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Abstract

Software-based active replication is a well-known techeifpr providing fault tolerance using space redundancy fanudt-
masking. However, much of the recent research in softwaicegion has yet to be demonstrated using large, real-dorl
applications, and in particular, multithreaded applicatis. While multithreading can improve performance, threetteduling
is a source of nondeterminism in application behavior. Exgsapproaches to replicating multithreaded applicatcemploy
either synchronization at interrupt level, at the expens@arformance, or a nonpreemptive deterministic schedalethe
expense of concurrency.

This paper presents bose synchronization algorithfior ensuring deterministic behavior of replicas while pasng
concurrency. The algorithm synchronizes replica thready on state updates by intercepting mutex requests. Thoitiig
is formally specified and the proposed formalism is useddaggcorrectness of the algorithm in failure-free behavieneaell as
in presence of errors. To evaluate the proposed algorithtramsparent active replication framework has been devetiognd
used to replicate the multithreaded version of the Apache seever, a substantial real-world application. Perforncarfor a
triplicated, multithreaded Apache is about 23% less thanTIRP-based, noninstrumented version of the same muéiboe
Apache server.
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1. Introduction

In a fault-tolerant replicated system, multiple instanakzn application execute on independent hardware so teatttem
can continue to provide correct service in case of a repkdlare. Earlier approaches used dedicated, often pr@pyiet
hardware to achieve efficiency and performance (e.g., [F&plication in software aims to be more flexible and lesfig by
making use of commercial, off-the-shelf (COTS) hardwatrd,its applicability to real-world systems is somewhat tiai. In
particular, the extension of replication to multithreadggplications requires further investigation.

This paper proposeslaose synchronization algorithifi.SA) for ensuring deterministic behavior of replicas vehjpre-
serving concurrency. In contrast with current techniquned synchronize replicas at the interrupt level [1], [8]), [23], the
algorithm synchronizes replica threads on state updatdsr@@ng an “equivalent” order) by intercepting mutex regts in-
voked by threads before accessing shared data. Perforroaedeead is minimized by preserving concurrency in the etien
of application threads—the algorithm does not interferthwilie operating system scheduler, except when grantingxast
This is also in contrast with approaches employing nonppeee, deterministic schedulers [21], [26], which limitrzurrency
by allowing only one physical thread to execute at a time.

Although intercepting mutex requests to record the ordestafie updates has been proposed in the context of rollback re
covery [2], it has not been applied to active replicatior, Inas it been demonstrated on a substantial applicationvalo&te
the proposed algorithm, a transparent active replicatiaméwork has been developed. The framework consists of pleim
mentation of the loose synchronization algorithnvjidual socket layethat provides transparent replication and an adaptive
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Figure 1. Execution of follower threads.

voter/fanoutcomponent that detects errors (crash, hangs, and valueserexcludes faulty replicas, and reliably broadcasts
client requests to the replicas. The framework has beentosegblicate the multithreaded version of the Apache weleser

a substantial real-world application. Results show aba2®8% performance degradation for a triplicated Apace weleser
compared to a honinstrumented, TCP-based version of the samer.

2. Loose Synchronization Algorithm

The proposetbose synchronization algorith(h SA) exploits the fact that nondeterminism in replica babais acceptable
as long as it does not impact the output produced by replivdsated upon by the voter. Replica output is typically a tiorc
of the replica’s state and inputs; hence, suppling the s@aeence of inputs and enforcing the same sequence of stdéesp
in each replica guarantees that all replicas produce the saoquence of outputs.

In a multithreaded application, updates to a shared statsealized through mutex variables (mutual exclusiomhe T
manner in which threads are granted mutexes is usually nemdmistic and depends on the scheduling algorithm usetdy
operating system. As a result, the programmer cannot ysonake assumptions on the order in which mutexes are acquired

Assuming noa priori knowledge of the way mutexes are requested by the replieadst determinism of replica state
updates can be achieved by designating a selected replkdaatier, to make decisions on the order in which mutex variables
are granted and to enforce an “equivalent” order in otlieljower replicas. All replicas begin executing together, and leade
threads freely execute while the order of mutex acquisgtisitollected. The leader’s order is continuously sentédaliowers,
which enforce the same order on their threads. The mechasisuth that a follower threaidcan be blocked when acquiring
a mutexm if (1) the order established by the leader for the next adtijpisof the mutexm has not yet been received or (2) the
mutexm needs to be acquired first by another thread (according torter established by the leader). The follower replicas
need to enforce in their threads the order dictated by thaeleanly with respect to the same mutex. This permits coecuy
to be preserved in the execution of follower threads that atosimultaneously acquire the same mutex. Figure 1 shows an
example of an order of mutex acquisitions sent by the leadtre followers via a mutex table. The follower threadsindi,
can be executed concurrently (since they acquire differeriexes), whilg; andt; must be serialized.

2.1. System Model, Definitions, and Assumptions

The system consists of a set of identical multithreadedgs®ses (replicas) running on different nodes and interadede
by means of a network. One process is designated as the leglier; the others are follower replicas. Each processists
of a set of thread$ and a set of mutexe$1 used to protect partitions of shared dafagnd. M can be infinite). Application
threads use the functidrsa_l ock (replacing the system cdllock) to acquire a mutex. Threads release a mutex using the
system calunl ock. Two additional functionsgr eat e_new.t hr ead andcr eat e_new_nut ex, are provided to replace,
respectively, the system callfir ead_cr eat e andnut ex_cr eat e (see Figure 2). The LSA algorithm requires leader and

Litis assumed that two different mutexes do not protect ap@ihg (or coincident) shared-memory regions, which ie glsod programming practice.



followers to exchange information about the mutex acqoisibrder. A FIFO-order reliable multicast and a reliablewgp
membership service are available. It is also assumed thatdtwork does not partition.

Definition 1 (Mutex Acquisition) Atriple (m,t,k) € M x T x N denotes anutex acquisitiormade by thread on mutexn
through the functioh sa_l ock; this is thek” mutex acquisition performed by

Expressing mutex acquisitions as triples emphasizes ttteHat mutex acquisitions are unique within each replica. T
simplify the notation, however, a mutex acquisition, ¢, k) will be referred to as a paitm,¢). The termk can still be
retrieved by applying a functioindex to the pair (e.g.k = index(m,t)).

Two mutex acquisitions are call@dnflictingif they are made by different threads on the same mutex. lemgérthe order
in which conflicting mutex acquisitions occur can affect thsult of the computation.

™

H
Definition 2 (History) Ahistory H" of replicar is the sequence of mutex acquisitiong’sfthreads. The notatiofrn;, t;) <
(mj, t;) depicts thaim,, t;) temporally precede§n;, t;) in H".

Since threads within a replica execute on the same node, the order of mutex acquisitiafi’ins determined by the
local clock of the node at the time that threads return fia_| ock. Enforcing the leader’s history on the followers (under
assumption of determinism as defined later) makes the fellelvehave like the leader. This, however, is a strongeinegent
than necessary since only the causal dependencies betwgex acquisitions need to be preserved.

Definition 3 (Causal Precedence)Given a historyH and two mutex acquisitior(sn;, t;) and(m;, ¢;) in H, (m;, t;) causally
precedegm;,t;) in H (i.e.,(m;, t;) KA (mj, t;)), if and only if one of the following conditions holds:

1. t; =t A (mg,t;) < (mj,t;); (Mutexes acquired by the same thread);
2. mi =mj A (my,t;) < (m,t;); (conflicting mutex acquisitions);
3. 3 (m,t) € H: (m;,t;) 5 (m,t) A (m,1) R (mj, t;); (transitivity of causal dependency).

Note that causal precedence implies temporal precederiiie the opposite is not necessarily true. The notion of aaus
precedence between two mutex acquisitions in a multitte@adocess is analogous to the notion of causal precedetwedre
two events in a distributed system [4]. As there are concueents in distributed systems (i.e., events that are aasally
related), there are concurrent mutex acquisitions in aithtgtaded process (i.e., acquisitions whose actual orfdexexution
does not affect the result of the computation). The LSA athor allows replicas to schedule concurrent mutex acqarsst
independently in order to preserve concurrency.

Based on the notion of causal dependency, the next defifitimduces the causal history of a mutex acquisition.

Definition 4 (Causal History) Given a historyH and a mutex acquisitiofm, t) in H, thecausal histonof (m, t) is the set
O (m,t) = {(m',t') € H|(m',t') > (m, )} U{(m, 1)}

The causal history of a given mutex acquisition, ¢t) represents all mutex acquisitions upon whigh, ¢) is causally
dependent. Note that a replica history contains all of tpéaa’s mutex acquisitions, while a unique causal histergssociated
with each mutex acquisition.

The LSA algorithm assumes that threads behave deterncaligtibetween two consecutive mutex acquisitions. This is
somewhat similar to the piecewise deterministic assumptiade by proponents of message-logging checkpointing Whjle
determinism is traditionally expressed in terms of stdte,dausal history is used as an abstraction to represergadthiview
of the replica’s state.



Definition 5 (Piecewise Thread Determinism)A threadt in a replicar is piecewise deterministi€ and only if given the last
mutex acquisitior{m, t), the behavior of is uniquely determined by~ (m,t) and the replica’s initial states;. From the
initial state (i.e., before the first mutex acquisition)e thehavior ot is uniquely determined byj.

From the above definition, it follows that the behavior anehde, the outputs emitted by a thread a replicar between
a mutex acquisitiorfm, t) and the next mutex acquisition are a function onlyfgf (m,t) andSj. Note that the definition
precludes race conditions in the replica’s code. Only ogpéid applications whose threads are piecewise detetiniaisd
share the same initial state are considered in this papénelnontext of such a system, the correctness of the LSA ittigor
is defined as follows:

Property 1 (Correctness) Given two replicasg; andrs, two conditions hold:
1. (Safety) The causal histories of the two replicas mushésamey(m,t) € H™,H" : 0} (m,t) = Opr2 (m, t).

2. (Liveness) Any mutex acquisition within one replica isntwvally’ performed by the other replicam,t) € H™ —
O(m,t) € H™.

2.2. Failure Free Behavior

In the following discussion, we assume that replicas andehable multicast layer (i.e., the reliable membershipyee
and the reliable multicast protocol) do not fail. The psexaite for the LSA algorithm is shown in Figure*2The functions,
variables, and definitions used in this pseudocode are givEable 1.

The leader’s history’ is recorded at the leader by appending the mutex acquisitia a fixed-size buffenut ex_t abl e).
When the leader’s mutex table becomes full, the leader oasits the table to followers (with a FIFO-order reliable ticalst),
and flushes it so that new mutex acquisitions can be recordéeé. leader's mutex table is also multicast periodically by
| eader _peri odi c_t x in order to guarantee transmission even when there are noggrmutex acquisitions to fill a table.

