
Computer-Human Collaborationin the Design of GraphicsA thesis presentedbyKathleen RyalltoThe Division of Engineering and Applied Sciencesin partial ful�llment of the requirementsfor the degree ofDoctor of Philosophyin the subject ofComputer ScienceHarvard UniversityCambridge, MassachusettsAugust 1997

c1997 by Kathleen RyallAll rights reserved.

ii

Abstract
Delineating the roles of the user and the computer in a system is a central task in userinterface design. As interactive applications become more complex, it is increasingly di�cultto design interface methods that deliver the full power of an application to users, whileenabling them to learn and to use e�ectively the interface to a system. The challenge is�nding a balance between user intervention and computer control within the computer-userinterface.In this thesis, we propose a new paradigm for determining this division of labor, whichattempts to exploit the strengths of each collaborator, the human user and the computer sys-tem. This collaborative framework encourages the development of semi-automatic systems,through which users can explore a large number of candidate solutions, while evaluatingand comparing various alternatives. Under the collaborative framework, the problem tobe solved is framed as an optimization problem, which is then decomposed into local andglobal portions. The user is responsible for global aspects of the problem: placing the com-puter into di�erent areas of the search space, and determining when an acceptable solutionhas been reached. The computer works at the local level, computing the local minima,displaying results to the user, and providing simple interface mechanisms to facilitate theinteraction. Systems employing this approach make use of task-speci�c information to lever-age the actions of users, performing �ne-grained details while leaving the high-level aspectsto the user speci�able through gross interface gestures.iii

We present applications of our collaborative paradigm to the design and implementa-tion of semi-automatic systems for three tasks from the domain of graphic design: networkdiagram layout, parameter speci�cation for computer graphics algorithms and oor plan seg-mentation. The collaborative paradigm we propose is well-suited for this domain. Systemsdesigned under our framework support an iterative design process, an integral component ofgraphic design. Furthermore, the collaborative framework for computer-user interface de-sign exploits people's expertise at incorporating aesthetic criteria and semantic informationinto �nding an acceptable solution for a graphic design task, while harnessing a computer'scomputational power, to enable users to explore a large space of candidate solutions.

iv

AcknowledgementsI guess things always come back to haunt you. I used to tease my older sister about beinga professional student (she is now a pediatrician). Little did I know that I would decide topursue a PhD, and that it would take me seven years to earn it! After a mere twenty-�veyears of continually being a student, I'm now ready to face the \real world".This thesis would not have been possible without the members of my thesis committee.I must start by thanking my advisor Stuart Shieber for his support and guidance duringmy time as a graduate student. He encouraged me to �nd a topic that I really loved andgave me the time and space to �nd it. Barbara Grosz has also been incredibly supportivethrough the years. I am especially grateful to her for the AI research group that provideda forum for me to present my ideas and receive valuable feedback. Special thanks to JoeMarks for his time and e�orts towards my research and professional development and fororiginally sparking my interest in graphics and interfaces. This material is based uponwork supported in part by the National Science Foundation under Grant Nos. IRI-9157996,IRI-9350192, and IRI-9618848, and in part by MERL | A Mitsubishi Electric ResearchLaboratory.I would also like like to thank other members of the Harvard faculty: Harry Lewis forbeing a great teaching role model, Tom Cheatham for being on my qualifying committee,and Margo Seltzer for her advice.Many of my fellow graduate students (past and present) and other members of theHarvard community have made my time here easier and certainly more enjoyable: NadiaShalaby (my �rst real friend in the department, my �rst (and only) o�cemate, and a personwith more patience than I deserve), Azer Bestavros (for letting me know that there wasa CS department at Harvard), Cecile Balkanski and Karen Lochbaum (for help with myqualifying exam), Ted Nesson (a great lunch partner), the pasta night crew (Andy Kehler,Jon Christensen, Stan Chen, Josh Goodman, Rebecca Hwa, Wheeler Ruml), Lillian Lee(my thesis and job cohort), and other Aiken (may it rest in peace) inhabitants (Ellie Baker,Keith Smith, Chris Small, Karen Daniels). Thanks also to non-CS types Erik Evensen(an awesome housemate and co-Fellow), Margaret Hsu (down the block in Chemistry), andSusan Zawalich (house administrator extraordinaire).Contrary to popular belief, there is life outside Harvard. The following friends havehelped me to keep my sanity by providing dinner, procrastination opportunities (often ininteresting places), and a sympathetic ear: Stu Berman (my �rst TA back at Wes), SandyCross (on to South America?), Heidi Webster, Meg Derr, Liz Echausse, Jessica Rose, andRyan Pence. Special thanks to Barry Jaspan for being there and believing in me (evenwhen I didn't), for showing me the value of persistence and perseverance, for letting melead sometimes, and for knowing when to break out the turkey and mashed potatoes. ;-)Finally, deepest thanks to my family who have always believed in me, and challengedv

me to do more: Johnny, Tommy and Amie, and Moo and Lou (hopefully you won't have tohelp me move any more). Extra special thanks to my parents, John and Nancy, who havealways said (and somehow convinced me) that I could do anything I wanted to do.

vi

Contents
1 Introduction 11.1 Designing Graphics : 11.2 Traditional Approach : 21.3 Collaborative Framework : 31.4 Problem Domains : 62 Background 82.1 What Is An Interface? : 82.2 The Design of Graphics : 102.2.1 Informational Graphics : 102.2.2 Representational Graphics : 112.3 Summary : 143 Glide 153.1 Introduction : 153.2 Our Approach : 163.3 Example Interaction : 193.4 System Design : 223.4.1 Constraint Formulation : 233.4.2 Constraint Satisfaction : 263.4.3 Visual Presentational Issues : 273.4.4 Implementation : 283.5 Comparison to Existing Approaches : 293.5.1 Drawing Packages : 293.5.2 Graph Drawing Algorithms : 303.5.3 Constraint-Based Editors : 313.6 Summary : 334 Design Galleries 344.1 Introduction : 344.2 Design Gallery Methodology : 364.3 Sample Application: Medical Imaging : 374.4 Arrangement and System Design : 404.4.1 Icons : 404.4.2 Layout : 424.4.3 Navigation : 434.4.4 Interaction : 44vii

4.4.5 Application-Speci�c Functionality : : : : : : : : : : : : : : : : : : : 444.5 Comparison to Existing Approaches : 444.5.1 Parameter Speci�cation : 454.5.2 Information Visualization and Navigation : : : : : : : : : : : : : : : 474.6 Summary : 495 Floor Plan Segmentation 505.1 Introduction : 505.2 Our Approach : 515.2.1 Proximity Field : 525.2.2 Region De�nitions : 545.2.3 Weaknesses : 555.3 System Design : 565.4 Example Interaction : 585.5 Previous Work : 605.5.1 Systems : 625.5.2 Vision and Image Processing : 645.5.3 Document Analysis : 655.5.4 Drawing Tool Techniques : 665.6 Summary : 686 Conclusion 69A Glide: Additional Example Diagrams 71A.1 Exploring Design Alternatives : 71A.2 Understanding and Organizing an Unknown Data Set : : : : : : : : : : : : 76B Design Galleries: Example Application Areas 82B.1 Scienti�c Visualization : 82B.2 Two Dimensional Animation : 82B.3 Three Dimensional Animation : 84B.4 Particle Systems : 85C Floor Plan Segmentation: Additional Example Diagrams 88

viii

List of Figures1.1 Traditional Master-Slave Framework. : 41.2 New Collaborative Framework. : 43.1 Visual Organization Features. : 173.2 A Local Minimum. : 183.3 Scanned diagram on which the example was based. : : : : : : : : : : : : : : 193.4 Interface to the glide system. : 203.5 User adds an Alignment VOF to each row. : : : : : : : : : : : : : : : : : : : 203.6 User adds three more VOFs. : 213.7 User adds three text labels, and three VOFs. : : : : : : : : : : : : : : : : : 223.8 The �nished layout. : 223.9 Reduction of some sample VOFs to systems of generalized springs. : : : : : 244.1 Components and interactions of a Design Gallery Application. : : : : : : : : 364.2 Human hip data set rendered using di�erent opacity transfer functions. : : 384.3 Instantiated components for a medical imaging Design Gallery application. 394.4 A Design Gallery for medical imaging. : 394.5 A schematic of the Design Gallery user interface. : : : : : : : : : : : : : : : 415.1 How dogs interpret oor plans. : 515.2 Motivation for the proximity �eld. : 535.3 Computing the nearest local minimum. : 555.4 Computer-user interface for the system. : 575.5 The original scanned bitmap. : 595.6 The false-colored proximity �eld generated for the bitmap. : : : : : : : : : : 595.7 The regions delineated according to the proximity map in Figure 5.6. : : : : 605.8 The user adds two false walls. : 615.9 The user joins the door swings to the upper hall region. : : : : : : : : : : : 615.10 The �nal region de�nitions. : 625.11 Regions delineated by two methods. : 67A.1 Starting point for exploring a design alternative. : : : : : : : : : : : : : : : 71A.2 User adds a T-Shape VOF to four nodes. : 72A.3 User adds a second T-Shape VOF to the left three nodes. : : : : : : : : : : 72A.4 User manipulates the root node of each T-Shape VOF. : : : : : : : : : : : : 73A.5 The intermediary layout with the T-Shape VOFs in the right places. : : : : 73A.6 User intervention aids global optimization. : : : : : : : : : : : : : : : : : : : 74A.7 User adds two more VOFS: Vertical Alignment and Vertical Symmetry . : : 74ix

A.8 User adds two Horizontal Alignment VOF. : : : : : : : : : : : : : : : : : : : 74A.9 User adds a Vertical Even Spacing VOF. : 75A.10 The �nal layout. : 75A.11 A random data set with random initial layout. : : : : : : : : : : : : : : : : 77A.12 A �rst attempt by a novice user. : 78A.13 A second layout by a novice user. : 79A.14 A sink-to-source layout by an expert user. : : : : : : : : : : : : : : : : : : : 80A.15 A symmetry-based layout by an expert user. : : : : : : : : : : : : : : : : : : 81B.1 A Design Gallery with di�erent opacity and color transfer functions. : : : : 83B.2 Pop-up display depicting opacity and color transfer functions. : : : : : : : : 83B.3 A two-dimensional double pendulum. : 84B.4 A Design Gallery for an actuated two-dimensional double pendulum. : : : : 85B.5 HopperDog: A three-dimensional articulated dog. : : : : : : : : : : : : : : : 86B.6 Design Gallery for HopperDog. : 86B.7 A Design Gallery for a particle system. : 87C.1 MIT oor plan. : 89C.2 Berkeley oor plan. : 89

x

Chapter 1IntroductionIn this thesis, we describe a new interface design paradigm for determining the division oflabor between people and computers, one which attempts to exploit the strengths of eachcollaborator. We apply this approach to three distinct problems in the design of graphics,presenting novel implemented systems for each problem.1.1 Designing GraphicsGraphics are a rich medium available to aid both computers and people in their commu-nication goals. A picture is worth the proverbial thousand words. As we move throughthe Age of Information and into information overload the ability to organize and presentinformation graphically will be more important than ever. Moreover, as electronic presen-tation of information becomes more prevalent, people will require more support in creatingand re�ning graphics on-line. Together, computers and users can often �nd solutions toproblems that neither could have discovered alone. The question is how to strike a balancebetween user intervention and computer control.As a result of computer support for the design and re�nement of graphics, graphics arebecoming a more expressive and interactive medium. In turn, the number of possiblegraphics, which we will call the design space, grows exponentially with the number ofparameters in the design. The complexity of the resulting design space increases as well,making it di�cult to explore design alternatives and thus to generate desirable graphics.Many argue that the complexity of the design space is the root of the problem. While thedesign space is indeed large and rich, this is not the inherent problem. The di�culty comesin relying on the computer to navigate and explore the space, with little or no assistancefrom a person. Problems arise from both the user and computer perspectives.From the user perspective, people often do not know what they want in a graphic.Although some graphics are better than others, it is often di�cult to formalize (in a precisemanner) what is desired in a graphic. We refer to this as the problem of unquanti�ableoutput characteristics; it is the intangible qualities that lead people to prefer one display toanother. Next, even when people can enumerate desired characteristics, it is still di�cultfor them to communicate this information to the computer. Communication is typicallydone through an objective function (a mathematical speci�cation of a desired graphic) orthrough parameter setting. Neither of these methods is particularly convenient for people.From the computer perspective, some problems are computationally hard. Optimallylabeling the point features of a map, for example, has been shown to be NP-hard (Marks and1

Shieber, 1991). Other NP-hard design problems include page layout and pagination (Plass,1981), and minimizing edge crossings and area of graphs (Johnson, 1982; Johnson, 1984).As a result of such computational complexity, computers must rely on heuristics to generatesolutions to many problems. In addition, while people �nd it di�cult to specify aestheticcriteria mathematically, computers are not well equipped to evaluate aesthetic criteria aspart of their calculations. Computers may not have access to su�cient information to choosebetween two design alternatives because arbitrary semantic information may be needed tochoose among several acceptable alternatives. In such cases, a person must often interveneto decide between two or more equally correct solutions or design alternatives; computersshould not and cannot be expected to make this �nal determination.The graphics design process, the sequence of actions taken in designing a graphic, shouldbe a dynamic process based on iterative re�nement. It can be decomposed into two tasks:conceptualization (selecting the objects to include, and how to organize them) and articula-tion (determining precise locations of the objects). Applications need to support and assistpeople in both tasks. The design process can also be characterized by the goals it is beingused to achieve. A person may be trying to instantiate a particular design; the goal is to�gure out how to get the computer to produce the graphic. Alternatively, the person maybe interested in exploring possible design alternatives. This type of browsing activity as-sists a user in conceptualizing a particular design; viewing related graphics can help peopleidentify what they do (or do not) want in a graphic. The design process often involves bothtasks. A person may start with a particular design, but will often re�ne it after comparingit to other graphics of its type. This interweaving of search and modi�cation is the crux ofan iterative re�nement process.System designers must determine the roles of the user and computer in the graphicsdesign process. The question of how to assign responsibility within the graphics designprocess is a di�cult one to answer. In the following sections we examine the traditionalapproach to this problem and its associated drawbacks. We then introduce a novel collab-orative framework for determining the division of labor. We conclude with an overview ofthe three graphics design tasks for which we have designed and implemented systems basedon this collaborative framework.1.2 Traditional ApproachHistorically people have relied upon the user interface as the single point of contact betweencomputers and people. The interface was thought of as \an input language for the user,an output language for the machine, and a protocol for interaction" (Chi, 1985). Thisview results in the traditional master-slave framework, in which the interface is a meansfor people to control computers. Under this approach, the division of labor is such that theuser issues commands to the computer; the computer plays a passive role, responding tothe user's actions.Software packages for graphics design based on the master-slave framework range frommanual to automatic. Tool-based packages typify the manual end. They provide a userwith computer versions of real world artifacts, implemented with direct manipulation in-terfaces. Drawing packages, for example, provide users art materials such as paper, pens,pencils, paints, scissors, and paste. The computer acts as a recording device, merely notingthe solution that the user generated. Rather than aiding the design process, tool-basedapplications may frustrate a user because of the di�culty of using commonplace tools in2

an unfamiliar environment. Although computer-based graphics packages are often a stepup from the days of designing on paper, they place too much responsibility on the user,and may be tedious to use. The user is responsible for both the conceptualization and thearticulation of the design, while the computer plays a passive role.On the automatic end, oracle-based software employs complicated algorithms to relievepeople from having to do complex computations by hand. In such applications, the userposes a question to the computer, and the computer provides \the answer". Expert systemsare a common example of this approach. An expert's knowledge and expertise is encodedinto a program which will then be used by non-experts to solve problems in a particulardomain. However, it is hard to know what question to ask, and di�cult to state becausedoing so requires setting various parameters or specifying an objective function. In suchautomated applications, it is di�cult to re�ne computer-generated designs. Editing is usu-ally an indirect process | a user must tweak a variety of input parameters. Often a personwill not quite understanding the impact a change will have on the �nal layout. As a result,people experience little control over the design process when using such black box software.Software support for the design of graphics should provide people with mechanisms tocreate, re�ne and generate new designs. The design process itself is inherently interactive.As a result, software designers must take account of how easily and practically to incorporatea user and the underlying computer application into an integrated system.1 Althoughsystems fall on a spectrum from manual to automatic, little attention has been given to themiddle of the range. The source of problems at the endpoints (i.e. automatic and manualapplications) can be attributed to the failure of the system to delineate the roles of theuser and the computer in an e�ective and useful manner. In the traditional master-slaveframework, the software and its user are separate and independent components. As depictedby the diagram in Figure 1.1, data moves through such a system in series, with only onecomponent working on the data at any given time. This pipe-lined approach enforces rigidboundaries between a person and the computer. An alternative approach is to integratethe two components, permitting them to work in parallel on the data. This approach isshown in Figure 1.2; both the person and the computer are able to modify the data atthe same time, and both will see the results of the other's actions. This makes for a morecollaborative and cooperative approach to design.1.3 Collaborative FrameworkThe collaborative framework we propose views the interface as a means for people andcomputers to collaborate on solving problems, rather than as a mechanism for people tocontrol computers. Its goal is to keep (or reintroduce) the user into the graphics designprocess; both the computer and the user participate in the design process. The systemshould be designed to exploit the strengths of each collaborator. People draw upon a broadrange of experience and often rely upon intuition when making decisions. Computers, on theother hand, have a narrow area of expertise and greater computational power. Identifyingthese competencies is a key component of the collaborative paradigm.The collaborative paradigm we propose relies on two key components:1Throughout this thesis we will use the term user to denote people, the terms computer, software, andapplication to denote the machine, and system to designate the combination of user and computer together.3

User
Interface ComputerPerson

Figure 1.1: Traditional Master-Slave Framework.

User
Interface

Computer

Person

Figure 1.2: New Collaborative Framework.
4

� Division of labor: De�ning a representation of the problem to be solved that naturallydecomposes into a portion that a computer is good at and a portion the user is betterable to perform.� Communication: Designing languages and mechanisms to employ in transferring in-formation between the person and the computer, specifying how much information toexchange.As a concrete example, we will consider the graphic design problem of network diagramlayout 2 which is one of the applications we tested hypotheses on. For instance, organiza-tional charts are a common class of network diagrams. Given a set of nodes and edges, aperson attempts to construct a diagram to communicate some information.In designing a collaborative system, we must �rst �nd an appropriate representation ofthe layout task that can be shared by the computer and its user. Based on the represen-tation, we must then determine the division of labor between the computer and its userfor solving the problem. Computers are quite good at �ne-grained placement of graphicalobjects whereas a user may �nd pixel-accurate placement, requiring �ne-grained mouse ges-tures, extremely tedious. The user's role is more appropriately the coarse-grained layout,which will depend upon aesthetic and semantic judgments that may be di�cult to specifyin a discrete form. This division of labor with computer working at the local level and usermore globally is typically a good match for the collaborators' abilities.The second question to be addressed is communication. The user needs to communicatethe global layout of the diagram to the computer. This goal might be achieved through adirect manipulation interface in which the user creates and places the nodes and edges ofthe diagram; most drawing and graphics packages utilize standard techniques for this task.Note that the layout provided by the user is only an approximation of the desired layout |the user need not take the time and e�ort to place the objects precisely. The computer'sjob is to convert coarse-grained gestures into �ne-grained placement, and to indicate topeople how this will be done. Many applications include a snap-to-grid feature which maybe used for this function | it relieves users from the burden of working at the pixel levelbut enables them to understand (and predict) the actions taken by the application. Thecomputer may utilize graphical means to aid a user in understanding its behavior; the gridused by the application may be visible, indicating to a user the closest point to the objectbeing manipulated. The mathematical calculations performed by the application are not,however, revealed to the user.The approach described in this thesis for utilizing the collaborative framework relies onthe notion of optimization; the problem to be solved is framed as an optimization task. Theoriginal problem then becomes one of exploring a search space, determining local minima,and evaluating alternative solutions. One challenge is determining the appropriate roles forthe person and the computer in the optimization task. We assign responsibility attemptingto leverage the strengths of both participants. The user is responsible for global aspects ofthe problem: placing the computer into di�erent areas of the search space, and determiningwhen an acceptable solution has been reached. The computer works at a more local level,computing the local minima, displaying results to the user. In addition to establishing2This task is also referred to as graph layout. We will use the terms interchangeably throughout thisthesis. 5

the division of labor, we must also provide simple interface mechanisms to facilitate theinteraction between user and computer.Although others have used optimization in the design of graphics (Witkin and Kass,1988; Poulin and Fournier, 1992; van de Panne and Fiume, 1993; Kawai, Painter, and Cohen,1993; Schoeneman et al., 1993; Liu, Gortler, and Cohen, 1994; Sims, 1994; Tang, Ngo, andMarks, 1995; Christensen, Marks, and Shieber, 1995; He et al., 1996; Edmondson et al.,1997), they utilize a di�erent division of labor between the computer and its user | thecomputer traditionally attempts to calculate globally optimum solutions. In our approach,however, the system is responsible for local optimization only. The user is responsible for theglobal portion of the optimization, as well as evaluating di�erent local minima to determinean acceptable solution. The traditional approach to optimization in design is discussed inmore detail in Chapter 4.1.4 Problem DomainsTo explore this new methodology, we have examined three problems from the domain ofgraphics design in detail: network diagram layout, parameter speci�cation for representa-tional graphics, and oor plan segmentation. Together these graphical design tasks providegood coverage of the design of both informational and representational graphics. The threesystems we have developed illustrate the di�erent strengths that a person and computermay contribute to the collaborative e�ort.Network diagrams are a common form of informational graphic, and constitute an areain which it may be di�cult for a person to de�ne the aesthetic qualities desired in the �naldesign. Most research in network diagram layout has focused on automatic layout. Wehave created an interactive constraint-based editor for network diagram layout, based onthe collaborative framework described above. Our system, glide, improves upon generalconstraint-based editors by providing a small but powerful set of specialized constraintsspeci�cally designed for drawing network diagrams. Glide is the �rst system to supportpeople in specifying the visual organization of a diagram. The user provides an initiallayout and constraint set, which characterize the desired visual organization of the dia-gram. The system then attempts to solve a constraint-satisfaction problem, by calculatinga local minimum using a mass-spring physical simulation. The process is both interactiveand iterative. Glide provides simple interface mechanisms for the user to create, view,manipulate and remove constraints. The user may intervene as the system attempts toprovide a satisfactory layout, or once the system has �nished. By using an intuitive localconstraint-satisfaction scheme whose behavior is predictable and easily visualized throughanimation, glide assists the user in understanding how to achieve a desired layout, andexploring design alternatives.Parameter speci�cation is an especially challenging problem for many computer graphicalgorithms. Many techniques for generating representational graphics, such as volume ren-dering and physically-based animation, rely on numerous parameters in order to generatecompelling images. The solution space of possible parameter settings and the correspondingspace of resulting images are both large and complex. It is di�cult for people to understandthe impact and interaction of these parameters. In addition, many of these algorithms donot run in real-time, making it di�cult to incorporate them into an interactive system inwhich a user is able to experiment with di�erent settings. Our goal is to aid the user inthe task of parameter speci�cation. Under our collaborative methodology, known as De-6

sign Galleries, the system pre-processes the design space, but enables a person to explorerepresentative samples from the space in real-time. One interface approach uses a multidi-mensional scaling technique to layout representative thumbnail images in a two dimensionalspace. The user can then explore areas of interest within the layout in greater detail. Thisuser-directed search exploits people's expertise at incorporating aesthetic criteria in evalu-ating design alternatives, and utilizes a computer's computational power in generating andproviding representative candidates distributed throughout the design space.Floor plan segmentation addresses the problem of identifying partially and fully boundedregions in a scanned bitmap image depicting a oor plan. The task of region segmentation,like many graphic design tasks, can depend in the end on arbitrary semantic informationabout the material depicted in the bitmap to which no purely syntactic method can besensitive. Because no fully automatic method is to be expected, we believe that it is crucialto think of the task of region segmentation as being solvable only semi-automatically. Thus,any system for region segmentation needs to be evaluated not only for how well it works inan absolute sense, but also for how well any remaining problems (for there will be some)can be easily handled by simple human interventions. Other systems for identifying regionsin a bitmap oor plan image place too much burden on the user; they require a personto trace out regions of interest with the mouse. Our collaborative system automaticallyextracts partially and fully bounded region de�nitions from a bitmap image. It suggeststhese candidate regions to the user, who can then further subdivide a single region, or joinseveral regions into one region, using only gross mouse gestures. As our system requiresminimal input from a user, it is better suited for generating this type of representationalgraphic.

