorithms, they do not support users in specifying
perceptual organization information, which is an integral part of providing semantics to the
diagram.

GLIDE is unique in its approach to constraint-satisfaction. Its use of a generalized
mass-spring simulation which emphasizes local constraint satisfaction and whose behavior
is intuitive and predictable to users, rather than one better at finding global solutions, is
an integral part of its collaborative nature. GLIDE is not intended to be good at globally
satisfying constraints by itself. Rather, it is intended to provide an interface that allows a
useful and efficient collaboration between user and computer in solving layout problems. For
this purpose, predictability, simplicity, and compelling animation are far more important
than global optimality.

The basic concept underlying the GLIDE interface — tight collaborative interaction be-
tween user and computer to solve an optimization problem, with the computer performing
local optimization and the user responsible for global control — has resulted in a graph
editor that enables users to draw small- and medium-sized graphs easily. The mass-spring
simulation approach may be applicable to other layout, drawing, and design tasks. In
implementing such a system for other domains, the challenge would be in identifying the
perceptual organizations that are relevant to the particular task at hand.
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Chapter 4

Design (zalleries

Viewed abstractly, all algorithms in computer graphics map input parameters to output
values. For example, image rendering maps scene parameters to output pixel values; an-
imation maps motion control parameters to trajectory values. The problem of parameter
specification — finding a good set of input parameters to generate desirable outputs (i.e.
realistic images or compelling animations) is an important but challenging problem in in-
corporating computer graphics algorithms into interactive systems. It is difficult for people
to understand the impact and interaction of these parameters. Finding input parameters
that yield a desirable output is difficult and tedious for many rendering, modeling, and
motion control processes. This is not surprising; these mapping functions are usually mul-
tidimensional, nonlinear, and discontinuous. A system that solves this problem would help
expert and novice users alike.

In this chapter we describe Design Galleries!(Marks et al., 1997), a novel approach
to parameter specification that embodies in its computer-user interface the collaborative
framework proposed in this thesis. It exploits a computer’s superior computational power
to explore the space of design alternatives, and a user’s ability to incorporate aesthetic
criteria into evaluating and organizing competing designs. The Design Gallery method-
ology outperforms other approaches to parameter specification by handling the problems
of high computational costs and unquantifiable output characteristics. It supports users in
both ezploratory and instantiative graphical design tasks. We focus on a novel method for
arrangement of large data sets of graphics and interaction techniques that support users in
browsing design spaces.

4.1 Introduction

Manual parameter tweaking has long been a bane for computer graphics. Searching for a
specific image can be time-consuming and tedious, and is often a case of trial and error;
in many ways it is like searching for a needle in a haystack. A person supplies the input
parameters, leaving the computer to generate the corresponding graphic. A typical scenario

!The material presented in this chapter is based upon a research project comprising thirteen people geo-
graphically distributed over five locations, and is included as a good illustrative example of the collaborative
framework proposed in this thesis. An overview of the approach is given, with emphasis placed on this
author’s contribution the arrangement and interaction techniques as they are incorporated into a user
interface for a variety of application areas.

34



would be for a person to use a simple editor to set the various parameters, each represented
by a control such as a slider or knob. By way of analogy, consider a television set that has
four parameters to control image quality: hue, color, brightness and sharpness. Most people
have a hard time adjusting just these few parameters to get the desired picture; it is unclear
to most people how changing one parameter will impact the others. Now imagine having
to wait one minute every time one of the knobs is tweaked before seeing its effect instead
of the continuous, real-time feedback that TVs provide. Parameter specification would be
horribly slow and frustrating. Such is the case with many computer graphics applications.
Time delays of minutes, hours, or even days are not uncommon. Finally, a TV has only
four parameters computer graphics algorithms can have many more. As the number
of parameters grows it can become increasingly difficult for a user to predict the effects of
adjusting particular parameters and combinations of parameters. The notion of getting the
computer to assist actively in setting parameters is therefore appealing.

Inverse design and interactive evolution are the primary previous approaches to computer-
assisted parameter specification. Inverse design is an automated approach in which a person
provides an objective function that encapsulates the desired characteristics of a graphic; the
computer then optimizes this function, producing the corresponding graphic. In many cases,
however, a person does not always know what qualities will make one graphic preferable to
another. This problem of unquantifiable output characteristics makes inverse design impos-
sible for many design tasks. Interactive evolution, a semi-automatic approach to parameter
specification, solves this problem by employing the user as a dynamic function; a person
picks and chooses among a set of graphics, indicating which ones are preferred. Many com-
puter graphics algorithms, however, do not run in real time — they may require minutes
or hours to generate a graphic. Because of these high computational costs, it is impractical
to use interactive evolution to assist in parameter specification.

Our approach to computer-assisted parameter setting, which we call Design Galleries
(Marks et al., 1997), presents the user with the broadest selection, automatically generated
and organized, of perceptually different graphics or animations that can be produced by
varying a given input-parameter vector. The general approach is to have the computer
generate a diverse selection of graphics in batch mode, as a preprocessing phase, which
the user can then browse through in real-time, viewing and selecting graphics interactively.
Such a division of labor overcomes the problems of unquantifiable output characteristics and
high computational costs that are associated with existing approaches to computer-assisted
parameter selection; a comparison of Design Galleries to existing approaches is given in
Section 4.5.

Central to the implementation of a Design Gallery is the presentation of design alterna-
tives. A primary goal of the Design Galleries is to provide access to a large set of graphics
so that a person can get an understanding the overall design space. The division between
computer and user in presenting and exploring the design space is an integral part of the
collaborative paradigm used to design the computer-user interface. However, the greater
the size of the set, the more difficult it will be for someone to browse effectively. We call
the problem of organizing and presenting a set of output graphics for easy and intuitive
browsing by the user arrangement; it is discussed in more detail in Section 4.4.
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Figure 4.1: Components and interactions of a Design Gallery Application.

4.2 Design Gallery Methodology

Generally speaking, the Design Gallery paradigm can be applied to any graphics problem
that involves setting parameters that make up an input vector of variables whose specifica-
tion gives rise by an algorithm (typically involving heavy computation) to an output graphic,
and where the judgment of output graphic quality is subjective, informal, or otherwise dif-
ficult to define formally. The paradigm requires a method of characterizing the output
graphics with an easily computed output vector; the output vector is generated using a
mapping function (which will involve less computation than the algorithm used to generate
the full graphic) from the input vector to the output vector. The output vectors are such
that a distance metric on the space of output vectors approximates the perceptual similar-
ity of the corresponding output graphics. A dispersion method is used to efficiently find a
sample of input vectors that well cover the space of output vectors (hence output graphics).
The selected input vectors are mapped to output graphics during a pre-processing phase
before the interactive session with the user begins. The selected graphics are presented
to the user through a perceptually reasonable arrangement method that makes use of the
distance metric. The user can then effectively and intuitively browse through the range of
final graphics.

Figure 4.1 provides a schematic representation of six of these eight basic building blocks
(input vector, output graphic, output vector, algorithm, mapping, and distance metric

dispersion and arrangement are discussed below) and their interactions for the Design
Gallery approach. The set of input vectors delimits the space of possible (output) graphics.
A single input vector specifies the initial data set and a particular set of parameters — some
portion of the input vector may be held constant. Each input vector may be used to generate
an output graphic (e.g. an animation or an image) using a (potentially computationally
expensive) algorithm, or an output vector using a less expensive mapping function. The
output vectors act as compact representations of the output graphics; they capture the
salient features of the graphics, and are used to evaluate and compare alternatives during
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the dispersion phase. The mapping function used to transform input vector to output is
typically a light-weight computation in comparison to the algorithm used to generate the
full output graphic. In Figure 4.1 arrow width is used to indicate computational expense.
The distance metric is used to compare two output vectors and approximates user perceived
similarity in the output graphics; smaller distances correspond to a higher similarity in the
output vectors, and in turn, a greater perceptual similarity between corresponding output
graphics.

Given building blocks, the dispersion component searches through different parameter
values for the input vector, typically on the order of millions of combinations, using the
mapping function to calculate the corresponding output vectors. Using the distance metric,
it can compare output vectors, expanding the working set to get good coverage of the
design space. The result is a maximally distributed set of output vectors (which correspond
to a set of output graphics). The arrangement component takes as input this set of well
distributed output graphics and attempts to organize and present the results to the user.
The focus of this research has been on the arrangement and interaction techniques as they
are incorporated into a user interface for such a system. This collaborative interface and
its application in a variety of domains is discussed in more detail in the following sections.

4.3 Sample Application: Medical Imaging

We have applied the Design Gallery approach to several common parameter-setting prob-
lems: light selection and placement for image rendering, both model-based and image-based;
opacity and color transfer function specification for volume rendering; and motion control for
particle-system and articulated-figure animation. For illustrative purposes, we will briefly
describe a sample Design Gallery application for medical imaging. All the applications are
described in more detail in separate papers (Marks et al., 1997; Kang et al., 1995), and
additional example interfaces given in Appendix B.

Volume rendering is a means for visualizing large data sets. It is one of the techniques
used in the field of scientific visualization; as a tool, it is useful for both image understanding
and generation. As used in medical imaging applications, volume rendering is typically
applied to data sets that define attributes of a model not only at the surface, but inside as
well. Such data sets can be generated from CAT-scan (computerized tomography), PET-
scan (positron emission tomography), MRI (magnetic resonance imaging), and ultrasound
procedures. Volume rendering enables viewing such data as a three-dimensional field, rather
than as individual planes (which is how the data is gathered). In addition, a single data
set may be rendered into hundreds of different images, revealing different components of
the structures represented by the data. This is to be distinguished from the different view
points that might be used to render the image.

One algorithm for volume rendering is based on ray tracing; it makes use of two transfer
functions to determine the color and opacity for the voxels (three-dimensional pixels) in
the data set. For our medical imaging application the data values are pre-segmented into
four disjoint subranges: one each for air, fat, muscle and bone. Standard colors are used
to represent the different tissue types, and so the color transfer function is held constant.
Changes in the opacity transfer function will result in images that reveal the underlying
structural elements to varying degrees. Figure 4.2, for example, shows the same data set
rendered using different opacity transfer functions.

The application we consider here is a volume rendering experiment using a data set

37



Figure 4.2: Human hip data set rendered using different opacity transfer functions.

for a human pelvis. The fixed portion of the input vector includes the 3D CAT-scan data
of a human hip and the color transfer function. The variable component of the input
vector is for the opacity transfer function, which is parameterized by a polyline, containing
the y-coordinates for twelve control points; the x-coordinates are held fixed. Varying the
opacity transfer function will cause the different tissue types to be rendered using different
transparencies. Because changes to the transfer function will generally affect many pixels
throughout a volume-rendered image, we need only include a handful of pixels in the volume-
rendered image in the output vector. After some experimentation (as discussed by Marks
et al. (1997)), we settled on using eight pixels, selected manually. Dispersion on the basis of
eight well-chosen pixels seems to produce excellent dispersion of complete images at a much
reduced computational cost. Representing all of their YUV color space values results in
twenty-four values in the output vector. Mapping is done by volume rendering of the eight
sample pixels. Standard Euclidean distance is used as the distance metric for comparing
vectors in the output space.

