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Abstract

Software-based active replication is a well-known technique for providing fault tolerance using space redundancy andfault-
masking. However, much of the recent research in software replication has yet to be demonstrated using large, real-world
applications, and in particular, multithreaded applications. While multithreading can improve performance, threadscheduling
is a source of nondeterminism in application behavior. Existing approaches to replicating multithreaded applications employ
either synchronization at interrupt level, at the expense of performance, or a nonpreemptive deterministic scheduler, at the
expense of concurrency.

This paper presents aloose synchronization algorithmfor ensuring deterministic behavior of replicas while preserving
concurrency. The algorithm synchronizes replica threads only on state updates by intercepting mutex requests. The algorithm
is formally specified and the proposed formalism is used to prove correctness of the algorithm in failure-free behavior as well as
in presence of errors. To evaluate the proposed algorithm, atransparent active replication framework has been developed and
used to replicate the multithreaded version of the Apache web server, a substantial real-world application. Performance for a
triplicated, multithreaded Apache is about 23% less than the TCP-based, noninstrumented version of the same multithreaded
Apache server.
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1. Introduction

In a fault-tolerant replicated system, multiple instancesof an application execute on independent hardware so that the system

can continue to provide correct service in case of a replica failure. Earlier approaches used dedicated, often proprietary,

hardware to achieve efficiency and performance (e.g., [16]). Replication in software aims to be more flexible and less costly by

making use of commercial, off-the-shelf (COTS) hardware, but its applicability to real-world systems is somewhat limited. In

particular, the extension of replication to multithreadedapplications requires further investigation.

This paper proposes aloose synchronization algorithm(LSA) for ensuring deterministic behavior of replicas while pre-

serving concurrency. In contrast with current techniques that synchronize replicas at the interrupt level [1], [8], [7], [23], the

algorithm synchronizes replica threads on state updates (enforcing an “equivalent” order) by intercepting mutex requests in-

voked by threads before accessing shared data. Performanceoverhead is minimized by preserving concurrency in the execution

of application threads—the algorithm does not interfere with the operating system scheduler, except when granting mutexes.

This is also in contrast with approaches employing nonpreemptive, deterministic schedulers [21], [26], which limit concurrency

by allowing only one physical thread to execute at a time.

Although intercepting mutex requests to record the order ofstate updates has been proposed in the context of rollback re-

covery [2], it has not been applied to active replication, nor has it been demonstrated on a substantial application. To evaluate

the proposed algorithm, a transparent active replication framework has been developed. The framework consists of an imple-

mentation of the loose synchronization algorithm, avirtual socket layerthat provides transparent replication and an adaptive
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Figure 1. Execution of follower threads.

voter/fanoutcomponent that detects errors (crash, hangs, and value errors), excludes faulty replicas, and reliably broadcasts

client requests to the replicas. The framework has been usedto replicate the multithreaded version of the Apache web server,

a substantial real-world application. Results show about a23% performance degradation for a triplicated Apace web server

compared to a noninstrumented, TCP-based version of the same server.

2. Loose Synchronization Algorithm

The proposedloose synchronization algorithm(LSA) exploits the fact that nondeterminism in replica behavior is acceptable

as long as it does not impact the output produced by replicas and voted upon by the voter. Replica output is typically a function

of the replica’s state and inputs; hence, suppling the same sequence of inputs and enforcing the same sequence of state updates

in each replica guarantees that all replicas produce the same sequence of outputs.

In a multithreaded application, updates to a shared state are serialized through mutex variables (mutual exclusion). The

manner in which threads are granted mutexes is usually nondeterministic and depends on the scheduling algorithm used bythe

operating system. As a result, the programmer cannot usually make assumptions on the order in which mutexes are acquired.

Assuming noa priori knowledge of the way mutexes are requested by the replica threads, determinism of replica state

updates can be achieved by designating a selected replica, theleader, to make decisions on the order in which mutex variables

are granted and to enforce an “equivalent” order in other,follower replicas. All replicas begin executing together, and leader

threads freely execute while the order of mutex acquisitions is collected. The leader’s order is continuously sent to the followers,

which enforce the same order on their threads. The mechanismis such that a follower threadt can be blocked when acquiring

a mutexm if (1) the order established by the leader for the next acquisition of the mutexm has not yet been received or (2) the

mutexm needs to be acquired first by another thread (according to theorder established by the leader). The follower replicas

need to enforce in their threads the order dictated by the leader only with respect to the same mutex. This permits concurrency

to be preserved in the execution of follower threads that do not simultaneously acquire the same mutex. Figure 1 shows an

example of an order of mutex acquisitions sent by the leader to the followers via a mutex table. The follower threadst1 andt2
can be executed concurrently (since they acquire differentmutexes), whilet1 andt3 must be serialized.1

2.1. System Model, Definitions, and Assumptions

The system consists of a set of identical multithreaded processes (replicas) running on different nodes and interconnected

by means of a network. One process is designated as the leaderreplica; the others are follower replicas. Each process consists

of a set of threadsT and a set of mutexesM used to protect partitions of shared data (T andM can be infinite). Application

threads use the functionlsa lock (replacing the system calllock) to acquire a mutex. Threads release a mutex using the

system callunlock. Two additional functions,create new thread andcreate new mutex, are provided to replace,

respectively, the system callsthread create andmutex create (see Figure 2). The LSA algorithm requires leader and

1It is assumed that two different mutexes do not protect overlapping (or coincident) shared-memory regions, which is also good programming practice.
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followers to exchange information about the mutex acquisition order. A FIFO-order reliable multicast and a reliable group

membership service are available. It is also assumed that the network does not partition.

Definition 1 (Mutex Acquisition) A triple (m; t; k) 2M�T �N denotes amutex acquisitionmade by threadt on mutexm
through the functionlsa lock; this is thekth mutex acquisition performed byt.

Expressing mutex acquisitions as triples emphasizes the fact that mutex acquisitions are unique within each replica. To

simplify the notation, however, a mutex acquisition(m; t; k) will be referred to as a pair(m; t). The termk can still be

retrieved by applying a functionindex to the pair (e.g.,k = index(m; t)).
Two mutex acquisitions are calledconflictingif they are made by different threads on the same mutex. In general, the order

in which conflicting mutex acquisitions occur can affect theresult of the computation.

Definition 2 (History) A historyHr of replicar is the sequence of mutex acquisitions ofr’s threads. The notation(mi; ti) Hr<(mj ; tj) depicts that(mi; ti) temporally precedes(mj ; tj) in Hr.
Since threads within a replicar execute on the same node, the order of mutex acquisition inHr is determined by the

local clock of the node at the time that threads return fromlsa lock. Enforcing the leader’s history on the followers (under

assumption of determinism as defined later) makes the followers behave like the leader. This, however, is a stronger requirement

than necessary since only the causal dependencies between mutex acquisitions need to be preserved.

Definition 3 (Causal Precedence)Given a historyH and two mutex acquisitions(mi; ti) and(mj ; tj) in H , (mi; ti) causally

precedes(mj ; tj) in H (i.e.,(mi; ti) H; (mj ; tj)), if and only if one of the following conditions holds:

1. ti = tj ^ (mi; ti) H< (mj ; tj); (mutexes acquired by the same thread);

2. mi = mj ^ (mi; ti) H< (mj ; tj); (conflicting mutex acquisitions);

3. 9 (m; t) 2 H : (mi; ti) H; (m; t) ^ (m; t) H; (mj ; tj); (transitivity of causal dependency).

Note that causal precedence implies temporal precedence, while the opposite is not necessarily true. The notion of causal

precedence between two mutex acquisitions in a multithreaded process is analogous to the notion of causal precedence between

two events in a distributed system [4]. As there are concurrent events in distributed systems (i.e., events that are not causally

related), there are concurrent mutex acquisitions in a multithreaded process (i.e., acquisitions whose actual order of execution

does not affect the result of the computation). The LSA algorithm allows replicas to schedule concurrent mutex acquisitions

independently in order to preserve concurrency.

Based on the notion of causal dependency, the next definitionintroduces the causal history of a mutex acquisition.

Definition 4 (Causal History) Given a historyH and a mutex acquisition(m; t) in H , thecausal historyof (m; t) is the set�H(m; t) = f(m0; t0) 2 H j(m0; t0) H; (m; t)g [ f(m; t)g.
The causal history of a given mutex acquisition(m; t) represents all mutex acquisitions upon which(m; t) is causally

dependent. Note that a replica history contains all of the replica’s mutex acquisitions, while a unique causal history is associated

with each mutex acquisition.

The LSA algorithm assumes that threads behave deterministically between two consecutive mutex acquisitions. This is

somewhat similar to the piecewise deterministic assumption made by proponents of message-logging checkpointing [11]. While

determinism is traditionally expressed in terms of state, the causal history is used as an abstraction to represent a thread’s view

of the replica’s state.
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Definition 5 (Piecewise Thread Determinism)A threadt in a replicar is piecewise deterministicif and only if given the last

mutex acquisition(m; t), the behavior oft is uniquely determined by�Hr (m; t) and the replica’s initial stateSr0 . From the

initial state (i.e., before the first mutex acquisition), the behavior oft is uniquely determined bySr0 .