7

Chapter 2BackgroundIn this chapter, we discuss three topics that serve as necessary background for this thesis.First we de�ne the term computer-user interface. We then expand upon the idea introducedin Chapter 1 of design as an iterative process, and categorize graphics into two categories:informational and representational. Finally, we provide brief discussions of existing softwarepackages for each category of graphic that incorporate some notion of collaboration into theircomputer-user interface.2.1 What Is An Interface?The notion of a \user interface" emerged in the 1970's during a time when computers werebeginning to be used in a commercial setting by ordinary people. Prior to that time, com-puters were used primarily by specialists | scientists and engineers who received specialtraining for using the computer. Computers were very costly; people's time was an inexpen-sive resource in comparison (Preece, 1994). Therefore, it was easier to adapt the people tothe computer than vice versa. As non-specialists began to interact with computers, however,more attention needed to be given to the software and input/output devices that enabledpeople to work with a computer. From an engineering perspective, the computer alreadyincluded a variety of interfaces, and so the user interface was simply another componentof the application. It was typically de�ned \to be all user and machine behavior that isobservable by an external observer" (Chi, 1985). In practice the interface was that whichwas presented by the computer to a user, rather than a user's interface to the computer.Note that this relationship is not symmetric, and the interface from the user to the com-puter is not included in standard uses of the term \user interface". Grudin (1993) providesa detailed discussion on what is meant by the term \user interface" and why this term isinappropriate in today's computing environment.In this thesis, we will use the term \computer-user interface" as it provides a moreaccurate indication of our view of system design. We view the interface as the commonground shared by the two collaborators in solving a particular problem. We de�ne it to bethe mechanisms and procedures available to both the computer and its user. Although weattempt to exploit human expertise (e.g. global problem solving, perceptual acuity), we donot examine issues typically termed as human factors. Moran (1981) suggested a broaderuse of the term \user interface" in which the perceptual and cognitive processes of the userwere included. Although such processes are important considerations, a formal analysisof them is beyond the scope of this thesis. We do, however, informally incorporate some8

psychological aspects into the determination of the appropriate roles of the person and thecomputer in the collaborative framework.The term \human-computer interaction" was adopted in the 1980's to characterize theinterdisciplinary research that addresses the design of interactive systems. Dix et al. (1993)note \Human-Computer Interaction (HCI) is, put simply, the study of people, computertechnology and the ways these inuence each other. We study HCI to determine howwe can make this computer technology more usable by people." From this perspective,the computer-user interface is extended to include both a person's and a computer's innerprocesses; it is a medium that enables people and computers to collaborate:\The computer is a tool, a complex artifact that can extend our reach. Thedesign discipline of human-computer interaction systematically applies knowl-edge about human purposes, human capabilities and limitations, and machinecapabilities and limitations in order to enable us to do things we could not dobefore. Another goal of HCI, as suggested in the de�nitions given above, is toenhance the quality of the interaction between people and computers. We strive,for example, to make technology easier for people to learn and easier for themto use." (Baecker et al., 1995)The goal of computer-user interface design is to make software easier to use. Althoughthis may appear to be a simple goal, many of today's applications are still incredibly di�cultto use and understand; they hinder rather than aid a user in doing some task. Two keyproblems contribute to the di�culty: expectations and communication. The �rst problem isthe user's expectations about a computer. Too often, the user just wants the computer to dothe right thing; the computer should �gure out \the answer". But what if there is more thanone answer? How should the computer choose between them? What if the computer cannot�nd any answer, or it will take some unacceptably long time to �nd an answer? Should thecomputer give up, or should it get some help from the user? Inappropriate expectationsmay also contribute to the second problem | that of communication. Human-computerinteraction is a form of communication that should be facilitated by the interface. Neitherparticipant, however, is doing a particularly good job. In many applications, it is verydi�cult for users to convey to a computer what they want it to do. Computers, in turn, donot give understandable feedback to their users. Part of the communication problem arisesfrom the existence of two \views" of the world. For the computer, every detail, both dataand procedure, is speci�ed formally and explicitly. For the user, the environment is not asclearly de�ned | it includes both implicit and explicit information, and people are oftenunaware of what guides their intuitions. The computer-user interface needs to provide amapping between the two views, making the transformation transparent to the user. Often,a user is forced to work within the system view, using arcane commands, and setting variousparameters, without understanding their meanings.Our work on collaborative computer-user interfaces addresses these two problems. First,it helps to de�ne a framework that better shapes the expectation of the user, namely thatthe computer is a collaborator with whom the user can work to accomplish a particulartask. The computer is not a black box, or a magician that magically comes up with \theright answer". Rather it works with the user to reach an acceptable solution. Second,the computer-user interface provides simple interaction mechanisms that facilitate the com-munication between the two participants in the graphics design process. It makes a cleardistinction between the user's and computer's view; it hides implementation details that9

should be transparent to people by automatically translating between these two views. Thusthe computer-user interface enables people to work in a more comfortable and appropriateenvironment.2.2 The Design of GraphicsIn this section, we categorize graphics into two categories based on the level of abstractionwithin the graphic. For each category of graphic, we describe related work for a sample ofdesign tasks.Informational graphics, such as bar charts and network diagrams, are graphic elementsin which a conventional format is used to present a data set. Although the data for thesetypes of graphics are often derived from the physical world, they are presented by people(and to people) at a more abstract level. There is not necessarily a literal correspondencebetween properties of some real world object and those of the corresponding graphic ele-ments. Typical graphic design problems involving informational graphics include tasks suchas page layout, hypermedia design, network diagram layout, and designing bar graphs andcharts.Representational graphics are graphic elements used to model real world objects; peo-ple have an existing model or idea from which they attempt to generate an electroniccounterpart.1 The graphic represents an actual (or imagined) object, rather than abstractdata; graphical properties (e.g. distance, color, brightness) correspond literally (thoughperhaps approximately) to their real world counterparts. Typical applications for this cat-egory of graphic include CAD/CAM packages, animation, medical imaging, and virtualreality environments.2.2.1 Informational GraphicsBusiness or presentational graphics are a typical form of informational graphic; they presentabstract data using conventional formats such as charts or graphs, and are a useful mediumfor both analyzing and presenting data. Systems need to support and assist the user in bothtasks of the design process: conceptualization and articulation. Ideally a person's e�ortsshould be directed towards conceptualization, the more creative part of the design processand a task better suited for people. We rely on the computer for articulation. In practice,however, producing useful graphics is di�cult, in large part due to the lack of support inavailable software for these two component activities.Current packages for creating informational graphics are of limited use for one of tworeasons. Many systems restrict users to a small set of static designs | a user selects astyle, and the system automatically displays the data using a prede�ned algorithm. Thisinexibility limits the user's participation in conceptualizing a design, and can frustratepeople as they are unable to re�ne a design or generate variations of a given graphic.Other applications provide a user with more freedom, serving merely as recorders of everygraphical aspect of the design, each one speci�ed by the user at the level of primitive graphic1In some applications, the object may not actually exist or even be part of the physical world. A CADpackage, for example, can be used to design a car that will be produced, but does not yet exist. An animationmay include mythical creatures, such as unicorns, or take place on an alien world that no human has actuallyexperienced. We include such cases under the broad category of representational graphics.10

operation. So much control is often a burden. The user is responsible for both phases of thedesign, specifying the data, the graphical properties and relationships, and the placementof all the graphical objects through tedious �ne-grained mouse gestures.Some previous research on \intelligent interfaces" has focused on fully automating thedesign of presentational graphics (Mackinlay, 1986; Roth and Mattis, 1990; Seligmann andFeiner, 1991) as a means for the computer to communicate information to its users. Al-though such automated methods are useful in enabling computer applications to commu-nicate information graphically to people, they are not optimal for human users who arethemselves designing graphics. People often incorporate aesthetic components into informa-tional graphic design tasks. Such aesthetic considerations are often not taken into accountin automated systems. In the domain of network diagram layout, for example, automatedsystems have focused on minimizing edge crossings and minimizing the total area used by alayout. The visual qualities of a layout are not included in the computer's calculations. Acomputer is not well equipped to evaluate such aesthetic criteria as part of its calculations,making it di�cult or impossible for an automatic system to choose appropriately amongseveral acceptable alternatives. Thus, any system for creating, for instance, a network di-agram layout, needs to support a user in re�ning and generating new solutions. Ideally, itshould incorporate the user into the design process itself. This is illustrated by the glidesystem described in Chapter 3.Recent research on the interactive design of presentational graphics takes this approach,and makes implicit use of collaboration between a user and the computer. The Gold System(Myers, Goldstein, and Goldberg, 1994) supports users in designing business graphics. Itallows users to sketch a few instances of data elements using a standard drawing editorinterface. The system then automatically instantiates the rest of the data, based on theusers initial sketch. Because it allows the user to sketch an example of the desired graphic(rather than precisely drawing all objects with exactly the right size and location), Goldenables a user to generate graphics quickly and easily. In addition to producing standardspreadsheet graphics, users are able create hybrid charts, impossible under other existingpackages. Gold also enables users to edit and re�ne an image, simply by redrawing desiredportions. The system updates the graphic accordingly.Sage, SageBook and SageBrush (Roth et al., 1994) are another family of tools usedto create charts and graphs. Using SageBrush, users can assemble a graphic from scratchby selecting various graphics, and assigning data to their various properties. SageBookenables a user to browse existing designs, which they may use for inspiration, or as anactual template for their own design, which they may then edit. Sage is a knowledge-basedtool for automatically designing graphics, and incorporates information from the other twosystems, providing users with a design environment suitable for novice and expert designersalike. Both Gold and the Sage family exemplify the collaborative style interface we propose;they minimize required user input, reduce user tedium, and provide powerful systems forthe design of graphs and charts. In Chapter 3 we examine network diagrams, a commonform of informational graphic for which most previous research has focused on automatedlayout.2.2.2 Representational GraphicsResearch in the �eld of computer graphics has traditionally focused on the algorithms neededto produce representational images and animations. Image rendering techniques, such as11

volume rendering and radiosity, focus on shadows and reections for scene generation. An-imations strive to be physically realistic, incorporating real-world physics and interactionsbetween objects; less emphasis has been placed on integrating these algorithms into inter-active tools that would aid users in creating and designing such graphics. The master-slavemodel of interface design dominates; people retain primary control of the design process,with computers delegated to a secondary status.Consider for example the domain of animation, a common form of representationalgraphic. Almost twenty years ago Catmull (1978) described the early experiences of trans-ferring cel animation to computers. Today computers are still delegated to the status ofrecording devices when used in motion capture systems. People wearing sensors gener-ate desired motions, while the computer records the locations of the sensors over time.The computer uses the sensors to generate control-points for mapping the behavior ontoa user-supplied model, generating the corresponding animation. Although the results arephysically-realistic and visually plausible animations, the computer plays a passive role inthe process. Key-framing, another popular technique for animation, employs computers asthe in-betweeners, a role previously delegated to human apprentices. Computers interpolatebetween user-speci�ed key-frames to generate the twenty-four frames per second needed forsmooth animation. If computers generate an undesirable sequence of actions,2 the anima-tor will insert a new key-frame to further constrain the animation to be generated by thecomputer. Computer-aided cel animation, motion capture and key-frame systems are allimplemented using a master-slave relationship. The computer's power is focused on com-puting and rendering speci�c animations which have been fully speci�ed by users. Peopletypically have an idea of the animation they would like to generate, and their energies arespent trying to convey the information to the computer.This is not to say that computers have not had a major impact on animation; computersdo play an important role in today's animations. Even limited automation o�ers a number ofbene�ts. In the fall of 1995, Walt Disney released Toy Story, the �rst full-length, all-digitalmovie created entirely by artists using 3D computer graphics tools. The use of computersreduced the number of animators used from over six hundred used on previous �lms, to onehundred and ten (McWilliams, 1995). The point is that the role of the computer is that oftool. \Computer animation combines the skills of traditionally trained characteranimators with the most sophisticated `pencils' in the world. Using computersas a tool, the �lmmakers introduce a unique three-dimensional animation look,with qualities of texture, color, vibrant lighting and detail never seen before intraditional animated features." (Anonymous, 1996)Although computers are increasing productivity within the traditional domain of anima-tion, they could be used to explore the animation design space rather than just renderinga speci�ed animation. Along with supporting traditional animators, such systems wouldextend the accessibility of animation beyond specialized artists by focusing on the creativeprocess and moving beyond the production of the animation. The recruiting web page forPixar includes a banner with the slogan \Computers Don't Animate, People Do!" (Pixar,2The interpolation methods used in computer-aided key-framing are not without fault. Linear interpola-tion, the simplest method, often results in physically unrealistic animations, or causes articulated �gures tobehave in other visually unsuitable ways. 12

1997) Although we don't envision computers becoming animators in their own right, thedivision of labor could be more equally distributed. Design Galleries, a family of applica-tions discussed in Chapter 4, incorporate the collaborative approach we propose and areappropriate for generating animations and other forms of representational graphics.Not all graphics are ends unto themselves; a graphic may be an intermediary means(or an interface) to another representation to be used in solving another problem. ManyCAD/CAM tools are used to create representational graphics which are then used to gen-erate a speci�cation to be used in the manufacturing process of the object. Architecturaldrawings are a typical example | the \graphic" represents a building to be constructedor modi�ed. AutoCAD is a package that supports people (typically trained architects) inmanipulating a oor plan: either designing one from scratch or modifying an existing oorplan that is already in an AutoCAD format. In many ways AutoCAD is comparable tostandard drawing packages in that it follows the master-slave paradigm; the application isa drafting assistant that permits manual manipulation of the geometry within the design.There is minimal collaboration on the part of the computer in that it maintains constraintsand provides an appropriate set of tools and objects for a person to design a building, butthe person is responsible for both conceptualization and articulation of the design. Theapplication provides little support for the creative aspects of design and exploring designalternatives.Kochhar (1990) emphasized the importance of browsing within the design process. Hedeveloped FLATS, a system for automated oor plan layout (Kochhar, 1991) in which aperson provided an initial partial design and a set of criteria to which the �nal design mustadhere. The computer then generated a set of design alternatives for the user to browsethrough; any of the resulting designs could be re�ned by the user and then used to generatethe next set of alternatives. This cycle is similar in nature to interactive evolution systems,as described in Chapter 4. An important aspect of Kochhar's work is its collaborativenature. FLATS supported people in exploring design alternatives, and re�ning a designthrough an iterative re�nement process.Finally we consider a system which employs a collaborative interaction mechanism tohelp users generate a desired graphic. Baudel (1994) introduced a novel spline editingtechnique aimed speci�cally at graphic designers. In traditional systems, splines are editedby specifying control points and tangents for a curve. Artists, however, do not think in theseterms. The mark-based paradigm more closely matches an artists actions in the physicalworld; a series of marks are used to re�ne an existing curve. This form of communication ismore natural to the target users, and illustrates the importance of communication withinthe collaborate framework we propose. The division of labor is such that the user (in thiscase an artist) is responsible for conceptualization (the general shape of the curve, and thecomputer, articulation (the precise location of each point in the curve). The user indicatesthe desired shape of a curve through a series of marks, rather than by manipulating oneor more control points, which correspond to the computer's de�nition of the curve. Thenaturalness of the interaction enhances its usability. This particular system attempts tomimic the real world actions of a person. While such interfaces are useful in some situations,they are not required by the collaborative framework suggested in this thesis.
13

2.3 SummaryWe view design as a two step iterative process involving conceptualization and articulation.The goal of conceptualization is to determine which objects to include in a graphic, andhow to organize them, and under the collaborative framework is generally the responsibilityof the user. Articulation determines the precise locations and graphical properties of theobjects, a role given to the computer. In addition, the design process is often guidedby two strategies. Instantiation occurs when a person uses the computer to generate aparticular design. Browsing and exploration techniques are useful when a person has onlya vague notion of the desired graphic. This type of search helps overcome the problem ofunquanti�able output characteristics. People need not know or enumerate ahead of timethe desired quality of a graphic | they need only recognize it when they see it. Peopleoften employ both strategies in the design of graphics. In the following chapters we presentthe three systems we have developed based on our collaborative framework.

14

Chapter 3GlideIn this chapter we describe glide (Ryall, Marks, and Shieber, 1996; 1997), an interactiveeditor for network diagram layout. It is the �rst system to support users in specifying thevisual organization of a diagram. By using an intuitive local constraint-satisfaction schemewhose behavior is predictable and easily visualized through animation, glide assists theuser in understanding how to achieve a desired layout, and exploring design alternatives.Such a division of labor | having the user work globally, while the system works locally |exempli�es the collaborative approach proposed in this thesis.3.1 IntroductionAs described in Chapter 1, network diagrams are a form of informational graphic in whicha set of nodes and edges are arranged to construct a diagram that will communicate someinformation. Entity-relationship diagrams, PERT charts, state transition diagrams, owcharts, and organizational charts are common classes of network diagrams. The task ofnetwork diagram layout (deciding which nodes and edges to use, and how to best arrangethem) is a good representative problem for designing informational graphics.There are three main considerations for designing such graphics. First, syntactic criteriade�ne the well-formedness of a graph. For example, no two nodes should overlap. Next, lay-out aesthetics, such as minimizing edge crossings, aid the readability of the graph. Finally,perceptual organization assists people in the semantic interpretation of the diagram. Thislast component is crucial for a person's understanding of the information being presentedin a diagram. Inappropriate or misleading perceptual organization of a diagram has beenidenti�ed as a major cause of design aws in informational graphics (Kosslyn, 1989; Marksand Reiter, 1990).Most small to medium sized graphs (i.e. those with fewer than 50 nodes) that appearin publications or presentations are still drawn with the aid of fairly primitive commer-cial drawing tools like Microsoft's PowerPoint or Claris Draw. These manual tools provideminimal support for aesthetic graph layout; a person is responsible for both the conceptual-ization and the articulation of a layout, often working at a pixel level. Research in the graphdrawing community has neglected the issue of perceptual organization and has instead fo-cused on optimizing layout aesthetics in automated systems. Thus, most graph-drawingalgorithms cannot support the exquisite symmetries, spacings, and alignments that graphicdesigners utilize in professional-grade work. This kind of layout detail can be achieved in15

some constraint-based drawing systems, but the very general capabilities of such systemstend to make them cumbersome for the speci�c task of graph drawing.Our focus has been on an interactive system that supports users in specifying percep-tual organization of network diagrams based on the collaborative paradigm proposed inthis thesis. We have built a system, called \glide" (Graph Layout Interactive DiagramEditor), for interactive graph layout that organizes the interaction in a more collaborativemanner than previous systems. We take advantage of user's expertise at globally designingthe layout, and the computer's computational superiority; the user is responsible for anapproximate layout of the nodes, and for specifying any desired visual organization. Underthis paradigm, the user has the exibility to create interesting designs, without the bur-den (and tedium) of having to precisely place every object in the layout. Using a directmanipulation interface, the user can easily modify a layout, guiding the system to producea suitable graphic. Glide improves on general constraint-based systems by providing aspecialized set of constraints, simple mechanisms for a user to add and delete constraints,and an intuitive method for solving the constraints. In addition, by incorporating anima-tion into the process, glide assists a person in understanding how to achieve a desiredlayout. We describe our approach in the following section. We then walk through a sampleinteraction between a person and glide in Section 3.3 and provide the system design andimplementation details in Section 3.4. We compare glide with existing approaches fornetwork diagram layout in Section 3.5.3.2 Our ApproachGlide is a constraint-based system designed speci�cally for drawing graphs. It incorporatesa small set of macro constraints, or Visual Organization Features (VOFs), (Marks, 1991;Kosak, Marks, and Shieber, 1994), which are listed in Figure 3.1;1 the application of eachVOF is illustrated by before and after layouts. VOFs are one mechanism for specifyingand incorporating the perceptual groupings of a graph, and VOFs have been incorporatedpreviously in a few fully automated graph layout systems (Kosak, Marks, and Shieber, 1994;Dengler, Friedell, and Marks, 1993); glide is the �rst to allow interactive speci�cation andmanipulation of high-level VOFs such as these. In glide, a user may apply and removeany number of VOFs interactively.Glide applies user-supplied VOFs by converting them into a set of spring forces a�ectingthe nodes in a graph drawing. Additional spring forces are introduced automatically topreserve syntactic correctness of the drawing, such as preventing nodes overlapping othernodes and edges. The user may also apply force directly to a node by dragging it withthe mouse; this is a convenient override mechanism. The nodes, which are modeled aspoint masses, are moved by physical simulation into minimum-energy con�gurations. Thesimulation of the mass-spring model is continuously animated, indicating to the user theinuence of the VOFs.Incorporating animation into interfaces is not a new concept (Baecker and Small, 1990).More recently, Thomas and Calder (1995) have demonstrated the usefulness of animationin direct manipulation interfaces. Using physical characteristics such as inertia and gravity,they provided substance to objects, creating better user feedback. Feedback is of course es-sential to the success of direct manipulation interfaces; the use of animation in an interface1All �gures in this chapter were drawn with the glide system, except for Figure 3.9.16

A

B

C

D

A

B

C

D

Even Spacing

Sequence

Alignment

Cluster

T−Shape

Zone

Symmetry

 Hub Shape

Figure 3.1: Visual Organization Features (after (Kosak, Marks, and Shieber, 1994))
17

A

B
C

A

B C A

B
C

A

B CA

(a) (b) (c) (d)Figure 3.2: User intervention is required to �nd a globally optimal solution.serves an important communication need. Glide exploits this approach in its implemen-tation by continually animating the physical simulation of the mass-spring model. Userinteractions are also animated. As the user moves a node, for example, its position is up-dated in the physical simulation, causing the system to move other nodes as it attempts tosatisfy existing constraints.Using a direct manipulation interface, a person may move nodes and groups of nodes,along with adding and deleting any number of nodes, edges, or VOFs, to modify the diagramand its layout. Such manipulations are useful not only for exploring design alternatives butfor providing \advice" to the system when it �nds itself in a local optimum. Figure 3.2 isa simple example. In Figure 3.2(a), we see three nodes, connected by two edges. The userhas added a single Alignment VOF to the set of nodes. The system attempts to satisfy thisconstraint by moving the three nodes toward an implicit horizontal line running throughthe vertical centroid of the three nodes; meanwhile, the syntactic constraint prohibitingoverlap provides a repulsive force between nodes and edges. In Figure 3.2(b), glide hasmoved node A down, and nodes B and C upwards. The three nodes cannot be aligned,however, due to the edge between B and C. By manually moving A anywhere to the left ofB, as illustrated in Figure 3.2(c), the user obtains an optimized layout, such as the one inFigure 3.2(d).These interactions occur as the simulation is running, and allow the computer andsystem together to collaborate in �nding better global solutions to the implicit constraint-satisfaction problem. Such advice is especially useful in cases of over- or under-constraineddesigns. If a set of VOFs generates an over-constrained layout, glide will �nd the neareststable con�guration, which may satisfy di�erent VOFs to varying degrees. The user, whocontrols the design process at a global level (the choice of VOFs and the gross placementof nodes in the diagram), can easily guide the computer to �nd more satisfactory solutionsand acceptable layouts by moving nodes or adjusting VOFs. In case of under-constrainedlayouts with multiple solutions, again the user can provide advice to explore alternatives.Although a weak mechanism for satisfying constraints, energy minimization throughphysical simulation handles over-constrained systems gracefully, and provides an easily un-derstood metaphor for the user. Thus, the use of a constraint-satisfaction scheme (mass-spring simulation) that is intuitive and predictable, rather than one better at �nding globalsolutions, is deliberate. Glide is not intended to be good at globally satisfying the VOFsby itself. Rather, it is intended to provide an interface that allows a useful collaborationbetween user and computer in solving the layout problem. For this purpose predictability,simplicity, and the compelling nature of the animation are far more important than global18