The dispersion heuristic uses an evolutionary strategy that adapts its sampling over
time in response to what it implicitly learns. It starts with an initial set of random input
vectors. These vectors are then perturbed randomly. Perturbed vectors are substituted for
existing vectors in the set if the substitution improves dispersion. The measure of dispersion
used is nearest-neighbor Euclidean distance in the space of output vectors. Improvement
is rapid at first. However, the rate of improvement drops quickly. After considering mil-
lions of candidate images, the dispersion procedure returns 256 input and output vectors,
distributed throughout the design space. The system renders the full-sized image (m x n
pixels) corresponding to each input vector using a volume rendering algorithm.

Arrangement is discussed in detail in the following section.
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Figure 4.3: Instantiated components for a medical imaging Design Gallery application.

Figure 4.4: A Design Gallery for medical imaging with different opacity transfer functions.
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4.4 Arrangement and System Design

Presenting data in an organized manner is an important part of information understanding.
The primary goal of the arrangement component is to make it easy for people to navigate
through the design space. We would like users to explore the display intuitively, relying
on visual comparisons in evaluating and examining candidate graphics. A great deal of
research has been done in the field of graphic design (Bowman, 1968; Dondis, 1973; Tufte,
1983; Tufte, 1990; Tufte, 1997); its goal is the design of effective visual communication for
information presentation. Typical considerations include form, spatial organization, and
composition. Within the field of user interfaces, Marcus (1983; 1995; 1992) has applied
many of these ideas to the design of effective displays and usable interfaces. He presents
basic principles which can be used in GUI design (Marcus, 1995). Based on his characteri-
zation, we present four considerations for the arrangement component of a Design Gallery
application:

e Jcons: What representation should be used to present the output graphics to users?
e Layout: Given a set of icons, how should they be arranged on the screen?
e Nawvigation: How should the user move through the design space?

e Interaction: What methods does the system provide to the user for manipulating the
space and graphics within it?

4.4.1 Icons

The representation used to present output graphics to users will be called an icon. One
possible icon choice would be to use the output vectors used by the dispersion heuristic.
This mathematical representation of the graphic, however, would not provide users with
much information, particularly as people are interested in the perceptual qualities of the
graphic. Another option would be to use a number or a simple point to represent each
graphic. Again, this would not aid people visually. An obvious choice would be to use the
output graphic itself. Screen space, however, limits the number of full-sized graphics that
the system can present to users at one time.

The icons used in the Design Gallery applications are thumbnails (e.g., 32 x 32 pixels and
smaller) which are small, low-resolution copies of the full-sized output graphic. Although
thumbnails provide less detail than the corresponding full-sized images, they still supply
important information to the user; visually scanning the area enables people to identify
patterns in the layout. Due to their small size, many more thumbnails may be displayed
simultaneously than larger images. The thumbnails are arranged in the icon display panel
(the inner region in Figure 4.5). The surrounding gallery (the outer region in Figure 4.5) is
used to store full-sized images of interest to the user.

For the animation applications, static images (both thumbnail and full-sized) are also
used for the icons and gallery graphics. Animating all the images simultaneously has two
drawbacks. First, it is not clear that a user could make sense of that much information
in that particular format. Second, due to computational and hardware restrictions, the
animations would most likely not run at their nominal speed. In some cases, for example
the particle system described in Appendix B.4, playback rate is an important component
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41



of the animation. The static images are generated by compositing multiple frames from the
animation; while the resulting image does not look like any single frame in the animation,
it does provide users with a good intuition for the behavior of the animation over time.

4.4.2 Layout

The layout of the icons determines the position of the icons on the screen. Possible structures
for the layout include grids, trees, graphs, tables, and lists, in either two or three dimensions.
An important goal is to preserve the structure information from the multi-dimensional space.
We would also like to enable users to make quick visual comparisons between graphics. Thus,
the layout should be organized according to the perceptual similarity of the graphics.

Under the current Design Gallery framework, icons are arranged in a two-dimensional
layout using a proximity metric. By generating a two-dimensional embedding of the space,
the computer provides users with an overview of the design space. The layout of icons is
accomplished with a form of multi-dimensional scaling. The original problem formulation
due to Kruskal (1977) is as follows: Given a set of n objects, a dissimilarity matrix, and a
target dimension d (in this case two) the problem is to find a mapping of the n objects to
a set of m points in d-space, such that the distance between points in the new space is as
close as possible to the original dissimilarities.

Our implementation is due to Torgerson (1958). Let d;; be the distance between output
vectors ¢ and j, and let §;; be the distance between their corresponding icons in a two-
dimensional embedding. We use Torgerson’s method to compute the icon positions so that

>, (0 —di)”

= is minimized. To make the best use of the available display space, we then
i, 1]

rotate the computed embedding to align its first principal component with the horizontal
axis of the icon-display window. The resulting layouts will not be without anomalies — as
we are using it, multi-dimensional scaling is a projection from a high-dimensional space onto
a two-dimensional space, and this cannot be done without loss of information. The use of an
approximate layout is accommodated by the collaborative interface design; the layouts do
reflect the underlying structure of the output vectors well enough to allow effective browsing.
One important practical detail: since full-size versions of all the images returned by the
dispersion procedure must be rendered anyway, it is convenient and better to compute
distances on the basis of these full-size images in the arrangement phase, instead of the
output vector used in the dispersion phase.

Prior to the multi-dimensional scaling layout method currently used in the Design
Gallery interface, we explored the use of a dynamic spring model based on the physical
simulator described in Chapter 3 for the arrangement of the icons in the interface. We
defined springs between each pair of icons in the system using the dissimilarity matrix to
determine the rest length of each spring. This technique was particularly sensitive to the
initial placement of the icons in the two-dimensional space. Animating the layout process
did not help users to understand how or why the layout was generated. Many anomalies
were present in the resulting layouts; although the mass-spring method is good for local
optimization, it is not useful in generating globally optimum layouts automatically. We
attempted to increase user participation in the layout phase by permitting a user to indi-
cate one or more icons of interest, which would increase the corresponding spring strengths.
The resulting system did not make good use of the available screen space and was slow
in generating layouts. The multi-dimensional scaling approach, combined with appropriate
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navigation techniques, is more appropriate for icon layout. An alternative arrangement
approach based on a hierarchical partitioning of the graphics is discussed by Kang et al.

(1995).

4.4.3 Navigation

Navigation mechanisms permit people to explore the design space, and in the case of Design
Galleries, move through the icon display area. It is important to provide users with a sense
of perspective and context as they explore this space. People should have access to both
local and global views, with varying levels of detail as needed.

In a Design Gallery application, the user is initially presented with the entire set of
icons, arranged as described above such that visually similar icons are closer together, and
dissimilar icons are further apart. The set of icons is automatically scaled to fill the entire
space of the icon display area. In the resulting layout, however, there is no guarantee
that icons will not overlap. Since perceptually similar icons are grouped together, clusters
are similar, and overlaps result in only a minimal amount of information loss. The user
may select an area of interest using the standard mouse technique of region-dragging. The
system then utilizes two processes to refocus the display for the user:

e Panning: The system calculates the bounding box of the selected icons, and recenters
the display on the new center.

e Zooming: The system rescales the bounding box to utilize as much of the center
display as possible. The scaling is done uniformly in both dimensions, and is limited
by the larger dimension.

As the user moves in to examine an area more closely, the system will first pan and them
zoom. As fewer images are being displayed within the display panel, the number of overlaps
decreases. Zooming in removes visual clutter and enables users to see icons that may have
been previously obscured. In moving out, the system reverses the process. Zooming out
condenses the icons, which is followed by panning to recenter the display. The system
smoothly animates both phases of the navigation; this behavior enables users to keep track
of where they are within the larger context of the design space, while examining particular
regions of interest in more detail.

The zooming mechanism of current Design Gallery interfaces does not resize the icons as
the magnification level changes; it only respaces the given icons. This is in large part due to
implementation details. Although a scaling operator is available in the Tcl/Tk environment,
it does not apply to imported images. One alternative would be to generate thumbnails on
the fly (or to have a set pre-computed and interpolate amongst them as the scale changed);
computation costs (and storage constraints) make this unrealistic.

The system currently supports two-dimensional panning. Extending the layout to three
dimensions might prove useful for the arrangement component, and provide additional
visual information to users. Rather than using a true three-dimensional environment, such
as OpenGL, we could implement a three-dimensional effect by exploiting the illusion of
depth that is possible on a computer screen; smaller thumbnails would appear to be further
away. Similar problems to the magnification of thumbnails associated with zooming would
need to be considered in order to support three-dimensional panning.
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4.4.4 Interaction

Interaction mechanisms provide users with methods for manipulating the space and graphics
within it. Such functionality is related to, but distinct from, navigation. For example, in
a text document retrieval system, clicking with the mouse could retrieve title, abstract or
full-text for a given document. Interaction techniques can also provide landmarks for users,
which are helpful for determining their present location within the space.

Design Gallery applications rely on the mouse for user input. A user may move the
mouse over any of the icons in the display area; clicking on a particular thumbnail will
bring up a full-size image of the corresponding graphic. Releasing the mouse causes the
graphic to disappear. Alternatively, images can be dragged to the gallery (where they will
snap into the closest pane) and arranged at the user’s discretion. Dragging and dropping a
gallery image into the center region will remove it from sight. In Figure 4.4, a user-selected
set of images is shown in the surrounding image galleries. The lines connecting images with
their thumbnails are only included to give some indication of how images congregate in
the thumbnail display; the association between thumbnails and images is done by dynamic
highlighting in the actual user interface. Mousing on an image in the gallery highlights its
associated icon, and vice versa. In this way, the user can group graphics of interest in the
gallery, and determine their position in the global display with this interactive highlighting
mechanism. If the icon to be highlighted is at the bottom of a stack of icons, the system will
temporarily float the icon to the top. Note that the stacking order of the icons is arbitrary,
and independent of their visual content.

4.4.5 Application-Specific Functionality

The computer-user interface is implemented using Tcl/Tk. This environment enables the
Design Gallery interface to be customized to accommodate a person’s preferences; users
may specify colors for various portions of the interface, dimensions of the gallery, etc. More
importantly, application designers can easily extend the interface, adapting it to various ap-
plication areas. The volume rendering example given in Section 4.3, for example, includes
functionality that permits users to view the opacity transfer functions using gnuplot. An-
imations can be shown in the gallery when appropriate; the two-dimensional pendulum
described in Appendix B.2, for example, uses a C back-end to render the animations in
real-time. The particle systems, see Appendix B.4, are computationally more expensive,
and so MPEG movies are used in place of real-time animation. For each application,
however, the basic interface is the same; additional components can be loaded to support
application-specific functionality as needed.