From the above definition, it follows that the behavior and, hence, the outputs emitted by a threadt in a replicar between

a mutex acquisition(m; t) and the next mutex acquisition are a function only of�Hr (m; t) andSr0 . Note that the definition

precludes race conditions in the replica’s code. Only replicated applications whose threads are piecewise deterministic and

share the same initial state are considered in this paper. Inthe context of such a system, the correctness of the LSA algorithm

is defined as follows:

Property 1 (Correctness) Given two replicasr1 andr2, two conditions hold:

1. (Safety) The causal histories of the two replicas must be the same:8(m; t) 2 Hr1 ; Hr2 : �r1H (m; t) = �Hr2 (m; t).
2. (Liveness) Any mutex acquisition within one replica is eventually2 performed by the other replica:(m; t) 2 Hr1 =)�(m; t) 2 Hr2 .

2.2. Failure Free Behavior

In the following discussion, we assume that replicas and thereliable multicast layer (i.e., the reliable membership service

and the reliable multicast protocol) do not fail. The pseudocode for the LSA algorithm is shown in Figure 2.3 The functions,

variables, and definitions used in this pseudocode are givenin Table 1.

The leader’s historyH l is recorded at the leader by appending the mutex acquisitions into a fixed-size buffer (mutex table).

When the leader’s mutex table becomes full, the leader multicasts the table to followers (with a FIFO-order reliable multicast),

and flushes it so that new mutex acquisitions can be recorded.The leader’s mutex table is also multicast periodically by

leader periodic tx in order to guarantee transmission even when there are not enough mutex acquisitions to fill a table.

Conceptually, followers reconstruct the leader’s historyby concatenating the mutex table updates received from the leader.

The leader’s history reconstructed by a followerf after receivingn mutex table updatesfmt1; : : : ;mtng from the leaderl is

given byH l;f = mt1 amt2 a : : :amtn, wherea is the concatenation operator. Thus, in absence of failures,H l;f is a prefix

of H l.
A follower maintains a projection queue for each mutexm (proj queue[m]) that stores the subsequence ofH l;f corre-

sponding to mutex acquisitions on mutexm that have yet to be enforced.4 The follower invokes the functionon mt update,

upon receiving a mutex table update from the leader, to append the new updates to the appropriate projection queue. If a mutex

m is not yet in the set of the current replica’s mutexes,mutexes, then a new projection queue is created andm is inserted in

mutexes.

When a follower threadt requests mutexm by invokinglsa lock, the request is served only if the top entry inproj queue[m]

is (m; t). Otherwise,t is suspended—proj queue[m] is empty or its top entry indicates a different thread. Thread t is re-

sumed when(m; t) reaches the top ofproj queue[m]: (1)proj queue[m] is empty but a new mutex table update arrives

from the leader and, once unpacked, makesproj queue[m] have(m; t) as top entry (perform update lines 9–13) or (2)

proj queue[m] contains an entry(m; t0), with k = index(m; t0), immediately preceeding(m; t) and threadt0 acquiresm,

as itskth mutex acquisition, throughlsa lock (lsa lock lines 14–17).

Proofs for leader–follower correctness and follower–follower correctness are given in the Appendix.

2We use the linear temporal logic symbol� to denoteeventually.
3In absence of failures, inlsa lock the lines 20–24 are not executed, and the condition at line 25is always true. Moreover, inon mt update the

condition at line 3 is always false, andon leader failed andreconfigure are not invoked.
4Formally, a projectionHjm of a historyH on a mutexm is the subsequence of the all mutex acquisitions inH conflicting on mutexm such that(m; ti) Hjm< (m; tj) iff (m; ti) H< (m; tj) .
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1: Function createnew thread(f)
2: lock(lsamutex)
3: t threadcreate(f)
4: threads.insert(t)
5: unlock(lsamutex)
6: lsa lock(mc)
7: unlock(mc)
8: return t

1: Function createnew mutex()
2: lock(lsamutex)
3: m mutexcreate()
4: mutexes.insert(m)
5: if :isLeader then
6: proj queue[m].create()
7: end if
8: unlock(lsamutex)
9: return m

1: Proceduresuspendthread(m,t)
2: suspendedthreads.insert(t)
3: unlock(lsamutex)
4: suspend(m)
5: lock(lsamutex)

1: Procedureresumethread(t)
2: suspendedthreads.delete(t)
3: resume(t)

1: Procedure leaderperiodic tx()
2: while true do
3: sleep(LEADERTX PERIOD)
4: lock(lsa mutex)
5: if mutex table 6= ; then
6: cast(mutextable)
7: mutex table ;
8: end if
9: unlock(lsamutex)
10: end while

1: Procedure lsa lock(m)
2: lock(m)
3: lock(lsamutex)
4: t get curr thread()
5: repeat
6: if isLeader then
7: mutex table.append(m,t)
8: if #mutex table = maxentries then
9: cast(mutextable)
10: mutex table ;
11: end if
12: exit true
13: else ifan aquire mutex(m) then
14: proj queue[m].pop()
15: if an shedule next thread(m) then
16: resumethread(next thread(m))
17: end if
18: exit true
19: else
20: if reovering then
21: if deadlok then
22: recovery()
23: end if
24: end if
25: if :isLeader then
26: suspendthread(m,t)
27: exit false
28: end if
29: end if
30: until exit
31: unlock(lsamutex)

1: Procedureon mt update(update)
2: lock(lsamutex)
3: if reonfigurating then
4: pendingupdates.append(update)
5: else
6: perform update(update)
7: end if
8: unlock(lsamutex)

1: Procedureperform update(update)
2: for all (m; t) 2 update do
3: if m 62 mutexes then
4: proj queue[m].create()
5: mutexes.insert(m)
6: end if
7: proj queue[m].append(m,t)
8: end for
9: for all m 2 mutexes do
10: if an shedule next thread(m) then
11: resume(nextthread(m))
12: end if
13: end for

1: Procedureon leaderfailed()
2: lock(lsa mutex)
3: reconfigurating true
4: fIf already in deadlock initiate reconfiguration.g
5: if deadlok then
6: reconfigure()
7: end if
8: unlock(lsamutex)

1: Procedurereconfigure()
2: for all m 2 mutexes do
3: proj queue[m] ;
4: end for
5: isLeader choosenew leader()
6: if isLeader then
7: for all t0 2 suspended threads do
8: resumethread(t’)
9: end for
10: else
11: for all u 2 pending updates do
12: on mt update1(u)
13: end for
14: pendingupdates ;
15: end if
16: reconfigurating false

Figure 2. Pseudocode of the loose synchronization algorith m.

Table 1. Functions, variables and definitions for LSA pseudo code.
lock(m) System call to lock a mutexm.
unlock(m) System call to unlock a mutexm.
suspend(m) System call to release a mutexm and suspend the current thread. The thread holdsm when resumed.
resume(t) System call to resume a threadt.
sleep(ts) System call to suspend the current thread forts seconds.
thread create(f) System call to create a new thread, which will execute functionf.
get curr thread() Returns the descriptor of the current thread.
cast(msg) Reliable multicast ofmsg to followers.
create new thread(f) Invoked by replica’s code to create a new thread, which will execute functionf.
create new mutex() Invoked by replica’s code to create a new mutex.
on mt update(m) Invoked by a follower on receiving a messagem from the leader.
leader periodic tx() Periodic transmission of leader’smutex table to followers.
lsa lock(m) Invoked by replica’s code to lock a mutexm.
choose new leader() Deterministic rule to choose the new leader from the membersof the current view.
on leader failed() Invoked by a follower when the leader leaves the multicast group.
threads Set of current replica’s threads; initially containing thereplica’s main thread.
mutexes Set of current replica’s mutexes; initially containingmc.
isLeader Boolean variable.
lsa mutex Global mutex used to serialize accesses to LSA code.
mc Mutex used to serialize accesses tocreate new thread.
mutex table Queue of lengthmaxentries of mutex acquisitions; initially empty.
proj queue[m] Array of queues of mutex acquisitions; initially empty.
suspended threads List of suspended threads; initially empty.
reconfigurating Boolean variable.
pending updates Queue of mutex table updates; initially empty.next thread(m) proj queue[m℄:head():tan aquire mutex(m; t) proj queue[m℄ 6= ; ^ t = next thread(m)an shedule next thread(m) proj queue[m℄ 6= ; ^ next thread(m) 2 suspended threadsdeadlok 8m 2 mutexes : (proj queue[m℄ = ; _ proj queue[m℄:head():t 2 suspended threads_ proj queue[m℄:head():t 62 threads)
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2.3. Failure Behavior with Error-free Leader-to-Followers Communication

The LSA algorithm introduces asymmetry in replicas (leaderand followers) and requires direct communication from leader

to followers. This brings in failure modes not present in traditional replication schemes (e.g., [28]). In this section, we analyze

the behavior of the LSA algorithm in the presence of a single,potentially malicious failure. The group membership service

and the FIFO-order reliable multicast employed in the leader-to-followers communication are assumed not to fail. In this

way, nonfaulty followers always have a consistent view of the replicas in the system and always receive the same sequenceof

messages from the leader. An equivalent assumption is that these protocols can mask their Byzantine failures (e.g., [17] and

[27]).

The architectural setup for the following discussion contains a single, independent voter in the system. The voter is incharge

of detecting replica failures—crashes, hangs, and value errors—whether they originate from the application or the LSAcode.

The voter also excludes faulty replicas from the system (in general, these responsibilities can be placed in other processes

outside the voter).