Figure 3.3: Scanned diagram on which the example was based.optimality; these characteristics are an integral part of glide's collaborative nature. Par-ticipant (computer and human) are given responsibility for what they do best, relying onsimple techniques to communicate with and guide each other.3.3 Example InteractionUnlike traditional master-slave interfaces in which the user makes a request and waitsfor a response, glide is an integrated system in which both the user and the computer a�ectthe state of the design at the same time. The system does not pause while the user addsor moves nodes and edges, and applies or deletes VOFs. Likewise, the user can interveneand continue to interact with the layout as the system adjusts nodes' positions, attemptingto satisfy the various constraints speci�ed by the user. It is exactly this animation andsimultaneity of action that makes glide a compelling collaborative system, but that isdi�cult to express (as we have below) through a series of static snapshots. Figures 3.4-3.8show snapshots of various intermediary stages in the process of drawing a given graph.Figure 3.4 depicts the entire system interface; other �gures show only the canvas area.For simplicity of exposition, the example interaction depicted here is based on a taskin which the user attempts to create a particular layout already envisioned, rather thanexploring alternative layouts. Our goal is to replicate the drawing in Figure 3.3 taken froma paper by Norton, Szymanski, and Decyk (1995). In Appendix A, we use glide to exploredesign alternatives based on this same graph and to explore a data set previously unseenby the user.The �rst step in the drawing process is to place the desired number of nodes in approx-imately the desired layout. To create a node, the user clicks the left mouse button on thecanvas area. As is standard in drawing tools, the user has control over a variety of graphicalproperties of the nodes, including shape, font, background color, foreground color, bordercolor, and dimensions. These are derived from system defaults, which can be set by a user,and modi�ed at any time using an edit dialog window. Each node is automatically sized toaccommodate its label; if a node's label is changed, the computer will automatically enlargea node to accommodate its new label. These capabilities are not depicted in the �gures.As the user adds more nodes, the computer is providing collaborative aid by automaticallyenforcing prohibitions of overlapping nodes; nodes too close together will be repelled fromeach other.Edges, directed or undirected, linear or orthogonal, can be added between nodes. The19

Figure 3.4: Initial layout, with labeled nodes and edges, shown in the context of the glidescreen layout.
GaussianRandomNum

Particle

ParticleDistribution
VirtualParallelMachine

Ion

Electron

Plasma
Grid

EnergyDiagnostic

ClockTimer

Figure 3.5: User adds an Alignment VOF to each row.20

GaussianRandomNum

Particle ParticleDistribution VirtualParallelMachine

Ion Electron Plasma Grid

EnergyDiagnosticClockTimerFigure 3.6: User adds three more VOFs: Symmetry, Alignment and Hub Shape.user �rst clicks the left mouse button on the origin node. As the user drags the mouse to-wards the destination node, glide displays an edge (anchored at the origin node, and whosehead follows the mouse). Releasing the mouse button over the destination node causes anedge to be added; releasing it elsewhere aborts the edge connection process. The computerenforces prohibitions of node-edge overlaps; intersecting edges and nodes will be repelledfrom each other. Figure 3.4 shows the layout after an initial node- and edge-placementphase. Note the orthogonal edge between the \ParticleDistribution" and \Electron" nodes.Glide will maintain the orthogonality constraint (comprising two alignment constraints)throughout the design process.To add a VOF to the layout, the user �rst selects a set of nodes using standard mousetechniques such as clicking or region-dragging. The user may then apply one or more VOFsto the set by pressing the appropriate push buttons, located on the right of the window inFigure 3.4. In Figure 3.5, the user has applied a horizontal Alignment VOF to the second,third, and fourth rows of nodes. As VOFs are applied to the nascent diagram, graphicalindicators of the constraints are added, as described in Section 3.4.3. In glide, the graphicalVOF indicators are shown visually by a user-responsive highlighting mechanism that cannotbe replicated in static images. We therefore use node coloring and static icons to indicatedi�erent VOFs in the �gure; for instance, the grey rectangles in Figure 3.5 serve as agraphical indicator of the Alignment VOFs.The system satis�es these constraints using the mass-spring simulation described in thenext section. Indeed, movement of the nodes to satisfy the constraints would typicallyproceed while the user is adding more VOFs. Figure 3.6 shows the stable con�gurationthat ensues after the three Alignment VOFs have been satis�ed, along with three moreVOFs the user has added. On the right, the user has added a Hub Shape VOF, indicatedas a light gray circle. The center two nodes (dark gray) are to be vertically aligned. Finally,the four nodes on the left have had a Symmetry VOF applied to them.Once again, the system attempts to satisfy all constraints, both old and new, in deter-mining each node's placement. Figure 3.7 shows the updated node positions. Each row isstill aligned, and the new VOFs have been satis�ed as well. In addition, the user adds threetext labels to the layout. Text labels are a specialized node type described in further detail21

GaussianRandomNum

Particle ParticleDistribution VirtualParallelMachine

Ion Electron Plasma Grid

EnergyDiagnosticClockTimer

Auxiliary Class

Class
Inheritance

Use Relationship

Figure 3.7: User adds three text labels, and three VOFs: Clustering, Even Spacing andAlignment.
GaussianRandomNum

Particle ParticleDistribution VirtualParallelMachine

Ion Electron Plasma Grid

EnergyDiagnosticClockTimer Auxiliary Class

Class
Inheritance

Use Relationship

Figure 3.8: The �nished layout.below. The user has applied three more VOFs, which will better position each of the textlabels. The light-gray nodes on the left are subject to a Cluster VOF. The dark-gray nodeson the bottom are to be horizontally aligned. The middle three nodes, shaded medium gray,are to be evenly spaced. Figure 3.8 shows the �nal layout generated by the full set of nineVOFs.3.4 System DesignFrom a user's perspective, glide is a simple high-level interface for adding and deletingnodes and edges, and for applying and removing various VOFs, thereby inducing newdrawings. This facade is maintained by the underlying system, which is continually trans-lating user actions into low-level constraints that it then tries to satisfy. In this section, wedescribe the relationship between the high-level VOFs and the low-level constraint mecha-nisms. In addition, we also describe how the constraints and constraint-satisfaction processare made apparent to the user.
22

3.4.1 Constraint FormulationConstraints on graphs fall into two main classes, syntactic and semantic. As we have seenin Section 3.3, syntactic constraints are introduced automatically by the system, whilesemantic constraints (in the form of VOFs) are added interactively by the user. The systemtransforms constraint instances from both categories into a mass-spring model as describedhere.Syntactic constraints are universal requirements necessary for a diagram to be well-formed. The glide system respects two such constraints (see Figure 3.9):� Node-node overlap: Two nodes should not overlap. This constraint is enforced byplacing a spring between each pair of nodes. The spring's rest length is the requiredminimum distance between nodes, but it also has the property that its spring constantreduces to zero when stretched beyond its rest length. The spring therefore onlyapplies force when the two nodes overlap, compressing the spring. Overlapping isthus prevented, but movement apart is not penalized. This is one of several ways inwhich the simulation is rendered nonphysical by generalizing the notion of a spring.� Node-edge overlap: A similar spring is placed between each node-edge pair. Nodes arethe only objects to which force can be applied, so the goal of applying a force to anedge is actually accomplished by applying half the force to each of the two nodes atthe edges' endpoints. This disassociation between the spring's conceptual endpointsand the points of application of the spring's force is another example of how our modeldi�ers from more physically faithful mass-spring systems.Applying these two syntactic constraints alone, the system enforces the well-formednessof diagrams. Semantic constraints, expressed as VOFs, enhance the visual form of thedrawing. Glide supports the following VOFs, implemented with sets of springs as described(see Figure 3.9):� Alignment (horizontal, vertical, either): The set of nodes should be collinear and axis-aligned. A spring with rest length zero is attached between each node and a virtualaxis-aligned line through the centroid of the nodes. Note that forces are applied onlyto the nodes, and not to the virtual axis. In the case of a horizontal or verticalAlignment VOF, the axis-alignment is to the respective axis. The third case uses theaxis to which the nodes are already most closely aligned.� Equal Spacing (horizontal, vertical): The nodes should be spaced evenly along thegiven axis. Spacing along the orthogonal axis is unconstrained. Adjacent pairs ofnodes are connected with springs whose rest length is the computed average distancebetween adjacent nodes.� Sequence (horizontal, vertical): The nodes should be ordered in the current sequencealong the given axis. Springs with a very short rest length and with asymmetric springconstant (zero if nodes are in proper sequence, positive otherwise) are placed betweenadjacent nodes in the sequence to keep them in order.� Cluster: The set of nodes should be clustered together. Springs with a short restlength are placed pairwise among the nodes.23

Spring

Rest length

Nodes Edge

Forces
Legend

Equal Spacing (horiz.)

Node-Node Overlap

Alignment (horiz.)

Node-Edge Overlap

Symmetry (vert.)Figure 3.9: Reduction of some sample VOFs to systems of generalized springs.

24

� Zone: The bounding box of the nodes should contain no other nodes. The boundingbox is treated as a \super-node," the node-node overlap method is applied, and theresulting forces are applied equally to the nodes comprising the zone.� Symmetry (horizontal, vertical): The nodes should be symmetric about the givenaxis. Each node is paired with the node closest to its reection about the horizontalor vertical line through the centroid of all the nodes. (A node may be paired withitself if it is closest to its own reection.) Equal and opposite forces are then appliedto the nodes in each pair to make them symmetric about the line of reection.� T-Shape: The nodes should form a T-shape, as in a tree diagram. The user speci�eswhich of the nodes is the parent. The T-shape VOF can be enforced as a combinationof Alignment and Equal Spacing VOFs for the children and an Equal Spacing VOFsfor the leftmost and rightmost children and parent.� Hub Shape: The nodes should be placed radially equidistant on a circle. A central nodemay optionally be speci�ed by the user; if none is speci�ed, a phantom node is addedat the center. Springs are placed between neighbors on the perimeter and between thecenter node and each perimeter node with rest length equal to the calculated averageradius.In addition, glide introduces a new VOF to aid the user in interacting with the system.The following VOF can be used to gain absolute control over the �ne-grained position ofnodes.� Anchor: A node should be located at the current position regardless of what otherforces in the physical simulation may be acting on it. Although this may be thoughtof as in�nitely increasing the mass of this node, the Anchor VOF is implemented bycalculating all forces as if under normal conditions (so that forces are still appropriatelyplaced on other nodes), and then ignoring anchored nodes when node positions areupdated.Although the computer cannot move anchored nodes, a person may still move themusing the mouse. A useful technique is for a user to anchor two nodes to further constrain asecond VOF. Under a Hub Shape VOF, for example, the radius of the hub is determined bycalculating the average distance between the center node and each node along the periphery.To obtain a speci�c radius, the user could anchor the center node along with one node onthe periphery. The user can then resize the hub by moving either of the anchored nodes.Finally, glide also provides a single diacritical VOF. A diacritical VOF does not provideany constraint on the diagram, but merely augments the diagram with additional graphicelements tied to aspects of the diagram layout. The diacritical VOF implemented at presentis the Frame VOF:� Frame: The bounding box of the set of nodes is demarcated with a drawn frame.As the nodes participating in a Frame VOF move, the frame repositions and resizesitself accordingly. The user controls such properties of the frame as its color, padding(distance added to the bounding box before being drawn), and whether the frameis drawn as an outline or �lled rectangle. The Zone VOF example in Figure 3.1 isillustrated using a Frame VOF. 25

The Frame VOF can be used in conjunction with a Zone VOF, but is distinct from it.The topology of a graph often includes enclosures; a Frame VOF can be used to instantiatethis component.3.4.2 Constraint SatisfactionThe fundamental low-level constraint mechanism is a spring that obeys Hooke's Law;2 graphnodes move according to the forces acting on them, which result from the springs attachedto them. A mass-spring model for graph drawing was �rst proposed by Eades (1984), but inhis and most subsequent systems, the spring forces correspond to topological or geometricproperties of the graph. In the glide system (and in the system of Dengler, Friedell, andMarks (1993)), a more general notion of spring force is used. VOFs and syntactic constraintsare converted to spring forces as described in the previous section.Our system uses a physical simulation as a constraint-satisfaction method. In addition tospring forces, all nodes are subject to a global friction force for stability. This acts as a formof damping, which prevents the system from oscillating wildly. Direct user manipulation is asecond mechanism for positioning nodes, although it is not treated as a force by the physicalsimulation. The result of user movement is to directly reposition the node. As this occursduring the physical simulation, however, the system will immediately reect the updatedposition. The spring forces are recalculated by the computer, giving the appearance thatthe nodes have had new forces applied to them.When glide is �rst started, the physical simulation is at rest. The addition or deletionof VOFs, nodes or edges, as well as direct object manipulation by the user all cause thesimulation to begin running. It runs until the system reaches a stable con�guration, asdetermined by a combination of total elapsed simulation time, and kinetic energy present inthe system; the simulation is guaranteed to run for some minimum time in order to ensurethat the forces in the system have had time to a�ect the masses to which they are attached.The size of the time step in the simulation controls the animation presented to the user,as well as the frequency with which the user can interact with the layout. For each timestep, the system calculates the forces on each nodes, which is used to update each node'smomentum, which in turn is used to determine the new position for each node. The frictionapplied at each iteration is determined by the maximum spring constant value for activesprings in that iteration | it is intended as an approximation of critical damping.Our �rst attempt at constraint satisfaction based on optimization was not as successful.The approach was similar to that of Kosak, Marks, and Shieber (1994), utilizing an objec-tive function which included a component for each VOF type. The system calculated thelocal minimum for this function using Powell's method (Press, 1988), a traditional numericoptimization technique. The behavior of the system was not intuitive to people; they wereunable to predict the impact their actions would have. As this intuition is an integral partof a collaborative system we turned to the mass-spring and physical simulation approach,which is currently implemented in glide.2Hooke's Law states that strain, the ratio of the change in length to the original length, is proportionalto the stress that produces it. (\Ut tensio, sic vis." | \As the elongation, so is the force.")
26

3.4.3 Visual Presentational IssuesA tremendous amount of exibility is achievable using the VOFs above, in tandem withadjustments to the graphical properties of nodes. For instance, text labels in diagrams canbe implemented without additional infrastructure. A text label is merely a node with atransparent background and border. The label can be attached to other graphical objectsusing a Clustering VOF for instance, as in Figure 3.8. Nonetheless, in keeping with the spiritof the system providing high-level access to low-level infrastructure, and in contradistinctionto traditional drawing and constraint-based editing programs that provide uniform but low-level access to their primitives, a notion of text label is provided in the glide interfacedirectly to allow generation of such nodes easily.Similarly, a node with neither border, background, nor text is a kind of phantom nodethat can be useful as a control point for other objects (edges between nodes or the boundingbox of Frame VOFs, for instance). It can serve as a way station between two other nodes.By adding Alignment VOFs between the phantom node and each node to which it is con-nected, the appearance of an orthogonal edge that turns at right angles is e�ected. Again,phantom nodes and orthogonal edges are made explicit in the interface, though they re-quire no additional infrastructure for implementation. The use of hidden objects to controlconstraint-based layouts has been previously proposed. See Gleicher and Witkin (1994), forexample, for a discussion of alignment objects.In addition to the graphical components of the diagram itself | the nodes, edges, andframes | the interface uses visual means to present to the user the current set of VOFs thatare being applied to the diagram elements. Each VOF instance is indicated by a graphicalindicator in the display; the shape of the VOF indicator is similar to the icon on the corre-sponding push button for adding that VOF. As a person moves the mouse over a particularVOF indicator on the canvas, glide highlights all participating nodes. Conversely, placingthe mouse over a node will highlight the VOF indicators for VOF instances in which thatnode participates. Finally, placing the mouse over a VOF push button will highlight allVOF indicators of the particular VOF type. These mechanisms enable a user to easily de-termine the extent and impact of a particular set of layout constraints. The VOF graphicsare intended to provide visual feedback to people; they are not, of course, included in the�nal output diagram.Glide's animation is also an integral part of its visual feedback. Both user and computeractions are animated as the layout is displayed in the canvas area of the system. The physicalsimulation continually updates the position of the nodes in the layout. Although they arenot graphically represented, the forces on a node become apparent to users as they tryto move various nodes. As a user moves one node towards another, the two nodes repel,causing the node under user-control to seem heavier, moving more slowly, while causing thesecond node to move away. As the user adds VOFs to the layout, other forces are created.Giving nodes and edges \substance" through animation aids the user in understanding howto manipulate the layout to obtain desired results.Finally, the use of a local constraint satisfaction mechanism that animates its actionsprovides users with a means for understanding the development of the layout. Dynamicstability is concerned with minimizing the di�erence between successive layouts of the graph(Tamassia, Battista, and Batini, 1989). Unlike many automatic graph layout algorithmsin which new layouts are generated without taking current node positions into account,the mass-spring model used in glide includes current node positions in determining new27

positions. Furthermore, changes in node position are made gradually, permitting users tomaintain their orientation with respect to the graph. Any large changes in successive layoutsare primarily due to user intervention. Thus, the collaborative nature of glide aids in thedynamic stability of the system as a whole.In evaluating glide as a collaborative system, we must examine the communicationmechanisms between it and its user. Glide's animation, graphical indicators, and high-lighting mechanism are at the heart of its visual feedback. User interaction utilizes simpleinteraction mechanisms based on a direct manipulation paradigm; the user can manipulateconstraints, nodes and edges directly, guiding the system in its search for a locally optimumlayout. The e�ects of their actions are immediately apparent through the animation of thesimulation. Furthermore, although glide is based on a physical simulation, it does notnecessarily expect the user to understand the underlying physics; users can have strongintuitions about how the interface will behave based on analogy and experience with thephysical world.3.4.4 ImplementationThe interface for Glide is implemented in Tcl/Tk (Ousterhout, 1994), extended by a Cmodule to run the physical simulation for the mass-spring model. In order to support userinteraction the application must poll for user actions such as the addition or deletion ofnodes, edges or VOFs, or the repositioning of any object. Most user interaction causes achange in the mass-spring con�guration, and in turn a change in state for the simulator.In theory the simulator should run until it reaches a stable con�guration, restarting auto-matically when a change in state occurs. In practice, however, such an implementation isnot easily achieved due to the Tcl/Tk internals. Therefore, in the current implementationthe simulator runs continually; while in an equilibrium state it continues to calculate forceseven though no change will be made in node positions.Another important part of the physical simulator implementation are the spring con-stants. These variables control the sti�ness of the springs, and in turn the amount of forcesplaced on the nodes. All of the VOFs except Cluster use �xed and equal spring constants.The Cluster VOF is given a lower spring constant; the result is that Clustering constraintsin e�ect take lower priority than the others types of VOFs. This behavior matches mostusers' intuition about the system behavior. The result of applying both a Collinearity andClustering VOF should be to have a set of nodes positioned so that they are aligned andclose together. With an equal spring constant, the nodes would be unable to align them-selves. In developing this system, we allowed users (i.e. the developers) to interactively setspring strengths. While this functionality provides the user with more exibility, it alsocomplicates the dialogue between the system and the user. As a result, glide currentlyprohibits users from varying spring strengths.The two syntactic constraints use a spring constant that is higher than that of the se-mantic VOFs. The stronger springs used to prevent overlaps induce greater forces, ensuringthe syntactic validity of the diagram. As noted, when two objects are not overlapping, thespring constant goes to 0, in e�ect making the spring in�nitely stretchable. In the imple-mentation, we use a gridding system to track node and edge position. Rather than doingthe n2 comparison of testing nodes pairwise for overlap, the system only tests nodes thatfall in the same region. A similar method is used to test for node-edge overlap. If (forwhatever reason) users want overlaps to occur, they may achieve this e�ect using anchors.28