4.5 Comparison to Existing Approaches

In this section we describe two computer-assisted approaches for the problem of parame-
ter setting: inverse design and interactive evolution. We also survey related work on the
problem of arrangement from the field of information visualization.
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4.5.1 Parameter Specification
Inverse Design

One computer-assisted methodology for parameter setting is inverse design, which exploits
the notion of design by optimization. This approach is well-suited to problems with a large
number of candidate designs that can be enumerated and evaluated automatically; such
evaluation, however, is often problematic. An objective function (a mathematical specifi-
cation of the desired characteristics of a graphic) is supplied that the computer can use to
rate the quality of a candidate graphic. The system searches for parameter settings that
optimize the function, automatically evaluating and ranking candidate graphics. Inverse
design has been successfully used in a variety of applications, including label placement
(Christensen, Marks, and Shieber, 1995; Edmondson et al., 1997), motion-synthesis (Liu,
Gortler, and Cohen, 1994; Sims, 1994; Tang, Ngo, and Marks, 1995; van de Panne and
Fiume, 1993; Witkin and Kass, 1988), lighting specification (Kawai, Painter, and Cohen,
1993; Poulin and Fournier, 1992; Schoeneman et al., 1993), and volume rendering (He et al.,
1996). However, this automated method of parameter specification provides little support
to users for defining objective functions. There are two reasons that inverse design is prob-
lematic: deciding what characteristics to include in the objective function, and determining
how to specify a set of characteristics as part of an objective function. We will examine
each of these in more detail.

First, people may not know what characteristics they would like to include in a graphic
(i.e. to include in the objective function). This problem of unquantifiable output character-
istics results from the fact that even though desirable graphics may be readily identified by
inspection, it may not be possible to specify a priori the qualities that make them desirable.
This rules out the use of inverse design for parameter specification and indicates that the
approach is not well-suited for browsing systems in general. A possible extension would be
to allow users to easily view multiple candidates for a single objective function, or to permit
users to specify multiple objective functions. This would not, however, remove the problem
of how to specify the objective function in the first place or the problem of unquantifiable
output characteristics. In addition, because current inverse design systems provide only a
single solution, they would not be able to organize multiple candidate solutions in a manner
that would make them easily accessible to users.

Second, once a person knows what qualities to include in the objective function, it is still
difficult for a user to define the objective function. Inverse design replaces the parameter
specification problem with an objective function specification problem. It is important to
note that the choice of objective function may affect the aesthetics of the resulting graph-
ics, the quality of the solution, and the efficiency of the search method for optimizing the
objective function, and is therefore an important consideration. In general stating mathe-
matically the desirable properties of an animation or abstract image is very difficult. Even
for graphics tasks with clear principles and conventions that can potentially be converted
into objective functions in a straight forward manner, developing a good objective function
may still be hard. In his thesis, Christensen (1995) remarked, “Coming up with an appro-
priate objective function for a general label-placement problem (that is, one that includes
point, line and area features) is a difficult task.” Furthermore, aesthetic criteria are often
not as easily formalized in a discrete manner. Christensen (1995) addressed the problems of
label placement and motion-synthesis using inverse design. Specifying objective functions
for animated mass-spring models was the more difficult and time-consuming task. Although
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the resulting animations were visually compelling, they were seldom (if ever) achieved on
the first specification of an objective function. As the generated animations behaved in
undesired ways, the objective function was refined to further constrain the behavior of the
character. This iterative refinement process was hampered by the high computational costs
associated with calculating the animation trajectories. Thus, inverse design is inappropriate
for novice users who lack the expertise necessary to define objective functions, and is often
problematic for expert users.

Inverse design is only feasible when the user can articulate and quantify what is desired
in a graphic. The Design Gallery approach handles the problem of unquantifiable output
characteristics by removing these restrictions. By generating a representative set of graph-
ics from the design space, a Design Gallery application enables users to browse a space,
determining the available possible graphics without having to specify an objective function.
In addition, because Design Gallery systems do not require users to have domain specific
knowledge, they may be used by both expert and novice users.

Interactive Evolution

Interactive evolution falls into the middle ground between manual and automatic ap-
proaches. The computer is responsible for exploring and presenting candidates from the
design space. The user acts as a dynamic objective function, indicating images of interest
to be used in guiding the exploration. Based on the user’s input, the computer gener-
ates a new set of candidates using a variety of genetic algorithm operators. Traditional
genetic algorithms required the specification of survival fitness criteria to be evaluated by
the computer  this is just another form of a pre-defined, user-specified objective function.
Interactive evolution replaces the static fitness function with dynamic user interaction to
evaluate alternatives. The process repeats until the user “evolves” a satisfactory result. The
advantage of interactive evolution over inverse design, is that a person may apply an ob-
jective function that is understood only implicitly (in the form of subjective selection), and
need not make explicit the objective function. As a result, the user’s fitness function can
incorporate poorly defined characteristics such as “interesting”, “aesthetically beautiful,”
“good likeness,” or “life like” (Baker and Seltzer, 1994). Such properties would be difficult
to formalize in a mathematical sense. In addition, a person’s criteria may change during
the interactive session; this is often an integral part of iterative refinement. By alleviating
the problem of requiring users to specify an objective function in advance, this collaborative
approach supports a browsing capability that enables users to refine their queries through
visual means, and supports the exploratory component of design.

Interactive evolution was first introduced by Dawkins (1987) who describes a system
for evolving images of creatures called “biomorphs”. Interactive evolution has subsequently
been used in a variety of applications including generating facial images (Caldwell and
Johnston, 1991; Baker and Seltzer, 1994), creating insect-like images (Smith, 1991), motion
synthesis (Ventrella, 1995), volume rendering (He et al., 1996), and other computer graph-
ics tasks (Kochhar, 1990; Sims, 1991; Todd and Latham, 1992). In most cases, interactive
evolution is more powerful than traditional computer-aided graphics tools in that it enables
people with no previous artistic training to generate interesting images and animations. It
enables users to explore large design spaces, relying on only gross interaction techniques in
communicating with the computer, typically pointing and clicking with a mouse to indi-
cated images of interest. More recent work (Baker, 1997) has focused on implementing an
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interactive evolution system for searching a database of existing facial images for a particu-
lar person (i.e., as a computer-assisted mug book). Thus, the interactive evolution approach
seems promising for both instantiative or searching tasks (i.e., finding a particular image)
for narrow areas within the design space.

Design Galleries and interactive evolution are appropriate to use for design tasks involv-
ing unquantifiable output characteristics. In both cases, the user is the source of output
quality judgments. One distinction between the two approaches comes in their utility as
browsing systems. A Design Gallery application uses dispersion to provide the user with
a set of graphics that are representative of the design space, thus providing an overview
of the entire space. Interactive evolution systems, on the other hand, typically seed their
initial population with a random sample of graphics, with future populations being gener-
ated using genetic algorithms as guided by user selection. Depending on the application,
the user can sometimes provide a sample image as a starting point. This is not, however,
typically the case. The initial sample, whether randomly generated or user-supplied, is not
guaranteed to cover the entire design space, particularly due to the limited size of the sam-
ple and the vastness of the design space. Thus, although interactive evolution systems have
utility in exploring a particular area of the design space in detail, they are less appropriate
for general browsing.

A second drawback to interactive evolution is the impact of the computational cost
on system performance. As previously noted in Section 4.1, some computer graphics algo-
rithms are too computationally costly to be incorporated into interactive evolution systems.
These systems require computation to generate candidate graphics for their user at each
iteration in generating a single generation. For many computer graphics algorithms, the
high computational costs preclude graphics (images or animations) from being computed
in real time. For such algorithms, interactive evolution becomes unusable. Although a user
can make aesthetic judgments in real time, the system would be unable to generate new
sets of candidate solutions in a time period that would be acceptable to users; the cycle of
iterative refinement is broken by delays in generating graphics (or animations) for a user
to evaluate. In contrast, the Design Gallery framework allows users to explore and interact
with computationally expensive algorithms because the computation is done ahead of time.
A Design Gallery application runs its dispersion heuristic as a pre-processing phase; users
are not subjected to the time delays associated with computationally expensive algorithms.
In addition, the use of a mapping function and output vector (rather than a full algorithm
and output graphic) enable a Design Gallery interface to evaluate and explore many more
graphics than other approaches.

4.5.2 Information Visualization and Navigation

Existing approaches to parameter setting do not typically include an arrangement com-
ponent. Research on information visualization and visual information seeking, however,
addresses many of the same issues, emphasizing the processes of navigating through large
collections of information and interacting with users through visual means. Users need a
means for exploring large information spaces — a design space is just a specialized infor-
mation space in which each document is a single graphic. Browsing systems aid users in
accessing these large data sets. The amount of information to be presented to users is con-
tinually growing and becoming more complicated. Typical computer screen sizes, however,
have remained relatively small. Therefore, systems need to employ innovative methods to
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enable users to better understand these large spaces. In this section, we survey several
systems that provide innovative approaches to information visualization and navigation.

Ahlberg and Shneiderman (1994) defined design principles for visual information seeking,
relying on people’s capacity for visual information processing. They incorporated notions of
proximity, color and size, along with animated presentations, and user-controlled selections
in order to support users in exploring large information spaces rapidly and reliably. Their
Starfield approach relied on scatter plots of points. The points represented various objects
in a database, such as people, videos, papers, songs or photos. Meaningful two-dimensional
displays were produced by having the user select two ordinal attributes of the items to
be presented; additional features supported selection and zooming which could be used in
refining a query. Text documents could be arranged by two of the following characteristics:
author, year of publication, or word count. A database of people might include attributes
such as age, number of siblings, number of years of education, salary, or other demographic
variables. It is not clear that the two components of the Starfield approach are applicable to
the domain of graphics-based information. First, using points as icons for a graphic denies
the user easy access to important visual information. Second, “natural axes” may not be
as easily identified for graphics-based documents.

A second application of relevance is that of navigating a database of color images (Rub-
ner, Guibas, and Tomasi, 1997; Rubner, Tomasi, and Guibas, 1997). This work takes a
similar approach to that of Design Galleries, although the work was done independently and
in parallel with our project. It utilizes a notion of color signature (comparable to our output
vectors) in order to evaluate the similarities of color images, and uses a multi-dimensional
scaling technique to embed the images in a two or three-dimensional space. Rather than
providing a listing of images resulting from a user query, it presents the user with a vi-
sual representation of the results in two-dimensions. In contrast to a one-dimensional list
that reveals only the distance between the query and each element of the results, the two-
dimension visualization used in this approach (and in Design Galleries) can be used to
convey the distance between all the images in the set. In addition, the use of thumbnails
provides important visual information to users.

The notion of multiscale viewing (Furnas and Bederson, 1995) in which objects and
structures embedding them can be displayed at different scales is helpful for users in nav-
igating large information spaces. Traditional flat views, such as a single window on a
computer screen, provide users with access to a single, small, local piece of the structure at
any given time. Although users can control the locality of this view, they have no access
to the larger context or “big picture”. The use of zooming enables user to change the mag-
nification level of a particular view, but it still limits users to either local or global access,
but not both simultaneously.