Before proceeding, we define two conditions:deadlockandhang. A deadlock—detected by followers—is the condition

in which no more mutexes can be acquired, i.e., no thread willever return fromlsa lock. Deadlock happens when the

reconstructed leader’s sequence of mutex acquisitionsH l;f is not compatible with the replicated application’s algorithm. A

hang—detected by the voter—is the condition in which an output is not received from the replica before a timer expires in

the voter. We also assume that mutexes are requested by replica’s code infinitely often so that a replica deadlock eventually

manifests as a hang to the voter.5

2.3.1. Failure Modes
The failure modes induced by the LSA algorithm are discussedbelow and are summarized in Table 2.

1. Leader failures. Errors from the leader can propagate to followers only via the transmission of mutex table updates

(which is the only communication from the leader to followers). Assuming that the properties of the reliable multicast

service are preserved, all nonfaulty followers receive thesame sequence of messages from the leader (even if the leader

sends corrupted messages). This guarantees that each pair of nonfaulty followers satisfies the correctness property (as

shown in Theorem 6 in the Appendix). All nonfaulty followersconsequently grant the same causally ordered set of

mutexes; thus, if one nonfaulty follower’s execution diverges from the leader, then all nonfaulty followers diverge in

the same way. Divergent behavior can lead to value errors detected by the voter (if the outputs never differ despite the

divergent behavior, then the error has no consequence on thesystem). In addition to diverging, nonfaulty followers can

deadlock. Corollary 1 (in Appendix) guarantees that if one nonfaulty follower deadlocks, then all nonfaulty followers

deadlock. Note that cases such as a leader sending differentmutex table updates to different followers constitute failures

of the reliable multicast layer of the leader and are considered separately in Section 2.4.

If the leader crashes or hangs, then it may have sent corrupted mutex table updates to the followers before failing, which

can lead the followers to either diverge or deadlock as described above. A malicious leader can impersonate a follower,

effectively stopping the transmission of mutex table updates. Since nonfaulty followers require these messages to make

progress, they will eventually deadlock, a condition that the voter detects as a hang.

2. Follower failures.Corrupted mutex table updates from a faulty leader cannot cause a follower to crash—they can result

in either divergent behavior or deadlock of the follower. A follower crashing as a result of mishanding faulty data from

the leader is treated as a double-failure scenario (a failure in the leader and a failure in the follower caused by a poor

implementation that does not conform to the pseudocode in Figure 2). Thus, it can be assumed that a crash detected in a

follower is isolated to the failed follower.
5Long computation periods can be instrumented with calls tolsa lock/unlock on an artificial mutex to limit the hang manifestation latency.
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Table 2. Failure modes of the LSA algorithm.
Failure What can be inferred from:

Follower Failure Leader Failure
Crash. The follower is faulty. The leader can have contaminated the system.
Hang. The leader could be the cause. The leader can have contaminated the system.
Follower diverges from leader. The leader could be the cause. N.A.
Leader sends corrupted (or omits sending) mutex table updates. N.A. The leader can contaminate the system.
Impersonation. The follower can contaminate the system. The leader causes all replicas to hang.

While a correct follower does not interact with other replicas, a malicious follower can impersonate the leader by sending

mutex table updates to other replicas. Leader unforgeably signs its messages so that the recipients can always discard

messages from unexpected sources.

Deadlock defines a situation in which the LSA algorithm in a follower ceases to make progress. This happens when one of

the following conditions hold for each projection queue (asshown in Theorem 7 in the Appendix): (1) the projection queueis

and will continue to be empty, (2) the thread in the top entry of the projection queue is suspended, or (3) the thread in the top

entry of the projection queue does not exist and will never becreated. The LSA algorithm checks for deadlock only during

reconfiguration, when it is known that no new mutex table updates will be received in the future.6

The first two conditions are easy to check, as is the first clause of the third condition. To check the second clause of the third

condition, however, requires knowledge that the thread in question (threadt) will never be created in the future. Ideally, we

would like to drop this part of the condition. However, if theparent of threadt is executing—but simply has not reached the point

at which it createst—a deadlock could be incorrectly detected. To overcome thisproblem, the LSA algorithm introduces an

artificial mutexmc that is acquired throughlsa lock each time a new thread is created (see functioncreate new thread

in Figure 2). The followers, therefore, contain a projection queue formc, which implicitly identifies the threads that are to

create child threads in the future. Withmc in place, the third condition only needs to check for the existence of the thread.

The intuition is that if all projection queues are blocked, then the projection queue corresponding tomc is blocked as well and,

hence, no thread can be created in the future. This is formally shown in the Appendix.

2.3.2. Failure Detection.
To detect failures, the voter takes both a majority vote on output values produced by replicas and a majority vote on replica hang

conditions. Using this information, the voter decides the output to be delivered to the client and identifies any faulty replica

and excludes it from the system. If the leader is excluded, the system must be reconfigured (exclusion of a follower does not

require system reconfiguration).

The following categories of replica behavior as observed bythe voter can be distinguished: (1)output—a replica delivers an

output to the voter, (2)no output—a replica does not produce an output, and (3)crash—detected by the multicast layer, which

excludes the offending replica from the system (multicast group) and notifies the remaining replicas and the voter through a

view change event.

The voting algorithm is initiated each time the voter receives the first output generated by a replica in response to a client

request. At that time, a timer is started to detect replica hangs. Voting occurs either on the reception of an output from each

replica or on the timer expiration. The possible combinations of leader and follower failure behavior (and corresponding voter

decisions) are given in Table 3 (for the faulty leader case) and in Table 4 (for the faulty follower case). In both cases, all

nonfaulty replicas always behave in the same manner.

The rules employed by the voter in detecting faulty replicascan be summarized as follows: (1) if all replicas sent an output,

the faulty replica is the one whose output differs from majority output—cases L1 and F1; (2) a replica sending a spurious output

is faulty—cases L5 and F4; (3) if there is a single hung replica, that replica is faulty—cases L3 and F2; (4) if a majority of

6If the reliable multicast protocol guarantees that a message is delivered at the same view as it is sent, then no mutex table updates will be received during
reconfiguration [6]. Some group communication systems onlyguarantee that a message is delivered at the same view at every process that delivers it [12]. In
this case, leader’s messages received after the leader leaves the multicast group can be safely discarded.
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Table 3. Replica behavior under faulty leader.
Case Expected behavior Faulty leader behavior Followers’ behavior Diagnosis
L1 Output Output Output Compute majority value. If leader is in minority then the leader is faulty.
L2 Output Output No output Followers are in deadlock. Majority is hung; thus, the leader is faulty.
L3 Output No output Output The leader is the only hung replica; thus, the leader is faulty.
L4 Output No output No output Followers are in deadlock. All replicas are hung; thus, the leader is faulty.
L5 No output Output No output The leader sent a spurious output; thus, the leader is faulty.
L6 No output Output/No output Output Not possible. The application does not assume any particular mutex acquisition order.

Thus, in nonfaulty replicas (even if contaminated), any mutex acquisition order results in
the correct behavior.

L7 No output No output No output No fault has manifested.

Table 4. Replica behavior under faulty follower.
Case Expected behavior Faulty follower behavior Correct replicas’ behavior Diagnosis
F1 Output Output Output Compute majority value. If the follower is in minority then it is faulty.
F2 Output No output Output The follower is the only hung replica; thus, the follower is faulty.
F3 Output Output/No output No output Not possible since it violates the single failure assumption.
F4 No output Output No output A follower sent a spurious output; thus, the follower is faulty.
F5 No output Output/No output Output Not possible since it violates the single failure assumption.
F6 No output No output No output No fault has manifested.

replicas are hung, the leader is faulty—cases L2.7 Case L4 (all replicas hanging) is indistinguishable from the case in which no

output is expected and no replica sends any output. Two solutions are proposed to cope with this case.

Application-specific information embedded in the voter.The voter obtains knowledge as to whether an output is supposed to

arrive from replicas after a given client request. This knowledge can be derived from the client message contents. For example,

for a replicated Apache server, the voter can inspect the HTTP header of the client message and determine whether it is a GET

request (a response will follow) or a POST request (no response will follow). For a replicated CORBA object, the GIOP header

of a request message contains a fieldresponse expected that is true if and only if a reply message will follow. In general,

if necessary, the client can be instrumented to extend the message format to indicate whether a response is going to follow the

request.

Follower-supported deadlock detection.In this solution, the LSA algorithm supports local deadlockdetection. During

periods in which no responses are generated to the clients despite open client connections, the voter periodically multicasts a

message to followers, forcing them to initiate a self-checkfor a deadlock condition. The followers communicate the outcome

of the check to the voter, which determines the leader as faulty if all followers indicate a deadlock condition. The mechanism

for followers to detect deadlock in response to the voter message is described in Section 8.3 (in the Appendix).

2.3.3. Reconfiguration.
In this section, we consider the reconfiguration of the system after a leader failure. The presented procedure does not require

creation of new replicas, since the system is reconfigured around replicas that have not been excluded from the system. The

reconfiguration procedure is initiated in each follower upon receiving a view change event from the reliable multicast layer

corresponding to the leader leaving the multicast group (functionon leader failed in Figure 2), because the leader either

crashed or was terminated by the voter after being detected as faulty. A new leader can be selected after all surviving replicas

reach the deadlock condition (as defined in the previous section). The reconfiguration procedure consists of the following steps:

1. Each follower continues to execute until it enters a deadlock condition.

2. All projection queues are cleared to prepare the replica for resuming the execution. After reaching deadlock, the remain-

ing entries in the projection queues indicate a sequence of mutex acquisitions that is incompatible with the replicated

application’s algorithm (note that mutexes already acquired by the followers are valid) and, hence, must be removed.