Glide supports various modes of input and output. Users may save the structure andlayout of a particular graph into an ASCII text �le, which contains the Tcl script necessaryto generate the layout. This �le may be edited manually to make small changes in thegraph. The glide system can read one or more of these �les as input, enabling users tomodify an existing layout, or combine several graphs into one layout. Users may save animage of the layout, which is generated in a PostScript or GIF format.As previously discussed, glide makes use of graphical indicators for representing VOFinstances, and phantom nodes as control points for other objects. These graphics are notnecessarily intended to be included in the �nal drawing. In fact, some users may prefer notto see them during the layout and editing process. To accommodate both of these issues,glide o�ers multiple views to users, enabling them to turn o� graphical indicators, phantomnodes, or anchors on nodes in any combination. The highlighting mechanism describedabove is still available to users; mousing over a node will highlight the graphical indicatorsfor any VOF instance that node participates in. Phantom nodes can be manipulated evenwhen they are not visible.We have included standard drawing package functionality in glide. Users can changeobject characteristics (color, shape, fonts, etc), for entire classes of objects (by setting thedefault value) or for individual objects via a pop-up menu; each object instance has aspecialized menu associated with it, providing easy access for users. Glide also supportsmethods for cutting and pasting objects in the layout, including VOFs. The semantics aresuch that all selected objects are copied if appropriate. If an edge is selected, for example,without both its parents being selected as well, it is not included in the copy. For a VOFinstance, only a subset of nodes need be selected for the VOF to be copied. In the case ofa T-Shape VOF, however, if the root is not included, the instance is not copied. Cuttingand pasting cannot be used to apply a VOF to an existing set of nodes; adding a VOFis accomplished by selecting the nodes and the appropriate pushbutton, as described inSection 3.3.3.5 Comparison to Existing ApproachesThis section provides a comparison of glide to drawing packages and systems from thegraph drawing and constraint-based editing communities.3.5.1 Drawing PackagesAt �rst glance, commercial tools such as Claris Draw, MacDraw, or Microsoft's PowerPointseem an attractive alternative for drawing small to medium sized diagrams. Most providevarious polygonal shapes, text objects, and lines, and �xed templates such as trees. Theysupport people in creating and moving various objects, and often employ snap grids, whichlet users place objects without the annoyance of having to work at a pixel level. In manycases, they also provide mechanisms to enable users to align objects in the diagram. Theseare typically one-time actions that can easily become \undone" by future user action. Ingeneral, such drawing editors are primitive, and place too much onus on the user. Althoughthey enable a person to establish various relationships among objects in a drawing, theydo not maintain these relationships during the evolution of the drawing. In addition toglobal control over the design, the user is responsible for all aspects of the layout process,which is obviously undesirable. There is only minimal collaboration between the user and29

the computer in such systems | the snap gridding feature described in Section 1.3 is onesimple example.3.5.2 Graph Drawing AlgorithmsBattista et al. (1994) compiled an annotated bibliography of over three hundred papersdescribing systems and algorithm for drawing graphs. Most of these papers cover algorithmsfor fully automatic graph layout. There is a considerable additional literature on graph-drawing algorithms, but it also mostly concerns non-interactive techniques for automaticgraph layout (Tamassia and Tollis, 1994; Brandenburg, 1995; North, 1996). Various systemshave been built that also use such automatic layout algorithms. DAG (Ganser et al., 1993),for example, is a system that draws directed graphs. It is available to users via an e-mailserver, and returns output in either PIC or PostScript form; as a result, people cannot�ne-tune the results to better meet their needs. Automatic algorithms and systems areinappropriate for use in a network-diagram design tool; they allow no user input in solvinga problem whose aesthetic and combinatorial di�culty make it crucial that people be allowedto participate.Several tools for the interactive editing of graphs have evolved from the graph drawingcommunity. These include Edge (Newbery, 1988), daVinci (Frohlich and Werner, 1994),GraphEd (Himsolt, 1994), its successor Graphlet (University of Passau, 1997), and com-mercially available software from Tom Saywer (Tom Sawyer Software Corporation, 1991).Recently Bridgeman, Garg, and Tamassia (1996) have provided a web-based service toserve as a test bed for comparing di�erent automatic layout algorithms. In general, thesegraph layout and editing systems include a limited graph editor, which support the user inmodifying the syntactic structure of the diagram (adding and deleting nodes and edges),in �ne-tuning node placement, and in editing various attributes of the graphical objects(color, shape, size, fonts, etc). Most of these systems then use automatic layout routines todetermine a �nal layout. Such systems are useful for drawing larger graphs; people may notknow the structure of a diagram and an automatic layout may help them make sense of thedata, enabling them to determine a desirable organization for the diagram. In such cases,automatic layout often provides a starting point for exploring design alternatives. Theseeditors, however, restrict node movement and are too inexible for small and medium sizednetworks; they do not support users in generating aesthetically pleasing layouts. In somesense they are comparable to typical spreadsheet graphics packages in that they enableusers to make sense of large data sets; they share the drawback that the computer limitsa user to pre-de�ned styles, which may or may not be what the user had in mind. Mostimportantly, they do not support the speci�cation of perceptual organization.Marks (1991) addressed the importance of perceptual organization in his thesis in whichhe described ANDD, an implemented system for automatic layout of network diagrams, andintroduced the notion of visual organization features (VOFs) which can be used to char-acterize the perceptual organization of graphs. Subsequently, Kosak, Marks, and Shieber(1994) incorporated VOFs into another system for network diagram layout that relied on amassively parallel genetic algorithm in which an objective function was speci�ed to evaluatethe quality of the layout. VOFs have also been incorporated into another fully automatedgraph layout system (Dengler, Friedell, and Marks, 1993) which utilized a generalized springalgorithm to solve them. In all cases, the VOF set to be applied was provided as part of thespeci�cation of the graph. In contrast, Glide enables users to interactively specify desired30

VOFs; users may also interact with the GLIDE system to aid it in solving the constraints.Bohringer and Paulisch (1990) suggested the use of constraints to enable users to providesemantic information to guide automatic layout algorithms. They extended the Edge sys-tem (Newbery, 1988) to provide a small set of low-level constraints, which users could applyinteractively by �lling in a form. In this system, constraints were speci�ed in one step andthen applied (as a result of the user pushing an apply button) as a second step. Likewise,as users removed constraints (by pushing a button for each constraint), they would againneed to activate the constraint solver manually to generate a new layout. The three basicconstraints types were for absolute positioning, relative positioning, and clusters; these areonly a subset of the constraints supported by glide. Each constraint instance could beassigned a priority by the user. The system utilized a global constraint satisfaction mech-anism. In the case of inconsistent constraints, the system deactivated constraints based ontheir priority, attempting to keep higher priority constraints over those with lower priority;among inconsistent constraints with equal priority, the system would select randomly whichconstraint to deactivate. Although the authors note that deactivated constraints were ig-nored during the evaluation of the constraint network, there is no discussion of how or if adeactivated constraint becomes reactivated. To support users in debugging the constraints,the system provided a query button, which would indicate to users if a particular constraintwere being met. The system integrated the use of constraints into the Sugiyama layoutalgorithm3(Sugiyami, Tagawa, and Toda, 1981). Glide improves upon this system by pro-viding a larger set of high-level constraints to users, a more intuitive satisfaction mechanism,and a computer-user interface with easier interaction mechanisms.3.5.3 Constraint-Based EditorsConstraint-based drawing editors are perhaps one of the oldest ideas in computer graphics.Sutherland's Sketchpad (1963) introduced the notion of interactive graphics and incorpo-rated the ideas of direct manipulation, and constraint-satisfaction. Subsequent researchled to systems such as ThingLab (Borning, 1979) and Juno (Nelson, 1985); these earlysystems provided a limited set of graphic primitives and constraints. Juno2 (Heydon andNelson, 1994) expanded upon this work. This system is a double-view drawing editor, whichpresents the user with a WYSIWYG graphical representation, along with a text-based ver-sion of the program used to generate the image. Modifying either view updates the otheraccordingly. This approach is appealing because it provides an intuitive interface for bothprogrammers and non-specialized users. Converge (Sistare, 1990; Sistare, 1991) is a sys-tem in which three-dimensional constraints and the geometry to which they are appliedare presented together in a single graphical framework; it presents constraints to the userby superimposing graphical icons onto the geometry. Many other systems have employedconstraint-based techniques. The work of Hower and Graf (1995) provides a comprehensivebibliographic survey of constraint-based techniques and their application to a variety oftasks such as computer-aided design, graphics, layouts and user interface design.Because they maintain relationships by enforcing various constraints throughout theediting process, constraint-based editors have the potential for a more balanced collab-oration than traditional drawing packages that typically only provide one-time actions.3This algorithm is used for laying out directed graphs by introducing dummy nodes to split edges so thatnodes can be assigned to levels in a hierarchy. 31

Although constraint-based techniques have been utilized in numerous systems, they haveenjoyed only limited success. This is in part due to the di�culty in creating, solving andpresenting constraints to the user (Gleicher and Witkin, 1994). We consider three keyquestions surrounding the design of constraint-based system:� Which constraints will be supported by the system?� How will the constraints be established?� What happens in the case of conicting constraints?Constraint-based systems are often overly general and complex, making them cumber-some for speci�c tasks, such as drawing network diagrams. In most systems, constraintselection (i.e. the set of constraints the system will support) is based on orthogonality andcoverage, as opposed to convenience for the particular higher-level task at hand. glide im-proves upon these systems by providing a small but powerful set of constraints specializedto support the drawing of graphs, and simple interface mechanisms for the user to create,view, manipulate, and remove constraints. Note that although glide provides specializedconstraints for network diagram layout, it does not provide guidance to the user in applyingthem appropriately. Such considerations typically fall in the domain of graphic design. Thedivision of labor in glide relies upon humans for this particular expertise. An interestingextension might be to incorporate design advice into the system. This modi�cation would,however, change the very nature of the collaboration between the computer and its user.Although three previous systems (Marks, 1991; Kosak, Marks, and Shieber, 1994; Den-gler, Friedell, and Marks, 1993) incorporated VOFs into their diagrams, these were auto-matic systems; the constraints were not speci�ed interactively by users. Glide is the �rstsystem to support users in specifying the visual organization of a diagram. The systemprovides a natural and powerful vocabulary whereby users can easily express the desiredperceptual organization of graph layout. The VOFs provide for proximity relationships,alignment, axial and radial symmetry, sequential ordering of a layout, and other commonlyused patterns found in graph layout. In addition, glide introduces the use of a diacriticalVOF, which provides additional graphic support to users, along with a meta-VOF, whichenables users to better guide the system in articulating the layout of the graph.People often have a di�cult time understanding how a constraint-based system works.Because the mathematical methods used for constraint satisfaction are not necessarily easilyunderstood, and due to the complex interaction of some constraints, it is often unclear to auser how and why the system moves from one con�guration to another. Furthermore, somesets of constraints are unsatis�able. Many methods do not degrade gracefully under suchconditions, and are unable to show a user how to remedy the situation. On the other hand,when a design is under-constrained, multiple layouts will satisfy the given set of constraints.Without user guidance, the system would need to guess which one a user wanted.Nonetheless, constraint-based systems, if extended to allow collaboration on the settingup and solution of the constraints are a viable alternative for graphic design tasks such asnetwork-diagram layout. Indeed, the paradigm that we propose in this thesis is just suchan alternative.
32

3.6 SummaryNetwork diagrams are a common form of informational graphic and constitute an area inwhich it may be di�cult for a user to de�ne the aesthetic qualities desired in the �naldesign. In particular, perceptual organization is a key for human understanding of suchdiagrams. Previous work on graph drawing has focused on syntactic criteria and layoutaesthetics in automatically laying out a graph. Because most interactive graph drawingtools rely primarily on these automatic algorithms, they do not support users in specifyingperceptual organization information, which is an integral part of providing semantics to thediagram.Glide is unique in its approach to constraint-satisfaction. Its use of a generalizedmass-spring simulation which emphasizes local constraint satisfaction and whose behavioris intuitive and predictable to users, rather than one better at �nding global solutions, isan integral part of its collaborative nature. glide is not intended to be good at globallysatisfying constraints by itself. Rather, it is intended to provide an interface that allows auseful and e�cient collaboration between user and computer in solving layout problems. Forthis purpose, predictability, simplicity, and compelling animation are far more importantthan global optimality.The basic concept underlying the glide interface | tight collaborative interaction be-tween user and computer to solve an optimization problem, with the computer performinglocal optimization and the user responsible for global control | has resulted in a grapheditor that enables users to draw small- and medium-sized graphs easily. The mass-springsimulation approach may be applicable to other layout, drawing, and design tasks. Inimplementing such a system for other domains, the challenge would be in identifying theperceptual organizations that are relevant to the particular task at hand.

33

Chapter 4Design GalleriesViewed abstractly, all algorithms in computer graphics map input parameters to outputvalues. For example, image rendering maps scene parameters to output pixel values; an-imation maps motion control parameters to trajectory values. The problem of parameterspeci�cation | �nding a good set of input parameters to generate desirable outputs (i.e.realistic images or compelling animations) { is an important but challenging problem in in-corporating computer graphics algorithms into interactive systems. It is di�cult for peopleto understand the impact and interaction of these parameters. Finding input parametersthat yield a desirable output is di�cult and tedious for many rendering, modeling, andmotion control processes. This is not surprising; these mapping functions are usually mul-tidimensional, nonlinear, and discontinuous. A system that solves this problem would helpexpert and novice users alike.In this chapter we describe Design Galleries1(Marks et al., 1997), a novel approachto parameter speci�cation that embodies in its computer-user interface the collaborativeframework proposed in this thesis. It exploits a computer's superior computational powerto explore the space of design alternatives, and a user's ability to incorporate aestheticcriteria into evaluating and organizing competing designs. The Design Gallery method-ology outperforms other approaches to parameter speci�cation by handling the problemsof high computational costs and unquanti�able output characteristics. It supports users inboth exploratory and instantiative graphical design tasks. We focus on a novel method forarrangement of large data sets of graphics and interaction techniques that support users inbrowsing design spaces.4.1 IntroductionManual parameter tweaking has long been a bane for computer graphics. Searching for aspeci�c image can be time-consuming and tedious, and is often a case of trial and error;in many ways it is like searching for a needle in a haystack. A person supplies the inputparameters, leaving the computer to generate the corresponding graphic. A typical scenario1The material presented in this chapter is based upon a research project comprising thirteen people geo-graphically distributed over �ve locations, and is included as a good illustrative example of the collaborativeframework proposed in this thesis. An overview of the approach is given, with emphasis placed on thisauthor's contribution | the arrangement and interaction techniques as they are incorporated into a userinterface for a variety of application areas. 34

would be for a person to use a simple editor to set the various parameters, each representedby a control such as a slider or knob. By way of analogy, consider a television set that hasfour parameters to control image quality: hue, color, brightness and sharpness. Most peoplehave a hard time adjusting just these few parameters to get the desired picture; it is unclearto most people how changing one parameter will impact the others. Now imagine havingto wait one minute every time one of the knobs is tweaked before seeing its e�ect insteadof the continuous, real-time feedback that TVs provide. Parameter speci�cation would behorribly slow and frustrating. Such is the case with many computer graphics applications.Time delays of minutes, hours, or even days are not uncommon. Finally, a TV has onlyfour parameters | computer graphics algorithms can have many more. As the numberof parameters grows it can become increasingly di�cult for a user to predict the e�ects ofadjusting particular parameters and combinations of parameters. The notion of getting thecomputer to assist actively in setting parameters is therefore appealing.Inverse design and interactive evolution are the primary previous approaches to computer-assisted parameter speci�cation. Inverse design is an automated approach in which a personprovides an objective function that encapsulates the desired characteristics of a graphic; thecomputer then optimizes this function, producing the corresponding graphic. In many cases,however, a person does not always know what qualities will make one graphic preferable toanother. This problem of unquanti�able output characteristics makes inverse design impos-sible for many design tasks. Interactive evolution, a semi-automatic approach to parameterspeci�cation, solves this problem by employing the user as a dynamic function; a personpicks and chooses among a set of graphics, indicating which ones are preferred. Many com-puter graphics algorithms, however, do not run in real time | they may require minutesor hours to generate a graphic. Because of these high computational costs, it is impracticalto use interactive evolution to assist in parameter speci�cation.Our approach to computer-assisted parameter setting, which we call Design Galleries(Marks et al., 1997), presents the user with the broadest selection, automatically generatedand organized, of perceptually di�erent graphics or animations that can be produced byvarying a given input-parameter vector. The general approach is to have the computergenerate a diverse selection of graphics in batch mode, as a preprocessing phase, whichthe user can then browse through in real-time, viewing and selecting graphics interactively.Such a division of labor overcomes the problems of unquanti�able output characteristics andhigh computational costs that are associated with existing approaches to computer-assistedparameter selection; a comparison of Design Galleries to existing approaches is given inSection 4.5.Central to the implementation of a Design Gallery is the presentation of design alterna-tives. A primary goal of the Design Galleries is to provide access to a large set of graphicsso that a person can get an understanding the overall design space. The division betweencomputer and user in presenting and exploring the design space is an integral part of thecollaborative paradigm used to design the computer-user interface. However, the greaterthe size of the set, the more di�cult it will be for someone to browse e�ectively. We callthe problem of organizing and presenting a set of output graphics for easy and intuitivebrowsing by the user arrangement; it is discussed in more detail in Section 4.4.
35

Fixed Variable

Input Vector

Algorithm Mapping

Output
Vector

Graphic

Fixed Variable

Input Vector

Mapping

Output
Vector

Algorithm

Graphic

Distance
Metric

Figure 4.1: Components and interactions of a Design Gallery Application.4.2 Design Gallery MethodologyGenerally speaking, the Design Gallery paradigm can be applied to any graphics problemthat involves setting parameters that make up an input vector of variables whose speci�ca-tion gives rise by an algorithm (typically involving heavy computation) to an output graphic,and where the judgment of output graphic quality is subjective, informal, or otherwise dif-�cult to de�ne formally. The paradigm requires a method of characterizing the outputgraphics with an easily computed output vector; the output vector is generated using amapping function (which will involve less computation than the algorithm used to generatethe full graphic) from the input vector to the output vector. The output vectors are suchthat a distance metric on the space of output vectors approximates the perceptual similar-ity of the corresponding output graphics. A dispersion method is used to e�ciently �nd asample of input vectors that well cover the space of output vectors (hence output graphics).The selected input vectors are mapped to output graphics during a pre-processing phasebefore the interactive session with the user begins. The selected graphics are presentedto the user through a perceptually reasonable arrangement method that makes use of thedistance metric. The user can then e�ectively and intuitively browse through the range of�nal graphics.Figure 4.1 provides a schematic representation of six of these eight basic building blocks(input vector, output graphic, output vector, algorithm, mapping, and distance metric| dispersion and arrangement are discussed below) and their interactions for the DesignGallery approach. The set of input vectors delimits the space of possible (output) graphics.A single input vector speci�es the initial data set and a particular set of parameters | someportion of the input vector may be held constant. Each input vector may be used to generatean output graphic (e.g. an animation or an image) using a (potentially computationallyexpensive) algorithm, or an output vector using a less expensive mapping function. Theoutput vectors act as compact representations of the output graphics; they capture thesalient features of the graphics, and are used to evaluate and compare alternatives during36

the dispersion phase. The mapping function used to transform input vector to output istypically a light-weight computation in comparison to the algorithm used to generate thefull output graphic. In Figure 4.1 arrow width is used to indicate computational expense.The distance metric is used to compare two output vectors and approximates user perceivedsimilarity in the output graphics; smaller distances correspond to a higher similarity in theoutput vectors, and in turn, a greater perceptual similarity between corresponding outputgraphics.Given building blocks, the dispersion component searches through di�erent parametervalues for the input vector, typically on the order of millions of combinations, using themapping function to calculate the corresponding output vectors. Using the distance metric,it can compare output vectors, expanding the working set to get good coverage of thedesign space. The result is a maximally distributed set of output vectors (which correspondto a set of output graphics). The arrangement component takes as input this set of welldistributed output graphics and attempts to organize and present the results to the user.The focus of this research has been on the arrangement and interaction techniques as theyare incorporated into a user interface for such a system. This collaborative interface andits application in a variety of domains is discussed in more detail in the following sections.4.3 Sample Application: Medical ImagingWe have applied the Design Gallery approach to several common parameter-setting prob-lems: light selection and placement for image rendering, both model-based and image-based;opacity and color transfer function speci�cation for volume rendering; and motion control forparticle-system and articulated-�gure animation. For illustrative purposes, we will brieydescribe a sample Design Gallery application for medical imaging. All the applications aredescribed in more detail in separate papers (Marks et al., 1997; Kang et al., 1995), andadditional example interfaces given in Appendix B.Volume rendering is a means for visualizing large data sets. It is one of the techniquesused in the �eld of scienti�c visualization; as a tool, it is useful for both image understandingand generation. As used in medical imaging applications, volume rendering is typicallyapplied to data sets that de�ne attributes of a model not only at the surface, but inside aswell. Such data sets can be generated from CAT-scan (computerized tomography), PET-scan (positron emission tomography), MRI (magnetic resonance imaging), and ultrasoundprocedures. Volume rendering enables viewing such data as a three-dimensional �eld, ratherthan as individual planes (which is how the data is gathered). In addition, a single dataset may be rendered into hundreds of di�erent images, revealing di�erent components ofthe structures represented by the data. This is to be distinguished from the di�erent viewpoints that might be used to render the image.One algorithm for volume rendering is based on ray tracing; it makes use of two transferfunctions to determine the color and opacity for the voxels (three-dimensional pixels) inthe data set. For our medical imaging application the data values are pre-segmented intofour disjoint subranges: one each for air, fat, muscle and bone. Standard colors are usedto represent the di�erent tissue types, and so the color transfer function is held constant.Changes in the opacity transfer function will result in images that reveal the underlyingstructural elements to varying degrees. Figure 4.2, for example, shows the same data setrendered using di�erent opacity transfer functions.The application we consider here is a volume rendering experiment using a data set37

 ��

Figure 4.2: Human hip data set rendered using di�erent opacity transfer functions.for a human pelvis. The �xed portion of the input vector includes the 3D CAT-scan dataof a human hip and the color transfer function. The variable component of the inputvector is for the opacity transfer function, which is parameterized by a polyline, containingthe y-coordinates for twelve control points; the x-coordinates are held �xed. Varying theopacity transfer function will cause the di�erent tissue types to be rendered using di�erenttransparencies. Because changes to the transfer function will generally a�ect many pixelsthroughout a volume-rendered image, we need only include a handful of pixels in the volume-rendered image in the output vector. After some experimentation (as discussed by Markset al. (1997)), we settled on using eight pixels, selected manually. Dispersion on the basis ofeight well-chosen pixels seems to produce excellent dispersion of complete images at a muchreduced computational cost. Representing all of their YUV color space values results intwenty-four values in the output vector. Mapping is done by volume rendering of the eightsample pixels. Standard Euclidean distance is used as the distance metric for comparingvectors in the output space.The dispersion heuristic uses an evolutionary strategy that adapts its sampling overtime in response to what it implicitly learns. It starts with an initial set of random inputvectors. These vectors are then perturbed randomly. Perturbed vectors are substituted forexisting vectors in the set if the substitution improves dispersion. The measure of dispersionused is nearest-neighbor Euclidean distance in the space of output vectors. Improvementis rapid at �rst. However, the rate of improvement drops quickly. After considering mil-lions of candidate images, the dispersion procedure returns 256 input and output vectors,distributed throughout the design space. The system renders the full-sized image (m � npixels) corresponding to each input vector using a volume rendering algorithm.Arrangement is discussed in detail in the following section.38

Figure 4.3: Instantiated components for a medical imaging Design Gallery application.

Figure 4.4: A Design Gallery for medical imaging with di�erent opacity transfer functions.
39

4.4 Arrangement and System DesignPresenting data in an organized manner is an important part of information understanding.The primary goal of the arrangement component is to make it easy for people to navigatethrough the design space. We would like users to explore the display intuitively, relyingon visual comparisons in evaluating and examining candidate graphics. A great deal ofresearch has been done in the �eld of graphic design (Bowman, 1968; Dondis, 1973; Tufte,1983; Tufte, 1990; Tufte, 1997); its goal is the design of e�ective visual communication forinformation presentation. Typical considerations include form, spatial organization, andcomposition. Within the �eld of user interfaces, Marcus (1983; 1995; 1992) has appliedmany of these ideas to the design of e�ective displays and usable interfaces. He presentsbasic principles which can be used in GUI design (Marcus, 1995). Based on his characteri-zation, we present four considerations for the arrangement component of a Design Galleryapplication:� Icons: What representation should be used to present the output graphics to users?� Layout: Given a set of icons, how should they be arranged on the screen?� Navigation: How should the user move through the design space?� Interaction: What methods does the system provide to the user for manipulating thespace and graphics within it?4.4.1 IconsThe representation used to present output graphics to users will be called an icon. Onepossible icon choice would be to use the output vectors used by the dispersion heuristic.This mathematical representation of the graphic, however, would not provide users withmuch information, particularly as people are interested in the perceptual qualities of thegraphic. Another option would be to use a number or a simple point to represent eachgraphic. Again, this would not aid people visually. An obvious choice would be to use theoutput graphic itself. Screen space, however, limits the number of full-sized graphics thatthe system can present to users at one time.The icons used in the Design Gallery applications are thumbnails (e.g., 32�32 pixels andsmaller) which are small, low-resolution copies of the full-sized output graphic. Althoughthumbnails provide less detail than the corresponding full-sized images, they still supplyimportant information to the user; visually scanning the area enables people to identifypatterns in the layout. Due to their small size, many more thumbnails may be displayedsimultaneously than larger images. The thumbnails are arranged in the icon display panel(the inner region in Figure 4.5). The surrounding gallery (the outer region in Figure 4.5) isused to store full-sized images of interest to the user.For the animation applications, static images (both thumbnail and full-sized) are alsoused for the icons and gallery graphics. Animating all the images simultaneously has twodrawbacks. First, it is not clear that a user could make sense of that much informationin that particular format. Second, due to computational and hardware restrictions, theanimations would most likely not run at their nominal speed. In some cases, for examplethe particle system described in Appendix B.4, playback rate is an important component40

Icon
Display Panel

Image/Animation Gallery

Figure 4.5: A schematic of the Design Gallery user interface.