The Spatial Data Management System (Donelson, 1978) was one of the first systems
developed to offer users both global and local views. It provided two windows, one as a
panoramic view, and the other a close-up view of an information landscape. Users navigated
by either panning in the local window, or clicking in the global level to move directly to an
entirely new area.

Furnas (1981; 1986) suggested an approach to provide users with easy access to periph-
eral information. His fisheye lenses present a distorted or warped view of a space; things
near the center of the lense are highly magnified, but the whole structure is shown, with
decreasing magnification from the center of vision. The result is that information of cur-
rent interest has the greatest detail, while surround information has a less-detailed view.
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Peripheral information provides important context which aids users in orienting themselves
as they navigate a space.

Pad (Perlin and Fox, 1993) uses a spatial metaphor for computer interface design. It
is an infinite two-dimensional informational plane that can be shared across users. Pad
provides views, called portals, that aid the user in the navigation of the infinite space.
Portals may have varying magnification levels, providing panoramic overviews, or small-
localized access. Interestingly, portals may be recursively applied to themselves, increasing
the magnification and access of particular regions at the user’s discretion. The apparent
size of document determines the amount of detail provided to the user. Pad also introduces
the notion of semantic zooming: an object can change appearance as the amount of space
it is allotted changes. In traditional geometric zooming, objects change only their size, and
not their shape, as the magnification level changes.

4.6 Summary

Design Gallery interfaces are a useful tool for many applications in computer graphics that
require tuning parameters to achieve desired effects. Their basic strategy is to distill from
the set of all possible graphics a subset with optimal coverage. The gallery is automatically
constructed through a dispersion and arrangement phase, which is typically computationally
intensive. The intent is that this process occurs off-line, for example, during an overnight
run. After the gallery is constructed, the user is able to effectively browse through the
space of output graphics. Previous approaches such as inverse design and interactive evo-
lution are infeasible due to the problems of unquantifiable output characteristics and high
computational costs associated with many computer graphics algorithms.

In examining the challenges associated with parameter specification approaches, it is
important to note where the burden falls. Unquantifiable output characteristics and high
computational costs are problematic issues for users. The technical challenges associated
with Design Galleries  dispersion and arrangement  shift the burden onto the computer
and the software designer. As discussed in Sections 4.3-4.4, we have met these challenges.
The results of applying the same dispersion and arrangement techniques to different appli-
cations are given in Section B.

The Design Gallery methodology utilizes the collaborative framework in determining
the division of labor between people (Design Gallery designer and users) and the computer
system. In characterizing the roles of the user and the computer in an optimization-based
framework, the Design Gallery approach follows the work of the previous chapters. The
creator of a Design Gallery interface (who is in some sense part of the application) works
at a local level, choosing the input and output vectors, along with the distance metric.
The computer also works locally, performing the dispersion, the mapping of input vector to
output vectors and output graphics, and the arrangement of final graphics in the gallery.
The user operates at a global level and is responsible for selecting graphics of interest,
and arranging them in the gallery in a meaningful fashion. The collaborative nature of
the Design Gallery interfaces solves the problem of parameter specification, and supports
people in exploring and understanding large design spaces.
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Chapter 5

Floor Plan Segmentation

The problem of floor plan segmentation  identifying partially and fully bounded regions
in a bitmap image — is a representational graphic design problem that emphasizes the
importance of converting information in hard-copy form to its electronic equivalent. The
bitmap image is typically a scanned floor plan; the user’s goal is to generate an electronic
representation of the building geography depicted in the floor plan. In particular, we would
like to support the delineation of regions demarcated by subjective contours, making the
process as easy and user-friendly as possible.

In this chapter, we describe work on an interactive system for floor plan segmentation.
As our system extracts partially or fully bounded region definitions from a scanned bitmap
image with minimal input from a user, it is better suited for generating representational
graphics of this nature than other semi-automated techniques. Our method may be ap-
plicable in other domains, such as forms processing, cartoon coloring, or web image map
generation.

5.1 Introduction

In general, geographic information for buildings is available only from hard-copy floor plans.
Although geographic data for buildings is sometimes generated with architectural CAD
systems, large quantities of paper-based information pre-date CAD tools. The issue of
transforming hard-copy information into machine-readable form falls within the realm of
document processing, a field that has traditionally focused on segmenting scanned docu-
ments into regions of text and images, and then on interpreting these regions. Our focus
is on the latter part of this process: interpreting a scanned bitmap that depicts a building
floor plan. We are interested in the topology and geometry of the different regions (e.g.,
offices, lobbies, or closets) of the building. We wish to extract such data from a scanned
floor plan, by annotating the floor plan to delineate the relevant regions. For this reason,
the graphic design task at hand is not an end in itself; it is an intermediary step of a larger
process.

As with the problems addressed in the previous two chapters, approaches to floor plan
segmentation range from manual to automatic. Manual methods, such as tracing (using a
mouse or digitizing tablet), are tedious for people and are inherently inaccurate. Automated
methods, though less laborious, do not always yield correct and accurate methods. The task
of region delineation, like many graphic design tasks, can depend in the end on arbitrary
semantic information about the material depicted in the bitmap to which no purely syntactic
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Figure 5.1: Arbitrary amounts of semantic information may be required to interpret a floor
plan.

method can be sensitive. As illustrated by the Non-Sequitur cartoon (Wiley, 1994) in
Figure 5.1, region boundaries (and their utility) are in the eye of the beholder. As another
example, the distinction between a foyer to a room and a bay in it may be unmarked in
a floor plan. If the former is considered a separate region and the latter part of the same
region, only someone familiar with this semantic distinction would be able to delineate the
regions correctly. Because no fully automatic method is to be expected, we believe that it is
crucial to think of the task of region delineation as being solvable only semi-automatically.

We wish to explore collaborative methods that utilize a similar division of labor be-
tween user and computer but relax these assumptions. Our approach integrates a novel
method for providing a syntactic model of subjective regions into a semi-automatic system
for delineating fully and partially bounded regions in a scanned floor plan image. We en-
capsulate the notion of subjective region boundaries into a single function, and view the
region-identification problem as optimizing this function. In the following section we de-
scribe our approach, focusing on the region delineation technique. Section 5.3 discusses
the computer-user interface design, followed by an example interaction with the system in
Section 5.4. In Section 5.5 we compare our novel region segmentation technique to previous
approaches, and the collaborative system into which it is integrated to existing systems that
might be used for the task of floor plan segmentation.

5.2 Our Approach

Our approach makes use of a proximity metric for delineating partially or fully bounded
regions of a scanned bitmap that depicts a building floor plan. A proximity field is defined
over the bitmap, which is used both to identify the centers of subjective regions in the image
and assign pixels to regions by proximity.

Our approach has two main advantages over existing techniques. First, the region
boundaries generated by the method tend to match well the subjective boundaries of regions
in the image. As discussed in Section 5.5, other methods (such as filling) are not suitable
for identifying partially bounded regions. Second, our technique is incorporated into a
semi-automated interactive system for region identification in floor plans. Simple human
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interventions requiring only gross information can be used to correct the results generated
by the proximity-field method. This is in keeping with the collaborative framework proposed
in this thesis. The division of labor is such that the computer is working at the local level,
assigning pixels to regions, while the user works at a global level, guiding the system and
correcting mistakes with gross gestures.

5.2.1 Proximity Field

A novel contribution of our approach is the method by which the subjective boundaries of
regions are defined. As discussed above, the standard area-filling method has the problem
that subjective boundaries that are not marked with explicit lines in the image are overrun
so that neighboring regions are invaded. Our approach attempts to better characterize
the notion of a subjective region by encapsulating the notion “subjective region boundary”
in a single function and by viewing the region-identification problem as the problem of
optimizing this function. The approach can be motivated by reconstructing the problem
with the area-filling method. Suppose we are given a drawing of the two-room building
given in Figure 5.2. Note the door between the rooms. Because of this door, a filling
algorithm started from any point would find a single region (as in Figure 5.2b). Intuitively,
the reason that a given pixel, say the one labeled r in Figure 5.2f, is taken to be associated
with the right room rather than the left (where the filling was started) is that it is closer to
the center of the right room than the left room. In order to use this intuition to actually
delineate regions, we must find a way of characterizing these two notions of ‘closer’ and
‘center’.

We do so with a proximity field. Imagine a surface defined so that the height of the
surface at each black pixel in the image is zero and at each interior pixel the surface is as
many units below zero as the pixel’s distance to the nearest black pixel, so that the surface
forms a series of valleys with the black pixels as ridges separating them. The surface
just defined is the proximity field; a topographic map of a surface is given in Figure 5.2c
and a cross-section is shown in Figure 5.2d. Local minima in this field provide a rough
characterization of the notion center of a region.

We want to assign each pixel in the image to one of the field minima, in particular, the
closest one. The appropriate notion of closeness is not mere geometric distance (as defined
by, say, a “Manhattan distance” metric). Instead, the surface itself provides a definition of
closeness. Objects on such a surface tend to move downhill so as to locally minimize their
potential energy. The minimum reached from a given pixel by such a local minimization
process is an appropriate notion of “closest center”. We can imagine a ball placed at the
given pixel and released; the local minimum that it settles in is the center of the room the
pixel belongs to. Since, as depicted in Figure 5.3g, a ball at point p would roll to the upper
minimum, whereas one at point r would roll to the lower minimum, the two points are taken
to lie within the upper and lower region respectively.

This rolling ball analogy fails, unfortunately, when the pixel in question is on a plateau of
the surface between two minima, say at point ¢ in Figure 5.3f, in which case both minima are
reachable by descent from the given pixel. Conceptually, this aberration can be eliminated
by using a smoothed version of the surface as depicted in Figure 5.3e. In practice, the
allocation of pixels to regions that would be engendered by using the smoothed surface
can be calculated directly by the technique described in Section 5.2.2, without actually
calculating the smoothed field.
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Figure 5.2: (a) A simple two-room drawing. (b) A filling algorithm started in the left
room traverses the subjective boundary of the doorway. (¢) A “topographic map” of the
proximity field for the floor plan. (d-e) Unsmoothed and smoothed cross-sections of the
proximity field along a horizontal line through the doorway. (f) Points to the left of the
doorway (as point p) are nearest to the local minimum in the left region, whereas points
to the right (as r) are closest to the local minimum in the right region. Points right in
the middle (as ¢) may be considered part of either room; the algorithm presented would
associate such a point with the deeper minimum, hence the larger left room. (g) The notion
of closeness can be motivated by imagining a ball located on the surface, rolling downhill
to the nearest local minimum. (h) Regions defined by the proximity-field technique shown
as a two-coloring of the floor plan.
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This discussion provides evidence that an approach based on energy minimization in
the proximity field might be appropriate for characterizing subjective boundaries better
than the simple filling technique. Our method is based on just this metaphor of energy
minimization. We describe the method in more detail in the next section.