7In case L2 no output can be delivered to the client; however, after reconfiguration, surviving replicas restart execution (exiting from deadlock) and generate
the expected output.

8



3. Each follower chooses the new leader from the group membership list. It is assumed that all replicas contain identical

lists so that a deterministic rule can be applied for the selection (e.g., pick the first replica in the list). If the follower is

not chosen to be the new leader, then it waits in deadlock until the new leader starts sending mutex table updates. The

new leader awakens all of its threads, allowing them to executelsa lock as the leader replica.

Note that if the leader-elect replica executes the above reconfiguration procedure faster than the other replicas, these replicas

may receive mutex table updates from the new leader before they have reached a deadlock. It is necessary, therefore, to buffer

mutex table updates in the followers after receiving the view change notification (i.e., after entering the reconfiguration mode).

These buffered mutex table entries are transferred to the projection queues after step (2).

The reconfiguration algorithm presented above preserves correctness with respect to the new leader and any of the followers.

Safety can be shown using a proof sketch similar to that for Theorem 1 (in the Appendix). Liveness is guaranteed by clearing

the projection queues after reaching deadlock, thus allowing the followers to execute according to the mutex table updates

received from the new leader.

2.4. Failure Behavior with Byzantine Errors in Leader-to-Followers Communication

In this section, we analyze the impact of failures in the leader-to-followers multicast communication under the singlefailure

scenario. We continue to assume that the group membership protocol does not fail.

Violating the properties of the FIFO-order reliable multicast because of a malicious leader can result in: (1) not sending a

mutex table update at all, (2) sending a mutex table update only to some followers, or (3) sending a mutex table update with

different contents (or in different orders) to different followers. These cases can result in the followers being inconsistent with

each other. We sketch a solution to this problem that does notrequire the cost of a multicast protocol tolerating Byzantine

failures. The approach we pursue takes action only after inconsistencies are detected by the voter, without incurring extra

overhead during normal operation.

Failure Detection. The voter detects replica failures and, depending on the failure, decides upon system reconfiguration

actions, as described below.

1. Detecting a follower crash or a spurious output from a follower indicates that the follower is the single faulty replica in

the system. The system can continue without reconfigurationafter the faulty follower is excluded.

2. Detecting a follower hang or a value error in a follower output indicates failure either of the follower or of the leader

(which has contaminated the follower). Both the follower and the leader must be excluded from the system, since the

two cases are indistinguishable.

3. Detecting only a leader failure indicates that the leaderis faulty and must be excluded from the system.

4. Detecting misbehavior of multiple replicas (e.g., crash, hang, value error) indicates that an error in the leader hascontam-

inated the followers. Consequently, the leader is the single faulty replica and must be excluded from the system. Note

that in this case, because of the single-failure assumption, only the leader can crash.

Apart from the first case—in which no reconfiguration is needed—it is necessary to reconfigure the system and select a new

leader among the nonfaulty followers that have not been excluded from the system.

Reconfiguration. To reconfigure the system, we select a subset of the remainingfollowers from which the system can restart

through the following procedure: All followers send their state to the voter to determine the largest group of followerswhose

states agree; those in the largest group will survive the failure, and all other followers are excluded from the system. For this

state comparison to be meaningful, followers need to capture their state when their corresponding threads are at the same point.
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This can be done with the LSA algorithm since under the assumption that threads acquire mutexes infinitely often, the candidate

moment is when all replica threads are suspended, which eventually happens after deadlock is reached.8 Note that for a system

with initially at least three replicas, a failure can degrade the system at most to a single running replica.

2.5. Performance Improvement

In the LSA algorithm as presented above, the transmission ofa mutex table update from the leader to followers can happen

only in two cases: when the table gets full, or periodically by leader periodic tx (if the table is not empty). Although

this mechanism guarantees liveness, it may be not sufficientfrom the performance perspective, i.e., followers could spend a lot

of their time waiting for mutex table updates to be received instead of doing useful computation. To overcome this problem, it is

possible to introduce a follower-to-leader reliable unicast communication that can be used to signal the leader that a follower is

willing to accept a new mutex table update (e.g., when a follower projection queue gets empty). In response to such a message

from a follower, the leader may decide to multicast a new mutex table update to all followers.

To avoid that this new communication follower-to-leader could introduce an additional failure mode, the “flow-control”

mechanism must be such that no follower can slow down (and possibly stop) the sending rate of mutex table updates. For

example, if the leader keeps for each follower a predicate that is true when that follower is lacking mutex table updates,than the

leader should multicast a mutex table update (in addition tothe periodic and table-full mechanism) when any of these predicates

is true.

Assuring that no follower can slow down the sending rate of mutex table updates can potentially allow a faulty follower to

increase the sending rate without control, creating excessive traffic on the network and, hence, interfering with correct replicas.

However, if mutex table updates are sent from the leader onlywhen they are not empty, even if a faulty follower is requesting

more mutex table updates than those that can be generated by the leader, no message is sent at all from the leader.

Finally, note that no mechanism has been considered to limitthe lag between leader and followers. This has been done

intentionally again to avoid the introduction of a failure mode due to the possibility of a follower (and hence a faulty follower)

to slow down (and stop) the leader. In the LSA framework, thisdoes not constitute a problem, as replicas are synchronizedby

the voter on blocking socket operations (e.g., when closinga client connection), which guarantees that the correct followers

cannot lag behind the leader without limit.

2.6. Implementation Issues

Uniform naming convention. Because mutex table updates sent from the leader to followers contain information about

threads and mutexes, it is necessary to have well-defined, replica-independent naming convention for them. In defining the

logical ids for threads and mutexes, we assume that for all replicas, corresponding threads/mutexes are created/initialized by

the same (logical) thread and in the same order in the contextof this thread. For example, if threadtA in replicaA creates two

child threads in the ordertA1 andtA2 , then in replicaB the threadtB (corresponding totA) creates the child threadstB1 andtB2 in this same order. ThreadstA1 andtB1 (tA2 andtB2) need to perform the same computation (are corresponding).

A hierarchical naming scheme is employed in which a logical id of a thread is recursively defined:

logical thread id = parent logical thread id a thread creation counter

wherethread creation counter is a counter owned by each thread and incremented each time the thread spawns

a new child thread. For example, for a threadtn created by a threadtn�1 as knth child, the logical thread id would be< k1; k2; : : : ; kn >. The logical name for a mutex is given by:

logical mutex id = (logical thread id,mutex creation counter)

wheremutex creation counter is a private counter owned by each replica thread. This counter is incremented at the time

of the mutex initialization. For example, the logical id of thenth mutex created by a threadtk is given by(logial thread idk; n).
8Note that the condition of all threads being suspended must be checked both when a thread is going to be suspended and when athread is about to terminate.
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Voter support. The LSA algorithm enforces determinism in the update of a given replica’s state. Thread outputs from

different replicas, however, can still be produced in different orders because of different thread scheduling. Therefore, before

voting the voter must first group the replicas’ outputs according to the logical thread id of the threads that generated them.

3. Application-Transparent Replication Framework

This section introduces a software framework consisting ofan implementation of the loose synchronization algorithm,a

virtual socket layer and a voter/fanout process for supporting the loose synchronization algorithm in replicating multithreaded

applications. Figure 3 illustrates the configuration of a triplicated application employing this framework (Ensemble[14] is used

as communication layer for reliable multicast protocol).

Multiple instances of an application execute on different nodes, and the clients have the illusion of a service that is imple-

mented by a single, nonfaulty server. Multiple clients interact with the voter as if it were the real server. The voter forwards all

data coming from clients to replicas using a FIFO-order reliable multicast protocol. Socket operations invoked by a replica’s

code (e.g., to send a response back to the client) are converted into requests that are sent to the voter/fanout process. The voter

collects the requests for socket operations from all the replicas and, after voting, performs the actual operation on the physical

socket associated with the specific client.

For a single-threaded application, voting requires replica output consistency(i.e., all correct replicas must send the same

output messages to the voter in the same order). To guaranteereplica output consistency, two conditions must be met: (1)

input consistency, in which the input requests are identical and delivered to correct replicas in total order [10], and (2)replica

determinism, in which, in the absence of faults, any execution of the replica starting from the same initial state and processing

the same-ordered set of input requests leads to the same-ordered set of output messages [28].

For a multithreaded application, the voter groups the replica outputs on a per-thread basis. Therefore,output consistencyand

input consistencyneed to hold only with respect to corresponding threads across replicas. The condition ofreplica determinism

is replaced with the condition that all replica threads are piecewise deterministic.

3.1. Loose Synchronization Algorithm

A prototype of the loose synchronization algorithm is implemented as a C/C++ library (LSA). The interception of lock

operations on mutexes is performed transparently to the application by intercepting the application calls to the POSIXthread

(PTHREAD) library. A set of macros is employed to override the PTHREAD functions at compile time. The inclusion of

the LSA header file is the only change required to the application source code. Consequently, the application needs to be

recompiled.9

3.2. Virtual Socket Layer

The virtual socket layer is compatible with the BSD socket interface and designed to hide the replication infrastructure from

the replicated application using logical sockets instead of physical sockets. For instance, instead of calling the functionsocket

to create a new socket, the replica callsvsl socket instead. This function has the same signature (i.e., same input arguments

9The interception can also be done without requiring application recompilation by overriding the PTHREAD dynamic library.