41

of the animation. The static images are generated by compositing multiple frames from theanimation; while the resulting image does not look like any single frame in the animation,it does provide users with a good intuition for the behavior of the animation over time.4.4.2 LayoutThe layout of the icons determines the position of the icons on the screen. Possible structuresfor the layout include grids, trees, graphs, tables, and lists, in either two or three dimensions.An important goal is to preserve the structure information from the multi-dimensional space.We would also like to enable users to make quick visual comparisons between graphics. Thus,the layout should be organized according to the perceptual similarity of the graphics.Under the current Design Gallery framework, icons are arranged in a two-dimensionallayout using a proximity metric. By generating a two-dimensional embedding of the space,the computer provides users with an overview of the design space. The layout of icons isaccomplished with a form of multi-dimensional scaling. The original problem formulationdue to Kruskal (1977) is as follows: Given a set of n objects, a dissimilarity matrix, and atarget dimension d (in this case two) the problem is to �nd a mapping of the n objects toa set of n points in d-space, such that the distance between points in the new space is asclose as possible to the original dissimilarities.Our implementation is due to Torgerson (1958). Let dij be the distance between outputvectors i and j, and let �ij be the distance between their corresponding icons in a two-dimensional embedding. We use Torgerson's method to compute the icon positions so thatsPi;j(�ij�dij)2Pi;j �2ij is minimized. To make the best use of the available display space, we thenrotate the computed embedding to align its �rst principal component with the horizontalaxis of the icon-display window. The resulting layouts will not be without anomalies | aswe are using it, multi-dimensional scaling is a projection from a high-dimensional space ontoa two-dimensional space, and this cannot be done without loss of information. The use of anapproximate layout is accommodated by the collaborative interface design; the layouts doreect the underlying structure of the output vectors well enough to allow e�ective browsing.One important practical detail: since full-size versions of all the images returned by thedispersion procedure must be rendered anyway, it is convenient and better to computedistances on the basis of these full-size images in the arrangement phase, instead of theoutput vector used in the dispersion phase.Prior to the multi-dimensional scaling layout method currently used in the DesignGallery interface, we explored the use of a dynamic spring model based on the physicalsimulator described in Chapter 3 for the arrangement of the icons in the interface. Wede�ned springs between each pair of icons in the system using the dissimilarity matrix todetermine the rest length of each spring. This technique was particularly sensitive to theinitial placement of the icons in the two-dimensional space. Animating the layout processdid not help users to understand how or why the layout was generated. Many anomalieswere present in the resulting layouts; although the mass-spring method is good for localoptimization, it is not useful in generating globally optimum layouts automatically. Weattempted to increase user participation in the layout phase by permitting a user to indi-cate one or more icons of interest, which would increase the corresponding spring strengths.The resulting system did not make good use of the available screen space and was slowin generating layouts. The multi-dimensional scaling approach, combined with appropriate42

navigation techniques, is more appropriate for icon layout. An alternative arrangementapproach based on a hierarchical partitioning of the graphics is discussed by Kang et al.(1995).4.4.3 NavigationNavigation mechanisms permit people to explore the design space, and in the case of DesignGalleries, move through the icon display area. It is important to provide users with a senseof perspective and context as they explore this space. People should have access to bothlocal and global views, with varying levels of detail as needed.In a Design Gallery application, the user is initially presented with the entire set oficons, arranged as described above such that visually similar icons are closer together, anddissimilar icons are further apart. The set of icons is automatically scaled to �ll the entirespace of the icon display area. In the resulting layout, however, there is no guaranteethat icons will not overlap. Since perceptually similar icons are grouped together, clustersare similar, and overlaps result in only a minimal amount of information loss. The usermay select an area of interest using the standard mouse technique of region-dragging. Thesystem then utilizes two processes to refocus the display for the user:� Panning: The system calculates the bounding box of the selected icons, and recentersthe display on the new center.� Zooming: The system rescales the bounding box to utilize as much of the centerdisplay as possible. The scaling is done uniformly in both dimensions, and is limitedby the larger dimension.As the user moves in to examine an area more closely, the system will �rst pan and themzoom. As fewer images are being displayed within the display panel, the number of overlapsdecreases. Zooming in removes visual clutter and enables users to see icons that may havebeen previously obscured. In moving out, the system reverses the process. Zooming outcondenses the icons, which is followed by panning to recenter the display. The systemsmoothly animates both phases of the navigation; this behavior enables users to keep trackof where they are within the larger context of the design space, while examining particularregions of interest in more detail.The zooming mechanism of current Design Gallery interfaces does not resize the icons asthe magni�cation level changes; it only respaces the given icons. This is in large part due toimplementation details. Although a scaling operator is available in the Tcl/Tk environment,it does not apply to imported images. One alternative would be to generate thumbnails onthe y (or to have a set pre-computed and interpolate amongst them as the scale changed);computation costs (and storage constraints) make this unrealistic.The system currently supports two-dimensional panning. Extending the layout to threedimensions might prove useful for the arrangement component, and provide additionalvisual information to users. Rather than using a true three-dimensional environment, suchas OpenGL, we could implement a three-dimensional e�ect by exploiting the illusion ofdepth that is possible on a computer screen; smaller thumbnails would appear to be furtheraway. Similar problems to the magni�cation of thumbnails associated with zooming wouldneed to be considered in order to support three-dimensional panning.43

4.4.4 InteractionInteraction mechanisms provide users with methods for manipulating the space and graphicswithin it. Such functionality is related to, but distinct from, navigation. For example, ina text document retrieval system, clicking with the mouse could retrieve title, abstract orfull-text for a given document. Interaction techniques can also provide landmarks for users,which are helpful for determining their present location within the space.Design Gallery applications rely on the mouse for user input. A user may move themouse over any of the icons in the display area; clicking on a particular thumbnail willbring up a full-size image of the corresponding graphic. Releasing the mouse causes thegraphic to disappear. Alternatively, images can be dragged to the gallery (where they willsnap into the closest pane) and arranged at the user's discretion. Dragging and dropping agallery image into the center region will remove it from sight. In Figure 4.4, a user-selectedset of images is shown in the surrounding image galleries. The lines connecting images withtheir thumbnails are only included to give some indication of how images congregate inthe thumbnail display; the association between thumbnails and images is done by dynamichighlighting in the actual user interface. Mousing on an image in the gallery highlights itsassociated icon, and vice versa. In this way, the user can group graphics of interest in thegallery, and determine their position in the global display with this interactive highlightingmechanism. If the icon to be highlighted is at the bottom of a stack of icons, the system willtemporarily oat the icon to the top. Note that the stacking order of the icons is arbitrary,and independent of their visual content.4.4.5 Application-Speci�c FunctionalityThe computer-user interface is implemented using Tcl/Tk. This environment enables theDesign Gallery interface to be customized to accommodate a person's preferences; usersmay specify colors for various portions of the interface, dimensions of the gallery, etc. Moreimportantly, application designers can easily extend the interface, adapting it to various ap-plication areas. The volume rendering example given in Section 4.3, for example, includesfunctionality that permits users to view the opacity transfer functions using gnuplot. An-imations can be shown in the gallery when appropriate; the two-dimensional pendulumdescribed in Appendix B.2, for example, uses a C back-end to render the animations inreal-time. The particle systems, see Appendix B.4, are computationally more expensive,and so MPEG movies are used in place of real-time animation. For each application,however, the basic interface is the same; additional components can be loaded to supportapplication-speci�c functionality as needed.4.5 Comparison to Existing ApproachesIn this section we describe two computer-assisted approaches for the problem of parame-ter setting: inverse design and interactive evolution. We also survey related work on theproblem of arrangement from the �eld of information visualization.
44

4.5.1 Parameter Speci�cationInverse DesignOne computer-assisted methodology for parameter setting is inverse design, which exploitsthe notion of design by optimization. This approach is well-suited to problems with a largenumber of candidate designs that can be enumerated and evaluated automatically; suchevaluation, however, is often problematic. An objective function (a mathematical speci�-cation of the desired characteristics of a graphic) is supplied that the computer can use torate the quality of a candidate graphic. The system searches for parameter settings thatoptimize the function, automatically evaluating and ranking candidate graphics. Inversedesign has been successfully used in a variety of applications, including label placement(Christensen, Marks, and Shieber, 1995; Edmondson et al., 1997), motion-synthesis (Liu,Gortler, and Cohen, 1994; Sims, 1994; Tang, Ngo, and Marks, 1995; van de Panne andFiume, 1993; Witkin and Kass, 1988), lighting speci�cation (Kawai, Painter, and Cohen,1993; Poulin and Fournier, 1992; Schoeneman et al., 1993), and volume rendering (He et al.,1996). However, this automated method of parameter speci�cation provides little supportto users for de�ning objective functions. There are two reasons that inverse design is prob-lematic: deciding what characteristics to include in the objective function, and determininghow to specify a set of characteristics as part of an objective function. We will examineeach of these in more detail.First, people may not know what characteristics they would like to include in a graphic(i.e. to include in the objective function). This problem of unquanti�able output character-istics results from the fact that even though desirable graphics may be readily identi�ed byinspection, it may not be possible to specify a priori the qualities that make them desirable.This rules out the use of inverse design for parameter speci�cation and indicates that theapproach is not well-suited for browsing systems in general. A possible extension would beto allow users to easily view multiple candidates for a single objective function, or to permitusers to specify multiple objective functions. This would not, however, remove the problemof how to specify the objective function in the �rst place or the problem of unquanti�ableoutput characteristics. In addition, because current inverse design systems provide only asingle solution, they would not be able to organize multiple candidate solutions in a mannerthat would make them easily accessible to users.Second, once a person knows what qualities to include in the objective function, it is stilldi�cult for a user to de�ne the objective function. Inverse design replaces the parameterspeci�cation problem with an objective function speci�cation problem. It is important tonote that the choice of objective function may a�ect the aesthetics of the resulting graph-ics, the quality of the solution, and the e�ciency of the search method for optimizing theobjective function, and is therefore an important consideration. In general stating mathe-matically the desirable properties of an animation or abstract image is very di�cult. Evenfor graphics tasks with clear principles and conventions that can potentially be convertedinto objective functions in a straight forward manner, developing a good objective functionmay still be hard. In his thesis, Christensen (1995) remarked, \Coming up with an appro-priate objective function for a general label-placement problem (that is, one that includespoint, line and area features) is a di�cult task." Furthermore, aesthetic criteria are oftennot as easily formalized in a discrete manner. Christensen (1995) addressed the problems oflabel placement and motion-synthesis using inverse design. Specifying objective functionsfor animated mass-spring models was the more di�cult and time-consuming task. Although45

the resulting animations were visually compelling, they were seldom (if ever) achieved onthe �rst speci�cation of an objective function. As the generated animations behaved inundesired ways, the objective function was re�ned to further constrain the behavior of thecharacter. This iterative re�nement process was hampered by the high computational costsassociated with calculating the animation trajectories. Thus, inverse design is inappropriatefor novice users who lack the expertise necessary to de�ne objective functions, and is oftenproblematic for expert users.Inverse design is only feasible when the user can articulate and quantify what is desiredin a graphic. The Design Gallery approach handles the problem of unquanti�able outputcharacteristics by removing these restrictions. By generating a representative set of graph-ics from the design space, a Design Gallery application enables users to browse a space,determining the available possible graphics without having to specify an objective function.In addition, because Design Gallery systems do not require users to have domain speci�cknowledge, they may be used by both expert and novice users.Interactive EvolutionInteractive evolution falls into the middle ground between manual and automatic ap-proaches. The computer is responsible for exploring and presenting candidates from thedesign space. The user acts as a dynamic objective function, indicating images of interestto be used in guiding the exploration. Based on the user's input, the computer gener-ates a new set of candidates using a variety of genetic algorithm operators. Traditionalgenetic algorithms required the speci�cation of survival �tness criteria to be evaluated bythe computer | this is just another form of a pre-de�ned, user-speci�ed objective function.Interactive evolution replaces the static �tness function with dynamic user interaction toevaluate alternatives. The process repeats until the user \evolves" a satisfactory result. Theadvantage of interactive evolution over inverse design, is that a person may apply an ob-jective function that is understood only implicitly (in the form of subjective selection), andneed not make explicit the objective function. As a result, the user's �tness function canincorporate poorly de�ned characteristics such as \interesting", \aesthetically beautiful,"\good likeness," or \life like" (Baker and Seltzer, 1994). Such properties would be di�cultto formalize in a mathematical sense. In addition, a person's criteria may change duringthe interactive session; this is often an integral part of iterative re�nement. By alleviatingthe problem of requiring users to specify an objective function in advance, this collaborativeapproach supports a browsing capability that enables users to re�ne their queries throughvisual means, and supports the exploratory component of design.Interactive evolution was �rst introduced by Dawkins (1987) who describes a systemfor evolving images of creatures called \biomorphs". Interactive evolution has subsequentlybeen used in a variety of applications including generating facial images (Caldwell andJohnston, 1991; Baker and Seltzer, 1994), creating insect-like images (Smith, 1991), motionsynthesis (Ventrella, 1995), volume rendering (He et al., 1996), and other computer graph-ics tasks (Kochhar, 1990; Sims, 1991; Todd and Latham, 1992). In most cases, interactiveevolution is more powerful than traditional computer-aided graphics tools in that it enablespeople with no previous artistic training to generate interesting images and animations. Itenables users to explore large design spaces, relying on only gross interaction techniques incommunicating with the computer, typically pointing and clicking with a mouse to indi-cated images of interest. More recent work (Baker, 1997) has focused on implementing an46

interactive evolution system for searching a database of existing facial images for a particu-lar person (i.e., as a computer-assisted mug book). Thus, the interactive evolution approachseems promising for both instantiative or searching tasks (i.e., �nding a particular image)for narrow areas within the design space.Design Galleries and interactive evolution are appropriate to use for design tasks involv-ing unquanti�able output characteristics. In both cases, the user is the source of outputquality judgments. One distinction between the two approaches comes in their utility asbrowsing systems. A Design Gallery application uses dispersion to provide the user witha set of graphics that are representative of the design space, thus providing an overviewof the entire space. Interactive evolution systems, on the other hand, typically seed theirinitial population with a random sample of graphics, with future populations being gener-ated using genetic algorithms as guided by user selection. Depending on the application,the user can sometimes provide a sample image as a starting point. This is not, however,typically the case. The initial sample, whether randomly generated or user-supplied, is notguaranteed to cover the entire design space, particularly due to the limited size of the sam-ple and the vastness of the design space. Thus, although interactive evolution systems haveutility in exploring a particular area of the design space in detail, they are less appropriatefor general browsing.A second drawback to interactive evolution is the impact of the computational coston system performance. As previously noted in Section 4.1, some computer graphics algo-rithms are too computationally costly to be incorporated into interactive evolution systems.These systems require computation to generate candidate graphics for their user at eachiteration in generating a single generation. For many computer graphics algorithms, thehigh computational costs preclude graphics (images or animations) from being computedin real time. For such algorithms, interactive evolution becomes unusable. Although a usercan make aesthetic judgments in real time, the system would be unable to generate newsets of candidate solutions in a time period that would be acceptable to users; the cycle ofiterative re�nement is broken by delays in generating graphics (or animations) for a userto evaluate. In contrast, the Design Gallery framework allows users to explore and interactwith computationally expensive algorithms because the computation is done ahead of time.A Design Gallery application runs its dispersion heuristic as a pre-processing phase; usersare not subjected to the time delays associated with computationally expensive algorithms.In addition, the use of a mapping function and output vector (rather than a full algorithmand output graphic) enable a Design Gallery interface to evaluate and explore many moregraphics than other approaches.4.5.2 Information Visualization and NavigationExisting approaches to parameter setting do not typically include an arrangement com-ponent. Research on information visualization and visual information seeking, however,addresses many of the same issues, emphasizing the processes of navigating through largecollections of information and interacting with users through visual means. Users need ameans for exploring large information spaces | a design space is just a specialized infor-mation space in which each document is a single graphic. Browsing systems aid users inaccessing these large data sets. The amount of information to be presented to users is con-tinually growing and becoming more complicated. Typical computer screen sizes, however,have remained relatively small. Therefore, systems need to employ innovative methods to47

enable users to better understand these large spaces. In this section, we survey severalsystems that provide innovative approaches to information visualization and navigation.Ahlberg and Shneiderman (1994) de�ned design principles for visual information seeking,relying on people's capacity for visual information processing. They incorporated notions ofproximity, color and size, along with animated presentations, and user-controlled selectionsin order to support users in exploring large information spaces rapidly and reliably. TheirStar�eld approach relied on scatter plots of points. The points represented various objectsin a database, such as people, videos, papers, songs or photos. Meaningful two-dimensionaldisplays were produced by having the user select two ordinal attributes of the items tobe presented; additional features supported selection and zooming which could be used inre�ning a query. Text documents could be arranged by two of the following characteristics:author, year of publication, or word count. A database of people might include attributessuch as age, number of siblings, number of years of education, salary, or other demographicvariables. It is not clear that the two components of the Star�eld approach are applicable tothe domain of graphics-based information. First, using points as icons for a graphic deniesthe user easy access to important visual information. Second, \natural axes" may not beas easily identi�ed for graphics-based documents.A second application of relevance is that of navigating a database of color images (Rub-ner, Guibas, and Tomasi, 1997; Rubner, Tomasi, and Guibas, 1997). This work takes asimilar approach to that of Design Galleries, although the work was done independently andin parallel with our project. It utilizes a notion of color signature (comparable to our outputvectors) in order to evaluate the similarities of color images, and uses a multi-dimensionalscaling technique to embed the images in a two or three-dimensional space. Rather thanproviding a listing of images resulting from a user query, it presents the user with a vi-sual representation of the results in two-dimensions. In contrast to a one-dimensional listthat reveals only the distance between the query and each element of the results, the two-dimension visualization used in this approach (and in Design Galleries) can be used toconvey the distance between all the images in the set. In addition, the use of thumbnailsprovides important visual information to users.The notion of multiscale viewing (Furnas and Bederson, 1995) in which objects andstructures embedding them can be displayed at di�erent scales is helpful for users in nav-igating large information spaces. Traditional at views, such as a single window on acomputer screen, provide users with access to a single, small, local piece of the structure atany given time. Although users can control the locality of this view, they have no accessto the larger context or \big picture". The use of zooming enables user to change the mag-ni�cation level of a particular view, but it still limits users to either local or global access,but not both simultaneously.The Spatial Data Management System (Donelson, 1978) was one of the �rst systemsdeveloped to o�er users both global and local views. It provided two windows, one as apanoramic view, and the other a close-up view of an information landscape. Users navigatedby either panning in the local window, or clicking in the global level to move directly to anentirely new area.Furnas (1981; 1986) suggested an approach to provide users with easy access to periph-eral information. His �sheye lenses present a distorted or warped view of a space; thingsnear the center of the lense are highly magni�ed, but the whole structure is shown, withdecreasing magni�cation from the center of vision. The result is that information of cur-rent interest has the greatest detail, while surround information has a less-detailed view.48

Peripheral information provides important context which aids users in orienting themselvesas they navigate a space.Pad (Perlin and Fox, 1993) uses a spatial metaphor for computer interface design. Itis an in�nite two-dimensional informational plane that can be shared across users. Padprovides views, called portals, that aid the user in the navigation of the in�nite space.Portals may have varying magni�cation levels, providing panoramic overviews, or small-localized access. Interestingly, portals may be recursively applied to themselves, increasingthe magni�cation and access of particular regions at the user's discretion. The apparentsize of document determines the amount of detail provided to the user. Pad also introducesthe notion of semantic zooming: an object can change appearance as the amount of spaceit is allotted changes. In traditional geometric zooming, objects change only their size, andnot their shape, as the magni�cation level changes.4.6 SummaryDesign Gallery interfaces are a useful tool for many applications in computer graphics thatrequire tuning parameters to achieve desired e�ects. Their basic strategy is to distill fromthe set of all possible graphics a subset with optimal coverage. The gallery is automaticallyconstructed through a dispersion and arrangement phase, which is typically computationallyintensive. The intent is that this process occurs o�-line, for example, during an overnightrun. After the gallery is constructed, the user is able to e�ectively browse through thespace of output graphics. Previous approaches such as inverse design and interactive evo-lution are infeasible due to the problems of unquanti�able output characteristics and highcomputational costs associated with many computer graphics algorithms.In examining the challenges associated with parameter speci�cation approaches, it isimportant to note where the burden falls. Unquanti�able output characteristics and highcomputational costs are problematic issues for users. The technical challenges associatedwith Design Galleries | dispersion and arrangement | shift the burden onto the computerand the software designer. As discussed in Sections 4.3{4.4, we have met these challenges.The results of applying the same dispersion and arrangement techniques to di�erent appli-cations are given in Section B.The Design Gallery methodology utilizes the collaborative framework in determiningthe division of labor between people (Design Gallery designer and users) and the computersystem. In characterizing the roles of the user and the computer in an optimization-basedframework, the Design Gallery approach follows the work of the previous chapters. Thecreator of a Design Gallery interface (who is in some sense part of the application) worksat a local level, choosing the input and output vectors, along with the distance metric.The computer also works locally, performing the dispersion, the mapping of input vector tooutput vectors and output graphics, and the arrangement of �nal graphics in the gallery.The user operates at a global level and is responsible for selecting graphics of interest,and arranging them in the gallery in a meaningful fashion. The collaborative nature ofthe Design Gallery interfaces solves the problem of parameter speci�cation, and supportspeople in exploring and understanding large design spaces.
49

Chapter 5Floor Plan SegmentationThe problem of oor plan segmentation | identifying partially and fully bounded regionsin a bitmap image | is a representational graphic design problem that emphasizes theimportance of converting information in hard-copy form to its electronic equivalent. Thebitmap image is typically a scanned oor plan; the user's goal is to generate an electronicrepresentation of the building geography depicted in the oor plan. In particular, we wouldlike to support the delineation of regions demarcated by subjective contours, making theprocess as easy and user-friendly as possible.In this chapter, we describe work on an interactive system for oor plan segmentation.As our system extracts partially or fully bounded region de�nitions from a scanned bitmapimage with minimal input from a user, it is better suited for generating representationalgraphics of this nature than other semi-automated techniques. Our method may be ap-plicable in other domains, such as forms processing, cartoon coloring, or web image mapgeneration.5.1 IntroductionIn general, geographic information for buildings is available only from hard-copy oor plans.Although geographic data for buildings is sometimes generated with architectural CADsystems, large quantities of paper-based information pre-date CAD tools. The issue oftransforming hard-copy information into machine-readable form falls within the realm ofdocument processing, a �eld that has traditionally focused on segmenting scanned docu-ments into regions of text and images, and then on interpreting these regions. Our focusis on the latter part of this process: interpreting a scanned bitmap that depicts a buildingoor plan. We are interested in the topology and geometry of the di�erent regions (e.g.,o�ces, lobbies, or closets) of the building. We wish to extract such data from a scannedoor plan, by annotating the oor plan to delineate the relevant regions. For this reason,the graphic design task at hand is not an end in itself; it is an intermediary step of a largerprocess.As with the problems addressed in the previous two chapters, approaches to oor plansegmentation range from manual to automatic. Manual methods, such as tracing (using amouse or digitizing tablet), are tedious for people and are inherently inaccurate. Automatedmethods, though less laborious, do not always yield correct and accurate methods. The taskof region delineation, like many graphic design tasks, can depend in the end on arbitrarysemantic information about the material depicted in the bitmap to which no purely syntactic50