Conceptually, followers reconstruct the leader’s histoyyconcatenating the mutex table updates received frometuet.
The leader’s history reconstructed by a followfeafter receiving: mutex table updategni,, ..., mt,} from the leadel is
given byH"/ = mt, " mty " ... " mt,, where” is the concatenation operator. Thus, in absence of failiifés is a prefix
of H!.

A follower maintains a projection queue for each muteXpr oj _queue[ nj ) that stores the subsequencef’ corre-
sponding to mutex acquisitions on mutexthat have yet to be enforcédlhe follower invokes the functioan_nt _updat e,
upon receiving a mutex table update from the leader, to aptfennew updates to the appropriate projection queue. Iftaxmu
mis not yet in the set of the current replica’s mutexast exes, then a new projection queue is created and inserted in
nmut exes.

When a follower threadrequests muter by invokingl sa_l ock, the requestis served only if the top entnpinoj _queue[ m
is (m, t). Otherwiset is suspended-pr 0j _queue[ n] is empty or its top entry indicates a different thread. Thress re-
sumed wherim, t) reaches the top gfr oj _queue[ n] : (1) pr oj _.queue[ n] is empty but a new mutex table update arrives
from the leader and, once unpacked, makesj _queue[ ml have(m, t) as top entryfer f or mupdat e lines 9-13) or (2)
proj _queue[ m contains an entrym, ¢'), with k = index(m, t'), immediately preceedin@n, t) and thread’ acquiresn,
as itsk? mutex acquisition, throughsa_l ock (I sa_l ock lines 14-17).

Proofs for leader—follower correctness and follower-dalér correctness are given in the Appendix.

2We use the linear temporal logic symbplto denotesventually

3In absence of failures, ihsa_l ock the lines 20-24 are not executed, and the condition at linis 2Bvays true. Moreover, ion_nt _updat e the
condition at line 3 is always false, anah_| eader _f ai | ed andr econf i gur e are not invoked.

4Formally, a projectionH |m of a history H on a mutexm is the subsequence of the all mutex acquisitiongdirconflicting on mutexm such that

(myt) <" (o t) i (mots) & (myt;) .
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Function createnew_thread(f) 1: Procedurelsalock(m) 1: Procedureperformupdate(update)
lock(Isamutex) 2:  lock(m) 2: forall (m,t) € update do
t < threadcreate(f) 3:  lock(lsamutex) 3: if m & mutexes then
threads.insert(t) 4:  t+« getcurr_thread() 4: proj-queue[m].create()
unlock(lsamutex) 5:  repeat 5: mutexes.insert(m)
Isalock(mc) 6: if isLeader then 6: end if
unlock(mc) 7: mutextable.append(m,t) 7: proj-queue[m].append(m,t)
return t 8: if #mutex_table = mazxentries then 8: endfor
9: cast(mutextable) 9: forall m € mutezes do
; 10: mutextable<— 0 10: if can_schedule_next_thread(m) then
Function createnew.mute!
ulocll(lsa_mutex) wmutex( 11: end if 11: resume(nexthread(m))
m « mutexcreate() 12: exit < true 12: end if
mutexes.insert(m) 13: else ifcan_acquire-mutex(m) then 13:  end for
if misLeader then 14: proj-queue[m].pop()
proj_queue[m].create() 15: if can_schedule_next.thread(m) then 1: Procedureon.leaderfailed()
end if 16: resumethread@ezt_-thread(m)) 2. lock(samutex)
unlock(lsamutex) i; end if 3: reconfigurating— true
return m : exit « true 4:  {If already in deadlock initiate reconfiguratign.
%8 elsife 10 then 5: if deadlock then
. recovering . -
Proceduresuspendread(m.y 21! i deadlock then 8 reconfigure(
suspen reads.inse 22: recove :
unlock(lj,(an;utex) 23 end if 0 8:  unlock(Isamutex)
suspend(m. 24: end if
lock(lsamutex) 25: if —isLeader then 1 Procedurereconfigure()
26: suspendthread(m,t) 2: forall m € mutexes do
Procedureresumethread(t) 27: exit < false 3 proj-queue[mj« 0
suspendedhreads.delete(t) 28: end if 4:  endfor
resume(t) 20: end if 5: isLeader— choosenewleader()
30:  until exit 6: if isLeader then
. 7: forall t' € suspended-threads do
ProcgdureIeadetperiodiatx() 31:  unlock(isamutex) 8: resumeth:;:dp(;;’ ‘ reads
while true do 9: end for
sleep(LEADERTX_PERIOD) 1: Procedureonmtupdate(update) 10: else
!OCk(lsa'mUteX) 2: !OCk(lsa‘mqteX) . 11: forall u € pending-updates do
if mutex_table # (0 then 3. if reconfigurating then 12 onmt.updatel(u)
cast(mutextable) 4: pendingupdates.append(update) 13 end for
mutextable<+ 0 5. else 141 di dat
end if 6: performupdate(update) 15: en’()jei? ingupdatesc 0
unlock(Isamutex) 7. endif 16: reconfiouratin 1.
end while 8:  unlock(lsamutex) ' iqurating— false
Figure 2. Pseudocode of the loose synchronization algorith m.
Table 1. Functions, variables and definitions for LSA pseudo code.
I ock(m System call to lock a mutem
unl ock(m System call to unlock a mutex
suspend(m System call to release a mutmand suspend the current thread. The thread holben resumed.
resume(t) System call to resume a thread
sl eep(ts) System call to suspend the current threadt ferseconds.

thread_create(f)

get _curr_thread()
cast (nsgQ)
create_new.t hread(f)
cr eat e_new.nut ex()
on._nt _updat e(m

| eader _peri odi c_t x()
| sa_l ock(m
choose_new.l eader ()
on_l eader fail ed()

System call to create a new thread, which will execute famdti.

Returns the descriptor of the current thread.

Reliable multicast ofrs g to followers.

Invoked by replica’s code to create a new thread, which wilaaite functiorf .
Invoked by replica’s code to create a new mutex.

Invoked by a follower on receiving a messagé&om the leader.

Periodic transmission of leaderit ex_t abl e to followers.

Invoked by replica’s code to lock a mutex

Deterministic rule to choose the new leader from the membigtise current view.
Invoked by a follower when the leader leaves the multicastigr

t hr eads

nut exes

i sLeader

| sa_nut ex

nc

mut ex_t abl e

proj -queue[ nm
suspended.t hr eads

Set of current replica’s threads; initially containing tfeplica’s main thread.
Set of current replica’s mutexes; initially containing.

Boolean variable.

Global mutex used to serialize accesses to LSA code.

Mutex used to serialize accessesteeat e_.new.t hr ead.

Queue of lengtmaxent r i es of mutex acquisitions; initially empty.
Array of queues of mutex acquisitions; initially empty.

List of suspended threads; initially empty.

reconfigurating
pendi ng_updat es

Boolean variable.
Queue of mutex table updates; initially empty.

next_thread(m)
can_acquire-mutex(m,t)
can_schedule_next_thread(m)
deadlock

proj-queue[m].head().t

proj_queue[m]| # O At = next_thread(m)

proj_queue[m] # O A next_thread(m) € suspended_threads

vm € mutexes : (proj_queue[m] = 0V proj_queue[m|.head().t € suspended_threads
V proj-queue[m].head().t & threads)




2.3. Failure Behavior with Error-free Leader-to-Followers Communication

The LSA algorithm introduces asymmetry in replicas (leaatedt followers) and requires direct communication from kyad
to followers. This brings in failure modes not present irditi@nal replication schemes (e.g., [28]). In this sectioe analyze
the behavior of the LSA algorithm in the presence of a singtgentially malicious failure. The group membership sesvi
and the FIFO-order reliable multicast employed in the ledaddollowers communication are assumed not to fail. listh
way, nonfaulty followers always have a consistent view @fitbplicas in the system and always receive the same seqaknce
messages from the leader. An equivalent assumption ishbaétprotocols can mask their Byzantine failures (e.g], 4hd
[27]).

The architectural setup for the following discussion carga single, independent voter in the system. The voterdbamnge
of detecting replica failures—crashes, hangs, and valwgserwhether they originate from the application or the L&¥le.
The voter also excludes faulty replicas from the system énegal, these responsibilities can be placed in other psase
outside the voter).

Before proceeding, we define two conditiordeadlockandhang A deadlock—detected by followers—is the condition
in which no more mutexes can be acquired, i.e., no threadewér return froml sa_l ock. Deadlock happens when the
reconstructed leader’s sequence of mutex acquisitiéhs is not compatible with the replicated application’s algjom. A
hang—detected by the voter—is the condition in which an ouip not received from the replica before a timer expires in
the voter. We also assume that mutexes are requested bya'splode infinitely often so that a replica deadlock evdhtua
manifests as a hang to the voter.

2.3.1. Failure Modes
The failure modes induced by the LSA algorithm are discubstolw and are summarized in Table 2.

1. Leader failures. Errors from the leader can propagate to followers only via ttansmission of mutex table updates
(which is the only communication from the leader to follog)erAssuming that the properties of the reliable multicast
service are preserved, all nonfaulty followers receivesame sequence of messages from the leader (even if the leader
sends corrupted messages). This guarantees that eactf pairfaulty followers satisfies the correctness property (a
shown in Theorem 6 in the Appendix). All nonfaulty followerensequently grant the same causally ordered set of
mutexes; thus, if one nonfaulty follower’s execution diyes from the leader, then all nonfaulty followers diverge in
the same way. Divergent behavior can lead to value erroectist by the voter (if the outputs never differ despite the
divergent behavior, then the error has no consequence @yttem). In addition to diverging, nonfaulty followers can
deadlock. Corollary 1 (in Appendix) guarantees that if ooafaulty follower deadlocks, then all nonfaulty followers
deadlock. Note that cases such as a leader sending diffatgak table updates to different followers constituteufisgs
of the reliable multicast layer of the leader and are considiseparately in Section 2.4.

If the leader crashes or hangs, then it may have sent codupi¢ex table updates to the followers before failing, which

can lead the followers to either diverge or deadlock as desgrabove. A malicious leader can impersonate a follower,
effectively stopping the transmission of mutex table updaince nonfaulty followers require these messages te@ mak
progress, they will eventually deadlock, a condition tiha&t voter detects as a hang.

2. Follower failures. Corrupted mutex table updates from a faulty leader cannegesa follower to crash—they can result
in either divergent behavior or deadlock of the follower. @dléwer crashing as a result of mishanding faulty data from
the leader is treated as a double-failure scenario (a &iluthe leader and a failure in the follower caused by a poor
implementation that does not conform to the pseudocodegur€i2). Thus, it can be assumed that a crash detected in a
follower is isolated to the failed follower.