11



and return type) as the corresponding BSD one, but returns a logical socket descriptor instead of a physical socket descriptor.

The substitution can be easily automated with the help of preprocessor macros. For example, to instrument theApache 2.0.16

web server it was enough to insert the following two lines

# d e f i n e USEVSL ALIAS

# i n c l u d e ” v s l . h ”

into 6 out of 447 C files and to insert the following initialization line

r i n i t ( 0 , n r e p l i c a s ) ;

into the fileserver/main.c which is a small effort for a code base of over 170,000 C sourcelines.

The virtual socket layer is responsible for (1) receiving/sending messages from the voter/fanout process and (2) interacting

with the replicated application. A dedicated network thread in each replica accepts messages from the voter/fanout process.

These messages correspond to new data and new connection requests arriving from clients, and they are buffered in a data

queue or in a connection queue for the logical socket.

The concept of the virtual socket is similar to the idea of interposers proposed in the Eternal system [22]. The ORB

invocations to the standard library for performing I/O are intercepted by Eternal and redirected to the Replication Manager, a

process that conveys data from and to the replicas through the underlying reliable broadcast protocol. Involving the replication

manager requires (1) an additional communication via namedpipes, and (2) a context switch (because the replication manager

is a separate process from the replica process). In our framework the virtual socket layer embeds the equivalent functionality of

the Replication Manager into the replica process, eliminating the need for a separate process to redirect library invocations).10

3.3. Voter/Fanout Process

The virtual socket layer separates the replicated application from the voter, and the voter separates the replication infras-

tructure from the client. The voting mechanism is specific tothe replicated application. A bit-wise comparison is a simple

yet popular voting mechanism. Other alternatives (e.g., a check-sum verification or voting only on chunks of the data) can be

incorporated in our voter implementation as well.11

While replicas use logical socket descriptors to interact with the virtual socket layer, the voter/fanout process usesreal BSD

sockets (physical sockets) and maps logical socket descriptors to physical socket descriptors. Socket operations are divided in

two groups:

1. Operations that modify the physical socket state (e.g.,socket, bind, listen, close, connect, shutdown,

send, write) are voted upon by the voter. These operations correspond tosocket operation requests sent from the

replicas to the voter. Replicas can continue immediately after calling nonblocking functions (e.g.,send andwrite).

Blocking functions, however, do not return until the voter performs the function on the physical socket (e.g.,socket).

2. Operations that do not modify the physical socket state (e.g.,accept, select, poll, recv, read) are emulated by

the virtual socket layer. The voter forwards data and clientconnection requests to the replicas for buffering. The virtual

socket layer utilizes this buffered information when the replica invokes the emulated socket functions.

Note that the functions frequently executed are mostly either nonblocking or locally emulated by the virtual socket layer.

In addition to voting on outgoing messages, the voter/fanout process also forwards all client messages to the replicas using a

FIFO-order reliable multicast protocol. The voter also provides (1) adaptive timeout estimation to minimize the probability of

a false alarm when detecting hang errors, (2) timing error detection (the specifics of the replicated application can be embedded

into the voter to override the adaptive timeout values, calculated statistically, with the maximum execution time allowed for the

particular service request), and (3)fast voting(the voter can vote and send a response to the client as soon asthe majority of

replicas provide corresponding outputs that agree).
10In principle this same efficiency should be possible in Eternal as well.
11For example, an architecture for supporting voting in middleware is proposed in [5].
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3.4. Adaptive Voter Timeout

To minimize the probability of false alarms and to reduce thelatency in detecting crash and hung replicas, a mechanism for

adapting the voter timeout is provided. The timeout value reflects: (1) the computation time required by the server to produce

a response to the client and (2) the communication time.

Timeout detection. The voter enforces a timeout for each outstanding socket operation request from the replica. For each

outstanding request, the voter maintains a separate timeout timer for each replica. These timers are used as follows to enforce

the overall timeout for the request:

1. The initial value of each timer is set to the estimated meantime (see below) of the service time, plus a cushion factor of

the standard deviation of the estimated mean time.

2. Start a timer upon receiving a new socket operation request from one of the replicas. The replica that issues the first

request is called theinitiator.

3. Declare that the initiator has failed if none of the other replicas sent the same request before the timer expired. Since

there was only one request, it is reasonable to conclude thatthe initiator behaved incorrectly in making the request.

4. Declare that a replica has failed if (1) it does not generate the same request as the initiator before the timer expires,and

(2) other non-initiator replicas have already made the samerequest. The fact that a majority of replicas make a request

indicates that the silent replica is in error.

An exponential back-off mechanism is used to adjust the timeout value. When a replica fails to respond within the timeout

period, the timeout value associated with the replica is doubled and a threshold counter is incremented. A replica is declared as

failed only when the counter reaches a predefined value.

Timeout estimation. A timestamp is added to messages sent by the voter to each replica. Outgoing messages from the

replicas include the timestamp for their corresponding input message. The voter computes the instantaneous service time for

messages received from the replicas by subtracting the message timestamp from the current, real time. The instantaneous values

of service time are used to estimate mean and deviation of theservice time. Smooth estimates of the mean and the standard

deviation are ensured by employing a low pass filter to attenuate noise and irrelevant fluctuations, as proposed by Jacobson in

[15].

The objective is to estimate the service time necessary for each replica for processing a client request and generating cor-

responding response. A timestamp is added to messages sent by the voter to each replica. The replicas extract the timestamp

from a received message and store it in a variablelast timestamp corresponding to the logical socket connection from

which the message arrived. Messages sent by replicas to the voter include the value oflast timestamp associated with the

logical socket connections for which the messages are destined. On receiving a message from a replica, the voter computes

the instantaneous service time, subtracting the timestamp(extracted from the replica messages) from the current realtime. The

instantaneous values of service time are used to estimate mean and deviation of the service time. Smooth estimates of themean

and the standard deviation are ensured by employing a low pass filter to attenuate noise and irrelevant fluctuations, as proposed

by Jacobson in [15].

Evaluation of the adaptive timeout algorithm. To evaluate the efficiency of the adaptive timeout estimation algorithm

presented above, we trace the round-trip-time and timeout estimates (calculated by the voter) for a triplicated multithreaded

Apache web server. The experimental setup consists of two Ethernet 100 Mbps LANs, one connecting the client to the voter

and the other connecting the voter to all replicas. To stressthe algorithm (to create unbalanced workload both on replica nodes

and on the local network between the voter and the replicas),one of the three replicas (Replia3) is executed on a Pentium III
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The computedtimeout closely followsRTTi (see
interval [12.5, 13.75]) as long asRTTi varies
smoothly. Abrupt changes inRTTi (see intervals
[13.75, 14.25] and [14.75, 15]) correspond to larger
variance and, hence,timeout increases.
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800 MHz based machine, while the other two replicas (Replia1 andReplia2) and the voter are executed on a Pentium III

500 MHz. All machines run Linux 2.4, and Ensemble 1.20 [14] isused as networking layer providing the reliable broadcast

protocol.

Figure 4 shows the instantaneous value of the round-trip-time (RTTi) and the timeout value calculated (timeout) by the

adaptive timeout algorithm forReplia1.12 One can see that the computedtimeout closely follows the variations ofRTTi.
Figure 4 also shows three cases oftimeout warninggenerated by the voter to indicate that the replica did not send a message to

the voter before the timeout associated with this replica expired. The timeout warning causes the timeout value to be doubled.

On the second attempt the message from the replica is successfully delivered before the timer expires, and hence thetimeout
is recalculated and adapted to the replicaRTTi (see arrows in Fig 4).

Observe that the instantaneous values ofRTTi for Replia1 range from about 30 ms to 300 ms (a factor of 10), and the

algorithm is able to closely follow such variability. This illustrates the efficiency of an adaptive timeout estimation. Fixed value

for the timeout would be either too small or too large.

Fig. (5) reports the instantaneous values of the round-trip-time for all three replicas.Replia1 andReplia2 have similarRTTi, whileReplia3 has a substantially smallerRTTi (about 6 times). Recall that this replica executes on a faster machine.

4. Real-World Application: Apache Web Server

The Apache web server 2.0.16 was tested in an experimental setup consisting of two Ethernet 100 Mbps LANs, one connect-

ing the client to the voter and the other connecting the voterto all replicas (see Figure 3). Replicas and voter execute onPentium

12Mean and standard deviation estimates are not shown to keep the Fig 4 readable.
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Table 5. Triplicated single-threaded Apache web server.
Experiment Baseline TMR TMR

(throughput) (throughput) (throughput reduction)
test.cgi 29.4 KBps 21.2 KBps 27.9 %
test2.cgi 114 KBps 86.7 KBps 23.9 %

III 500 MHz based machines. The client executes on a Pentium III 800 MHz based machine. All machines run Linux 2.4, and

Ensemble 1.20 [14] is used as networking layer providing thereliable broadcast protocol. Apache was compiled with the

Multi-Processing Module with Threading via Pthread(threaded) enabled. This module implements a hybrid multiprocess

multithreaded server to handle client connections concurrently. Each process has a fixed number of threads.