Figure 5.1: Arbitrary amounts of semantic information may be required to interpret a oorplan.method can be sensitive. As illustrated by the Non-Sequitur cartoon (Wiley, 1994) inFigure 5.1, region boundaries (and their utility) are in the eye of the beholder. As anotherexample, the distinction between a foyer to a room and a bay in it may be unmarked ina oor plan. If the former is considered a separate region and the latter part of the sameregion, only someone familiar with this semantic distinction would be able to delineate theregions correctly. Because no fully automatic method is to be expected, we believe that it iscrucial to think of the task of region delineation as being solvable only semi-automatically.We wish to explore collaborative methods that utilize a similar division of labor be-tween user and computer but relax these assumptions. Our approach integrates a novelmethod for providing a syntactic model of subjective regions into a semi-automatic systemfor delineating fully and partially bounded regions in a scanned oor plan image. We en-capsulate the notion of subjective region boundaries into a single function, and view theregion-identi�cation problem as optimizing this function. In the following section we de-scribe our approach, focusing on the region delineation technique. Section 5.3 discussesthe computer-user interface design, followed by an example interaction with the system inSection 5.4. In Section 5.5 we compare our novel region segmentation technique to previousapproaches, and the collaborative system into which it is integrated to existing systems thatmight be used for the task of oor plan segmentation.5.2 Our ApproachOur approach makes use of a proximity metric for delineating partially or fully boundedregions of a scanned bitmap that depicts a building oor plan. A proximity �eld is de�nedover the bitmap, which is used both to identify the centers of subjective regions in the imageand assign pixels to regions by proximity.Our approach has two main advantages over existing techniques. First, the regionboundaries generated by the method tend to match well the subjective boundaries of regionsin the image. As discussed in Section 5.5, other methods (such as �lling) are not suitablefor identifying partially bounded regions. Second, our technique is incorporated into asemi-automated interactive system for region identi�cation in oor plans. Simple human51

interventions requiring only gross information can be used to correct the results generatedby the proximity-�eld method. This is in keeping with the collaborative framework proposedin this thesis. The division of labor is such that the computer is working at the local level,assigning pixels to regions, while the user works at a global level, guiding the system andcorrecting mistakes with gross gestures.5.2.1 Proximity FieldA novel contribution of our approach is the method by which the subjective boundaries ofregions are de�ned. As discussed above, the standard area-�lling method has the problemthat subjective boundaries that are not marked with explicit lines in the image are overrunso that neighboring regions are invaded. Our approach attempts to better characterizethe notion of a subjective region by encapsulating the notion \subjective region boundary"in a single function and by viewing the region-identi�cation problem as the problem ofoptimizing this function. The approach can be motivated by reconstructing the problemwith the area-�lling method. Suppose we are given a drawing of the two-room buildinggiven in Figure 5.2. Note the door between the rooms. Because of this door, a �llingalgorithm started from any point would �nd a single region (as in Figure 5.2b). Intuitively,the reason that a given pixel, say the one labeled r in Figure 5.2f, is taken to be associatedwith the right room rather than the left (where the �lling was started) is that it is closer tothe center of the right room than the left room. In order to use this intuition to actuallydelineate regions, we must �nd a way of characterizing these two notions of `closer' and`center'.We do so with a proximity �eld. Imagine a surface de�ned so that the height of thesurface at each black pixel in the image is zero and at each interior pixel the surface is asmany units below zero as the pixel's distance to the nearest black pixel, so that the surfaceforms a series of valleys with the black pixels as ridges separating them. The surfacejust de�ned is the proximity �eld; a topographic map of a surface is given in Figure 5.2cand a cross-section is shown in Figure 5.2d. Local minima in this �eld provide a roughcharacterization of the notion center of a region.We want to assign each pixel in the image to one of the �eld minima, in particular, theclosest one. The appropriate notion of closeness is not mere geometric distance (as de�nedby, say, a \Manhattan distance" metric). Instead, the surface itself provides a de�nition ofcloseness. Objects on such a surface tend to move downhill so as to locally minimize theirpotential energy. The minimum reached from a given pixel by such a local minimizationprocess is an appropriate notion of \closest center". We can imagine a ball placed at thegiven pixel and released; the local minimum that it settles in is the center of the room thepixel belongs to. Since, as depicted in Figure 5.3g, a ball at point p would roll to the upperminimum, whereas one at point r would roll to the lower minimum, the two points are takento lie within the upper and lower region respectively.This rolling ball analogy fails, unfortunately, when the pixel in question is on a plateau ofthe surface between two minima, say at point q in Figure 5.3f, in which case both minima arereachable by descent from the given pixel. Conceptually, this aberration can be eliminatedby using a smoothed version of the surface as depicted in Figure 5.3e. In practice, theallocation of pixels to regions that would be engendered by using the smoothed surfacecan be calculated directly by the technique described in Section 5.2.2, without actuallycalculating the smoothed �eld. 52

cc

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

p q r

Figure 5.2: (a) A simple two-room drawing. (b) A �lling algorithm started in the leftroom traverses the subjective boundary of the doorway. (c) A \topographic map" of theproximity �eld for the oor plan. (d-e) Unsmoothed and smoothed cross-sections of theproximity �eld along a horizontal line through the doorway. (f) Points to the left of thedoorway (as point p) are nearest to the local minimum in the left region, whereas pointsto the right (as r) are closest to the local minimum in the right region. Points right inthe middle (as q) may be considered part of either room; the algorithm presented wouldassociate such a point with the deeper minimum, hence the larger left room. (g) The notionof closeness can be motivated by imagining a ball located on the surface, rolling downhillto the nearest local minimum. (h) Regions de�ned by the proximity-�eld technique shownas a two-coloring of the oor plan. 53

This discussion provides evidence that an approach based on energy minimization inthe proximity �eld might be appropriate for characterizing subjective boundaries betterthan the simple �lling technique. Our method is based on just this metaphor of energyminimization. We describe the method in more detail in the next section.Another feature of the proximity �eld technique is that alternative de�nitions of theproximity �eld might be used to characterize regions of a quite di�erent sort from bound-aries perceived as physically contained regions. The simple �eld used here models regionsunconstrained in all directions except by overt indicators of subjective contours. The sens-ing region of a motion sensor, by contrast, is constrained to subtend a certain angle outwardfrom the site of the sensor. The regions de�ned by such a sensor can be de�ned by an alter-native proximity �eld that is more constrained than the one used here but that still respectssubjective regions. The generality of the proximity �eld approach to region delineation thusmakes possible the modeling of many di�erent kinds of regions. Similarly, an alternativeproximity �eld de�nition might be used to �nd the subjective segmentation of a documentimage.5.2.2 Region De�nitionsA region, under the model we are describing, is characterized as the set of pixels for whicha given minimum in the proximity �eld is closest. Thus, specifying a region follows fromspecifying the corresponding �eld minimum. This is easily done by local search. Given a setof pixels all of equal value, which we will call the working set, a new set is generated in thefollowing manner. The neighboring pixels with the lowest �eld value are found. If the pixelsin this neighboring set are higher than those in the current set, the current set constitutes(part of) a local minimum of the surface, and the search is done. If the neighboring setpixels are the same height, the working set is augmented with the pixels in the neighboringset, and the process is iterated. If the neighboring set pixels are lower, the neighboring setbecomes the current set and again the process is iterated. Eventually, this iterative searchterminates with a set of equal-value pixels that comprise a minimum. A graphical depictionof the iterative process is presented in Figure 5.3.Under certain conditions, for instance, when started at point q in Figure 5.3f, the workingset may become temporarily noncontiguous. In the area within the door, for instance, thereis a plateau in the proximity �eld. The �rst few iterations of the algorithm above expandthe working set to encompass larger areas of the plateau. Eventually, if the starting pointis nearer one room or the other, the edge of the plateau nearer that side will be found,and the working set will move in that direction, eventually settling in the correspondingminimum. However, if the starting point is in the exact center of the plateau, both edgeswill be found on the same iteration, and the working set will comprise pixels from both sidesof the plateau. The search will continue in this way until one of the discontinuous partsof the working set hits a minimum. If the other part is not yet at a minimum, the searchwill continue, using only the latter portion of the working set, eventually �nding the lowerof the two minima. In essence, the method as described places points midway between tworooms as part of the larger of the two rooms. (If both minima are reached at the same time,that is, both rooms are the same size, one or the other can be chosen arbitrarily.)
54

(b)

(a)

(c)

(d)

(e)

(f)

(g)

Figure 5.3: Stages in the computation of the nearest local minimum to point p of Figure 5.2f.The proximity �eld is given as a false grayscale coloring of the interior pixels, with darkercolors being lower. The starting pixel is marked with an � in all drawings, and the pixels ofthe working set is bounded with a polygon. (a) The working set is initialized to the startingpixel. (b-c) The lowest-valued neighboring pixels are of the same value, so are added to theworking set. (d-f) The lowest-valued neighboring pixels are of lower value, so they becomethe new working set. (f) Pixels within the local minimum have been found. (g) The workingset grows to encompass the full local minimum, and the algorithm halts.5.2.3 WeaknessesThe basic proximity �eld technique works quite well for �nding subjective contours of re-gions in bitmaps. Section 5.4 and Appendix C provide examples of the method as appliedto actual scanned oor plans. However, as previously argued, the articulation of any suchmethod with some human intervention ability is crucial. The essential idea behind leverag-ing of human intervention is simply this: repairing of incorrect or inaccurate results of theautomatic method should require only gross human interaction, rather than �nely detailedwork. This is the heart of the collaborative approach proposed in this thesis. Users shouldwork at the global level, leaving the system responsible for the local level. The proximity�eld technique compares well with other techniques, such as area �lling, not only in that itperforms better ab initio at �nding subjective contours, but also because it lends itself wellto this leveraging the addition of simple human intervention.The remaining frailties of the proximity �eld technique can be classi�ed as follows:� Missing subjective contours: Indicators of a subjective contour may be wholly or partlyabsent from the input image. For instance, what appears to be a single large room55

in the oor plan may be thought of by the occupants of the room as two separateregions. Since no syntactic reex of the distinction between the two rooms is found inthe image, no method based purely on bitmap processing can be expected to observethis distinction.� Multiple minima: A subjective region may encompass several minima, that is, it isthe union of the regions de�ned by the multiple minima.Both of these problems are easily handled by only simple human interventions, givenan appropriate computer-user interface. Indicators of missing subjective contours can bemanually added with simple line-drawing tools. Because the method does not require closureof the subjective contours, simple hints as to the missing subjective contour are all that istypically required to repair the region delineation. For example, in Figure 5.6 in the nextsection, a short line segment is all that is required to coerce the proximity �eld method to�nd the correct subjective contours. Multiple minima and their corresponding regions maybe joined into a single region. Details are provided in the following section.5.3 System DesignUsing our collaborative interface approach, we frame the problem of oor plan region seg-mentation as an optimization problem. Our goal is to have the user work at the global level,and the system at the local level. The proximity �eld method described in Section 5.2 iswell-suited for this approach. The user brings semantic information to the task | knowl-edge of the area represented by the oor plan. The system employs a local search strategyas it attempts to segment the image into regions. The search is guided by the user at aglobal level using two mechanisms as described below.We have implemented the proximity �eld technique for region delineation in a prototypesystem using C and Motif. The interface for the system includes a viewing area for thebitmap image and a control panel for various parameters. A screen capture of the interfaceis shown in Figure 5.4.InputOur system takes as input a scanned bitmap image, such as the one in Figure 5.5. Bystarting from a scanned bitmap image, the system relieves the user from having to redrawthe layout geometry from scratch. Although some CAD packages use the scanned blueprintas an underlay, the user is still required to trace the outline of the regions manually. Bitmapsfor our system should be pre-processed to remove text. Such bitmaps will typically begenerated by scanning the hard-copy of a oor plan. The resulting bitmap may containnoise or missing boundaries | our system is such that it can handle missing or corrupteddata. Other oor-plan-like drawings may be generated by simple drawing packages. Anexample of this type is given in Figure C.1.System ImplementationThe system computes the proximity �eld over the bitmap using the method described inSection 5.2. The results can be be displayed to the user as a grayscale topography of thesurface, as shown in Figure 5.6. The value at each white pixel is shown through false-coloring, with darker tones connoting lower values. This view can help shape the user's56

 ��

Figure 5.4: Computer-user interface for the system.
57

intuition about how the system is detecting and de�ning regions. The system then usesthe proximity �eld to compute the corresponding regions, and displays these to the useras a false coloring of the regions, as shown in Figure 5.7. The colors are assigned to theregions randomly, and so adjacent regions (potentially with no physical boundary betweenthem) may be assigned the same color. The user can change the color of a region usingthe mouse | the system will cycle through a pre-set listing of colors. The user may alsospecify di�erent stipple patterns to be used in coloring the regions.User InteractionOur system reduces the amount of user input, and simpli�es the type of interaction as well.The system provides for human intervention in the form of user-added subjective contourhints and region grouping. Subjective contour hints act as walls, which enable a user tosubdivide a single region. The user can use the mouse to add sketch lines to bitmap image.These additional \walls" need not be accurate; they can be slightly skewed, and need notabut nearby physical walls. The user is not required to work down at the pixel level, butrather need only use gross mouse gestures to achieve the desired e�ect. The user can controlwhether or not these false-walls are visible in the display. The system also permits users todelete any of the false-walls they have previously introduced.In other instances, a user may wish to join two or more regions into a single logicalregion, for example joining door swings to their corresponding rooms. This is accomplishedby selecting the regions to join with the mouse. Depressing the left mouse button starts achain of regions to be joined; clicking the right mouse button adds additional regions to thatset. The user can delete these joins at a later point if desired. No pixel level postediting ofthe regions is supported; the need for post-editing at this level of detail is rare and wouldbe better viewed as an indicator of a aw in the method. Both joins and subjective-contourhints can be saved to an output �le to be used in later editing sessions.All human intervention is achieved through standard graphical drawing and selectiontechniques that can be used at several magni�cations of the image. Users can zoom inand out on the bitmap images using the buttons on the control panel. In addition, thesystem provides a choice of three views of the bitmap image: the black and white original,the grayscale proximity �eld, and the false colored regions. As the user adds (or deletes)subjective hints (in the form of false walls) to the image, the system will need to update theproximity �eld, and in turn the region de�nitions. Users also have the option to turn o�the automatic update mechanism, enabling them to make several changes at once, beforehaving the system run an update. In the case of joins, although the region de�nitions aremodi�ed, no changes are made to the proximity �eld; no additional calculations are needed.5.4 Example InteractionIn order to provide a feel for the quality of region delineation achievable using the proximity�eld on actual scanned bitmaps, we apply it to a sample scanned oor plan, a map of theDigital Equipment CorporationWestern Research Laboratory. The original bitmap is shownin Figure 5.5. Note that the boundaries of some of the rooms are discontinuous as a resultof scanning errors; the lowest of the four rooms on the left wall is an example. Other rooms,for instance the room in the lower right corner, have open doors.Based on this initial bitmap image and using the technique described in Section 5.2.1,58

Figure 5.5: The original scanned bitmap.

Figure 5.6: The false-colored proximity �eld generated for the bitmap.
59

Figure 5.7: The regions delineated according to the proximity map in Figure 5.6.the computer calculates the proximity �eld which is depicted using a grayscale coloring inFigure 5.6. The darker colors correspond to lower values in the �eld. When regions arede�ned on the basis of this proximity �eld, the results, shown in Figure 5.7, are a good �rstapproximation to the desired region boundaries. In particular, the rooms mentioned abovewith discontinuous borders are correctly delineated. Nonetheless, several problems remain.These are easily remedied through simple user intervention.The user begins by introducing a single subjective contour \hint" at the upper right ofthe main lobby using gross mouse gestures. A second one is introduced to mark o� the smallcorridor in the lower left corner. As illustrated in Figure 5.8, neither false wall is exact;they do not abut any of the nearby walls. Nevertheless, our technique is robust enough tocalculate acceptable region de�nitions.Next the join operation is used to merge several regions into a single region. The user �rstclicks the mouse above the upper-right lobby area, and then in each of the two door swingsadjacent to it. Although this has no direct e�ect on the proximity �eld, the three regionsare joined creating a single region as desired. The �nal region delineation (determined tobe acceptable by the user) is shown in Figure 5.10.5.5 Previous WorkIn this section, we survey previous work on topics related to oor plan segmentation. Webegin with an overview of several existing software systems that might be used for the taskof region segmentation. Next we examine work in the areas of vision and image processing,and document analysis. We conclude with a discussion of techniques used in drawing toolsand a comparison of the various techniques.
60

 ��

Figure 5.8: The user adds two false walls.
 ��

Figure 5.9: The user joins the door swings to the upper hall region.
61

Figure 5.10: The �nal region de�nitions.5.5.1 SystemsMARISThe MARIS (Map Recognition Input System) system (Suzuki and Yamada, 1990) is de-signed to digitize large-reduced-scale maps into a layered representation. Large-reduced-scale maps contain more detailed geographic information than small-reduced-scale maps.Most techniques to deal with the former are pixel-based, and as such require increased com-putation time. Because automatic techniques are not completely accurate, semi-automaticmethods are required to make corrections and re�ne derived representations. MARIS com-bines several techniques: vectorization, border tracing, a vector-based map recognitionmethod and an interactive input and correction method which result in an e�cient systemfor digitizing maps. The authors believe that their methodology can easily be applied toother types of drawings, such as architectural drawings. The only required change wouldbe to modify the recognition method used by the system.ROCKIThe ROCKI project (Nardelli, Fossa, and Proietti, 1993) takes a di�erent approach. Usinga three-step knowledge-based approach, the system starts with primitive interpretation,through which it identi�es basic graphical objects. These objects are then interpreted andgrouped to obtain structured objects. This leads to the �nal step in which the documentis interpreted, and semantics for the document are de�ned. The authors exploit contextualinformation in order to do their analysis. The ROCKI framework is intended to be a toolkitwhich can be used for interpreting maps and o�ce documents. One implementation, asdescribed in (Nardelli and Proietti, 1993a; Nardelli and Proietti, 1993b), has a similar goalas our work: to produce a semantic representation of \a low-level image representing aoor plan map". The input to this system, however, is not a scanned bitmap image butan AutoCAD �le containing a vectorized representation of all objects within the image. Inaddition, AutoCAD presents a structured layer representation of the data; thus the inputto this system is considerably more detailed and structured than a scanned bitmap image.62

Moreover, this system makes several other assumptions:� objects (walls, doors, windows, pillars) are represented by rectilinear segments� the rooms of a building are represented by a set of closed polylines� polylines are made of vertical and horizontal segmentsThese assumptions simplify the problem a great deal. Speci�cally, they disallow regionswith subjective contours. It would seem that a corridor, which is not usually de�ned by aset of closed polylines, would be unidenti�able in this system. Yet the authors claim thatpassageways (including corridors, entrances and landings) are in fact identi�able. Althoughthe goal of this work is the same as ours, namely to determine a meaningful representationof a oor plan, their approach to the problem di�ers drastically from our own.1MapeditMapedit is a specialized WYSIWYG editor for creating World Wide Web image maps,available for Microsoft Windows and the X Window System. Image maps turn a GIF imageinto a clickable map, by designating regions of interest within the image, and specifyinga URL link for each region. Creating image maps by hand is often di�cult and tedious.Mapedit employs several of the techniques found in a variety of drawing tools. It allows usersto load an image into an editing window. Users then draw regions on top of the backgroundimage, de�ning areas of interest. Users may draw polygons by tracing various regions,or by using standard templates (rectangles, circles, etc) for delineating regions. Once anacceptable region has been de�ned, the user inputs the corresponding URL, comments, andother Web properties. Mapedit is better suited than generic drawing packages in helping auser generate image maps in that it provides the original image as a backdrop to guide theuser in de�ning regions. Given that oor plans contain far more regions of interest than atypical image map found on the Web, Mapedit still places too much burden on the user forour domain.Deformable PolygonsOur �rst attempt at designing an interactive system for oor plan segmentation was one inwhich candidate regions were identi�ed semi-automatically through the use of deformablepolygons. Deformable polygons are similar in nature to snakes (Kass, Witkin, and Ter-zopoulos, 1988) and deformable templates (Yuille, Hallinan, and Cohen, 1992), but arespecialized to the particularities of the task at hand. The system supported the user in thetask of interactively specifying important areas of the oor, such as rooms, lobbies, closets,etc. The user speci�ed a location at which to place a deformable template; the templatethen deformed automatically to conform to the contours in the scanned image; when thetemplate achieved a static conformation, it was proposed by the system as a candidateregion. The user repeated this process for each area of interest.To determine how well the edges of the deformable polygon conform to the contoursin an image, we de�ned a potential surface over the image. This is comparable to the1To date, this is the only documented work speci�cally addressing oor plan recognition that we havefound. 63

proximity �eld metric previously discussed in Section 5.2.1. The polygon deformed soas to minimize its potential \energy," which was combined terms for both boundary andshape potential. The initial polygon was a regular octagon, but dynamic vertex insertionenabled the polygon to better �t more complexly-shaped regions. In addition, the use of adynamic height �eld caused the polygon deformation to proceed in two phases: expansionand contraction. Details on the deformable polygon method can be found in (Ryall et al.,1993).The use of deformable polygons to delineate regions in oor plans was still too userintensive. It required a user to seed each region of interest with an initial polygon. Therewere also a variety of parameters the user could tweak in order to gain better performancefrom the system. Although the deformable polygons lessened the type of user input | theuser need only click the mouse (roughly in the center) in a desired region, it seemed thatmore responsibility could be given to the computer. In fact, we discovered the system couldderive regions directly from the height �eld, without the use of deformable polygons. Theresulting method (which is described in Section 5.2) is a good illustrative example of thecollaborative framework proposed in this thesis.5.5.2 Vision and Image ProcessingComputer vision and image processing use a variety of techniques for edge detection andobject reconstruction in gray scale images. One area of research is most relevant to ourwork. Deformable templates (Yuille, Hallinan, and Cohen, 1992) have been used for au-tomatic facial feature extraction, and snakes (Kass, Witkin, and Terzopoulos, 1988) havebeen used to interactively identify regions of interest in medical imaging data. The basicapproach is to de�ne parameterized templates which interact with an image in a dynamicmanner. The computer minimizes an energy function, which contains terms for variousaspects characterizing the desired region. The minimum of the function corresponds to thebest �t of the template to the contours in the image. In the case of deformable templates,a priori knowledge about the shape of the regions guides the detection process. Snakes,on the other hand, make no assumptions about the regions being identi�ed. They rely onthe user to position the initial template, and include more terms in the energy functionto prevent the structure from deforming too much. We explored the use of a comparabletechnique, deformable polygons, which is discussed below in Section 5.5.1Another approach to image analysis is to use morphological operators, originating fromthe �eld of Mathematical Morphology. Morphological segmentation approaches are typicallyeither edge-based or region-based. As we have seen, edge-based techniques are inappropriatefor segmenting oor plans because subjective contours are not fully-bounded. Region-basedapproaches are more promising. In particular, the technique known as the watershed trans-formation, �rst introduced by Beucher and Lantuejoul (1979) and more recently improvedby Vincent and Soile (1991), is similar to our method of region segmentation. This methodborrows its terminology from topography. It makes use of a watershed line to separatetwo regions, known as catch basins, and relies on the assumption that the regions to beidenti�ed are locally homogeneous. The technique is typically applied to gray scale imagesthat are viewed as topographic reliefs, with each pixel being assigned a value correspondingto its intensity.There are two main di�erence between the watershed and our region segmentation tech-nique. The �rst di�erence is that we calculate the �eld over the image based on a proximity64

metric whereas the watershed method derives its values from the content of the image.The second di�erence is our incorporation of the segmentation technique into an interactivesystem. The classic watershed technique tends to oversegment images due to the numerouslocal minima present in the image. To correct this problem, it relies on other automatedmethods to weed out background and unimportant regions. In our experience overseg-mentation has not been a problem. This is primarily due to the nature of the oor plansegmentation task. More importantly, we rely on a person's judgement to determine whena region has been divided into too many regions and provide them with simple mechanismsto remedy the problem.5.5.3 Document AnalysisA great deal of work has been done on general document analysis (Casey and Nagy, 1991;Kasturi et al., 1990; O'Gorman and Kasturi, 1992; Wong, Casey, and Wahl, 1982), maps(Antoine, 1991; Boatto, Consorti, and Buono, 1992; Kasturi and Alemany, 1988; Nardelliand Proietti, 1993a; Suzuki and Yamada, 1990), and technical drawings (Clement, 1981;Joseph, 1989; Pao, Li, and Jayakumar, 1991). General document analysis techniques pro-vide a framework for understanding a variety of complex document types. These systemswill often rely on (as yet unimplemented) specialized modules to interpret images or linedrawings. As a result, although our work could be incorporated into a larger documentprocessing system, it does not appear that this body of research has direct application inour domain. Line drawings are typically classi�ed into three categories: maps, technicaldrawings (engineering and mechanical drawings), and circuit/logic diagrams2.Maps appear to be very similar in nature to oor plans. Most research has been doneon cadastral maps, that is, maps describing the geometry of land properties, includingbuildings, in a geographical context. The image is divided into polygonal regions; regionsare fully bounded. In the case of oor plans, however, there are regions that are only de�nedin terms of the boundaries of other regions. A corridor, for example, is not fully bounded,but tends to be de�ned as the area outside of a series of o�ces. Again, although some ofthe techniques used to interpret cadastral maps may be relevant, they will be unable tosupport subjective contours, which is one of our goals.Finally, technical drawings, such as engineering designs, are related to oor plans in thatthey use a set of standard symbols, and incorporate dimensioning text into the image. Animportant di�erence when compared to architectural drawings is that technical drawingsare most often depicting 3D objects whereas oor plans are 2D in nature. In addition,in a oor plan it is usually permissible to approximate a curved line through a series ofstraight line segments; this is not the case in mechanical drawings, for example. Dependingon the domain, standard symbols can be used to denote a variety of objects. In oorplans, for example, windows, pillars and doors will usually be marked by conventionalsymbols, although the conventions may change depending on when the oor plan was drawn,and in what country, for example. In addition to pre-de�ned symbols, shading or patterninformation can also be used. In the case of cadastral maps, for example, cross-hatchingis used to indicate buildings within the image (Boatto, Consorti, and Buono, 1992). It isimportant to recognize buildings prior to vectorization, as only the perimeter of a buildingneed be vectorized. Many systems use a feature-based approach to recognizing symbols.2We have not explored the latter category su�ciently to include it in the current discussion.65