Another feature of the proximity field technique is that alternative definitions of the
proximity field might be used to characterize regions of a quite different sort from bound-
aries perceived as physically contained regions. The simple field used here models regions
unconstrained in all directions except by overt indicators of subjective contours. The sens-
ing region of a motion sensor, by contrast, is constrained to subtend a certain angle outward
from the site of the sensor. The regions defined by such a sensor can be defined by an alter-
native proximity field that is more constrained than the one used here but that still respects
subjective regions. The generality of the proximity field approach to region delineation thus
makes possible the modeling of many different kinds of regions. Similarly, an alternative
proximity field definition might be used to find the subjective segmentation of a document
image.

5.2.2 Region Definitions

A region, under the model we are describing, is characterized as the set of pixels for which
a given minimum in the proximity field is closest. Thus, specifying a region follows from
specifying the corresponding field minimum. This is easily done by local search. Given a set
of pixels all of equal value, which we will call the working set, a new set is generated in the
following manner. The neighboring pixels with the lowest field value are found. If the pixels
in this neighboring set are higher than those in the current set, the current set constitutes
(part of) a local minimum of the surface, and the search is done. If the neighboring set
pixels are the same height, the working set is augmented with the pixels in the neighboring
set, and the process is iterated. If the neighboring set pixels are lower, the neighboring set
becomes the current set and again the process is iterated. Eventually, this iterative search
terminates with a set of equal-value pixels that comprise a minimum. A graphical depiction
of the iterative process is presented in Figure 5.3.

Under certain conditions, for instance, when started at point ¢ in Figure 5.3f, the working
set may become temporarily noncontiguous. In the area within the door, for instance, there
is a plateau in the proximity field. The first few iterations of the algorithm above expand
the working set to encompass larger areas of the plateau. Eventually, if the starting point
is nearer one room or the other, the edge of the plateau nearer that side will be found,
and the working set will move in that direction, eventually settling in the corresponding
minimum. However, if the starting point is in the exact center of the plateau, both edges
will be found on the same iteration, and the working set will comprise pixels from both sides
of the plateau. The search will continue in this way until one of the discontinuous parts
of the working set hits a minimum. If the other part is not yet at a minimum, the search
will continue, using only the latter portion of the working set, eventually finding the lower
of the two minima. In essence, the method as described places points midway between two
rooms as part of the larger of the two rooms. (If both minima are reached at the same time,
that is, both rooms are the same size, one or the other can be chosen arbitrarily.)
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Figure 5.3: Stages in the computation of the nearest local minimum to point p of Figure 5.2f.
The proximity field is given as a false grayscale coloring of the interior pixels, with darker
colors being lower. The starting pixel is marked with an x in all drawings, and the pixels of
the working set is bounded with a polygon. (a) The working set is initialized to the starting
pixel. (b-c) The lowest-valued neighboring pixels are of the same value, so are added to the
working set. (d-f) The lowest-valued neighboring pixels are of lower value, so they become
the new working set. (f) Pixels within the local minimum have been found. (g) The working
set grows to encompass the full local minimum, and the algorithm halts.

5.2.3 Weaknesses

The basic proximity field technique works quite well for finding subjective contours of re-
gions in bitmaps. Section 5.4 and Appendix C provide examples of the method as applied
to actual scanned floor plans. However, as previously argued, the articulation of any such
method with some human intervention ability is crucial. The essential idea behind leverag-
ing of human intervention is simply this: repairing of incorrect or inaccurate results of the
automatic method should require only gross human interaction, rather than finely detailed
work. This is the heart of the collaborative approach proposed in this thesis. Users should
work at the global level, leaving the system responsible for the local level. The proximity
field technique compares well with other techniques, such as area filling, not only in that it
performs better ab initio at finding subjective contours, but also because it lends itself well
to this leveraging the addition of simple human intervention.
The remaining frailties of the proximity field technique can be classified as follows:

e Missing subjective contours: Indicators of a subjective contour may be wholly or partly
absent from the input image. For instance, what appears to be a single large room
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in the floor plan may be thought of by the occupants of the room as two separate
regions. Since no syntactic reflex of the distinction between the two rooms is found in
the image, no method based purely on bitmap processing can be expected to observe
this distinction.

e Multiple minima: A subjective region may encompass several minima, that is, it is
the union of the regions defined by the multiple minima.

Both of these problems are easily handled by only simple human interventions, given
an appropriate computer-user interface. Indicators of missing subjective contours can be
manually added with simple line-drawing tools. Because the method does not require closure
of the subjective contours, simple hints as to the missing subjective contour are all that is
typically required to repair the region delineation. For example, in Figure 5.6 in the next
section, a short line segment is all that is required to coerce the proximity field method to
find the correct subjective contours. Multiple minima and their corresponding regions may
be joined into a single region. Details are provided in the following section.

5.3 System Design

Using our collaborative interface approach, we frame the problem of floor plan region seg-
mentation as an optimization problem. Our goal is to have the user work at the global level,
and the system at the local level. The proximity field method described in Section 5.2 is
well-suited for this approach. The user brings semantic information to the task knowl-
edge of the area represented by the floor plan. The system employs a local search strategy
as it attempts to segment the image into regions. The search is guided by the user at a
global level using two mechanisms as described below.

We have implemented the proximity field technique for region delineation in a prototype
system using C and Motif. The interface for the system includes a viewing area for the
bitmap image and a control panel for various parameters. A screen capture of the interface
is shown in Figure 5.4.

Input

Our system takes as input a scanned bitmap image, such as the one in Figure 5.5. By
starting from a scanned bitmap image, the system relieves the user from having to redraw
the layout geometry from scratch. Although some CAD packages use the scanned blueprint
as an underlay, the user is still required to trace the outline of the regions manually. Bitmaps
for our system should be pre-processed to remove text. Such bitmaps will typically be
generated by scanning the hard-copy of a floor plan. The resulting bitmap may contain
noise or missing boundaries — our system is such that it can handle missing or corrupted
data. Other floor-plan-like drawings may be generated by simple drawing packages. An
example of this type is given in Figure C.1.

System Implementation

The system computes the proximity field over the bitmap using the method described in
Section 5.2. The results can be be displayed to the user as a grayscale topography of the
surface, as shown in Figure 5.6. The value at each white pixel is shown through false-
coloring, with darker tones connoting lower values. This view can help shape the user’s
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Figure 5.4: Computer-user interface for the system.

o7



intuition about how the system is detecting and defining regions. The system then uses
the proximity field to compute the corresponding regions, and displays these to the user
as a false coloring of the regions, as shown in Figure 5.7. The colors are assigned to the
regions randomly, and so adjacent regions (potentially with no physical boundary between
them) may be assigned the same color. The user can change the color of a region using
the mouse the system will cycle through a pre-set listing of colors. The user may also
specify different stipple patterns to be used in coloring the regions.

User Interaction

Our system reduces the amount of user input, and simplifies the type of interaction as well.
The system provides for human intervention in the form of user-added subjective contour
hints and region grouping. Subjective contour hints act as walls, which enable a user to
subdivide a single region. The user can use the mouse to add sketch lines to bitmap image.
These additional “walls” need not be accurate; they can be slightly skewed, and need not
abut nearby physical walls. The user is not required to work down at the pixel level, but
rather need only use gross mouse gestures to achieve the desired effect. The user can control
whether or not these false-walls are visible in the display. The system also permits users to
delete any of the false-walls they have previously introduced.

In other instances, a user may wish to join two or more regions into a single logical
region, for example joining door swings to their corresponding rooms. This is accomplished
by selecting the regions to join with the mouse. Depressing the left mouse button starts a
chain of regions to be joined; clicking the right mouse button adds additional regions to that
set. The user can delete these joins at a later point if desired. No pixel level postediting of
the regions is supported; the need for post-editing at this level of detail is rare and would
be better viewed as an indicator of a flaw in the method. Both joins and subjective-contour
hints can be saved to an output file to be used in later editing sessions.

All human intervention is achieved through standard graphical drawing and selection
techniques that can be used at several magnifications of the image. Users can zoom in
and out on the bitmap images using the buttons on the control panel. In addition, the
system provides a choice of three views of the bitmap image: the black and white original,
the grayscale proximity field, and the false colored regions. As the user adds (or deletes)
subjective hints (in the form of false walls) to the image, the system will need to update the
proximity field, and in turn the region definitions. Users also have the option to turn off
the automatic update mechanism, enabling them to make several changes at once, before
having the system run an update. In the case of joins, although the region definitions are
modified, no changes are made to the proximity field; no additional calculations are needed.

5.4 Example Interaction

In order to provide a feel for the quality of region delineation achievable using the proximity
field on actual scanned bitmaps, we apply it to a sample scanned floor plan, a map of the
Digital Equipment Corporation Western Research Laboratory. The original bitmap is shown
in Figure 5.5. Note that the boundaries of some of the rooms are discontinuous as a result
of scanning errors; the lowest of the four rooms on the left wall is an example. Other rooms,
for instance the room in the lower right corner, have open doors.

Based on this initial bitmap image and using the technique described in Section 5.2.1,
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Figure 5.5: The original scanned bitmap.

Figure 5.6: The false-colored proximity field generated for the bitmap.
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Figure 5.7: The regions delineated according to the proximity map in Figure 5.6.

the computer calculates the proximity field which is depicted using a grayscale coloring in
Figure 5.6. The darker colors correspond to lower values in the field. When regions are
defined on the basis of this proximity field, the results, shown in Figure 5.7, are a good first
approximation to the desired region boundaries. In particular, the rooms mentioned above
with discontinuous borders are correctly delineated. Nonetheless, several problems remain.
These are easily remedied through simple user intervention.

The user begins by introducing a single subjective contour “hint” at the upper right of
the main lobby using gross mouse gestures. A second one is introduced to mark off the small
corridor in the lower left corner. As illustrated in Figure 5.8, neither false wall is exact;
they do not abut any of the nearby walls. Nevertheless, our technique is robust enough to
calculate acceptable region definitions.

Next the join operation is used to merge several regions into a single region. The user first
clicks the mouse above the upper-right lobby area, and then in each of the two door swings
adjacent to it. Although this has no direct effect on the proximity field, the three regions
are joined creating a single region as desired. The final region delineation (determined to
be acceptable by the user) is shown in Figure 5.10.

5.5 Previous Work

In this section, we survey previous work on topics related to floor plan segmentation. We
begin with an overview of several existing software systems that might be used for the task
of region segmentation. Next we examine work in the areas of vision and image processing,
and document analysis. We conclude with a discussion of techniques used in drawing tools
and a comparison of the various techniques.
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Figure 5.8: The user adds two false walls.

Figure 5.9: The user joins the door swings to the upper hall region.
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Figure 5.10: The final region definitions.