5Long computation periods can be instrumented with callssta_| ock/unl ock on an artificial mutex to limit the hang manifestation latgnc



Table 2. Failure modes of the LSA algorithm.

Failure What can be inferred from:

Follower Failure Leader Failure
Crash. The follower is faulty. The leader can have contaminated the system.
Hang. The leader could be the cause. The leader can have contaminated the system.
Follower diverges from leader. The leader could be the cause. N.A.
Leader sends corrupted (or omits sending) mutex table epdat N.A. The leader can contaminate the system.
Impersonation. The follower can contaminate the systeqn.  The leader causes all replicas to hang.

While a correct follower does not interact with other repgca malicious follower can impersonate the leader by sgndi
mutex table updates to other replicas. Leader unforgeafphssts messages so that the recipients can always discard
messages from unexpected sources.

Deadlock defines a situation in which the LSA algorithm in Bofwer ceases to make progress. This happens when one of
the following conditions hold for each projection queueghewn in Theorem 7 in the Appendix): (1) the projection quisue
and will continue to be empty, (2) the thread in the top enfrihe projection queue is suspended, or (3) the thread inajhe t
entry of the projection queue does not exist and will nevectteated. The LSA algorithm checks for deadlock only during
reconfiguration, when it is known that no new mutex table t@slaill be received in the futuré.

The first two conditions are easy to check, as is the first elafithe third condition. To check the second clause of thre thi
condition, however, requires knowledge that the threaduiestjon (thread) will never be created in the future. Ideally, we
would like to drop this part of the condition. However, if tharent of threadis executing—but simply has not reached the point
at which it creates—a deadlock could be incorrectly detected. To overcomepioblem, the LSA algorithm introduces an
artificial mutexnc that is acquired throughsa_l ock each time a new thread is created (see fundtioeat e_new.t hr ead
in Figure 2). The followers, therefore, contain a projectgueue fomt, which implicitly identifies the threads that are to
create child threads in the future. Witit in place, the third condition only needs to check for the texise of the thread.
The intuition is that if all projection queues are blockdukn the projection queue correspondingrtois blocked as well and,
hence, no thread can be created in the future. This is foymhtdwn in the Appendix.

2.3.2. Failure Detection.
To detect failures, the voter takes both a majority vote apwiwvalues produced by replicas and a majority vote oncagiang

conditions. Using this information, the voter decides tlpat to be delivered to the client and identifies any faudtylica
and excludes it from the system. If the leader is excludesl siistem must be reconfigured (exclusion of a follower doés no
require system reconfiguration).

The following categories of replica behavior as observethieyoter can be distinguished: @)tput—a replica delivers an
output to the voter, (2o output—a replica does not produce an output, andof@sh—detected by the multicast layer, which
excludes the offending replica from the system (multicastig) and notifies the remaining replicas and the voter tijnoal
view change event.

The voting algorithm is initiated each time the voter reesithe first output generated by a replica in response to @t clie
request. At that time, a timer is started to detect replicagisa Voting occurs either on the reception of an output freche
replica or on the timer expiration. The possible combinagiof leader and follower failure behavior (and correspogdioter
decisions) are given in Table 3 (for the faulty leader casw) ia Table 4 (for the faulty follower case). In both cases, al
nonfaulty replicas always behave in the same manner.

The rules employed by the voter in detecting faulty replicais be summarized as follows: (1) if all replicas sent an atitp
the faulty replica is the one whose output differs from migyautput—cases L1 and F1; (2) a replica sending a spuriatfsub
is faulty—cases L5 and F4; (3) if there is a single hung replibat replica is faulty—cases L3 and F2; (4) if a majority of

61f the reliable multicast protocol guarantees that a messmgdelivered at the same view as it is sent, then no muteg tgilates will be received during
reconfiguration [6]. Some group communication systems garantee that a message is delivered at the same view wtpeoeess that delivers it [12]. In
this case, leader's messages received after the leadesléa multicast group can be safely discarded.



Table 3. Replica behavior under faulty leader.

Case | Expected behavior| Faulty leader behavior| Followers’ behavior | Diagnosis
L1 Output Output Output Compute majority value. If leader is in minority then thedeais faulty.
L2 Output Output No output Followers are in deadlock. Majority is hung; thus, the ledadéaulty.
L3 Output No output Output The leader is the only hung replica; thus, the leader isyault
L4 Output No output No output Followers are in deadlock. All replicas are hung; thus, gelker is faulty.
L5 No output Output No output The leader sent a spurious output; thus, the leader is faulty
L6 No output Output/No output Output Not possible. The application does not assume any particalgex acquisition order.
Thus, in nonfaulty replicas (even if contaminated), anyerwcquisition order results ir
the correct behavior.
L7 No output No output No output No fault has manifested.
Table 4. Replica behavior under faulty follower.
Case | Expected behavior| Faulty follower behavior| Correct replicas’ behavior| Diagnosis
F1 Output Output Output Compute majority value. If the follower is in minority thenis faulty.
F2 Output No output Output The follower is the only hung replica; thus, the followerasufty.
F3 Output Output/No output No output Not possible since it violates the single failure assunmptio
F4 No output Output No output A follower sent a spurious output; thus, the follower is fgwl
F5 No output Output/No output Output Not possible since it violates the single failure assunmptio
F6 No output No output No output No fault has manifested.

replicas are hung, the leader is faulty—cased ICase L4 (all replicas hanging) is indistinguishable from ¢ase in which no
output is expected and no replica sends any output. Twoigniiare proposed to cope with this case.

Application-specific information embedded in the voidée voter obtains knowledge as to whether an output is sigojtos
arrive from replicas after a given client request. This kiemige can be derived from the client message contents. Bonge,
for a replicated Apache server, the voter can inspect theMidader of the client message and determine whether it isSTa GE
request (a response will follow) or a POST request (no resparill follow). For a replicated CORBA object, the GIOP head
of a request message contains a fredbponse_expect ed that is true if and only if a reply message will follow. In geak
if necessary, the client can be instrumented to extend thesage format to indicate whether a response is going toifdhe
request.

Follower-supported deadlock detection this solution, the LSA algorithm supports local deadlastection. During
periods in which no responses are generated to the clieststdepen client connections, the voter periodically makts a
message to followers, forcing them to initiate a self-chiexka deadlock condition. The followers communicate thecoote
of the check to the voter, which determines the leader agyf#ull followers indicate a deadlock condition. The menfsn
for followers to detect deadlock in response to the votersags is described in Section 8.3 (in the Appendix).

2.3.3. Reconfiguration.
In this section, we consider the reconfiguration of the sysadter a leader failure. The presented procedure does qoiree

creation of new replicas, since the system is reconfiguredrat replicas that have not been excluded from the systera. Th
reconfiguration procedure is initiated in each follower npeceiving a view change event from the reliable multicaget
corresponding to the leader leaving the multicast groupdfionon_| eader _f ai | ed in Figure 2), because the leader either
crashed or was terminated by the voter after being detectéaldty. A new leader can be selected after all survivindicag
reach the deadlock condition (as defined in the previougsgciThe reconfiguration procedure consists of the follaypsteps:

1. Each follower continues to execute until it enters a deadtondition.

2. All projection queues are cleared to prepare the repticagsuming the execution. After reaching deadlock, theaiem
ing entries in the projection queues indicate a sequenceubéxracquisitions that is incompatible with the replicated
application’s algorithm (note that mutexes already aaliby the followers are valid) and, hence, must be removed.

“In case L2 no output can be delivered to the client; howevtsr eeconfiguration, surviving replicas restart executfexiting from deadlock) and generate
the expected output.



3. Each follower chooses the new leader from the group meshijelist. It is assumed that all replicas contain identical
lists so that a deterministic rule can be applied for thecddigla (e.g., pick the first replica in the list). If the foll@wis
not chosen to be the new leader, then it waits in deadlock tinatinew leader starts sending mutex table updates. The
new leader awakens all of its threads, allowing them to etedcsia_| ock as the leader replica.

Note that if the leader-elect replica executes the abovenfeguration procedure faster than the other replicasgtiheyslicas
may receive mutex table updates from the new leader befeyetthve reached a deadlock. It is necessary, thereforeffer bu
mutex table updates in the followers after receiving thewébange notification (i.e., after entering the reconfigoramode).
These buffered mutex table entries are transferred to thiegtion queues after step (2).

The reconfiguration algorithm presented above preservesaaess with respect to the new leader and any of the fellew
Safety can be shown using a proof sketch similar to that f@ofém 1 (in the Appendix). Liveness is guaranteed by clgarin
the projection queues after reaching deadlock, thus aligwte followers to execute according to the mutex table tgsda
received from the new leader.

2.4. Failure Behavior with Byzantine Errors in Leader-to-Followers Communication

In this section, we analyze the impact of failures in the &rad-followers multicast communication under the sirfgiture
scenario. We continue to assume that the group membersitipcot does not fail.

Violating the properties of the FIFO-order reliable mudtit because of a malicious leader can result in: (1) not sgradi
mutex table update at all, (2) sending a mutex table upddyetorsome followers, or (3) sending a mutex table update with
different contents (or in different orders) to differentléavers. These cases can result in the followers being isistent with
each other. We sketch a solution to this problem that doeseupiire the cost of a multicast protocol tolerating Byzaeti
failures. The approach we pursue takes action only aftarisistencies are detected by the voter, without incurrixtgae
overhead during normal operation.

Failure Detection. The voter detects replica failures and, depending on tHeréaidecides upon system reconfiguration
actions, as described below.

1. Detecting a follower crash or a spurious output from aoiwr indicates that the follower is the single faulty replio
the system. The system can continue without reconfigurafien the faulty follower is excluded.

2. Detecting a follower hang or a value error in a followerpmuitindicates failure either of the follower or of the leader
(which has contaminated the follower). Both the followeddhe leader must be excluded from the system, since the
two cases are indistinguishable.

3. Detecting only a leader failure indicates that the leasl&ulty and must be excluded from the system.

4. Detecting misbehavior of multiple replicas (e.g., crdsng, value error) indicates that an error in the leadechatam-
inated the followers. Consequently, the leader is the sifayllty replica and must be excluded from the system. Note
that in this case, because of the single-failure assumptialg the leader can crash.

Apart from the first case—in which no reconfiguration is nakdét is necessary to reconfigure the system and select a new
leader among the nonfaulty followers that have not beeruebed from the system.

Reconfiguration. To reconfigure the system, we select a subset of the remdwliog/ers from which the system can restart
through the following procedure: All followers send theiate to the voter to determine the largest group of followensse
states agree; those in the largest group will survive tHariaiand all other followers are excluded from the syster. this
state comparison to be meaningful, followers need to cepheir state when their corresponding threads are at the pamt.