In a broad sense, a client can utilize an Apache web server in two ways: (1) to retrieve static HTML pages (or files in

general), and (2) to execute Common Gateway Interface (CGI)programs, which perform a computation and return a dynamic

HTML page to the client. The first case is not interesting froman active replication point of view: since the page/file is static, a

precalculated checksum can be added to the page/file so that errors in the retrieved data can be checked at the client side.The

second case is interesting because checksum cannot protectthe computation that produces the dynamic HTML page and this

computation can be critical to the user.

If a multithreaded Apache/CGI system is to be replicated, then the LSA framework can be employed in the following

manner: (1) In Apache, a mutex variable is used to serialize invocations toaccept among several threads.accept returns

the next available client connection, and the thread calling accept services this new connection. Instrumenting theaccept

mutex with the LSA algorithm guarantees that the same logical threads serve the same client connections in all replicas.(2)

The LSA algorithm can be transparently used to ensure that corresponding CGI processes (i.e., processes created by the same

logical thread in Apache) in each replica access shared values in the same order.

Experimental setup. To test Apache, a web benchmarking tool was used as a client application. One thousand client requests

were sent (in groups of 10 simultaneous requests) for retrieving a dynamically generated HTML page. Two CGI programs were

used to create variable load on the server and on the network:test.cgi generating a 123-byte HTML page, andtest2.cgi

representing a larger server load by generating a 1094-byteHTML page. The mechanism embedded in the voter for comparing

outputs from replicas was adapted to skip replica/node-dependent fields in the messages generated by the Apache server13 so

that the voter would not raise false alarms.

Single-threaded Apache. The Apache server was initially instrumented only with the virtual socket layer (VSL) and was

run in a single-threaded configuration (i.e., without usingthe LSA algorithm). This allowed us to measure the overhead due

to the virtual socket layer plus the voter. Table 5 reports throughput and throughput reduction for the noninstrumentedApache

(baseline) and the triplicated Apache, showing that throughput drops 24% when Apache is triplicated.

Multithreaded Apache. The next set of measurements was performed on Apache instrumented with the loose synchroniza-

tion algorithm while varying the number of server threads. Each client request caused the server to acquire mutex variables

seven times. One mutex access was used by Apache to serializecalls to theaccept function. The other six acquisitions were

used in the memory allocation routines (APR pools). These routines have no effect on the output seen by the voter (the HTML

pages generated by Apache do not contain any references to local memory addresses). Thus, only theaccept mutex needs to

be instrumented to ensure output consistency. With this optimization, performance improved 2%. The experiment was repeated

with the client requesting a static HTML page. In this case, the original Apache acquired mutex variables 207 times per client

request, but only one access (to theacceptmutex) was critical for output consistency. Instrumentingonly theacceptmutex

13For instance, the fieldsDate andLast-Modified contained in the HTTP OK message that precedes a HTML response (to a client request).
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resulted in a 40% performance improvement. This indicates that the LSA algorithm can support a high mutex acquisition rate

per client connection without incurring significant performance degradation.

Figure 6 compares the throughput as a function of the number of Apache threads under a light workload generated (test.cgi).

Several conclusions can be drawn from this figure.� The introduction of LSA algorithm to triplicated Apache with a single thread causes throughput to drop from 21.2 KBps

(using a single-threaded, triplicated Apache without LSA algorithm) to 18.8 KBps (with LSA). This is due to the overhead

of the LSA algorithm, which cannot be masked by exploiting concurrency.� As the number of threads increases, additional concurrencycan be exploited to improve throughput. For example, from

Figure 6 with 10 threads, the throughput reaches 22.2 KBps (only a 25% throughput reduction as compared to the 29.6

KBps of the baseline configuration).� Throughput does not increase further with more than 10 threads since client requests are sent in groups of 10 simultaneous

requests.

Figure 7 presents the throughput as a function of the number of threads for the Apache server under a larger workload

(test2.cgi). To further study the impact of the voter, we implemented a pass-first scheme in the voter (no message sup-

pression was employed), which has lower overhead than the majority voting scheme (used in the experiments). The pass-first

voting scheme causes throughput for 10 threads to increase from 92.8 KBps (22.7% throughput reduction as compared to 120

KBps of the baseline) to 97.9 KBps (18.4% throughput reduction).

Note that the experiments withtest2.cgi show a higher throughput (for both the baseline and the instrumented multi-

threaded Apache) as compared to the experiments withtest.cgi. For triplicated Apache with 10 threads, the throughput

improvement (with respect to single-threaded, noninstrumented, triplicated Apache) is 4.7% fortest.cgi and is 13% for

test2.cgi.14 Because the experiments were conducted on single-processor machines, multithreading allows an increase in

throughput only when there is a computation time to be overlapped with I/O.

4.1. Discussion

The proposed replication framework consists of several software components, including the virtual socket layer, the voter/fanout

process, the loose-synchronization algorithm, and Ensemble-based network communication layer. All these components con-

tribute to the overall performance overhead. A set of measurements was conducted to quantify and to analyze the performance

impact of entities constituting the replication frameworkand to compare the proposed framework with existing solutions.

14The change in throughput is calculated based on Figure 6 and Figure 7.
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For comparing our framework with other replication system/frameworks Table 6 provides performance overhead reported

for several existing approaches to replication. Table 6 clearly indicates that most replication strategies impose a significant

performance overhead. The exception is Eternal with a reported overhead of 3%. Most of the overhead measurements [20],

[22], [13] use an echo server (or effectively the same functionality).

An echo server accepts messages incoming from clients and echoes them back to the clients. The only computation per-

formed by the server is moving the data received from the client to an internal buffer and sending the data stored in this buffer

back to the clients. While the echo server barely resembles the kind of services that a real-world application would offer, we

use it to facilitate comparison with existing studies (e.g., Eternal [22], AQuA [20]) where this simple application wasemployed

in assessing performance. The data exchanged between the server and clients are immaterial for the correct functioningof

the system. Also the communication is the dominant characteristic of the workload. Thus, issues such a value voting and

maintaining significant application state become virtually irrelevant.

Performance measurements of the echo server replicated using the LSA framework.To characterize the overhead introduced

by our replication framework, the performance of the triplicated echo server is compared with a simplex implementationof

a TCP-based echo server (without any LSA code).15 Figure 8 provides the execution time (as perceived by the client) of the

baseline (TBL) and triplicated echo server (TTMR) as a function of the message size. For message sizes between1K and 6K,

the measured overhead (with respect to the execution time ofthe TCP-based implementation of the echo server) ranges from

200% to about 258% (see Figure 9).

To quantify the contribution to the overhead from differentcomponents of the replication framework, additional measure-

ments were conducted and are also presented in Figure 8 and Figure 9. The results show that the Ensemble communication

layer is a major source of the observed overhead (an average,TENS in Figure 8 is a 100% overhead for message sizes between

1K and 6K). Overhead introduced solely by our replication software (i.e., virtual socket layer and voter/fanout) decreases from

45% to 27% (with respect toTBL) as message size grows from 1KB to 6KB (seeTV SL=TBL in Figure 9).

Since LSA is implemented on top of TCP and Eternal in CORBA (which also uses TCP), it is nontrivial to make an accurate

performance comparison. Ideally one would like to measure the execution times (or throughput) for the application in both

frameworks under identical conditions. Since Eternal was not available, this was not a viable approach. Further, thereare

several architectural differences that make such comparison difficult. In the following we make an attempt to compare the two

by normalizing both performance measurements with respectto TCP. The comparison is based on rough estimates and “back-

of-the-envelope” calculations; nevertheless, it serves to provide a first order assessment. As the technologies, implementation,

15The measurements are conducted in the same testbed configuration as the one used for the experiments with the Apache web server.
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Table 6. Overhead of replication frameworks.

Replication
Framework

Application employed to measure performance Overhead Comments

AQuA [20] CORBA-based echo server (VisiBroker). Active replicationwith pass-
first scheme. Ensemble as a communication layer. Linux on Intel Pen-
tium.

700% Transparent replication to CORBA applications.

Eternal [22] CORBA-based echo server (VisiBroker). Active replicationwith pass-
first scheme. Totem as a communication layer. Linux on Intel Pentium.

3% Transparent replication to both CORBA applications
and ORB. 10% overhead on Solaris.

LSA framework Active replicated echo server with majority voting. Ensemble as com-
munication layer.

200% 30 % overhead for multithreaded Apache server with a
CGI program creating a 1 KB HTML page.

Bast [13] Smalltalk method invocation. 900% Replicas immediately send a reply to the client.
OGS [13] CORBA method invocation. Solaris 2.5 on SPARC. 900 %
Arjuna [24] System call invocation. Solaris 2.3 on SPARC. 600% (for write

system call)
Object oriented framework for fault tolerant dis-
tributed applications om transactional systems.

FATOMAS [25] Agents that increment the value of a counter at each stage of the execu-
tion. AIX on PowerPC.

290% Java-based fault-tolerant mobile agent system. Over-
head calculated with respect to a triplicated agent v.s.
single agent.