5.5.1 Systems
MARIS

The MARIS (Map Recognition Input System) system (Suzuki and Yamada, 1990) is de-
signed to digitize large-reduced-scale maps into a layered representation. Large-reduced-
scale maps contain more detailed geographic information than small-reduced-scale maps.
Most techniques to deal with the former are pixel-based, and as such require increased com-
putation time. Because automatic techniques are not completely accurate, semi-automatic
methods are required to make corrections and refine derived representations. MARIS com-
bines several techniques: vectorization, border tracing, a vector-based map recognition
method and an interactive input and correction method which result in an efficient system
for digitizing maps. The authors believe that their methodology can easily be applied to
other types of drawings, such as architectural drawings. The only required change would
be to modify the recognition method used by the system.

ROCKI

The ROCKI project (Nardelli, Fossa, and Proietti, 1993) takes a different approach. Using
a three-step knowledge-based approach, the system starts with primitive interpretation,
through which it identifies basic graphical objects. These objects are then interpreted and
grouped to obtain structured objects. This leads to the final step in which the document
is interpreted, and semantics for the document are defined. The authors exploit contextual
information in order to do their analysis. The ROCKI framework is intended to be a toolkit
which can be used for interpreting maps and office documents. One implementation, as
described in (Nardelli and Proietti, 1993a; Nardelli and Proietti, 1993b), has a similar goal
as our work: to produce a semantic representation of “a low-level image representing a
floor plan map”. The input to this system, however, is not a scanned bitmap image but
an AutoCAD file containing a vectorized representation of all objects within the image. In
addition, AutoCAD presents a structured layer representation of the data; thus the input
to this system is considerably more detailed and structured than a scanned bitmap image.
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Moreover, this system makes several other assumptions:
e objects (walls, doors, windows, pillars) are represented by rectilinear segments
e the rooms of a building are represented by a set of closed polylines
e polylines are made of vertical and horizontal segments

These assumptions simplify the problem a great deal. Specifically, they disallow regions
with subjective contours. It would seem that a corridor, which is not usually defined by a
set of closed polylines, would be unidentifiable in this system. Yet the authors claim that
passageways (including corridors, entrances and landings) are in fact identifiable. Although
the goal of this work is the same as ours, namely to determine a meaningful representation
of a floor plan, their approach to the problem differs drastically from our own.'

Mapedit

Mapedit is a specialized WYSIWYG editor for creating World Wide Web image maps,
available for Microsoft Windows and the X Window System. Image maps turn a GIF image
into a clickable map, by designating regions of interest within the image, and specifying
a URL link for each region. Creating image maps by hand is often difficult and tedious.
Mapedit employs several of the techniques found in a variety of drawing tools. It allows users
to load an image into an editing window. Users then draw regions on top of the background
image, defining areas of interest. Users may draw polygons by tracing various regions,
or by using standard templates (rectangles, circles, etc) for delineating regions. Once an
acceptable region has been defined, the user inputs the corresponding URL, comments, and
other Web properties. Mapedit is better suited than generic drawing packages in helping a
user generate image maps in that it provides the original image as a backdrop to guide the
user in defining regions. Given that floor plans contain far more regions of interest than a
typical image map found on the Web, Mapedit still places too much burden on the user for
our domain.

Deformable Polygons

Our first attempt at designing an interactive system for floor plan segmentation was one in
which candidate regions were identified semi-automatically through the use of deformable
polygons. Deformable polygons are similar in nature to snakes (Kass, Witkin, and Ter-
zopoulos, 1988) and deformable templates (Yuille, Hallinan, and Cohen, 1992), but are
specialized to the particularities of the task at hand. The system supported the user in the
task of interactively specifying important areas of the floor, such as rooms, lobbies, closets,
etc. The user specified a location at which to place a deformable template; the template
then deformed automatically to conform to the contours in the scanned image; when the
template achieved a static conformation, it was proposed by the system as a candidate
region. The user repeated this process for each area of interest.

To determine how well the edges of the deformable polygon conform to the contours
in an image, we defined a potential surface over the image. This is comparable to the

'To date, this is the only documented work specifically addressing floor plan recognition that we have
found.
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proximity field metric previously discussed in Section 5.2.1. The polygon deformed so
as to minimize its potential “energy,” which was combined terms for both boundary and
shape potential. The initial polygon was a regular octagon, but dynamic vertex insertion
enabled the polygon to better fit more complexly-shaped regions. In addition, the use of a
dynamic height field caused the polygon deformation to proceed in two phases: expansion
and contraction. Details on the deformable polygon method can be found in (Ryall et al.,
1993).

The use of deformable polygons to delineate regions in floor plans was still too user
intensive. It required a user to seed each region of interest with an initial polygon. There
were also a variety of parameters the user could tweak in order to gain better performance
from the system. Although the deformable polygons lessened the type of user input  the
user need only click the mouse (roughly in the center) in a desired region, it seemed that
more responsibility could be given to the computer. In fact, we discovered the system could
derive regions directly from the height field, without the use of deformable polygons. The
resulting method (which is described in Section 5.2) is a good illustrative example of the
collaborative framework proposed in this thesis.

5.5.2 Vision and Image Processing

Computer vision and image processing use a variety of techniques for edge detection and
object reconstruction in gray scale images. Omne area of research is most relevant to our
work. Deformable templates (Yuille, Hallinan, and Cohen, 1992) have been used for au-
tomatic facial feature extraction, and snakes (Kass, Witkin, and Terzopoulos, 1988) have
been used to interactively identify regions of interest in medical imaging data. The basic
approach is to define parameterized templates which interact with an image in a dynamic
manner. The computer minimizes an energy function, which contains terms for various
aspects characterizing the desired region. The minimum of the function corresponds to the
best fit of the template to the contours in the image. In the case of deformable templates,
a priori knowledge about the shape of the regions guides the detection process. Snakes,
on the other hand, make no assumptions about the regions being identified. They rely on
the user to position the initial template, and include more terms in the energy function
to prevent the structure from deforming too much. We explored the use of a comparable
technique, deformable polygons, which is discussed below in Section 5.5.1

Another approach to image analysis is to use morphological operators, originating from
the field of Mathematical Morphology. Morphological segmentation approaches are typically
either edge-based or region-based. As we have seen, edge-based techniques are inappropriate
for segmenting floor plans because subjective contours are not fully-bounded. Region-based
approaches are more promising. In particular, the technique known as the watershed trans-
formation, first introduced by Beucher and Lantuejoul (1979) and more recently improved
by Vincent and Soile (1991), is similar to our method of region segmentation. This method
borrows its terminology from topography. It makes use of a watershed line to separate
two regions, known as catch basins, and relies on the assumption that the regions to be
identified are locally homogeneous. The technique is typically applied to gray scale images
that are viewed as topographic reliefs, with each pixel being assigned a value corresponding
to its intensity.

There are two main difference between the watershed and our region segmentation tech-
nique. The first difference is that we calculate the field over the image based on a proximity
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metric whereas the watershed method derives its values from the content of the image.
The second difference is our incorporation of the segmentation technique into an interactive
system. The classic watershed technique tends to oversegment images due to the numerous
local minima present in the image. To correct this problem, it relies on other automated
methods to weed out background and unimportant regions. In our experience overseg-
mentation has not been a problem. This is primarily due to the nature of the floor plan
segmentation task. More importantly, we rely on a person’s judgement to determine when
a region has been divided into too many regions and provide them with simple mechanisms
to remedy the problem.

5.5.3 Document Analysis

A great deal of work has been done on general document analysis (Casey and Nagy, 1991;
Kasturi et al., 1990; O’Gorman and Kasturi, 1992; Wong, Casey, and Wahl, 1982), maps
(Antoine, 1991; Boatto, Consorti, and Buono, 1992; Kasturi and Alemany, 1988; Nardelli
and Proietti, 1993a; Suzuki and Yamada, 1990), and technical drawings (Clement, 1981;
Joseph, 1989; Pao, Li, and Jayakumar, 1991). General document analysis techniques pro-
vide a framework for understanding a variety of complex document types. These systems
will often rely on (as yet unimplemented) specialized modules to interpret images or line
drawings. As a result, although our work could be incorporated into a larger document
processing system, it does not appear that this body of research has direct application in
our domain. Line drawings are typically classified into three categories: maps, technical
drawings (engineering and mechanical drawings), and circuit/logic diagrams?.

Maps appear to be very similar in nature to floor plans. Most research has been done
on cadastral maps, that is, maps describing the geometry of land properties, including
buildings, in a geographical context. The image is divided into polygonal regions; regions
are fully bounded. In the case of floor plans, however, there are regions that are only defined
in terms of the boundaries of other regions. A corridor, for example, is not fully bounded,
but tends to be defined as the area outside of a series of offices. Again, although some of
the techniques used to interpret cadastral maps may be relevant, they will be unable to
support subjective contours, which is one of our goals.

Finally, technical drawings, such as engineering designs, are related to floor plans in that
they use a set of standard symbols, and incorporate dimensioning text into the image. An
important difference when compared to architectural drawings is that technical drawings
are most often depicting 3D objects whereas floor plans are 2D in nature. In addition,
in a floor plan it is usually permissible to approximate a curved line through a series of
straight line segments; this is not the case in mechanical drawings, for example. Depending
on the domain, standard symbols can be used to denote a variety of objects. In floor
plans, for example, windows, pillars and doors will usually be marked by conventional
symbols, although the conventions may change depending on when the floor plan was drawn,
and in what country, for example. In addition to pre-defined symbols, shading or pattern
information can also be used. In the case of cadastral maps, for example, cross-hatching
is used to indicate buildings within the image (Boatto, Consorti, and Buono, 1992). It is
important to recognize buildings prior to vectorization, as only the perimeter of a building
need be vectorized. Many systems use a feature-based approach to recognizing symbols.

2We have not explored the latter category sufficiently to include it in the current discussion.
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This method is attractive because it is robust enough to handle symbols that have been
arbitrarily rotated or scaled.

The removal of dimensioning text in engineering drawings is a current research topic.
Standard segmentation techniques separate an image into text and graphics. In the case
of dimensioning notation, however, the symbols often overlap graphics. Dimensioning lines
and associated text are known as dimension sets. Recent work (Chai and Dori, 1992; Dori,
1989; Fletcher and Kasturi, 1988; Joseph, 1991; Lai and Kasturi, 1993), has examined how
to extract text strings and dimension sets from mixed text/graphics images. Our concern
is not, however, how to extract the dimensioning text, but rather how to incorporate it
into the representation of an image. As our system assumes a bitmap free of text, we have
ignored dimensioning information to date, and have not addressed the question of how to
“clean up” scanned images to make them acceptable input into our system. We believe that
segmentation techniques and existing software tools will suffice. Dori (1991) makes a clear
distinction between the geometry of the image, and the annotation within the image. He
has examined the use of a flat matrix grammar (an extension of context-free grammars) in
order to create a graphical knowledge base. An expert system then uses this knowledge base
to automatically understand engineering drawings. Within our system, this technique may
be useful in generating the semantic portion of the representation of the scanned image.