This can be done with the LSA algorithm since under the assiomthat threads acquire mutexes infinitely often, the odautet
moment is when all replica threads are suspended, whichieainhappens after deadlock is reacedote that for a system
with initially at least three replicas, a failure can degrdlde system at most to a single running replica.

2.5. Performance Improvement

In the LSA algorithm as presented above, the transmissi@nofitex table update from the leader to followers can happen
only in two cases: when the table gets full, or periodicaiy leader _peri odi c_t x (if the table is not empty). Although
this mechanism guarantees liveness, it may be not suffit@mtthe performance perspective, i.e., followers coulergpa lot
of their time waiting for mutex table updates to be receivesiéad of doing useful computation. To overcome this prabieis
possible to introduce a follower-to-leader reliable ustaaommunication that can be used to signal the leader tludioaver is
willing to accept a new mutex table update (e.g., when avialgprojection queue gets empty). In response to such a gessa
from a follower, the leader may decide to multicast a new table update to all followers.

To avoid that this new communication follower-to-leadeulcbintroduce an additional failure mode, the “flow-control
mechanism must be such that no follower can slow down (andilplgsstop) the sending rate of mutex table updates. For
example, if the leader keeps for each follower a predicateishtrue when that follower is lacking mutex table updattesn the
leader should multicast a mutex table update (in additicghégeriodic and table-full mechanism) when any of thesdipates
is true.

Assuring that no follower can slow down the sending rate ofextiable updates can potentially allow a faulty follower to
increase the sending rate without control, creating exeessffic on the network and, hence, interfering with catneplicas.
However, if mutex table updates are sent from the leaderwhiyn they are not empty, even if a faulty follower is requegti
more mutex table updates than those that can be generathd leatler, no message is sent at all from the leader.

Finally, note that no mechanism has been considered to tivaitag between leader and followers. This has been done
intentionally again to avoid the introduction of a failur@de due to the possibility of a follower (and hence a faultiofeer)
to slow down (and stop) the leader. In the LSA framework, tides not constitute a problem, as replicas are synchrobiged
the voter on blocking socket operations (e.g., when cloairgient connection), which guarantees that the correti@rs
cannot lag behind the leader without limit.

2.6. Implementation Issues

Uniform naming convention. Because mutex table updates sent from the leader to folfow@ntain information about
threads and mutexes, it is necessary to have well-definptic@endependent naming convention for them. In definimg t
logical ids for threads and mutexes, we assume that for plicas, corresponding threads/mutexes are createdlin&d by
the same (logical) thread and in the same order in the coatékis thread. For example, if thread in replicaA creates two
child threads in the orders, andt 4,, then in replicaB the thread s (corresponding t@ 4) creates the child threadg, and
ti, in this same order. Threads, andtg, (t4, andig,) need to perform the same computation (are corresponding).

A hierarchical naming scheme is employed in which a logidalfia thread is recursively defined:

| ogi cal thread.id = parent | ogical thread.id — thread.creation_counter

wheret hr ead_cr eati on_count er is a counter owned by each thread and incremented each tenthithad spawns
a new child thread. For example, for a threladcreated by a thread,,_; as k,!" child, the logical thread id would be
< ki,ks,...,k, >. The logical name for a mutex is given by:

l ogi cal mutex.id = (logical thread.d, mutex_creation_counter)

wherenmut ex_cr eat i on_count er is a private counter owned by each replica thread. This @imincremented at the time
of the mutex initialization. For example, the logical id bét*" mutex created by a threaglis given by(1ogical_thread_idy, n).

8Note that the condition of all threads being suspended neushbcked both when a thread is going to be suspended and whreadis about to terminate.
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Figure 3. Replication framework.

Voter support. The LSA algorithm enforces determinism in the update of a@giveplica’s state. Thread outputs from
different replicas, however, can still be produced in dif& orders because of different thread scheduling. Thezebefore
voting the voter must first group the replicas’ outputs adoay to the logical thread id of the threads that generatethth

3. Application-Transparent Replication Framework

This section introduces a software framework consistingroimplementation of the loose synchronization algoritiam,
virtual socket layer and a voter/fanout process for suppgthe loose synchronization algorithm in replicating tithfeaded
applications. Figure 3 illustrates the configuration ofiplicated application employing this framework (Ensemii] is used
as communication layer for reliable multicast protocol).

Multiple instances of an application execute on differemdes, and the clients have the illusion of a service that [dém
mented by a single, nonfaulty server. Multiple clients iate with the voter as if it were the real server. The votenfards all
data coming from clients to replicas using a FIFO-ordeiatd® multicast protocol. Socket operations invoked by dicels
code (e.g., to send a response back to the client) are cedviatb requests that are sent to the voter/fanout procdesyvater
collects the requests for socket operations from all théaapand, after voting, performs the actual operation enphysical
socket associated with the specific client.

For a single-threaded application, voting requires repdiatput consistencyi.e., all correct replicas must send the same
output messages to the voter in the same order). To guareepiBea output consistency, two conditions must be met: (1)
input consistencgyin which the input requests are identical and deliveredioect replicas in total order [10], and (Bplica
determinismin which, in the absence of faults, any execution of theice@tarting from the same initial state and processing
the same-ordered set of input requests leads to the sareesdrset of output messages [28].

For a multithreaded application, the voter groups the caydiutputs on a per-thread basis. Therefoutput consistencgnd
input consistencyieed to hold only with respect to corresponding threadssaareplicas. The condition aéplica determinism
is replaced with the condition that all replica threads aee@wise deterministic.

3.1. Loose Synchronization Algorithm

A prototype of the loose synchronization algorithm is impknted as a C/C++ library (LSA). The interception of lock
operations on mutexes is performed transparently to thécapion by intercepting the application calls to the POShxead
(PTHREAD) library. A set of macros is employed to override fATHREAD functions at compile time. The inclusion of
the LSA header file is the only change required to the apjdinagource code. Consequently, the application needs to be
recompiled®

3.2. Virtual Socket Layer

The virtual socket layer is compatible with the BSD socké&tiiface and designed to hide the replication infrastrectiom
the replicated application using logical sockets instefaahgsical sockets. Forinstance, instead of calling thefiemsocket
to create a new socket, the replica calld _socket instead. This function has the same signature (i.e., sapug aiguments

9The interception can also be done without requiring apptinarecompilation by overriding the PTHREAD dynamic libya
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and return type) as the corresponding BSD one, but returagiedl socket descriptor instead of a physical socket d@scr
The substitution can be easily automated with the help ginpeessor macros. For example, to instrument&pache 2.0.16
web server it was enough to insert the following two lines

#define USEVSL_ALIAS
#include "vsl.h”

into 6 out of 447 C files and to insert the following initialtaan line

r_init (0, n_replicas);
into the fileser ver / mai n. ¢ which is a small effort for a code base of over 170,000 C solimes.

The virtual socket layer is responsible for (1) receiviegiding messages from the voter/fanout process and (2aatieg
with the replicated application. A dedicated network tlir@@ each replica accepts messages from the voter/fanooegso
These messages correspond to new data and new connectimstearriving from clients, and they are buffered in a data
gueue or in a connection queue for the logical socket.

The concept of the virtual socket is similar to the idea okipbsers proposed in the Eternal system [22]. The ORB
invocations to the standard library for performing I/O améercepted by Eternal and redirected to the Replicationddan a
process that conveys data from and to the replicas throwghritlerlying reliable broadcast protocol. Involving thplieation
manager requires (1) an additional communication via napiges, and (2) a context switch (because the replicatioragem
is a separate process from the replica process). In our frankehe virtual socket layer embeds the equivalent fumetiiy of
the Replication Manager into the replica process, elinmiggthe need for a separate process to redirect library mtioes)1°

3.3. Voter/Fanout Process

The virtual socket layer separates the replicated apmicdtom the voter, and the voter separates the replicatifnas-
tructure from the client. The voting mechanism is specifithie replicated application. A bit-wise comparison is a deanp
yet popular voting mechanism. Other alternatives (e.ghexk-sum verification or voting only on chunks of the data) be
incorporated in our voter implementation as Wéll.

While replicas use logical socket descriptors to interath whe virtual socket layer, the voter/fanout process uisasBSD
sockets hysical sockejsand maps logical socket descriptors to physical socketri#ers. Socket operations are divided in
two groups:

1. Operations that modify the physical socket state (s.gcket, bi nd, | i sten, cl ose, connect, shut down,
send, wi t e) are voted upon by the voter. These operations corresposddket operation requests sent from the
replicas to the voter. Replicas can continue immediatelyrafalling nonblocking functions (e.csend andwri t e).
Blocking functions, however, do not return until the voterforms the function on the physical socket (esqpcket ).

2. Operations that do not modify the physical socket statg,@ccept , sel ect, pol | ,recv, r ead) are emulated by
the virtual socket layer. The voter forwards data and cleamtnection requests to the replicas for buffering. Theusilrt
socket layer utilizes this buffered information when thpliea invokes the emulated socket functions.

Note that the functions frequently executed are mostlyegittonblocking or locally emulated by the virtual socketday

In addition to voting on outgoing messages, the voter/fapoacess also forwards all client messages to the replisiag @
FIFO-order reliable multicast protocol. The voter alsovpdes (1) adaptive timeout estimation to minimize the piolity of
a false alarm when detecting hang errors, (2) timing errteci®n (the specifics of the replicated application canrhbexided
into the voter to override the adaptive timeout values,dated statistically, with the maximum execution time aial for the
particular service request), and @)t voting(the voter can vote and send a response to the client as sdba awjority of
replicas provide corresponding outputs that agree).

10/n principle this same efficiency should be possible in Exdkas well.
11For example, an architecture for supporting voting in mésiiire is proposed in [5].

12



3.4. Adaptive Voter Timeout

To minimize the probability of false alarms and to reduceléttency in detecting crash and hung replicas, a mechanism fo
adapting the voter timeout is provided. The timeout valdkeets: (1) the computation time required by the server tapoe
a response to the client and (2) the communication time.

Timeout detection. The voter enforces a timeout for each outstanding socketatipa request from the replica. For each
outstanding request, the voter maintains a separate tintieoer for each replica. These timers are used as followsforee
the overall timeout for the request:

1. The initial value of each timer is set to the estimated niaae (see below) of the service time, plus a cushion factor of
the standard deviation of the estimated mean time.

2. Start a timer upon receiving a new socket operation redfums one of the replicas. The replica that issues the first
request is called thimitiator.

3. Declare that the initiator has failed if none of the otheglicas sent the same request before the timer expirede Sinc
there was only one request, it is reasonable to concludéttaanitiator behaved incorrectly in making the request.