Table 7. TCP-based and CORBA-based simplex echo server.
message TCP CORBA CORBA

size (bytes) time (ms) time (ms) overhead (%)

1 0.136 0.552 306
100 0.171 0.591 246
1000 0.473 0.929 96.4
2000 0.684 1.20 75.4
4000 0.835 1.56 86.8
8000 1.19 2.41 103

and measurement of the performance overheads vary significantly, it is difficult to make a direct comparison among these mea-

surements. However, since the Eternal reported overhead isso small, we investigated the potential reasons for the differences

in the overhead we measured and the one observed in Eternal (keeping in mind the above caveat).� The overhead of CORBA with respect to plain TCP-based echo server. An analysis shows that the overhead due to

CORBA masks the overhead of the Eternal infrastructure itself. Recall that TCP version of the echo server is used as

a baseline for comparison in our measurements. Table 7 reports the measurements of the overhead of a CORBA-based

simplex echo server (VisiBroker, also used by Eternal) withrespect to a TCP-based simplex echo server. One can see

that the overhead varies from 306% to 75.4% for message sizes1 byte and 2000 bytes, respectively. Consequently

we estimate that the overhead incurred by Eternal-based echo sever will vary between 318% and 80.7% (depending

on the message size) as compared with plain TCP-based echo server. The overhead is estimated using the relationshipTeternalTtp = TeternalTorba � TorbaTtp . The ratioTeternalTorba is 1.03 (3% overhead). The ratioTorbaTtp is calculated using data in Table 7.� Differences in the replication scheme. The 3% overhead of Eternal is measured with respect to a replicated echo server

with a pass-first scheme (no majority voting), where duplicated requests and responses are suppressed both at the sender

and at the receiver. As a consequence, only two messages are sent: one for the request and one the response. Our

framework employs majority voting, which involves exchanging of four messages: one is sent from the voter to the

replicas and the remaining three come from replicas sendingtheir outputs to the voter.

In addition to the pass-first scheme used in the previous Eternal experiment, Eternal also supports a majority voting scheme

in which the voting occurs within the client process. The reported overhead for this scheme is 20-30% for triplicated client and

triplicated server running a “packet driver” on Solaris [22]. In our framework, voting occurs outside the client in a separate

voter/fanout process. As a result, there is an additional network communication, which adds an overhead of about 100% as

compared with the unreplicated echo server (the communication is over plain TCP).

It should be emphasized that embedding the voter into the client body (as it is done in the Eternal system configuration)

may be not sufficient in the case when the group of the replicated clients needs to produce a single output to the external world.

In this scenario, the system will have to provide an additional voter to make a final decision as to the output that should be
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Table 8. Error models used in injection experiments.
Error Model Description Failure Definition

SIGKILL The OS delivers a SIGKILL signal to the target replica. Target replica terminates, simulating a clean crash failure.
SIGSTOP The OS delivers a SIGSTOP signal to the target replica. Target replica threads are suspended, simulating a clean replica hang.
Text segment A single bit in the text segment of the target replica is flipped Target process can fail by crashing, hanging, or producing an incorrect

state/output.
Heap memory Bits in allocated regions of the heap memory in the target replica are

periodically flipped until a failure is induced.
Target process can fail by crashing, hanging, or producing an incorrect
state/output.

Table 9. SIGKILL, SIGSTOP, text-segment and heap injection results.
Error Total Activated Manifested Errors
Model Injected Errors CRASH HANG ASSERTION

Errors SEG. FAULT ILL. INSTR. KILLED DETECTION

SIGKILL 200 200 (100%) N/A N/A 200 (100%) N/A N/A
SIGSTOP 200 200 (100%) N/A N/A N/A 200 (100%) N/A

Text segment 342 160 (47%) 111 (32%) 13 (4%) N/A 14 (4%) 20 (6%)
Heap memory 214 N/A 20 (9%) N/A N/A 8 (4%) 106 (49%)

delivered to the outside, and this will add extra overhead similar to what we have measured. An alternative would be to replace

the replicated client with a single client with an embedded voter. This, however, creates a risk of simultaneous failureof the

client and the voter. The separation of the voter and the client, on the other hand, allows recovering from voter failuresto be

independent and possibly transparent to the client and the server.

5. Fault Injection Evaluation

A series of fault injection experiments were conducted to (1) assess the impact on application behavior of faults in the

replicated application, the replication framework, and inEnsemble (the underlying reliable broadcast layer). A triplicated,

multithreaded Apache server was used as the target application.16 Table 8 summarizes the error models and the failure definition

for each model. NFTAPE [30], a software framework for conducting automated error injection experiments, was used to

conduct the experimental evaluation of the LSA algorithm.

Table 9 reports the results of over 1000 injections for all error models listed in Table 8. In all cases, the system is able to

recover from a failure generated by the injection. Note thatif the failed replica is the leader, followers successfullyelected

a new leader (after the failed leader was excluded from the system). Approximately 49% (106 runs) of heap injections were

detected by assertions incorporated into the LSA code. Errors detected by assertions were caused by: (1) a corrupted entry

in mutex table (98 cases), (2) a corrupted entry in the table mapping physical mutexes into logical mutex ids (6 cases), (3) a

corrupted Ensemble data structure (1 case), and (4) invalidheader in the synchronization messages (1 case).17

6. Related Work

In software-based replication, reliable message deliveryand consistency of information constitute two major difficulties to

overcome in the implementation of replicated systems. These issues have been extensively investigated and resulted inmany

group communication protocols [6], [14], [18], [3], [27]. Another fundamental issue in replicated systems is the potential

nondeterminism in the execution of different instances of areplicated component/application.

The TandemIntegrity S2system [16] guarantees that its three processors execute the same instruction streams by synchro-

nizing (1) on global memory accesses, (2) on hardware interrupts, and (3) periodically (every 4096 run cycles). The early

work on software-based replication essentially emulated hardware solutions. For example, there are a number of systems in

which replicas are synchronized at the interrupt level. TheTARGON/32system uses a process-pair scheme with a LAN of

three-processor machines connected by a dedicated bus for efficient reliable communication. Asynchronous events (e.g., UNIX

16No faults were injected into the voter.
17Out of 160 activated text segment errors, two errors did not manifest (i.e., a corrupted instruction was executed without having a visible impact on the

behavior of the replica).
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signals) are transformed into synchronous messages delivered to the destination process and its backup [1]. TheHypervisor

system provides primary/backup replication transparently to the operating system and user applications. A virtual machine

layer, inserted beneath the operating system, uses the hardware instruction counter [9] to count the instructions executed be-

tween two hardware interrupts. This information is collected on the primary machine and periodically sent over the network to

the backup machine, which reproduces the effects of the primary’s hardware interrupts [8].Transparent Fault Tolerance (TFT)

is similar to the Hypervisor solution, except the interpositioning is done at the operating system call interface [7].

Delta-4provides user applications with passive replication, semiactive replication, and active replication. Active replication

cannot handle nondeterminism of the replicas. In semiactive replication, a leader/follower model plus a preemption synchro-

nization mechanism are employed. Replicas can be preemptedonly on a predefined set ofpreemption points. Each time an

input message that requires preemption arrives at the leader, the leader determines the next preemption point on which the

message will be served. This information is sent to followers so that they can serve the message at the same point as the leader

[19], [23].

Synchronizing at the interrupt level in software causes large performance overhead, as synchronization information is trans-

ferred over a network. More recent software approaches to replication attempt to take advantage of the object-orientedparadigm

and advocate object replication rather then process replication (as discussed above). A common trend in object replication has

been to integrate fault tolerance via replication of CORBA applications [20].

Recent years have brought studies on replicating multithreaded applications. Some of the issues related to handling nonde-

terminism due to multithreading have been studied in the context of log-based rollback recovery. [2] suggests adding support

to the Mach operating system to track and to log the order in which threads access locks and semaphores. The data preserved

in the log is used to support rollback recovery of failed processes (i.e., the thread execution is replayed following theorder

dictated by the log). [29] presents a technique based on using a software counter to track the number of instructions between

nondeterministic events during normal operation. In case of a failure, the instruction counts are used to force the replay of these

events at the same execution points.

Existing solutions to replicate multithreaded applications are based on employing a nonpreemptive deterministic scheduler

that guarantees the same scheduling on all replicas.Eternal addresses the replication of multithreaded CORBA objects by

employing a nonpreemptive deterministic scheduler that allows the execution of only one logical thread at a time. As a result,

concurrency is significantly limited. If the running threadexecutes a remote method invocation, for example, no other thread

can be scheduled until the method returns and the running thread terminates processing [21].

Transactional Dragoemploys a deterministic, nonpreemptive scheduler to enforce deterministic behavior of multithreaded

replicas. The algorithm targets transactional applications and allows several transactions to execute concurrently. However,

scheduling of another thread can be done only when the running thread reaches ascheduling point, such as a service request,

selective reception, lock request, server call, or end of execution. Unlike Eternal, Transactional Drago allows the execution of

more than one logical thread at a time; however, both can schedule only one physical thread at a time (even if multiple CPUs

are available). As a result, Transactional Drago suffers limitations similar to Eternal’s [26].

7. Conclusions

This paper proposed aloose synchronizationalgorithm for software-based active replication of multithreaded processes. The

algorithm enforces “equivalent” ordering of state changesacross replicas and guarantees replica consistency with low overhead.

The leader replica establishes the order of mutex acquisitions and sends this order to the follower replicas over the network.