This method is attractive because it is robust enough to handle symbols that have beenarbitrarily rotated or scaled.The removal of dimensioning text in engineering drawings is a current research topic.Standard segmentation techniques separate an image into text and graphics. In the caseof dimensioning notation, however, the symbols often overlap graphics. Dimensioning linesand associated text are known as dimension sets. Recent work (Chai and Dori, 1992; Dori,1989; Fletcher and Kasturi, 1988; Joseph, 1991; Lai and Kasturi, 1993), has examined howto extract text strings and dimension sets from mixed text/graphics images. Our concernis not, however, how to extract the dimensioning text, but rather how to incorporate itinto the representation of an image. As our system assumes a bitmap free of text, we haveignored dimensioning information to date, and have not addressed the question of how to\clean up" scanned images to make them acceptable input into our system. We believe thatsegmentation techniques and existing software tools will su�ce. Dori (1991) makes a cleardistinction between the geometry of the image, and the annotation within the image. Hehas examined the use of a at matrix grammar (an extension of context-free grammars) inorder to create a graphical knowledge base. An expert system then uses this knowledge baseto automatically understand engineering drawings. Within our system, this technique maybe useful in generating the semantic portion of the representation of the scanned image.5.5.4 Drawing Tool TechniquesSemi-automatic techniques vary in the amount of input and guidance required by the user.In the case of freehand drawing and tracing, the user is doing most of the work. Underarea �lling and template �lling, the user chooses the point from which to start the process,which is then performed automatically by the system. Several software tools exist todaythat can facilitate the delineation of areal regions on a oor plan. They all utilize one ormore of the following four techniques:1. Freehand drawing: The user redraws the oor plan from scratch with a mouse ordigitizing tablet, delineating regions as part of the drawing process.2. Tracing: The user traces out regions on the oor plan by hand, using a mouse ordigitizing tablet.3. Area �lling: The user selects points on the oor plan image, and the computer �llsin the fully enclosed areas surrounding the points. (The method is often called \ood�lling".)4. Template �tting: The user positions and sizes prede�ned templates (usually rectan-gles) to cover the desired regions approximately.Template �tting, free hand drawing, and tracing are inherently manual techniques,require varying degrees of user input. Unlike the three manual methods, the area-�llingand deformable templates approaches have the attractive property of being more automatic.Both, however, require user input to select the initial positions to start the algorithms from.In addition, as we have seen, the area-�lling technique is brittle, as it relies on the unrealisticassumption that subjective boundaries in an image (the boundaries of image areas thatare subjectively perceived as forming distinct regions) coincide with actual closed pixelcontours in the image. Area-�lling performs poorly on our sample oor plan, as shown inFigure 5.11(a). 66

(a)

(b)Figure 5.11: Regions delineated by two methods. (a) Regions generated by area-�lling.(b) Regions generated by the proximity-�eld method, with minor post-editing. Note theintroduction of the subjective-contour \hint" at the upper right of the main lobby and thejoining of regions in the room above it.It might be thought that the ability to add lines or other features to the image asa preprocessing step would vitiate the problems with area �lling. It does not. In thecase of area �lling, quite �ne-grained manual preprocessing of the image will tend to berequired, because the preprocessing would need to be used not only to add missing large-scale subjective contours but also any missing bit of subjective contour down to the pixellevel. The improved automatic performance of the proximity �eld technique means thatonly the grossest of missing subjective contours need be �lled in. Because the proximity�eld technique is relatively insensitive to perfect abutting of lines and the like, the linedrawing can be done quite rapidly, and on an as-needed basis. As the user of a systemsees that a certain region is not being appropriately subdivided, the user merely needs toprovide a hint to the system by quickly drawing a line segment where there is a missingcontour. 67

Subjective regions encompassing multiple proximity �eld regions can similarly be han-dled without �ne-grained editing of the image. A user can specify to the system that severalregions should be combined to form a single subjective region merely by indicating the cor-responding centers. Because the local search procedure described in Section 5.2.2 can �ndregion centers starting from a large area around the minimum, the process of selecting theregions can be done manually with only gross human actions, such as mouse-clicking in thegeneral vicinity.Thus, the proximity �eld technique not only works better as an automated methodfor region delineation, but it �ts well in a semi-automated system in that (i) the betterperformance means that less repair of results need be carried out manually, and (ii) thetypes of human intervention needed to correct the behavior of the technique require onlylarge-scale gross actions rather than �ne-grained editing. Figure 5.11 shows the results ofdelineating regions under two methods.5.6 SummaryRegion segmentation, like many design problems, cannot be solved by purely syntacticmethods. Consequently, any method for identifying regions in a bitmap must allow forhuman intervention at some point in order to correct errors detectable only with semanticinformation. Techniques must also permit people to specify a region is partially bounded| the boundaries of the region might have been corrupted during the scanning process(a frequent occurrence), or the region might be bounded in part by subjective contoursnot depicted in the image. Existing approaches and systems are not optimal for the taskof region segmentation as they rely on manual techniques (i.e., tracing) and often makeunrealistic assumptions (i.e., regions are fully bounded) about the regions being de�ned orthe input to the system.Because it provides a better syntactic model of subjective regions, the novel proximity�eld method introduced in this chapter is better-suited for region delineation. The col-laborative system into which it is integrated allows for simple interactive postprocessing.Subjective contour hints, in the form of false walls, enable users to subdivide regions. Ajoining operation permits users to combine multiple regions into a single area. Thus theresulting system is superior to both manual and automatic methods previously proposed.The system described in this chapter exploits the collaborative framework proposed inthis thesis. The computer works locally, calculating region de�nitions based on a local searchtechnique. The process is guided by the user at a global level; simple human interventionsrequiring only gross information can be used to correct automatically generated regionde�nitions. In addition, the user has the control to determine when the region de�nitionsare correct (or good enough). Such a division of labor enables the system to work on avariety of oor plan \styles". See Appendix C for additional example oor plans.
68

Chapter 6ConclusionWe have presented a new paradigm for computer-user interface design which helps determinethe division of labor between the computer and its user. This paradigm is based on thenotion of collaboration between the user and the computer; it exploits the strengths of eachparticipant by giving the user the global portion of the problem and leaving the computerwith the local portion. In contrast to the traditional master-slave paradigm in which theinterface acts as a means for the user to control the computer, the collaborative paradigmleads to interfaces that act as media through which people and computers can work togetherto solve a particular problem. It encourages the development of semi-automatic systemsthrough which users can explore a large number of candidate solutions, while evaluatingand comparing various alternatives.We have applied the collaborative approach to problems from the domain of graphicdesign, a domain in which aesthetic criteria and a user's personal preference play importantroles in arriving at acceptable solutions. We have designed and implemented three novelsystems for graphics design tasks. Glide is an interactive constraint-based editor for net-work diagram layout that supports users in interactively specifying the visual organizationof a diagram. Design Galleries is a family of applications for parameter speci�cation for avariety of computer graphic algorithms, including volume rendering, animation, and particlesystems. Finally, our oor plan segmentation system enables users to easily and accuratelyidentify regions of interest in a scanned oor plan image.Currently, glide can be used by the user to explore design alternatives. In some cases,however, the user may not know how to begin laying out a particular graph. Future work onthe glide system could include using several existing automatic layout routines to generateexample layouts for a user to browse, providing them with a starting point for the layoutthey wish to generate. Output from another system could be used as input to glide.Alternatively, the automatic layouts might be used only to help users generate ideas. Aninteresting question would be how to arrange these candidates to best aid users in theirsearch.Another area of further investigation would be to incorporate some notion of scalingand abstraction into the glide system. At the present, the system provides users with asingle view of the entire graph; if the graph is larger than the viewing area of the canvas,it may be accessed via scroll bars. For larger graphs, this may prevent users from gettingan overview of the entire graph. By enabling users to view the diagram at varying levelsof magni�cation, glide could support users in understanding the layout as a whole. Theuse of abstraction techniques, such as grouping a set of nodes together and replacing them69

with a single larger node (thus hiding the details of a particular component) might also bebene�cial.Design Gallery interfaces are a useful tool for many applications in computer graphicsthat require tuning parameters to achieve desired e�ects. The system interface enablesthe user to e�ectively browse through the space of output graphics. The arrangementcomponent of the interface provides a two-dimensional space with minimal navigation andinteraction techniques. The ability to annotate the design space would be a useful extensionto the Design Gallery interface. It would enable users to explore spaces containing morerepresentative points without getting lost by establishing landmarks for themselves (orothers); it would also aid users in mapping the design space for further exploration.We have shown the utility of the collaborative approach for computer-user interfacedesign within the domain of graphic design. We believe that this this general approach tocomputer-user interface design will be applicable to problems outside the domain of graphicdesign. Once we replace the idea of computer as servitor with computer as collaborator,we will be able to design interfaces that better leverage human abilities through simpleyet sophisticated interfaces. In a recent article, Wegner (1997) describes how by allowinginteractivity, an algorithm could in e�ect be made more powerful than a Turing Machine.\Interaction is a more powerful paradigm than rule-based algorithms for com-puter problem solving, overturning the prevailing view that all computing isexpressible as algorithms."(Wegner, 1997)The collaborative framework presented in this thesis illustrates the importance of interactionin computing systems and of striking a balance between user intervention and computercontrol.

70

Appendix AGlide: Additional ExampleDiagramsIn Chapter 3 we presented an example interaction with the glide system; the user's goalwas to create a particular layout already envisioned, namely the drawing in Figure 3.3(Norton, Szymanski, and Decyk, 1995). In Section A.1 we examine the use of glide toexplore the development of a design alternative for the same data set. Glide can also beused to help users organized and understand previously unseen data sets, as illustrated bythe example given in Section A.2.A.1 Exploring Design AlternativesAs an example of the exibility of the system, Figures A.1{A.8 present successive snap-shots of quiescent states of the interface as a user develops an alternative layout startingfrom the same initial layout as the example used for the walk through in Chapter 3.In order to generate a new layout, the user must identify for novel visual organizationalpatterns. In the layout in Figure A.1, there are two tree-like sets of nodes with roots at theParticle and ParticleDistribution nodes. The user adds a one T-Shape VOF as shownin Figure A.2, and a second instance as shown in Figure A.3 Note that the Electron node
Electron

Plasma
Grid

EnergyDiagnostic

ClockTimer

GaussianRandomNum

Particle

ParticleDistribution
VirtualParallelMachine

Ion

Figure A.1: Starting point for exploring a design alternative | same initial con�gurationas Figure 3.4. 71

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachine

Ion

Electron

Plasma

Grid

EnergyDiagnostic

ClockTimer

Figure A.2: User adds a T-Shape VOF to four nodes.

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma

Grid

EnergyDiagnostic

ClockTimer

Figure A.3: User adds a second T-Shape VOF to the left three nodes.
72

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma

Grid

EnergyDiagnostic

ClockTimer

Figure A.4: User manipulates the root node of each T-Shape VOF.
GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma

Grid

EnergyDiagnostic

ClockTimer

Figure A.5: The intermediary layout with the T-Shape VOFs in the right places.participates in both VOFs. Glide satis�es these constraints as shown in Figure A.4.Now the user would like the T-Shape VOFs to be oriented di�erently. By manuallymanipulating each of the root nodes, the user helps glide �nd a more acceptable layout.This intervention is shown in Figure A.4, and results in both T-Shape VOFs being inverted;the system maintains the T-Shape constraints generating the layout in Figure A.5.Next the user swaps two nodes by manually moving the GaussianRandomNum node tothe right, placing it to the left of the node VirtualParallelMachine. Glide continues tosatisfy the existing VOFs, and the nodes settle into the layout shown in Figure A.6.Now that the diagram has the desired general layout, it only requires a few additionalVOFs to clean up its appearance. In Figure A.7 the user adds Vertical Alignment andVertical Symmetry VOFs. Two Horizontal Alignment VOFs, as shown in Figure A.8, bringthe rows of the diagram into alignment. No alignment is needed on the �rst row due to thetwo previously established T-Shape VOFs.All that remains is to space the rows vertically, which is accomplished by adding a Ver-tical Even Spacing VOF as indicated in Figure A.9. The �nal layout is given in Figure A.10.
73

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma

Grid

EnergyDiagnostic

ClockTimer

Figure A.6: User swaps the VirtualParallelMachine and GaussianRandomNum nodes.
GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma Grid

EnergyDiagnostic

ClockTimer

Figure A.7: User adds two more VOFS: Vertical Alignment and Vertical Symmetry .
GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma Grid

EnergyDiagnosticClockTimerFigure A.8: User adds two Horizontal Alignment VOF.74

Electron

Plasma Grid

EnergyDiagnosticClockTimer

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon

Figure A.9: User adds a Vertical Even Spacing VOF.

GaussianRandomNum

Particle

ParticleDistribution

VirtualParallelMachineIon Electron

Plasma Grid

EnergyDiagnosticClockTimerFigure A.10: The �nal layout.
75

A.2 Understanding and Organizing an Unknown Data SetIn this Section we again illustrate the use of the glide system to explore design alternatives.In this case, however, the user's goal is to generate a layout for a set of data without a prioriknowledge of what the visual organization of the diagram might be.The data set was randomly generated and contains 29 uniformly-sized nodes, each witha unique label. The nodes were colored using 6 hues. Within a given set of same-colorednodes, each node has the same letter,1 but a unique number in its label. The diagramcontains 27 directed edges. The initial layout for the nodes was also randomly generated.Figure A.11 shows the initial con�guration presented to the user.The �rst two layouts, Figures A.12{A.13, were generated by a novice user. In the �rstlayout (shown in Figure A.12), the user has grouped nodes by color. This diagram clearlyillustrates the 6 sets of nodes, and the interconnections between them. Figure A.13 showsa second layout by the same (novice) user. This time the user's strategy was to minimizeedge crossings. The red lines in both diagrams indicate the VOFs used.The layouts in Figures A.14{A.15 were generated by an expert user. As a �rst strategy,the user attempted to generate a sink-to-source diagram in which all the edges within thediagram \ow" in the same direction, in this case up the page. As shown in Figure A.14,the diagram contains four disconnected components (which are not apparent in either of thenovice-generated layouts). The user also noted a hub shape organization near the center ofthe diagram. Starting from this sink-to-source layout, the (expert) user generated the layoutshown in Figure A.15. These two layouts provide a good illustration of the importance ofiterative re�nement component of the design process. The act of exploring one designalternative led the user to identify and generate a second layout.The four layouts shown here are very di�erent from each other, each conveying di�erentstructures of the underlying data set. It would be di�cult to objectively evaluate and rankthese diagrams. Such an ordering would depend upon what information the designer wastrying to convey through the diagram. As the data set was randomly generated, there isno right answer to this question.

1One set of nodes contain no letter. 76

A1

E1

C2

28

B3
D5

E3

36

D2

40

E2

A2

C4

48

D4

D3B1

C3

58

60

D1

64
E4

A4

70C1

B2

A3

Figure A.11: A random data set with random initial layout.
77

A1

E1

C2

28

B3

D5

E3

36

D2

40

E2

A2

C4

48

D4
D3

B1

C3

58

60

D1

64

E4

A4

70

C1

B2

A3

Figure A.12: A �rst attempt by a novice user.
78

A1

E1

C2

28 B3

D5

E336

D2

40

E2

A2C4

48

D4

D3

B1

C3

58

60

D164E4A4

70

C1

B2

A3

Figure A.13: A second layout by a novice user.
79

A1

E1C2

28

B3

D5

E3

36

D2

40

E2

A2

C4

48

D4

D3

B1

C3

58

60

D1

64

E4

A4

70

C1

B2

A3

Figure A.14: A sink-to-source layout by an expert user.
80

A1
E1

C2

28

B3

D5

E3

36

D2

40

E2

A2

C4
48

D4

D3
B1

C3

58

60

D1

64

E4

A4

70

C1

B2

A3

Figure A.15: A symmetry-based layout by an expert user.
81

Appendix BDesign Galleries: ExampleApplication AreasAll examples in this appendix make use of the same dispersion and arrangement techniquesthat were used for the medical imaging example in Section 4.3 and utilize Euclidean distanceas the distance metric on their output vectors. Lines have been added to each interface toshow the correspondence between thumbnails and full-sized images in the gallery.B.1 Scienti�c VisualizationThis volume rendering Design Gallery uses the simulated electron density of a protein as itsdata set. Figure B.1 illustrates its interface. Both the color and opacity transfer functionswere varied in the input vector, for a total of 23 input parameters. As with the example inSection 4.3, mapping is done using a volume rendering technique, and the output vector iscomposed of eight manually selected pixels.Figure B.2 shows the result of clicking on one of the images in the image gallery: the cor-responding opacity and color transfer functions are depicted in a pop-up window, allowingthe user to see how image and data relate.B.2 Two Dimensional AnimationThe two-dimensional double pendulum is a simple dynamic system with rich behavior thatmakes it an ideal test case for parameter-setting methodologies. A double pendulum consistsof an attachment point h, two bobs of massesm1 andm2, and two massless rods of lengths r1and r2, connected as shown in Figure B.3. Our pendulum also includes motors at the jointsat h and m1 that can apply sinusoidal time-varying torques.1 The input vector comprisesthe rod lengths, the bob masses, the initial angular positions and velocities of the rods,and the amplitude, frequency, and phase of both sinusoidal torques, for a total of 14 inputparameters.Choosing a suitable output vector proved to be the most di�cult part of the DesignGallery process for the double pendulum, as well as for the other motion-control applica-1Even without the application of external torques at its joints, the two-dimensional double pendulum isprovably chaotic (Dullin, 1994). 82

Figure B.1: A Design Gallery with di�erent opacity and color transfer functions.

Figure B.2: Pop-up display depicting opacity and color transfer functions.83

r1

r2

h

m1

m2Figure B.3: A two-dimensional double pendulum.tions; several rounds of experimentation were needed (see the paper by Marks et al. (1997)for more details). For the double pendulum, the output vector has 12 parameters: thedi�erences in rod lengths and bob masses, the average Cartesian coordinates of each bob,and logarithms of the average angular velocity, the number of velocity reversals, and thenumber of revolutions for each rod. The mapping from input vector to output vector isaccomplished by dynamically simulating 20 seconds of the pendulum's motion.The Design Gallery interface shown in Figure B.4 is for the two-dimensional doublependulum. The displayed thumbnails are static images of the �nal state of a pendulum,along with a trail of the lower bob over the �nal few seconds. We found that these imagesgive enough clues about the full animation to enable e�ective browsing. Dragging a thumb-nail to a gallery slot places a full-sized static image corresponding to the thumbnail intothe gallery. The gallery images can then be animated, permitting users to view multipleanimations simultaneously.B.3 Three Dimensional AnimationThe previous Design Gallery is useful in �nding and understanding the full range of motionspossible for the pendulum under a given control regime. However, complete generality is notalways a useful goal: the animator may have some preconceived idea of a motion that needssubtle re�nement to add nuance and detail. The three-dimensional hopper dog, shown inFigure B.5, is an articulated linkage with rigid links connected by rotary joints. It has ahead, ears, and tail, and moves by hopping on its single leg. It has 24 degrees of freedom(DOF). The hopper dog is actuated by a control system that tries to maintain a desiredforward velocity and hopping height, as well as desired positions for joints in some of theappendages.Seven quantities of the system are designated as quantities of interest, to be exploredby the Design Gallery interface: the forward velocity, the hopping height, and the positionsof 2-DOF ear joints, a 2-DOF tail joint, and a 1-DOF neck joint. For each quantity ofinterest, a time-varying sinusoid is chosen as the desired trajectory, with the minimum value,maximum value, and frequency speci�ed by the input vector, giving a total of 21 valuesin the input vector. The hopper dog has other degrees of freedom that are not explicitlycontrolled by the input vector. The output vector measures the seven quantities of interest,using data captured over a 30 second physical simulation. Measures of the average andvariance of each quantity of interest are recorded in the output vector, giving a total of 1484

Figure B.4: A Design Gallery for an actuated two-dimensional double pendulum.values. The equations of motion for the system are generated using a commercially availablepackage (Rosenthal and Sherman, 1986); dynamic simulation is used to produce both theend animations and relevant mapping from input vector to output vector.The Design Gallery interface for Hopper Dog is shown in Figure B.4. The displayedthumbnails are motion-lapse images of his ears and tail. As with the double-pendulumDesign Gallery interface, images in the gallery can be animated.B.4 Particle SystemsParticle systems are useful for modeling a variety of phenomena such as �re, clouds, water,and explosions (Reeves, 1983). A useful particle-system editor might have 40 or moreparameters that the animator can set, so achieving desired e�ects can be tedious. As inthe previous subsection, we use a Design Gallery interface to re�ne an animator's roughapproximation to a desired animation.The scenario for our experiment is a new beam weapon for Klingon starships. A �rstdraft was produced by hand using a regular particle-system editor. The input vector con-tains the subset of particle-system controls that the animator wishes to be tweaked. Thecontrols govern: the mean and variance of particle velocities, particle acceleration, rate ofparticle production, particle lifetime, resilience and friction coe�cients of collision surfaces,and perturbation vectors for surface normals. Among the parameters that are held �xed inthis example are the origin, average direction, and color of the beam.The output vector comprises measures of the number of particles, their average distance85

Figure B.5: HopperDog: A three-dimensional articulated dog.