4. Declare that a replica has failed if (1) it does not gereetia¢ same request as the initiator before the timer exares,
(2) other non-initiator replicas have already made the saqgeest. The fact that a majority of replicas make a request
indicates that the silent replica is in error.

An exponential back-off mechanism is used to adjust thedimgalue. When a replica fails to respond within the timeout
period, the timeout value associated with the replica isoteriand a threshold counter is incremented. A replica itaded as
failed only when the counter reaches a predefined value.

Timeout estimation. A timestamp is added to messages sent by the voter to eadbaref@utgoing messages from the
replicas include the timestamp for their correspondingiinpessage. The voter computes the instantaneous servieddr
messages received from the replicas by subtracting theagessnestamp from the current, real time. The instantasiealues

of service time are used to estimate mean and deviation afehéce time. Smooth estimates of the mean and the standard
deviation are ensured by employing a low pass filter to atiemnoise and irrelevant fluctuations, as proposed by Jandbs
[15].

The objective is to estimate the service time necessarydahn eeplica for processing a client request and generating ¢
responding response. A timestamp is added to messagesysia Woter to each replica. The replicas extract the tinmepta
from a received message and store it in a varidlast _t i mest anp corresponding to the logical socket connection from
which the message arrived. Messages sent by replicas toteeinclude the value dfast _t i mest anp associated with the
logical socket connections for which the messages arendektiOn receiving a message from a replica, the voter corapute
the instantaneous service time, subtracting the timestaximcted from the replica messages) from the currentireal The
instantaneous values of service time are used to estimate arel deviation of the service time. Smooth estimates afiten
and the standard deviation are ensured by employing a log/fjtes to attenuate noise and irrelevant fluctuations, apg@sed
by Jacobson in [15].

Evaluation of the adaptive timeout algorithm. To evaluate the efficiency of the adaptive timeout estinmatitgorithm
presented above, we trace the round-trip-time and timestimates (calculated by the voter) for a triplicated mhtttaded
Apache web server. The experimental setup consists of tlwerk¢t 100 Mbps LANSs, one connecting the client to the voter
and the other connecting the voter to all replicas. To stifesalgorithm (to create unbalanced workload both on rapicdes
and on the local network between the voter and the replica®) of the three replicasieplicas) is executed on a Pentium Il
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800 MHz based machine, while the other two replicBsy{lica; and Replicas) and the voter are executed on a Pentium Il
500 MHz. All machines run Linux 2.4, and Ensemble 1.20 [14}s$ed as networking layer providing the reliable broadcast
protocol.

Figure 4 shows the instantaneous value of the round-tme-({z7'T;) and the timeout value calculatetiq.eout) by the
adaptive timeout algorithm faReplica;.*? One can see that the computégheout closely follows the variations oRT'T;.
Figure 4 also shows three casegiofeout warninggenerated by the voter to indicate that the replica did nod semessage to
the voter before the timeout associated with this repligarex. The timeout warning causes the timeout value to b&lgadu
On the second attempt the message from the replica is stgitesielivered before the timer expires, and hencettheeout
is recalculated and adapted to the replitET; (see arrows in Fig 4).

Observe that the instantaneous value®6fl; for Replica; range from about 30 ms to 300 ms (a factor of 10), and the
algorithm is able to closely follow such variability. Thikistrates the efficiency of an adaptive timeout estimatkired value
for the timeout would be either too small or too large.

Fig. (5) reports the instantaneous values of the roundtimg for all three replicasReplical and Replica2 have similar
RTT;, while Replica3 has a substantially small&7'7; (about 6 times). Recall that this replica executes on arffaséehine.

4. Real-World Application: Apache Web Server

The Apache web server 2.0.16 was tested in an experimeiugl sensisting of two Ethernet 100 Mbps LANS, one connect-
ing the client to the voter and the other connecting the uvotal replicas (see Figure 3). Replicas and voter execufestium

12Mean and standard deviation estimates are not shown to kedfid 4 readable.
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Table 5. Triplicated single-threaded Apache web server.

Experiment Baseline TMR TMR
(throughput) | (throughput) | (throughput reduction)
test.cgi 29.4 KBps 21.2 KBps 27.9%
test2. cgi 114 KBps 86.7 KBps 23.9%

[11 500 MHz based machines. The client executes on a Pentiu8®0 MHz based machine. All machines run Linux 2.4, and
Ensemble 1.20 [14] is used as networking layer providingréimble broadcast protocol. Apache was compiled with the
Multi-Processing Module with Threading via Pthreéichr eaded) enabled. This module implements a hybrid multiprocess
multithreaded server to handle client connections comelily. Each process has a fixed number of threads.

In a broad sense, a client can utilize an Apache web servevdnatays: (1) to retrieve static HTML pages (or files in
general), and (2) to execute Common Gateway Interface (@®@bHrams, which perform a computation and return a dynamic
HTML page to the client. The first case is not interesting flamactive replication point of view: since the pageffile &tist a
precalculated checksum can be added to the page/file sortbes i the retrieved data can be checked at the client Jide.
second case is interesting because checksum cannot greeszimputation that produces the dynamic HTML page and this
computation can be critical to the user.

If a multithreaded Apache/CGl system is to be replicatedntthe LSA framework can be employed in the following
manner: (1) In Apache, a mutex variable is used to seriatizedations teaccept among several threadaccept returns
the next available client connection, and the thread gaiincept services this new connection. Instrumenting dlees e pt
mutex with the LSA algorithm guarantees that the same lbgiceads serve the same client connections in all repli¢2s.
The LSA algorithm can be transparently used to ensure thaggmonding CGI processes (i.e., processes created baitihe s
logical thread in Apache) in each replica access shareesgatuthe same order.

Experimental setup. To test Apache, a web benchmarking tool was used as a cliphitaton. One thousand client requests
were sent (in groups of 10 simultaneous requests) for xtigea dynamically generated HTML page. Two CGI programsawer
used to create variable load on the server and on the nettvesd . cgi generating a 123-byte HTML page, anéelst 2. cgi
representing a larger server load by generating a 1094HiyML page. The mechanism embedded in the voter for comparing
outputs from replicas was adapted to skip replica/nodesdeent fields in the messages generated by the Apache'Seswer
that the voter would not raise false alarms.

Single-threaded Apache. The Apache server was initially instrumented only with theual socket layer (VSL) and was
run in a single-threaded configuration (i.e., without usding LSA algorithm). This allowed us to measure the overhaaa d
to the virtual socket layer plus the voter. Table 5 repontsulghput and throughput reduction for the noninstrumeAjgaiche
(baseline) and the triplicated Apache, showing that thihgug drops 24% when Apache is triplicated.

Multithreaded Apache. The next set of measurements was performed on Apache irstitechwith the loose synchroniza-
tion algorithm while varying the number of server threadsicl client request caused the server to acquire mutex V@siab
seven times. One mutex access was used by Apache to secalliz#o theaccept function. The other six acquisitions were
used in the memory allocation routines (APR pools). Theaémes have no effect on the output seen by the voter (the HTML
pages generated by Apache do not contain any referencesaiam@mory addresses). Thus, only #tecept mutex needs to

be instrumented to ensure output consistency. With thismgdtion, performance improved 2%. The experiment wasadgd
with the client requesting a static HTML page. In this cake,driginal Apache acquired mutex variables 207 times pentl
request, but only one access (to #ecept mutex) was critical for output consistency. Instrumentimdy theaccept mutex

B3For instance, the fieldSat e andLast - Modi f i ed contained in the HTTP OK message that precedes a HTML resgitma client request).
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resulted in a 40% performance improvement. This indicdtasthe LSA algorithm can support a high mutex acquisitida ra
per client connection without incurring significant perftance degradation.

Figure 6 compares the throughput as a function of the nunfl#grache threads under a light workload generatezk(t . cgi ).
Several conclusions can be drawn from this figure.

e The introduction of LSA algorithm to triplicated Apache ia single thread causes throughput to drop from 21.2 KBps
(using a single-threaded, triplicated Apache without L$fo&thm) to 18.8 KBps (with LSA). This is due to the overhead
of the LSA algorithm, which cannot be masked by exploiting@arrency.

e As the number of threads increases, additional concurreayoe exploited to improve throughput. For example, from
Figure 6 with 10 threads, the throughput reaches 22.2 KBply @25% throughput reduction as compared to the 29.6
KBps of the baseline configuration).

e Throughputdoes notincrease further with more than 10 tweance client requests are sent in groups of 10 simultaneou
requests.

Figure 7 presents the throughput as a function of the numb#rreads for the Apache server under a larger workload
(test 2. cgi). To further study the impact of the voter, we implementedhasafirst scheme in the voter (no message sup-
pression was employed), which has lower overhead than th@rityasoting scheme (used in the experiments). The pass-fir
voting scheme causes throughput for 10 threads to increased2.8 KBps (22.7% throughput reduction as compared to 120
KBps of the baseline) to 97.9 KBps (18.4% throughput redugti

Note that the experiments withest 2. cgi show a higher throughput (for both the baseline and theunstnted multi-
threaded Apache) as compared to the experimentstvétt . cgi . For triplicated Apache with 10 threads, the throughput
improvement (with respect to single-threaded, noninsemted, triplicated Apache) is 4.7% foest . cgi and is 13% for
t est 2. cgi .1* Because the experiments were conducted on single-pragasshines, multithreading allows an increase in
throughput only when there is a computation time to be opgea with 1/0.

4 .1. Discussion

The proposed replication framework consists of severahsot components, including the virtual socket layer, thiex/fanout
process, the loose-synchronization algorithm, and Enketvdsed network communication layer. All these compasmeah-
tribute to the overall performance overhead. A set of messents was conducted to quantify and to analyze the perfarena
impact of entities constituting the replication framewarid to compare the proposed framework with existing sahstio

14The change in throughput is calculated based on Figure 6 ige7.
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Figure 8. Execution time for a tripli- Figure 9. Ratio between execution
cated echo server broken down into times and Ty, for a triplicated echo
three components. server.

For comparing our framework with other replication systeamheworks Table 6 provides performance overhead reported
for several existing approaches to replication. Table @rtyeindicates that most replication strategies imposegaificant
performance overhead. The exception is Eternal with a tedayverhead of 3%. Most of the overhead measurements [20],
[22], [13] use an echo server (or effectively the same fuomality).

An echo server accepts messages incoming from clients drmksthem back to the clients. The only computation per-
formed by the server is moving the data received from thentlie an internal buffer and sending the data stored in thifebu
back to the clients. While the echo server barely resembleg&ind of services that a real-world application would offee
use it to facilitate comparison with existing studies (ekdernal [22], AQUA [20]) where this simple application warsployed
in assessing performance. The data exchanged betweenrtiee ard clients are immaterial for the correct functionofg
the system. Also the communication is the dominant chaniatiteof the workload. Thus, issues such a value voting and
maintaining significant application state become virtpatelevant.