5.5.4 Drawing Tool Techniques

Semi-automatic techniques vary in the amount of input and guidance required by the user.
In the case of freehand drawing and tracing, the user is doing most of the work. Under
area filling and template filling, the user chooses the point from which to start the process,
which is then performed automatically by the system. Several software tools exist today
that can facilitate the delineation of areal regions on a floor plan. They all utilize one or
more of the following four techniques:

1. Freehand drawing: The user redraws the floor plan from scratch with a mouse or
digitizing tablet, delineating regions as part of the drawing process.

2. Tracing: The user traces out regions on the floor plan by hand, using a mouse or
digitizing tablet.

3. Area filling: The user selects points on the floor plan image, and the computer fills
in the fully enclosed areas surrounding the points. (The method is often called “flood
filling”.)

4. Template fitting: The user positions and sizes predefined templates (usually rectan-
gles) to cover the desired regions approximately.

Template fitting, free hand drawing, and tracing are inherently manual techniques,
require varying degrees of user input. Unlike the three manual methods, the area-filling
and deformable templates approaches have the attractive property of being more automatic.
Both, however, require user input to select the initial positions to start the algorithms from.
In addition, as we have seen, the area-filling technique is brittle, as it relies on the unrealistic
assumption that subjective boundaries in an image (the boundaries of image areas that
are subjectively perceived as forming distinct regions) coincide with actual closed pixel
contours in the image. Area-filling performs poorly on our sample floor plan, as shown in
Figure 5.11(a).
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Figure 5.11: Regions delineated by two methods. (a) Regions generated by area-filling.
(b) Regions generated by the proximity-field method, with minor post-editing. Note the
introduction of the subjective-contour “hint” at the upper right of the main lobby and the
joining of regions in the room above it.

It might be thought that the ability to add lines or other features to the image as
a preprocessing step would vitiate the problems with area filling. It does not. In the
case of area filling, quite fine-grained manual preprocessing of the image will tend to be
required, because the preprocessing would need to be used not only to add missing large-
scale subjective contours but also any missing bit of subjective contour down to the pixel
level. The improved automatic performance of the proximity field technique means that
only the grossest of missing subjective contours need be filled in. Because the proximity
field technique is relatively insensitive to perfect abutting of lines and the like, the line
drawing can be done quite rapidly, and on an as-needed basis. As the user of a system
sees that a certain region is not being appropriately subdivided, the user merely needs to
provide a hint to the system by quickly drawing a line segment where there is a missing
contour.
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Subjective regions encompassing multiple proximity field regions can similarly be han-
dled without fine-grained editing of the image. A user can specify to the system that several
regions should be combined to form a single subjective region merely by indicating the cor-
responding centers. Because the local search procedure described in Section 5.2.2 can find
region centers starting from a large area around the minimum, the process of selecting the
regions can be done manually with only gross human actions, such as mouse-clicking in the
general vicinity.

Thus, the proximity field technique not only works better as an automated method
for region delineation, but it fits well in a semi-automated system in that (i) the better
performance means that less repair of results need be carried out manually, and (ii) the
types of human intervention needed to correct the behavior of the technique require only
large-scale gross actions rather than fine-grained editing. Figure 5.11 shows the results of
delineating regions under two methods.

5.6 Summary

Region segmentation, like many design problems, cannot be solved by purely syntactic
methods. Consequently, any method for identifying regions in a bitmap must allow for
human intervention at some point in order to correct errors detectable only with semantic
information. Techniques must also permit people to specify a region is partially bounded
— the boundaries of the region might have been corrupted during the scanning process
(a frequent occurrence), or the region might be bounded in part by subjective contours
not depicted in the image. Existing approaches and systems are not optimal for the task
of region segmentation as they rely on manual techniques (i.e., tracing) and often make
unrealistic assumptions (i.e., regions are fully bounded) about the regions being defined or
the input to the system.

Because it provides a better syntactic model of subjective regions, the novel proximity
field method introduced in this chapter is better-suited for region delineation. The col-
laborative system into which it is integrated allows for simple interactive postprocessing.
Subjective contour hints, in the form of false walls, enable users to subdivide regions. A
joining operation permits users to combine multiple regions into a single area. Thus the
resulting system is superior to both manual and automatic methods previously proposed.

The system described in this chapter exploits the collaborative framework proposed in
this thesis. The computer works locally, calculating region definitions based on a local search
technique. The process is guided by the user at a global level; simple human interventions
requiring only gross information can be used to correct automatically generated region
definitions. In addition, the user has the control to determine when the region definitions
are correct (or good enough). Such a division of labor enables the system to work on a
variety of floor plan “styles”. See Appendix C for additional example floor plans.
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Chapter 6

Conclusion

We have presented a new paradigm for computer-user interface design which helps determine
the division of labor between the computer and its user. This paradigm is based on the
notion of collaboration between the user and the computer; it exploits the strengths of each
participant by giving the user the global portion of the problem and leaving the computer
with the local portion. In contrast to the traditional master-slave paradigm in which the
interface acts as a means for the user to control the computer, the collaborative paradigm
leads to interfaces that act as media through which people and computers can work together
to solve a particular problem. It encourages the development of semi-automatic systems
through which users can explore a large number of candidate solutions, while evaluating
and comparing various alternatives.

We have applied the collaborative approach to problems from the domain of graphic
design, a domain in which aesthetic criteria and a user’s personal preference play important
roles in arriving at acceptable solutions. We have designed and implemented three novel
systems for graphics design tasks. GLIDE is an interactive constraint-based editor for net-
work diagram layout that supports users in interactively specifying the visual organization
of a diagram. Design Galleries is a family of applications for parameter specification for a
variety of computer graphic algorithms, including volume rendering, animation, and particle
systems. Finally, our floor plan segmentation system enables users to easily and accurately
identify regions of interest in a scanned floor plan image.

Currently, GLIDE can be used by the user to explore design alternatives. In some cases,
however, the user may not know how to begin laying out a particular graph. Future work on
the GLIDE system could include using several existing automatic layout routines to generate
example layouts for a user to browse, providing them with a starting point for the layout
they wish to generate. Output from another system could be used as input to GLIDE.
Alternatively, the automatic layouts might be used only to help users generate ideas. An
interesting question would be how to arrange these candidates to best aid users in their
search.

Another area of further investigation would be to incorporate some notion of scaling
and abstraction into the GLIDE system. At the present, the system provides users with a
single view of the entire graph; if the graph is larger than the viewing area of the canvas,
it may be accessed via scroll bars. For larger graphs, this may prevent users from getting
an overview of the entire graph. By enabling users to view the diagram at varying levels
of magnification, GLIDE could support users in understanding the layout as a whole. The
use of abstraction techniques, such as grouping a set of nodes together and replacing them
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with a single larger node (thus hiding the details of a particular component) might also be
beneficial.

Design Gallery interfaces are a useful tool for many applications in computer graphics
that require tuning parameters to achieve desired effects. The system interface enables
the user to effectively browse through the space of output graphics. The arrangement
component of the interface provides a two-dimensional space with minimal navigation and
interaction techniques. The ability to annotate the design space would be a useful extension
to the Design Gallery interface. It would enable users to explore spaces containing more
representative points without getting lost by establishing landmarks for themselves (or
others); it would also aid users in mapping the design space for further exploration.

We have shown the utility of the collaborative approach for computer-user interface
design within the domain of graphic design. We believe that this this general approach to
computer-user interface design will be applicable to problems outside the domain of graphic
design. Once we replace the idea of computer as servitor with computer as collaborator,
we will be able to design interfaces that better leverage human abilities through simple
yet sophisticated interfaces. In a recent article, Wegner (1997) describes how by allowing
interactivity, an algorithm could in effect be made more powerful than a Turing Machine.

“Interaction is a more powerful paradigm than rule-based algorithms for com-
puter problem solving, overturning the prevailing view that all computing is
expressible as algorithms.” (Wegner, 1997)

The collaborative framework presented in this thesis illustrates the importance of interaction
in computing systems and of striking a balance between user intervention and computer
control.
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Appendix A

GLIDE: Additional Example
Diagrams

In Chapter 3 we presented an example interaction with the GLIDE system; the user’s goal
was to create a particular layout already envisioned, namely the drawing in Figure 3.3
(Norton, Szymanski, and Decyk, 1995). In Section A.1 we examine the use of GLIDE to
explore the development of a design alternative for the same data set. GLIDE can also be
used to help users organized and understand previously unseen data sets, as illustrated by
the example given in Section A.2.

A.1 Exploring Design Alternatives

As an example of the flexibility of the system, Figures A.1-A.8 present successive snap-
shots of quiescent states of the interface as a user develops an alternative layout starting
from the same initial layout as the example used for the walk through in Chapter 3.

In order to generate a new layout, the user must identify for novel visual organizational
patterns. In the layout in Figure A.1, there are two tree-like sets of nodes with roots at the
Particle and ParticleDistribution nodes. The user adds a one T-Shape VOF as shown
in Figure A.2, and a second instance as shown in Figure A.3 Note that the Electron node

GaussianRandomNum

Particle

VirtualParallelMachine

ClockTimer

EnergyDiagnostic

ParticleDistribution

Figure A.1: Starting point for exploring a design alternative — same initial configuration
as Figure 3.4.
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’ GaussianRandomNum ‘ ’ VirtualParallelMachine

ParticleDistribution

ClockTimer

EnergyDiagnostic

Figure A.2: User adds a T-Shape VOF to four nodes.

‘ GaussianRandomNum ‘ J VirtualParalleIMachine

ParticleDistribution

ClockTimer

Plasma

EnergyDiagnostic

Figure A.3: User adds a second T-Shape VOF to the left three nodes.
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Particle

‘ GaussianRandomNum ‘ ‘ VirtualParallelMachine

ParticleDistribution

ClockTimer

EnergyDiagnostic

Figure A.4: User manipulates the root node of each T-Shape VOF.

ParticleDistribution

‘ GaussianRandomNum ‘ ‘ VirtualParallelMachine

Particle

ClockTimer

EnergyDiagnostic

Figure A.5: The intermediary layout with the T-Shape VOFs in the right places.

participates in both VOFs. GLIDE satisfies these constraints as shown in Figure A.4.

Now the user would like the T-Shape VOFs to be oriented differently. By manually
manipulating each of the root nodes, the user helps GLIDE find a more acceptable layout.
This intervention is shown in Figure A.4, and results in both T-Shape VOF's being inverted;
the system maintains the T-Shape constraints generating the layout in Figure A.5.

Next the user swaps two nodes by manually moving the GaussianRandomNum node to
the right, placing it to the left of the node VirtualParallelMachine. GLIDE continues to
satisfy the existing VOFs, and the nodes settle into the layout shown in Figure A.6.

Now that the diagram has the desired general layout, it only requires a few additional
VOFs to clean up its appearance. In Figure A.7 the user adds Vertical Alignment and
Vertical Symmetry VOFs. Two Horizontal Alignment VOF's, as shown in Figure A.8, bring
the rows of the diagram into alignment. No alignment is needed on the first row due to the
two previously established T-Shape VOFs.