Figure B.6: Design Gallery for HopperDog.86

Figure B.7: A Design Gallery for a particle system.from the origin and the individual variation in this distance, their spread from the averagebeam, the average velocity of the entire system, and the individual variation from thisaverage (we take logs of all of these quantities except for the beam spread). These sixmeasures are included for each of the two distinguished times (once midway through thesimulation, and once at the end), resulting in 12 output parameters.Each thumbnail is a static image built by compositing the animation frames. Althoughthe resulting image does not look like any single frame of the animation, we believe userscan easily establish a mental correspondence between the static images and the nature oftheir associated animations. As with the other animation-based DG interfaces , imagesin the gallery can be animated. Figure B.7 shows the Design Gallery of variations on ananimator's sketch of the Klingon beam weapon.

87

Appendix CFloor Plan Segmentation:Additional Example DiagramsIn Chapter 5 we described an example interaction in which the user and computer collab-orated to generate a region segmentation (and corresponding graphic) for a sample oorplan. Figures C.1 and C.2 provide two additional sample oor plans. Notice the very dif-ferent styles of these oor plan images. The Berkeley oor plan, Figure C.2, seems to havebeen derived directly from the blue prints. Many of the \walls" (i.e. boundaries) betweenadjacent rooms are missing pixels. The corruption is most likely due to scanning errors.In contrast, the MIT oor plan, Figure C.1, was most probably produced using a simpledrawing editor. It contains partially bounded regions as well; doors are indicated by gapsin the walls, rather than by door swings. Our system works equally well with both styles ofoor plans. The false colorings in the images depict the system-generated regions, withoutany additional user input.

88

Figure C.1: MIT oor plan.

Figure C.2: Berkeley oor plan.
89

ReferencesAhlberg, Christopher and Ben Shneiderman. 1994. Visual information seeking: Tightcoupling of dynamic query �lters with star�eld displays. In Proceedings of HumanFactors in Computer Systems (CHI), pages 313{317, April.Anonymous. 1996. Toy story. Available athttp://dreistein.com/kino/infos/Toystory/notes.shtml .Antoine, Dominique. 1991. CIPLAN: A model-based system with original features forunderstanding French plats. In Proceedings of the First International Conference onDocument Analysis and Recognition, pages 647{655, Saint-Malo, France, October.Baecker, Ronald and Ian Small. 1990. Animation at the interface. In Brenda Laurel,editor, The Art of Human-Computer Interface Design. Addison-Wesley Publishing Co.,Reading, MA.Baecker, Ronald M., Jonathan Grudin, William A. S. Buxton, and Saul Greenberg. 1995.Vision graphic design and visual display. In Readings in Human-Computer Interaction:Toward the Year 2000. Morgan Kaufmann, second edition edition. Introduction to thechapter.Baker, Ellie. 1997. Thesis in progress.Baker, Ellie and Margo Seltzer. 1994. Evolving line drawings. In Proceedings of GraphicsInterface 94.Battista, Giuseppe Di, Peter Eades, Roberto Tamassia, and Ioannis Tollis. 1994. Al-gorithms for drawing graphs: an annotated bibliography. Computational Geometry:Theory and Applications, 4:235{282.Baudel, Thomas. 1994. A mark-based interaction paradigm for free-hand drawing. InProceedings of User Interface Software and Technology (UIST), pages 185{192, Marinadel Rey, CA, Nov.Beucher, S. and C. Lantuejoul. 1979. Use of watersheds in contour detection. In Proc. ofthe International Workshop on Image Processing, Real-Time Edge and Motion Detec-tion/Estimation, pages 17{21, Rennes, France, September.Boatto, Luca, Bincenzo Consorti, and Monica Del Buono. 1992. An interpretation systemfor land register maps. Computer, 25(7):25 { 33, July.Bohringer, Karl-Friedrich and Frances Newbery Paulisch. 1990. Using constraints to achievestability in automatic graph layout algorithms. In Proceedings of Human Factors inComputer Systems (CHI), pages 43{51.Borning, Alan. 1979. ThingLab { A Constraint-Oriented Simulation Library. Ph.D. thesis,Stanford University, Stanford, CA.Bowman, W. 1968. Graphic Communication. John Wiley & Sons.Brandenburg, Franz J., editor. 1995. Proceedings of the Symposium on Graph Drawing,volume 1027 of Lecture Notes on Computer Science. Springer.90

Bridgeman, Stina, Ashim Garg, and Roberto Tamassia. 1996. A graph drawing and transla-tion service on the WWW. In Stephen North, editor, Proceedings of Graph Drawing '96,volume 1190 of Lecture Notes on Computer Science, Berkeley, CA, October. SpringerVerlag.Caldwell, C. and V. S. Johnston. 1991. Tracking a criminal suspect through face space witha genetic algorithm. In Proceedings of the Fourth International Conference on GeneticAlgorithms, pages 416{421.Casey, Richard G. and George Nagy. 1991. Document analysis: A broader view. In Pro-ceedings of the First International Conference on Document Analysis and Recognition,pages 839{849, Saint-Malo, France, October.Catmull, E. 1978. The problems of computer assisted animation. In Proceedings of SIG-GRAPH 78, pages 348{353. In Computer Graphics Annual Conf. Series, 1978.Chai, Ian and Dov Dori. 1992. Extraction of text boxes from engineering drawings. InMachine Vision Applications in Character Recognition and Industrial Inspection, volume1661, pages 38{49, San Jose, California, February.Chi, H. U. 1985. Formal speci�cation of user interfaces: a comparison and evaluation offour axiomatic approaches. IEEE Transactions on Software Engineering, 11(8):671{685.Christensen, Jon. 1995. Managing Design Complexity: Using Stochastic Optimization inthe Production of Computer Graphics. Ph.D. thesis, Harvard University, June.Christensen, Jon, Joe Marks, and Stuart Shieber. 1995. An empirical study of algorithmsfor point-feature label placement. ACM Transactions on Graphics, 14(3):203{232, July.Clement, T. P. 1981. The extraction of line-structured data from engineering drawings.Pattern Recognition, 14(1):43{52.Dawkins, Richard. 1987. The Blind Watchmaker: Why the Evidence of Evolution Revealsa Universe Without Design. W. W. Norton and Company.Dengler, Ed, Mark Friedell, and Joe Marks. 1993. Constraint-driven diagram layout. InProceedings of the 1993 IEEE Symposium on Visual Languages, pages 330{335, Bergen,Norway, Aug.Dix, A., J. Finlay, G. Abowd, and R. Beale. 1993. Human-Computer Interaction. PrenticeHall.Dondis, D. 1973. A Primer of Visual Literacy. MIT Press, Cambridge, MA.Donelson, William. 1978. Spatial management of information. In Proceedings of SIG-GRAPH 78. In Computer Graphics Annual Conf. Series, 1993.Dori, Dov. 1989. A syntactic/geometric approach to recognition of dimension in engineeringmachine drawings. Computer Vision, Graphics, and Image Processing, 47:271{291.Dori, Dov. 1991. Symbolic representation of dimensioning in engineering drawings. In Pro-ceedings of the First International Conference on Document Analysis and Recognition,pages 1000{1010, Saint-Malo, France, October.91

Dullin, Holger R. 1994. Melnikov's method applied to the double pendulum. Zeitschriftf�ur Physik B, 93:521{528.Eades, Peter. 1984. A heuristic for graph drawing. Congressus Numerantium, 42:149{160.Edmondson, Shawn, Jon Christensen, Joe Marks, and Stuart Shieber. 1997. A generalcartographic labeling algorithm. Cartographica. To appear.Fletcher, L. A. and R. Kasturi. 1988. A robust algorithm for text string separation frommixed text/graphics images. IEEE Transactions on Pattern Analysis and MachineIntelligence, 10(6):900{918.Frohlich, Michael and Mattiaas Werner. 1994. Demonstration of the interactive graphvisualization system da Vinci. In Proceedings of the Workshop on Graph Drawing 94,pages 266{269.Furnas, G. W. 1981. The �sheye view: a new look at structured �les. Technical report,Bell Laboratories.Furnas, George. 1986. Generalized �sheye views. In Proceedings of CHI 86, pages 16{23.Furnas, George and Benjamin Bederson. 1995. Space-scale diagrams: Understanding mul-tiscale interfaces. In Proceedings of CHI 95, pages 234{241.Ganser, Emden R., Eleftherios Koutso�os, Stephen C. North, and Kiem-Phong Vo. 1993.A technique for drawing directed graphs. IEEE Transactions on Software Engineering,19(3):214{230, March.Gleicher, Michael and Andrew Witkin. 1994. Drawing with constraints. Visual Computer,11:39{51.Grudin, Jonathan. 1993. Interface: an evolving concept. Communications of the Asso-ciation for Computing Machinery, 36(4):110{119, April. Special Issue on GraphicalUser-Interfaces.He, Taosong, Lichan Hong, Arie Kaufman, and Hanspeter P�ster. 1996. Generation oftransfer functions with stochastic search techniques. In Proceedings of Visualization 96,pages 227{234, San Francisco, California, Oct.Heydon, Allan and Greg Nelson. 1994. The Juno2 constraint-based drawing editor. Tech-nical Report 131a, Digital SRC, Palo Alto, CA.Himsolt, Michael. 1994. Graphed: A graphical platform for the implementation of graphalgorithms. In Proceedings of the Workshop on Graph Drawing 94, pages 182{193.Hower, Walter and Winfried H. Graf. 1995. Research in constraint-based layout, visualiza-tion, CAD and related topics: A bibliographic survey. Available at: http://.Johnson, D. S. 1982. The NP-completeness column: an ongoing guide. Journal of Algo-rithms, 3(1):89{99.Johnson, D. S. 1984. The NP-completeness column: an ongoing guide. Journal of Algo-rithms, 5(2):147{160. 92

Joseph, S. H. 1989. Processing of engineering line drawings for automation input to CAD.Pattern Recognition, 22(1):1{11.Joseph, S. H. 1991. On the extraction of text connected to linework in document im-ages. In Proceedings of the First International Conference on Document Analysis andRecognition, pages 993{999, Saint-Malo, France, October.Kang, Tom, Josh Seims, Joe Marks, and Stuart Shieber. 1995. Exploring lighting spaces.Technical report, MERL: A Mitsubishi Electric Research Lab.Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contourmodels. International Journal of Computer Vision, 1(4):321{331.Kasturi, Rangachar and J. Alemany. 1988. Information extraction from images of paper-based maps. IEEE Transactions on Software Engineering, 14(5):671{675.Kasturi, Rangachar, S. T. Bow, W. Elmasri, J. R. Gattiker, and U. B. Mokate. 1990. Asystem for interpretation of line drawings. IEEE Transactions on Pattern Analysis andMachine Intelligence, 12:978{992.Kawai, John K., James S. Painter, and Michael F. Cohen. 1993. Radioptimization { goal-based rendering. In Proceedings of SIGGRAPH 93, pages 147{154, Anaheim, California,Aug. In Computer Graphics Annual Conf. Series, 1993.Kochhar, Sandeep. 1990. A prototype system for design automation via the browsingparadigm. In Proceedings of Graphics Interface 90, pages 156{166, Halifax, Nova Scotia,May.Kochhar, Sandeep. 1991. Cooperative computer-aided design: a paradigm for automatingthe design of graphical objects. Ph.D. thesis, Harvard University, Cambridge, MA.Kosak, Corey, Joe Marks, and Stuart M. Shieber. 1994. Automating the layout of net-work diagrams with speci�ed visual organization. IEEE Trans. on Systems, Man andCybernetics, 24(3):440{454, March.Kosslyn, Stephen M. 1989. Understanding charts and graphs. Applied Cognitive Psychol-ogy, 3:185{226.Kruskal. 1977. Multidimensional scaling and other methods for discovering structure. InK. Enslein, A. Ralston, and H. S. Wilf, editors, Statistical Methods for Digital Comput-ers, volume 3. Wiley, New York, pages 296{339.Lai, Chan Pyng and Rangachar Kasturi. 1993. Detection of dimension sets in engineeringdrawings. In Proceedings of the Second International Conference on Document Analysisand Recognition, pages 606{613, Tsukuba Science City, Japan, October.Liu, Zicheng, Steven J. Gortler, and Michael F. Cohen. 1994. Hierarchical spacetimecontrol. In Proceedings of SIGGRAPH 94, pages 35{42, Orlando, Florida, July. InComputer Graphics Annual Conf. Series, 1994.Mackinlay, Jock D. 1986. Automating the design of graphical presentations of relationalinformation. ACM Transactions on Graphics, 5(2):110{141, April.93

Marcus, Aaron. 1983. Graphical design for computer graphics. IEEE Computer Graphicsand Applications, 3(4):63{70.Marcus, Aaron. 1992. A comparison of graphical user interfaces. In A. Marcus, editor, AGraphic Design for Electronic Documents and Usr Interfaces. ACM Press.Marcus, Aaron. 1995. Principles of e�ective visual communication for graphical user in-terface design. In Readings in Human-Computer Interaction: Toward the Year 2000.Morgan Kaufmann, second edition, pages 425{441.Marks, J., B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mir-tich, H. P�ster, W. Ruml, K. Ryall, J. Seims, and S. Shieber. 1997. Design galleries:A general approach to setting parameters for computer graphics and animation. InProceedings of SIGGRAPH 97, Los Angeles, California, Aug. To appear.Marks, J. and M. Reiter. 1990. Avoiding unwanted conversational implicatures in textand graphics. In Proceedings of the eigth national conference on arti�cial intelligence(AAAI) 90, Boston, MA.Marks, Joe. 1991. Automating the Design of Network Diagrams. Ph.D. thesis, HarvardUniversity, Cambridge, MA, May.Marks, Joe and Stuart Shieber. 1991. The computational complexity of cartographic labelplacement. Technical Report TR-05-91, Harvard University, Cambridge, MA.McWilliams, James. 1995. Computer animation.http://www.htimes.com/htimes/today/access/oldfiles/animate.html.Moran, T. 1981. The command language grammar: a representation for the user interfaceof interactive systems. International Journal of Man-Machine Studies, 15(1):3{50.Myers, Brad A., Jade Goldstein, and Matthew A Goldberg. 1994. Creating charts bydemonstration. In Proceedings of Human Factors in Computer Systems (CHI), pages106{111, Boston, MA, April.Nardelli, E. and G. Proietti. 1993a. Advanced techniques for cadastral maps interpretation.Technical Report R.364, Instituto di Analisi dei Sistemi ed Informatica, Rome, Italy,September.Nardelli, E. and G. Proietti. 1993b. An algorithmic approach to the interpretation ofoorplan maps. Technical Report R.365, Instituto di Analisi dei Sistemi ed Informatica,Rome, Italy, September.Nardelli, Enrico, Michelangelo Fossa, and Guido Proietti. 1993. Raster to object conversionaided by knowledge based image processing. In Proceedings of the Second InternationalConference on Document Analysis and Recognition, pages 951{954, Tsukuba ScienceCity, Japan, October.Nelson, Greg. 1985. Juno, a constraint based graphics system. Computer Graphics (Pro-ceedings of SIGGRAPH '85), 19(3):235{243, July.Newbery, F. J. 1988. Edge: An extendible directed graph editor. Technical Report 8/88,University of Karlsruhe, Institute for Informatics, Germany, June.94

North, Stephen, editor. 1996. Proceedings of the Symposium on Graph Drawing, volume1190 of Lecture Notes on Computer Science. Springer.Norton, Charles D., Boleslaw K. Szymanski, and Viktor K. Decyk. 1995. Object-orientedparallel computation for plasma simulation. CACM, 38(10):88{100, October. Figure 3.O'Gorman, Lawrence and Rangachar Kasturi. 1992. Special issues on document imageanalysis systems and techniques. Computer, 25(7), July.Ousterhout, John K. 1994. Tcl and the Tk Toolkit. Addison Wesley.Pao, Derek, H. F. Li, and R. Jayakumar. 1991. Graphic features extraction for auto-matic conversion of engineering line drawings. In Proceedings of the First InternationalConference on Document Analysis and Recognition, pages 533{541, Saint-Malo, France,October.Perlin, Ken and David Fox. 1993. Pad: An alternative approach to the computer interface.In Proceedings of SIGGRAPH 93, pages 57{64, Anaheim, California, Aug. In ComputerGraphics Annual Conf. Series, 1993.Pixar. 1997. Pixar's recruiting page. http://www.pixar.com/jobsite/recruiting.html.Plass, Michael Frederick. 1981. Optimal Pagination Techniques for Automatic TypesettingSystems. Ph.D. thesis, Stanford University.Poulin, Pierre and Alain Fournier. 1992. Lights from highlights and shadows. In Proceedingsof the 1992 Symposium on Interactive Graphics, pages 31{38, Boston, Massachusetts,Mar. In Computer Graphics 25(2), 1992.Preece, Jenny. 1994. Human-Computer Interaction. Addison-Wesley.Press, William H., 1988. Numerical Recipes in C, chapter Minimization or Maximizationof Functions. Cambridge University Press.Reeves, W. T. 1983. Particle systems { a technique for modeling a class of fuzzy objects.ACM Trans. on Graphics, 2:91{108, Apr.Rosenthal, D. E. and M. A. Sherman. 1986. High performance multibody simulations viasymbolic equation manipulation and Kane's method. Journal of Astronautical Sciences,34(3):223{239.Roth, Steven F., John Kolojejchick, Joe Mattis, and Jade Goldstein. 1994. Interactivegraphic design using automatic presentation knowledge. In Proceedings of Human Fac-tors in Computer Systems (CHI), pages 112{117, Boston, MA, April.Roth, Steven F. and Joe Mattis. 1990. Data characterization for intelligent graphics presen-tation. In Proceedings of Human Factors in Computer Systems (CHI), pages 193{200,Seattle, WA, April.Rubner, Y., C. Tomasi, and L. J. Guibas. 1997. Adaptive image embeddings for databasenavigation. Submitted to the CVPR Workshop on Content-Based Access of Image andVideo Libraries, June. 95

Rubner, Yossi, Leonidas Guibas, and Carlo Tomasi. 1997. The earth mover's distance,multi-dimensional scaling, and color-based image retrieval. In Proceedings of the ARPAImage Understanding Workshop, May.Ryall, Kathy, Joe Marks, Murray Mazer, and Stuart Shieber. 1993. Annotating oor plansusing deformable polygons. Technical Report TR-24-93, Harvard University.Schoeneman, Chris, Julie Dorsey, Brian Smits, James Arvo, and Donald Greenberg. 1993.Painting with light. In Proceedings of SIGGRAPH 93, pages 143{146, Anaheim, Cali-fornia, Aug. In Computer Graphics Annual Conf. Series, 1993.Seligmann, D. and S. Feiner. 1991. Automated generation of intent-based 3D illustra-tions. Computer Graphics, 25(4):123{132, July. (Proceedings ACM SIGGRAPH '91,Las Vegas, NV, July 28-August 2, 1991).Sims, Karl. 1991. Arti�cial evolution for computer graphics. In Computer Graphics (Pro-ceedings of SIGGRAPH 91), volume 25, pages 319{328, Las Vegas, Nevada, July.Sims, Karl. 1994. Evolving virtual creatures. In Proceedings of SIGGRAPH 94, pages15{22, Orlando, Florida, July. In Computer Graphics Annual Conf. Series, 1994.Sistare, Steven. 1990. A graphical editor for three-dimensional constraint-based geometricmodeling. Ph.D. thesis, Harvard University.Sistare, Steven. 1991. Interaction techniques in constraint-based geometric modeling. InProceedings of Graphics Interface '91, pages 85{92, Calgary, Alberta, June.Smith, J. R. 1991. Designing biomorphs with an interactive genetic algorithm. In Proceed-ings of the Fourth International Conference on Genetic Algorithms, pages 535{538.Sugiyami, K., S. Tagawa, and M. Toda. 1981. Methods for visual understanding of hierar-chical system structures. IEEE Trans. on Systems, Man and Cybernetics, 11(2):109{125,Feb.Sutherland, Ivan. 1963. Sketchpad: a man-machine graphical communication system. Ph.D.thesis, MIT.Suzuki, Satoshi and Toyomichi Yamada. 1990. MARIS: Map recognition input system.Pattern Recognition, 23(8):919{933.Tamassia, R., G. D. Battista, and C Batini. 1989. Automatic graph drawing and readabilityof diagrams. IEEE Trans. on Systems, Man and Cybernetics, 18(1):61{79, Jan./Feb.Tamassia, Roberto and Ioannis G. Tollis, editors. 1994. Proceedings of the Symposium onGraph Drawing, volume 894 of Lecture Notes on Computer Science. Springer.Tang, Diane, J. Thomas Ngo, and Joe Marks. 1995. N-body spacetime constraints. Journalof Visualization and Computer Animation, 6(3):143{154.Thomas, Bruce H. and Paul Calder. 1995. Animating direct manipulation interfaces. InProceedings of User Interface Software and Technology (UIST) '95, pages 3{12, Pitts-burgh, PA, Nov. 96

Todd, Stephen and William Latham. 1992. Evolutionary Art and Computers. AcademicPress, London.Tom Sawyer Software Corporation. 1991. Graph layout toolkit. Berkeley, CA.Torgerson, Warren S. 1958. Theory and Methods of Scaling. Wiley, New York. Seeespecially pages 254-259.Tufte, E. 1983. The visual display of quantitative information. Graphics Press.Tufte, E. 1990. Envisioning Information. Graphics Press.Tufte, E. 1997. Visual Explanations: Images and quantities, evidence and narrative.Graphics Press.University of Passau. 1997. Graphlet: A toolkit for implementing graph editors and graphdrawing algorithms. Home page at http://www.uni-passau.de/Graphlet/.van de Panne, Michiel and Eugene Fiume. 1993. Sensor-actuator networks. In Proceedingsof SIGGRAPH 93, pages 335{342, Anaheim, California, Aug. In Computer GraphicsAnnual Conf. Series, 1993.Ventrella, Je�rey. 1995. Disney meets Darwin { the evolution of funny animated �gures.In Proceedings of Computer Animation 95, pages 35{43, Apr.Vincent, L. and P. Soile. 1991. . watersheds in digital spaces: an e�cient algorithmbased on immersion simulations. IEEE Transactions on Pattern Analysis and MachineIntelligence, 13(6):583{597, June.Wegner, Peter. 1997. Why interaction is more powerful than algorithms. CACM, 40(5):80{91, May.Wiley. 1994. How dogs interpret oor plans... (Non-Sequitur). Distributed by the Wash-ington Post Writers Group, a syndicated service of The Washington Post.Witkin, Andrew and Michael Kass. 1988. Spacetime constraints. In Computer Graphics(Proceedings of SIGGRAPH 88), volume 22, pages 159{168, Atlanta, Georgia, Aug.Wong, K. Y., R. G. Casey, and F. M. Wahl. 1982. Document analysis system. IBM Journalon Research and Development, 26(6):647{656, November.Yuille, Alan L., Peter W. Hallinan, and David S. Cohen. 1992. Feature extractions fromfaces using deformable templates. International Journal of Computer Vision, 8(2):99{111.
97