Performance measurements of the echo server replicatad ttst LSA frameworkio characterize the overhead introduced
by our replication framework, the performance of the tdplied echo server is compared with a simplex implementation
a TCP-based echo server (without any LSA codelrigure 8 provides the execution time (as perceived by trent)liof the
baseline T's1,) and triplicated echo server{r) as a function of the message size. For message sizes betWemrd 6K,
the measured overhead (with respect to the execution tintteeof CP-based implementation of the echo server) ranges fro
200% to about 258% (see Figure 9).

To quantify the contribution to the overhead from differenmponents of the replication framework, additional measu
ments were conducted and are also presented in Figure 8 gateM. The results show that the Ensemble communication
layer is a major source of the observed overhead (an averagg; in Figure 8 is a 100% overhead for message sizes between
1K and 6K). Overhead introduced solely by our replicatioftveare (i.e., virtual socket layer and voter/fanout) deses from
45% to 27% (with respect tdz1,) as message size grows from 1KB to 6KB (§&& . /T, in Figure 9).

Since LSA is implemented on top of TCP and Eternal in CORBAi¢lalso uses TCP), it is nontrivial to make an accurate
performance comparison. ldeally one would like to measheeexecution times (or throughput) for the application irthbo
frameworks under identical conditions. Since Eternal wasavailable, this was not a viable approach. Further, tiaeee
several architectural differences that make such commadsficult. In the following we make an attempt to compare tvo
by normalizing both performance measurements with respeE€CP. The comparison is based on rough estimates and “back-
of-the-envelope” calculations; nevertheless, it seregzrovide a first order assessment. As the technologiesemghtation,

15The measurements are conducted in the same testbed cotifigasthe one used for the experiments with the Apache webrse
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Table 6. Overhead of replication frameworks.

Replication Application employed to measure performance Overhead Comments
H Framework H
AQUA [20] CORBA-based echo server (VisiBroker). Active replicatioith pass- | 700% Transparent replication to CORBA applications.
first scheme. Ensemble as a communication layer. Linux axl Fen-
tium.
Eternal [22] CORBA-based echo server (VisiBroker). Active replicatioith pass- | 3% Transparent replication to both CORBA applicatiol
first scheme. Totem as a communication layer. Linux on In¢eitiem. and ORB. 10% overhead on Solaris. T
LSA framework Active replicated echo server with majority voting. Ensédenas com- | 200% 30 % overhead for multithreaded Apache server witfi|a
munication layer. CGl program creating a 1 KB HTML page.
Bast [13] Smalltalk method invocation. 900% Replicas immediately send a reply to the client.
OGS [13] CORBA method invocation. Solaris 2.5 on SPARC. 900 %
Arjuna [24] System call invocation. Solaris 2.3 on SPARC. 600% (for wite | Object oriented framework for fault tolerant dig
system call) tributed applications om transactional systems.
FATOMAS [25] Agents that increment the value of a counter at each stadeeaxecu- | 290% Java-based fault-tolerant mobile agent system. Over-
tion. AIX on PowerPC. head calculated with respect to a triplicated agent yis.
single agent.

Table 7. TCP-based and CORBA-based simplex echo server.
message TCP CORBA CORBA
H size (bytes) | time (ms) | time (ms) | overhead (%)

1 0.136 0.552 306
100 0.171 0.591 246
1000 0.473 0.929 96.4
2000 0.684 1.20 75.4
4000 0.835 1.56 86.8
8000 1.19 2.41 103

and measurement of the performance overheads vary signilficiis difficult to make a direct comparison among thessam
surements. However, since the Eternal reported overhesmsmall, we investigated the potential reasons for thediffces
in the overhead we measured and the one observed in Eteeggliflg in mind the above caveat).

e The overhead of CORBA with respect to plain TCP-based ealverseAn analysis shows that the overhead due to
CORBA masks the overhead of the Eternal infrastructurdfit$®ecall that TCP version of the echo server is used as
a baseline for comparison in our measurements. Table 7 tefi measurements of the overhead of a CORBA-based
simplex echo server (VisiBroker, also used by Eternal) withpect to a TCP-based simplex echo server. One can see
that the overhead varies from 306% to 75.4% for message &izsde and 2000 bytes, respectively. Consequently
we estimate that the overhead incurred by Eternal-based sever will vary between 318% and 80.7% (depending
on the message size) as compared with plain TCP-based exteo. SEhe overhead is estimated using the relationship
Tﬁﬁzz"" = Leternal . Tﬁ:ﬁ“ . The ratioZs=221 is 1.03 (3% overhead). The rat@%;“ is calculated using data in Table 7.

Teorba

e Differences in the replication schem&he 3% overhead of Eternal is measured with respect to &atetl echo server
with a pass-first scheme (no majority voting), where dupddaequests and responses are suppressed both at the sender
and at the receiver. As a consequence, only two messagesrareane for the request and one the response. Our
framework employs majority voting, which involves exchamgof four messages: one is sent from the voter to the
replicas and the remaining three come from replicas sertigigoutputs to the voter.

In addition to the pass-first scheme used in the previousiBtexperiment, Eternal also supports a majority votingeseh
in which the voting occurs within the client process. Theartgd overhead for this scheme is 20-30% for triplicatedrdland
triplicated server running a “packet driver” on Solaris [22n our framework, voting occurs outside the client in a &efte
voter/fanout process. As a result, there is an additionmlok communication, which adds an overhead of about 100% as
compared with the unreplicated echo server (the commuaitet over plain TCP).

It should be emphasized that embedding the voter into tleatcbody (as it is done in the Eternal system configuration)
may be not sufficient in the case when the group of the repglitelients needs to produce a single output to the externddwo
In this scenario, the system will have to provide an add#lomter to make a final decision as to the output that should be

18



Table 8. Error models used in injection experiments.

[[_Error Model | Description [ Failure Definition I
SIGKILL The OS delivers a SIGKILL signal to the target replica. Target replica terminates, simulating a clean crash failur
SIGSTOP The OS delivers a SIGSTOP signal to the target replica. Target replica threads are suspended, simulating a clgdinadang.
Text segment A single bit in the text segment of the target replica is fligpe Target process can fail by crashing, hanging, or producmgeorrect

state/output.

Heap memory

Bits in allocated regions of the heap memory in the targelicepare
periodically flipped until a failure is induced.

Target process can fail by crashing, hanging, or producmgeorrect
state/output.

Table 9. SIGKILL, SIGSTOP, text-segment and heap injection  results.
Error Total Activated Manifested Errors
Model Injected Errors CRASH [ HANG ASSERTION
Errors SEG. FAULT [ ILL.INSTR. | KILLED | DETECTION
SIGKILL 200 200 (100%) N/A N/A 200 (100%) N/A N/A
SIGSTOP 200 200 (100%) N/A N/A N/A 200 (100%) N/A
Text segment | 342 160 (47%) 111 (32%) 13 (4%) N/A 14 (4%) 20 (6%)
Heap memory 214 N/A 20 (9%) N/A N/A 8 (4%) 106 (49%)

delivered to the outside, and this will add extra overheadlar to what we have measured. An alternative would be ttaep
the replicated client with a single client with an embeddeter This, however, creates a risk of simultaneous faibiréne

client and the voter. The separation of the voter and thagl@n the other hand, allows recovering from voter failu@be

independent and possibly transparent to the client andetvers

5. Fault Injection Evaluation

A series of fault injection experiments were conducted tpgdsess the impact on application behavior of faults in the
replicated application, the replication framework, andEinsemble (the underlying reliable broadcast layer). Alitgted,
multithreaded Apache server was used as the target appticétTable 8 summarizes the error models and the failure definitio
for each model. NFTAPE [30], a software framework for cortthge automated error injection experiments, was used to
conduct the experimental evaluation of the LSA algorithm.

Table 9 reports the results of over 1000 injections for albemodels listed in Table 8. In all cases, the system is able t
recover from a failure generated by the injection. Note th#te failed replica is the leader, followers successfdlgcted
a new leader (after the failed leader was excluded from ts&esy). Approximately 49% (106 runs) of heap injections were
detected by assertions incorporated into the LSA code. rEdetected by assertions were caused by: (1) a corrupteg ent
in mutex table (98 cases), (2) a corrupted entry in the taldpping physical mutexes into logical mutex ids (6 caseg)a(3
corrupted Ensemble data structure (1 case), and (4) inkehdler in the synchronization messages (1 cdse).

6. Related Work

In software-based replication, reliable message delia@y consistency of information constitute two major diffi@s to
overcome in the implementation of replicated systems. &liesies have been extensively investigated and resulradriy
group communication protocols [6], [14], [18], [3], [27]. Mdther fundamental issue in replicated systems is the paten
nondeterminism in the execution of different instances i@&@icated component/application.

The Tandenintegrity S2system [16] guarantees that its three processors exeaisathe instruction streams by synchro-
nizing (1) on global memory accesses, (2) on hardware inpéest and (3) periodically (every 4096 run cycles). Theyearl
work on software-based replication essentially emulatdiware solutions. For example, there are a number of sgsiiem
which replicas are synchronized at the interrupt level. TA&RGON/3Xystem uses a process-pair scheme with a LAN of
three-processor machines connected by a dedicated bufidare reliable communication. Asynchronous events.(éJiIX

18No faults were injected into the voter.
170ut of 160 activated text segment errors, two errors did nanifest (i.e., a corrupted instruction was executed withwving a visible impact on the
behavior of the replica).
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signals) are transformed into synchronous messages dlive the destination process and its backup [1]. Flipervisor
system provides primary/backup replication transpayetatithe operating system and user applications. A virtuathire
layer, inserted beneath the operating system, uses thevligdnstruction counter [9] to count the instructions exed be-
tween two hardware interrupts. This information is coléetbn the primary machine and periodically sent over the oet\to
the backup machine, which reproduces the effects of theguyimhardware interrupts [8]Transparent Fault Tolerance (TFT)
is similar to the Hypervisor solution, except the interpiasiing is done at the operating system call interface [7].

Delta-4provides user applications with passive replication, setie replication, and active replication. Active replion
cannot handle nondeterminism of the replicas. In semiactyplication, a leader/follower model plus a preemptioncéyo-
nization mechanism are employed. Replicas can be preemptgdn a predefined set gireemption pointsEach time an
input message that requires preemption arrives at the letdeleader determines the next preemption point on whieh t
message will be served. This information is sent to follawsar that they can serve the message at the same point asdée lea
[19], [23].