All that remains is to space the rows vertically, which is accomplished by adding a Ver-
tical Even Spacing VOF as indicated in Figure A.9. The final layout is given in Figure A.10.
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ParticleDistribution

Electron ’ VirtualParallelMachine ‘ GaussianRandomNum ‘

Particle

ClockTimer

EnergyDiagnostic

Figure A.6: User swaps the VirtualParallelMachine and GaussianRandomNum nodes.

ParticleDistribution

Electron

’ VirtualParallelMachine

‘ GaussianRandomNum

ClockTimer

EnergyDiagnostic

Figure A.7: User adds two more VOFS: Vertical Alignment and Vertical Symmetry .

ParticleDistribution

Electron ‘ VirtualParallelMachine ‘ GaussianRandomNum

Particle

ClockTimer

EnergyDiagnostic

Figure A.8: User adds two Horizontal Alignment VOF.
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ParticleDistribution

~

“ ‘ Electron

‘ VirtualParallelMachine

‘ GaussianRandomNum

’ Particle

‘ Plasma

ClockTimer EnergyDiagnostic

Figure A.9: User adds a Vertical Even Spacing VOF.

ParticleDistribution

4

VirtualParallelMachine

GaussianRandomNum

Particle Plasma

EnergyDiagnostic

ClockTimer

Figure A.10: The final layout.
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A.2 Understanding and Organizing an Unknown Data Set

In this Section we again illustrate the use of the GLIDE system to explore design alternatives.
In this case, however, the user’s goal is to generate a layout for a set of data without a priori
knowledge of what the visual organization of the diagram might be.

The data set was randomly generated and contains 29 uniformly-sized nodes, each with
a unique label. The nodes were colored using 6 hues. Within a given set of same-colored
nodes, each node has the same letter,! but a unique number in its label. The diagram
contains 27 directed edges. The initial layout for the nodes was also randomly generated.
Figure A.11 shows the initial configuration presented to the user.

The first two layouts, Figures A.12 A.13, were generated by a novice user. In the first
layout (shown in Figure A.12), the user has grouped nodes by color. This diagram clearly
illustrates the 6 sets of nodes, and the interconnections between them. Figure A.13 shows
a second layout by the same (novice) user. This time the user’s strategy was to minimize
edge crossings. The red lines in both diagrams indicate the VOF's used.

The layouts in Figures A.14 A.15 were generated by an expert user. As a first strategy,
the user attempted to generate a sink-to-source diagram in which all the edges within the
diagram “flow” in the same direction, in this case up the page. As shown in Figure A.14,
the diagram contains four disconnected components (which are not apparent in either of the
novice-generated layouts). The user also noted a hub shape organization near the center of
the diagram. Starting from this sink-to-source layout, the (expert) user generated the layout
shown in Figure A.15. These two layouts provide a good illustration of the importance of
iterative refinement component of the design process. The act of exploring one design
alternative led the user to identify and generate a second layout.

The four layouts shown here are very different from each other, each conveying different
structures of the underlying data set. It would be difficult to objectively evaluate and rank
these diagrams. Such an ordering would depend upon what information the designer was
trying to convey through the diagram. As the data set was randomly generated, there is
no right answer to this question.

1One set of nodes contain no letter.
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Figure A.11: A random data set with random initial layout.
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Figure A.12: A first attempt by a novice user.
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Figure A.13: A second layout by a novice user.
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Figure A.14: A sink-to-source layout by an expert user.
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Figure A.15: A symmetry-based layout by an expert user.
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Appendix B

Design Galleries: Example
Application Areas

All examples in this appendix make use of the same dispersion and arrangement techniques
that were used for the medical imaging example in Section 4.3 and utilize Euclidean distance
as the distance metric on their output vectors. Lines have been added to each interface to
show the correspondence between thumbnails and full-sized images in the gallery.

B.1 Scientific Visualization

This volume rendering Design Gallery uses the simulated electron density of a protein as its
data set. Figure B.1 illustrates its interface. Both the color and opacity transfer functions
were varied in the input vector, for a total of 23 input parameters. As with the example in
Section 4.3, mapping is done using a volume rendering technique, and the output vector is
composed of eight manually selected pixels.

Figure B.2 shows the result of clicking on one of the images in the image gallery: the cor-
responding opacity and color transfer functions are depicted in a pop-up window, allowing
the user to see how image and data relate.

B.2 Two Dimensional Animation

The two-dimensional double pendulum is a simple dynamic system with rich behavior that
makes it an ideal test case for parameter-setting methodologies. A double pendulum consists
of an attachment point h, two bobs of masses m1 and mo, and two massless rods of lengths
and 79, connected as shown in Figure B.3. Our pendulum also includes motors at the joints
at h and m; that can apply sinusoidal time-varying torques.! The input vector comprises
the rod lengths, the bob masses, the initial angular positions and velocities of the rods,
and the amplitude, frequency, and phase of both sinusoidal torques, for a total of 14 input
parameters.

Choosing a suitable output vector proved to be the most difficult part of the Design
Gallery process for the double pendulum, as well as for the other motion-control applica-

'Even without the application of external torques at its joints, the two-dimensional double pendulum is
provably chaotic (Dullin, 1994).
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Figure B.1: A Design Gallery with different opacity and color transfer functions.

File  Page  Bookmarks

Page: 1 File: plots/lut173.

Opacity Polyline

Figure B.2: Pop-up display depicting opacity and color transfer functions.
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Figure B.3: A two-dimensional double pendulum.

tions; several rounds of experimentation were needed (see the paper by Marks et al. (1997)
for more details). For the double pendulum, the output vector has 12 parameters: the
differences in rod lengths and bob masses, the average Cartesian coordinates of each bob,
and logarithms of the average angular velocity, the number of velocity reversals, and the
number of revolutions for each rod. The mapping from input vector to output vector is
accomplished by dynamically simulating 20 seconds of the pendulum’s motion.

The Design Gallery interface shown in Figure B.4 is for the two-dimensional double
pendulum. The displayed thumbnails are static images of the final state of a pendulum,
along with a trail of the lower bob over the final few seconds. We found that these images
give enough clues about the full animation to enable effective browsing. Dragging a thumb-
nail to a gallery slot places a full-sized static image corresponding to the thumbnail into
the gallery. The gallery images can then be animated, permitting users to view multiple
animations simultaneously.

B.3 Three Dimensional Animation

The previous Design Gallery is useful in finding and understanding the full range of motions
possible for the pendulum under a given control regime. However, complete generality is not
always a useful goal: the animator may have some preconceived idea of a motion that needs
subtle refinement to add nuance and detail. The three-dimensional hopper dog, shown in
Figure B.5, is an articulated linkage with rigid links connected by rotary joints. It has a
head, ears, and tail, and moves by hopping on its single leg. It has 24 degrees of freedom
(DOF). The hopper dog is actuated by a control system that tries to maintain a desired
forward velocity and hopping height, as well as desired positions for joints in some of the
appendages.

Seven quantities of the system are designated as quantities of interest, to be explored
by the Design Gallery interface: the forward velocity, the hopping height, and the positions
of 2-DOF ear joints, a 2-DOF tail joint, and a 1-DOF neck joint. For each quantity of
interest, a time-varying sinusoid is chosen as the desired trajectory, with the minimum value,
maximum value, and frequency specified by the input vector, giving a total of 21 values
in the input vector. The hopper dog has other degrees of freedom that are not explicitly
controlled by the input vector. The output vector measures the seven quantities of interest,
using data captured over a 30 second physical simulation. Measures of the average and
variance of each quantity of interest are recorded in the output vector, giving a total of 14
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Figure B.4: A Design Gallery for an actuated two-dimensional double pendulum.

values. The equations of motion for the system are generated using a commercially available
package (Rosenthal and Sherman, 1986); dynamic simulation is used to produce both the
end animations and relevant mapping from input vector to output vector.

The Design Gallery interface for Hopper Dog is shown in Figure B.4. The displayed
thumbnails are motion-lapse images of his ears and tail. As with the double-pendulum
Design Gallery interface, images in the gallery can be animated.

B.4 Particle Systems

Particle systems are useful for modeling a variety of phenomena such as fire, clouds, water,
and explosions (Reeves, 1983). A useful particle-system editor might have 40 or more
parameters that the animator can set, so achieving desired effects can be tedious. As in
the previous subsection, we use a Design Gallery interface to refine an animator’s rough
approximation to a desired animation.

The scenario for our experiment is a new beam weapon for Klingon starships. A first
draft was produced by hand using a regular particle-system editor. The input vector con-
tains the subset of particle-system controls that the animator wishes to be tweaked. The
controls govern: the mean and variance of particle velocities, particle acceleration, rate of
particle production, particle lifetime, resilience and friction coefficients of collision surfaces,
and perturbation vectors for surface normals. Among the parameters that are held fixed in
this example are the origin, average direction, and color of the beam.

The output vector comprises measures of the number of particles, their average distance
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Figure B.5: HopperDog: A three-dimensional articulated dog.

[ Design Galteries T

Visualization - Hip Visualization - Iron lon Animation - Complex Pendulum Animation - Particle Systems Animation - Aritculated Figures

Figure B.6: Design Gallery for HopperDog.
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Figure B.7: A Design Gallery for a particle system.

from the origin and the individual variation in this distance, their spread from the average
beam, the average velocity of the entire system, and the individual variation from this
average (we take logs of all of these quantities except for the beam spread). These six
measures are included for each of the two distinguished times (once midway through the
simulation, and once at the end), resulting in 12 output parameters.

Each thumbnail is a static image built by compositing the animation frames. Although
the resulting image does not look like any single frame of the animation, we believe users
can easily establish a mental correspondence between the static images and the nature of
their associated animations. As with the other animation-based DG interfaces , images
in the gallery can be animated. Figure B.7 shows the Design Gallery of variations on an
animator’s sketch of the Klingon beam weapon.
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Appendix C

Floor Plan Segmentation:
Additional Example Diagrams

In Chapter 5 we described an example interaction in which the user and computer collab-
orated to generate a region segmentation (and corresponding graphic) for a sample floor
plan. Figures C.1 and C.2 provide two additional sample floor plans. Notice the very dif-
ferent styles of these floor plan images. The Berkeley floor plan, Figure C.2, seems to have
been derived directly from the blue prints. Many of the “walls” (i.e. boundaries) between
adjacent rooms are missing pixels. The corruption is most likely due to scanning errors.
In contrast, the MIT floor plan, Figure C.1, was most probably produced using a simple
drawing editor. It contains partially bounded regions as well; doors are indicated by gaps
in the walls, rather than by door swings. Our system works equally well with both styles of
floor plans. The false colorings in the images depict the system-generated regions, without
any additional user input.
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Figure C.1: MIT floor plan.

Figure C.2: Berkeley floor plan.
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