Synchronizing at the interrupt level in software causegdarerformance overhead, as synchronization informasiorans-
ferred over a network. More recent software approachegiaetion attempt to take advantage of the object-oriepteddigm
and advocate object replication rather then process @it (as discussed above). A common trend in object rafichas
been to integrate fault tolerance via replication of CORBWl&cations [20].

Recent years have brought studies on replicating multtied applications. Some of the issues related to handlindero
terminism due to multithreading have been studied in theecdrof log-based rollback recovery. [2] suggests addingpsut
to the Mach operating system to track and to log the order irchvthreads access locks and semaphores. The data preserved
in the log is used to support rollback recovery of failed msses (i.e., the thread execution is replayed followingptiger
dictated by the log). [29] presents a technique based o @ssoftware counter to track the number of instructions betw
nondeterministic events during normal operation. In cdsefailure, the instruction counts are used to force theagpf these
events at the same execution points.

Existing solutions to replicate multithreaded applicati@re based on employing a nonpreemptive deterministexdsdér
that guarantees the same scheduling on all repli€&srnal addresses the replication of multithreaded CORBA objegts b
employing a nonpreemptive deterministic scheduler tHatal the execution of only one logical thread at a time. Assallte
concurrency is significantly limited. If the running threaxlecutes a remote method invocation, for example, no otiead
can be scheduled until the method returns and the runniegdtierminates processing [21].

Transactional Drageemploys a deterministic, nonpreemptive scheduler to eefdeterministic behavior of multithreaded
replicas. The algorithm targets transactional applicegiand allows several transactions to execute concurredtiyever,
scheduling of another thread can be done only when the rgrthiead reachesscheduling pointsuch as a service request,
selective reception, lock request, server call, or end etakon. Unlike Eternal, Transactional Drago allows the@rion of
more than one logical thread at a time; however, both candsgdb@nly one physical thread at a time (even if multiple CPUs
are available). As a result, Transactional Drago suffengtditions similar to Eternal’s [26].

7. Conclusions

This paper proposedlaose synchronizatioalgorithm for software-based active replication of mbit@aded processes. The
algorithm enforces “equivalent” ordering of state charg@®ss replicas and guarantees replica consistency witbverhead.
The leader replica establishes the order of mutex acquisitand sends this order to the follower replicas over thevarit
The algorithm is formally specified and the proposed forsmalis used to prove correctness of the algorithm in failuee-f
behavior as well as in presence of errors. To evaluate thegsex algorithm, a transparent active replication framkhas
been developed and used to replicate the multithreademwesthe Apache web server.
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8. Appendix
8.1. Leader—Follower Correctness

This section outlines proofs of lemmas and theorems useteimiain part of the paper. Based on the definitions and the
LSA specifications (see the pseudocode in Figure 2) we ptwvedrrectness of the LSA (safety and liveness propertiis).
start by proving two lemmas showing that the order in whichfticting mutex acquisitions are performed at followersesy
with the leader’s history.

Lemma 1 For each nonfaulty followeyf, conflicting mutex acquisitions are orderedAfY in the same way they are " /:
Lf

HS H
V(m, ti), (m,t_;) € H'f, HL (m,ti) < (m, t]’) — (m,ti) < (m,t_;).
Proof. Note from the pseudocode that a threéacequesting a mutex. returns froml sa_l ock (which meangm, t;) € H/)
only after extractingdm, t;) from pr oj _queue[ ni . Entries are not extracted from projection queues unlessiitexn has
been locked. After extractiom,sa_l ock never unlocksn; hence, extraction and exiting frohsa_l ock (acquiring mutex

f
m) are atomic. Thereforém, t;) Fé (m, t;) if and only if (m, t;) has been extracted fropr o] _queue[ m] before(m,t;).
Since all conflicting operations on mutexare appended to the bottommfoj _queue[ n] byon_nt _updat e in the same

Lf

order as they appear "/, (m, ;) is extracted fronpr oj _queue[ ni before(m, t;) if and only if (m, ;) H< (m,t;). O
In absence of failures, the leader history reconstructad@tower is a prefix of the actual leader history; hence ptevious
lemma can be strengthen as follows.

Lemma 2 Given the leadet and a followerf, in absence of failures conflicting mutex acquisitions aaeced in H/ in the
Hf H'
same way they are ifl': ¥(m, t;), (m,t;) € Hf ,H' : (m,t;) < (m,t;) <= (m,t;) < (m,t;).

Based on Lemma 2 and the notion of causal dependency, we vashwov that the leader and a follower satisfy the safety
property.

Theorem 1 (Leader—Follower Safety)Let H' be the leader’s history anfl / a follower’s history. In absence of failures]!
and H/ satisfy the safety propertyi(m,t) € H', H' : 01 (m,t) = 05 (m, 1).

Proof. By contradiction, suppose théat, t) is the first entry both iff! and H/ such tha¥y (m,t) # g (m,t). Therefore,
there exists an earlier mutex acquisition’, ¢'") such that(m",t") € g (m,t) A (m", ") & s (m,t) or (m", ") ¢
O (m,t) A (m",t") € 85 (m,t). By definition of causal precedence, there are three casemgider.

H' HY H'
Case (1)it" = t. The condition on(m",t") corresponds either ton",t) < (m,t) A (m,t) < (m",t)orto (m,t) <

(m,t) A (m",t) Fg (m,t). This means that the behavior of the leader threadd the follower thread have diverged. If
there is no mutex acquisition common to both, then the tte'dashaviors have diverged before they required their finstax.
However, this contradicts the piecewise thread determirdssumption since leader and follower replica start froenghme
initial state. On the contrary, Iéin*, t) be the last mutex acquisition common to both leader andi@tdhread:. After that
acquisition, the two threads acquire different mutexesweier, note that by constructigm*, t) < (m,t) bothinH' andH/;
thus, by definition ofm, t), 6. (m*, t) = 655 (m*, t), which—for the piecewise thread determinism assumptioortradicts
the fact that leader and follower threatiehaviors have diverged aften*, t).

Case (2):m' = m. The condition or{m",t") corresponds either ton, ") Zl (m,t) A (m,t) Fg (m,t") orto (m,t) Fg
(m,t") A (m,t") fg (m,t). This contradicts Lemma 2.

Case (3):t" # t A m' # m. There must be a chain of causal dependencies frath t'’) to (m,t¢). Note that when
going from one element of this chain to the following elemdris not possible that both the thread and the mutex chasege (
definition of causal dependency). Letb*, t*) be the element in this chain that immediately precddes), i.e.,(m”,t") ~
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s (MF ) ~ (myt). For(m*, ¢*) to exist, it must be that eitheét = ¢ orm* = m. So, the existence ¢fn*,t*) leads to
one of the two conditradictions above; therefore, such adnam (m", ") to (m,t) cannot exist. O
The following lemma is used to prove liveness between thédeand a follower.

Lemma 3 In absence of failures, {in, t) exists in the leader’s history, then it will be eventuallypaepded ter o] _queue[ ni
in each follower.

Proof. In absence of failures, ifm,t) € H!, then it has been stored in the leader's mutex table, whieléstually trans-
mitted to the followers (either when it gets full or hyeader _peri odi c_t x). Hence, eventuallym,t) is appended to
proj _queue[ Ml byon_nt _updat e. O

Theorem 2 (Leader—Follower Liveness)in absence of failures, the following two conditions hold.

1. If a mutex acquisition is performed at the leadeeventually it will be performed at each followgr (m,t) € H' —
O(m,t) € HY.

2. If a mutex acquisition is performed at a followgreventually it will be performed at the leader (m,t) € Hf —
O(m,t) € HL.

Proof. Consider condition (1). Note that whém, t) is extracted fronpr oj _queue[ m , ¢ returns froml sa_l ock, which
is equivalent tqm, t) € H/. The proofis by induction on the positionof (m, t) in the sequencél’.

Base caseAssumen = 1 (i.e.,(m, t) is the first element off'). We first show that since threads in the leader, eventually
it will be in the follower as well. Ift is the replica’s main thread, it is present in both leader fmtidwer. If ¢ is not the
main thread, thefihas been be created in the leader by a thrgaBor the picewise thread determinism and same initial state
assumptions, if,, is created in the follower, then eventuailyvill be created in the follower as well. K, is not the replica’s
main thread, the same argument can be iterated to showrHtattit will be eventually created in the follower.

Note thatindex(m, t) = 1, since(m, t) is the first mutex acquired at the leader and, so, the firstxadquired by the leader
threadt. The first mutex the follower threadwill requestis alsan for the piecewise determinism and same initial state assump
tions. If the follower thread tries to acquiren (i.e., invoked sa_l ock( m) ) before(m,t) is appended tpr oj _queue[ n,
then the conditioman _acquire_mutexz(m) at line 13 will be false becauséer oj _.queue[ n] is initially empty. Therefore,

t is suspended (line 26). For the Lemma 3, eventuatiymt _updat e will append(m,t) to pr oj _queue[ i , which be-
comes the top entrypn_nt _updat e will also resume since the conditionan_schedule_next_thread(m) will be true. Once
resumed; will find the conditioncan_acquire_mutexz(m) true and so it will remove(m, t) at line 13. If¢ tries to acquire
m after (m, t) is appended tpr oj _queue[ n1, then it will find the conditiorcan_acquire_mutex(m) true and so it will

remove(m, t) at line 14.

Inductive step Assume the theorem is true farand that(m, t) is the (n + 1)** element inH'. We first show that since
threadt is in the leader, eventually it will be in the follower as well

If (m,t) is not the first mutex acquisition of threadthent is already present in the follower, otherwise we need to show
that eventually will be created in the follower. If is the replica’s main thread, it is present in both leaderfatidwer. If ¢
is not the main thread, therhas been be created in the leader by a thtgatf ¢, does not acquire any mutex before creating
t, for the picewise thread determinism and same initial staaimptions, it, is created in the follower, then eventuatly
will be created in the follower as well. K, acquires a mutex before creatingconsider the mutex acquisitigm’, ¢,,) of ¢,
immediatelly preceding the creationofSince this acquisition precedgs, t) in H', by hypothesis, eventually it must i/
as well. For the safety property;: (m',t,) = 6 (m',t,); hence, for the picewise thread determinism and samelistase
assumptions, if, is created in the follower, then eventuatlyvill be created in the follower as well. i, is the replica’s main
thread, it is present in both leader and follower; otherwibe same argument can be iterated to show that, in facil] be
eventually created in the follower.
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Assume andndexz(m,t) = k + 1. By hypothesis, alt’s mutex acquisitiongm;, t) contained in the first positions of
H'! eventually are in/ (¢ eventually acquires the mutexes throughl sa_l ock). The number of such acquisitions must
be k becausendex(m,t) = k + 1. Moreover, since no follower thread exceptan remove entries of the forian;, t)
from pr oj _queue[ m;] , all thesek acquisitions must be done by Let (my,t) be the last of these acquisitions. For the
safety propertyd g (my, t) = 057 (my, t); hence, for the piecewise thread determinism and samalistiate assumptions, the
(k + 1) mutex the follower threadwill request ism (the same as the leader thredConsider now two cases.

(a) Assume that there is no (conflicting) acquisition, ¢;) preceding(m,t) in the projection tom of the firstn ele-
ments of H!. If ¢ requestsn before(m,t) is appended ipr oj _queue[ ni, thent is suspended. Whehis resumed by
on_nt _updat e, it will find the conditioncan_acquire_mutex(m) true and so it will removem, t) at line 14. Ift requests
m after(m,t) is appended t@r oj _queue[ n1, then it will find the conditioncan_acquire_mutex(m) true and so it will
remove(m, t) at line 14.

(b) Assume that there is a (conflicting) acquisition prengdin, t) in the projection ton of the firstn elements off!
and let(m,t;) be the one immediately precedifig,t). If threadt tries to lockm before(m,t;) is extracted of(m, t) is
appended tpr oj _.queue[ ni , thent is suspended (it will find at line 13 the conditiomn _acquire_mutexz(m) false). t will
be resumed whefm, t) becomes the top entry ppr oj _queue[ nj . This happens either at line 14, when, ¢;) is eventually
removed?®, or if pr oj _queue[ ni is empty wher(m, t) is appended to it bpn_nt _updat e. Once resumed,will find the
conditioncan_acquire_mutex(m) true and so it will removem, t) at line 14. Iff tries to lockm after(m, ¢;) is extracted and
(m,t) is appended t@r oj _queue[ m , then it will find the conditiorcan_acquire_mutex(m) true and so it will remove
(m,t) atline 14.

Consider condition (2). The conclusion follows from thetféwat (m,t) € Hf = (m,t) € H“f (i.e., only mutex
acquisitions that are iff:/ can be granted) and from the fact thiat/ is a prefix of /. O

Theorem 3 (Leader—Follower Correctness)in absence of failures, the leadeand a followerf satisfy the correctness prop-
erty.

8.2. Follower—Follower Correctness

Safety, liveness (and, hence, correctness) between twiaulonfollowers are shown under the assumption that thegive
the same sequence of leader's messages (which impliegtusrs histories reconstructed by them are such that qefix
of the other). This condition always holds in the failuredrscenario. More importantly, the condition also holds nhe
corrupted mutex table is sent to the followers as long ao#twers receive the same mutex table.

Lemma 4 Given two nonfaulty followerg; and f, with H"/1 and H"-/2 such that one is prefix of the other, conflicting mutex
I . . H)
acquisitions are ordered it 1 in the same way they are H72: V(m, t;), (m,t;) € H',€ Hf> : (m,t;) < (m,t;) <
H 2
(m,ti) < (m.,tj).

Proof. Let (m,t;) and(m,t;) be both inH/ andH/2. Based on the Lemma 1 and on the fact tH&¥" and H'-/> are such
that one is prefix of the other, it straightforward to showttha, #;) and(m, t;) must be both inFf"-/1 and H'-7=. O

Theorem 4 (Follower—Follower Safety) Given two nonfaulty followerg and f, with H%/t and H'-¥2 such that one is prefix
of the other, they satisfies the safety propevtym, t) € H ' H2 : 0y, (m,t) = 05 (m, t).

Proof Sketch. The proof follows the same steps as for Theorem 1 exceptiibtgad of using Lemma 2, it is necessary to use
Lemma 4. O

1
18Note that(m, t;) Ii (m, t); hence, it will be eventually removed by hypothesis.
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Lemma 5 Given two nonfaulty followerg, and f, that receive the same sequence of leader’s messages,tif exists inH /1
then it will be eventually appendedpo oj _queue[ m] of fs.

Proof. If (m,t) € H', then(m,t) € H'/1. If (m,t) is not already inF7%/2, it will eventually be becausé and f, receive
the same leader’'s messages. OncHir2, (m, t) will be appended tpr oj _queue[ nj of f, by on_nt _updat e. O

Theorem 5 (Follower—Follower Liveness)Given two nonfaulty followerg, and f5> that receive the same sequence of leader’s
messages, they satisfies the liveness propértyt) € H'' — O(m,t) € H/>.

Proof Sketch. The proof follows the same steps as for Theorem 2 exceptribtgad of using Lemma 3, it is necessary to use
Lemma 5. O

Note that while liveness between leader—follower guamsite continuous operation, liveness between followeexficdl
only guarantees that followers will eventually grant theyeamutex acquisitions.

Theorem 6 (Follower—Follower Correctness)Given two nonfaulty followerg; and f-> that receive the same sequence of
leader's messages, they satisfies the correctness property

8.3. Deadlock

Theorem 7 A nonfaulty follower is in deadlock if and only if the followgicondition holdsYm. € mutexes : (Oproj_queue[m] =
0) V (proj_queue[m].head().t € suspended_threads) V (Oproj_queue[m).head().t € threads).*®

Proof Sketch. =: Suppose there exists a mutexthat violates the above condition. If the threadj_queue[m].head().t
(which is a valid thread and is not suspended) requests mujélen the request can be served, contradicting the assampti
of deadlock.

<: From the hypothesis, projection queues can be partitiaométree classes: (1) those the are and will always be empty,
(2) those whose thread in the top entry is suspended, antd8¢ twhose thread in the top entry does not and will always not
exist. Mutexes corresponding to class (1) and (2) will ndaeacquired because no top entry can be removed. Threads in to
entries of class (2) either form cyclic dependencies or ddms a mutex corresponding to class (1) or (3); thereforenatex
can be acquired. O

The following theorem exploits the presence the artificiaitex nc to express deadlock with a simpler condition than
that of Theorem 7. This new condition is used by the LSA pseade (predicat@eadlock) for detecting deadlock during
reconfiguration.

Theorem 8 A nonfaulty follower is in deadlock if and only if the followgicondition holdsYm. € mutexes : (Oproj_queue[m] =
0) V (proj_queue[m].head().t € suspended_threads) V (proj_queue|m].head().t ¢ threads).

Proof. =: We first show that if the replicais in deadlock thém € mutexes : O((proj-queue[m] = 0)V(proj_queue|m).head().t €
suspended_threads)V (proj_queue|m].head().t € threads)). Supposing by contradiction that this condition does ndd ho
i.e.,3m € mutezes : O((proj_queue|m] # O)A (proj_queue|m].head().t ¢ suspended_threads)V (proj_queue|m].head().t
€ threads)), then eventually the threagtoj_queue[m].head().t will exist, will not be suspended, and will be in the top entry
of proj_queue[m]. Therefore, if this thread requesis, the request will be eventually served, contradicting thedthesis of
deadlock.

Since((proj-queue[m] = 0)V(proj_queuelm].head().t € suspended_threads)V (proj-queue[m].head().t € threads))
is equivalent tqOproj _queue[m] = 0) V (Oproj-queue[m).head().t € suspended_threads)V (O proj_-queue[m)].head().t
¢ threads), and since if a predicate is true from now on, itis also true,ndfollows thatvm € mutezes : (Oproj_queue[m] =
0) V (proj_queue[m].head().t € suspended_threads) V (proj_queue[m].head().t ¢ threads).

19wWe use the linear temporal logic symtidlto denotefrom now on
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«<: From the hypothesis, projection queues can be partitiomédee classes: (1) those the are and will be empty, (2ethos
whose thread in the top entry is suspended, and (3) thoseawhresad in the top entry is not in the set of the current trsead
Clearly, mutexes corresponding to class (1) will never lipued since no more entries will be stored in any projectjoaue.

Mutexes corresponding to class (3) can be acquired if andibthile thread in their top entry is created in the future. Bart
this the mutexrc—which is used to serialize accesses to the funatiomat e_new.t hr ead—must be acquired by the parent.
If mrc corresponds to class (3), then it is evident that no threadeacreated in the future and, thus, mutexes corresponaling t
class (3) will never be acquired. Therefore, assumertbatorresponds to class (2).

Mutexes corresponding to class (2) can be acquired in thedit and only if the thread in the top entry of their projecti
gueue is resumed. But these threads are suspended becawsatarg for the top entry of another projection queue to be
removed, a projection queue that must be either in clas$2)l)or (3) by hypothesis. These dependencies imply thatreatd
can be awaken at all; hence, no mutex can be acquired (andtioytar nt). O

The following corollary is a consequence of the followelldaver correctness theorem.

Corollary 1 Given two nonfaulty followerg, and f,, if one deadlocks, eventually so does the othferdeadlocks— ¢ f»
deadlocks.

Proof. By contradiction, suppose there exists, t) that is acquired iry, (i.e., (m,t) € H/2) but cannot be acquired ify
because; is in deadlock. Sincg; and f, satisfy the liveness property (in both directions; henodghe f — f; direction),
eventually(m, t) must be inH " (i.e., will be acquired inf;), which contradicts the hypothesis. O

Deadlock detection during normal operation. The absence of output observed by the voter (replica hang)baaaused

by a replica thread being suspended because of a deadlodkionron a subset of the replica mutexes. The generalizatio
Theorem 7 for a subset of mutex&g’ is given by: (A)Vm € M' : (Oproj_queuelm] = B) V (proj_queue|m].head().t €
suspended_threads A (3m' € M' : proj_queue[m].head().t waits_for m')) V (Oproj_queue[m].head().t ¢ threads),
where the predicaté waits_for m' is true if the thread is suspended because of requesting muitéx The difference
between (A) and Theorem 7 is in an extra predicate in the skcondition, which accounts fo¥1’ possibly not containing all

the replica mutexes by requiring that dependencies remalt’i. The deadlock condition on a subset of mutexes corresponds
to the existence of a subsét’ for which (A) holds.

In practice, théJ operator preceding a predicaiean be evaluated by observing thpdtas held for a sufficient amount of
time 7', whereT is the maximum waiting time on a projection queue and incduithe maximum time between reception of
subsequent mutex table updates.

The existence of a subsét’ for which (A) holds can be evaluated with linear complexigyforming a dependency graph.
Nodes are both the threads in the top entries that are susgertie first part of second condition of (A)—and mutexes for
which either the projection queue is empty or the thread énttip entry is not valid—the first and third conditions of (An
edge connects a threadto a thread if ¢; is suspended because of requesting the mutex for whichtop entry; an edge
also connects a threado a mutexm if ¢ is suspended because of requesting-the second part of second condition of (A).
A subsetM' for which (A) holds exists if there is a cycle in the graph cerais a path terminating on a mutex whose status
has not changed for more th@htime units since the last time a thread was suspended bechregpiesting this mutex.
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