The algorithm is formally specified and the proposed formalism is used to prove correctness of the algorithm in failure-free

behavior as well as in presence of errors. To evaluate the proposed algorithm, a transparent active replication framework has

been developed and used to replicate the multithreaded version of the Apache web server.
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8. Appendix

8.1. Leader–Follower Correctness

This section outlines proofs of lemmas and theorems used in the main part of the paper. Based on the definitions and the

LSA specifications (see the pseudocode in Figure 2) we prove the correctness of the LSA (safety and liveness properties).We

start by proving two lemmas showing that the order in which conflicting mutex acquisitions are performed at followers agrees

with the leader’s history.

Lemma 1 For each nonfaulty followerf , conflicting mutex acquisitions are ordered inHf in the same way they are inH l;f :8(m; ti); (m; tj) 2 Hf ; H l;f : (m; ti) Hf< (m; tj) () (m; ti) Hl;f< (m; tj).
Proof. Note from the pseudocode that a threadti requesting a mutexm returns fromlsa lock (which means(m; ti) 2 Hf )

only after extracting(m; ti) from proj queue[m]. Entries are not extracted from projection queues unless the mutexm has

been locked. After extraction,lsa lock never unlocksm; hence, extraction and exiting fromlsa lock (acquiring mutexm) are atomic. Therefore,(m; ti) Hf< (m; tj) if and only if (m; ti) has been extracted fromproj queue[m] before(m; tj).
Since all conflicting operations on mutexm are appended to the bottom ofproj queue[m] by on mt update in the same

order as they appear inH l;f , (m; ti) is extracted fromproj queue[m] before(m; tj) if and only if (m; ti) Hl;f< (m; tj). �
In absence of failures, the leader history reconstructed ata follower is a prefix of the actual leader history; hence, theprevious

lemma can be strengthen as follows.

Lemma 2 Given the leaderl and a followerf , in absence of failures conflicting mutex acquisitions are ordered inHf in the

same way they are inH l: 8(m; ti); (m; tj) 2 Hf ; H l : (m; ti) Hf< (m; tj) () (m; ti) Hl< (m; tj).
Based on Lemma 2 and the notion of causal dependency, we can now show that the leader and a follower satisfy the safety

property.

Theorem 1 (Leader–Follower Safety)LetH l be the leader’s history andHf a follower’s history. In absence of failures,H l
andHf satisfy the safety property:8(m; t) 2 H l; Hf : �Hl(m; t) = �Hf (m; t).
Proof. By contradiction, suppose that(m; t) is the first entry both inH l andHf such that�H(m; t) 6= �H0 (m; t). Therefore,

there exists an earlier mutex acquisition(m00; t00) such that(m00; t00) 2 �Hl (m; t) ^ (m00; t00) 62 �Hf (m; t) or (m00; t00) 62�Hl(m; t) ^ (m00; t00) 2 �Hf (m; t). By definition of causal precedence, there are three cases toconsider.

Case (1):t00 = t. The condition on(m00; t00) corresponds either to(m00; t) Hl< (m; t) ^ (m; t) Hf< (m00; t) or to (m; t) Hl<(m00; t) ^ (m00; t) Hf< (m; t). This means that the behavior of the leader threadt and the follower threadt have diverged. If

there is no mutex acquisition common to both, then the threads’ behaviors have diverged before they required their first mutex.

However, this contradicts the piecewise thread determinism assumption since leader and follower replica start from the same

initial state. On the contrary, let(m�; t) be the last mutex acquisition common to both leader and follower threadt. After that

acquisition, the two threads acquire different mutexes. However, note that by construction(m�; t) < (m; t) both inH l andHf ;

thus, by definition of(m; t), �Hl(m�; t) = �Hf (m�; t), which—for the piecewise thread determinism assumption—contradicts

the fact that leader and follower threadt behaviors have diverged after(m�; t).
Case (2):m00 = m. The condition on(m00; t00) corresponds either to(m; t00) Hl< (m; t) ^ (m; t) Hf< (m; t00) or to (m; t) Hl<(m; t00) ^ (m; t00) Hf< (m; t). This contradicts Lemma 2.

Case (3):t00 6= t ^ m00 6= m. There must be a chain of causal dependencies from(m00; t00) to (m; t). Note that when

going from one element of this chain to the following element, it is not possible that both the thread and the mutex change (see

definition of causal dependency). Let(m�; t�) be the element in this chain that immediately precedes(m; t), i.e.,(m00; t00) ;
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� � �; (m�; t�); (m; t). For(m�; t�) to exist, it must be that eithert� = t orm� = m. So, the existence of(m�; t�) leads to

one of the two conditradictions above; therefore, such a chain from (m00; t00) to (m; t) cannot exist. �
The following lemma is used to prove liveness between the leader and a follower.

Lemma 3 In absence of failures, if(m; t) exists in the leader’s history, then it will be eventually appended toproj queue[m]

in each follower.

Proof. In absence of failures, if(m; t) 2 H l, then it has been stored in the leader’s mutex table, which iseventually trans-

mitted to the followers (either when it gets full or byleader periodic tx). Hence, eventually(m; t) is appended to

proj queue[m] by on mt update. �
Theorem 2 (Leader–Follower Liveness)In absence of failures, the following two conditions hold.

1. If a mutex acquisition is performed at the leaderl, eventually it will be performed at each followerf : (m; t) 2 H l =)�(m; t) 2 Hf .

2. If a mutex acquisition is performed at a followerf , eventually it will be performed at the leaderl: (m; t) 2 Hf =)�(m; t) 2 H l.
Proof. Consider condition (1). Note that when(m; t) is extracted fromproj queue[m], t returns fromlsa lock, which

is equivalent to(m; t) 2 Hf . The proof is by induction on the positionn of (m; t) in the sequenceH l.
Base case. Assumen = 1 (i.e.,(m; t) is the first element ofH l). We first show that since threadt is in the leader, eventually

it will be in the follower as well. Ift is the replica’s main thread, it is present in both leader andfollower. If t is not the

main thread, thent has been be created in the leader by a threadtp. For the picewise thread determinism and same initial state

assumptions, iftp is created in the follower, then eventuallyt will be created in the follower as well. Iftp is not the replica’s

main thread, the same argument can be iterated to show that, in fact,t will be eventually created in the follower.

Note thatindex(m; t) = 1, since(m; t) is the first mutex acquired at the leader and, so, the first mutex acquired by the leader

threadt. The first mutex the follower threadtwill request is alsom for the piecewise determinism and same initial state assump-

tions. If the follower threadt tries to acquirem (i.e., invokeslsa lock(m)) before(m; t) is appended toproj queue[m],

then the conditionan aquire mutex(m) at line 13 will befalse becauseproj queue[m] is initially empty. Therefore,t is suspended (line 26). For the Lemma 3, eventuallyon mt update will append(m; t) to proj queue[m], which be-

comes the top entry.on mt updatewill also resumet since the conditionan shedule next thread(m) will be true. Once

resumed,t will find the conditionan aquire mutex(m) true and so it will remove(m; t) at line 13. Ift tries to acquirem after (m; t) is appended toproj queue[m], then it will find the conditionan aquire mutex(m) true and so it will

remove(m; t) at line 14.

Inductive step. Assume the theorem is true forn and that(m; t) is the(n + 1)th element inH l. We first show that since

threadt is in the leader, eventually it will be in the follower as well.

If (m; t) is not the first mutex acquisition of threadt, thent is already present in the follower, otherwise we need to show

that eventuallyt will be created in the follower. Ift is the replica’s main thread, it is present in both leader andfollower. If t
is not the main thread, thent has been be created in the leader by a threadtp. If tp does not acquire any mutex before creatingt, for the picewise thread determinism and same initial stateassumptions, iftp is created in the follower, then eventuallyt
will be created in the follower as well. Iftp acquires a mutex before creatingt, consider the mutex acquisition(m0; tp) of tp
immediatelly preceding the creation oft. Since this acquisition precedes(m; t) in H l, by hypothesis, eventually it must inHf
as well. For the safety property�Hl(m0; tp) = �Hf (m0; tp); hence, for the picewise thread determinism and same initial state

assumptions, iftp is created in the follower, then eventuallyt will be created in the follower as well. Iftp is the replica’s main

thread, it is present in both leader and follower; otherwise, the same argument can be iterated to show that, in fact,t will be

eventually created in the follower.
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Assume andindex(m; t) = k + 1. By hypothesis, allt’s mutex acquisitions(mi; t) contained in the firstn positions ofH l eventually are inHf (t eventually acquires the mutexesmi throughlsa lock). The number of such acquisitions must

be k becauseindex(m; t) = k + 1. Moreover, since no follower thread exceptt can remove entries of the form(mi; t)
from proj queue[mi], all thesek acquisitions must be done byt. Let (mk; t) be the last of these acquisitions. For the

safety property,�Hl(mk; t) = �Hf (mk; t); hence, for the piecewise thread determinism and same initial state assumptions, the(k + 1)th mutex the follower threadt will request ism (the same as the leader threadt). Consider now two cases.

(a) Assume that there is no (conflicting) acquisition(m; ti) preceding(m; t) in the projection tom of the first n ele-

ments ofH l. If t requestsm before(m; t) is appended inproj queue[m], thent is suspended. Whent is resumed by

on mt update, it will find the conditionan aquire mutex(m) true and so it will remove(m; t) at line 14. Ift requestsm after (m; t) is appended toproj queue[m], then it will find the conditionan aquire mutex(m) true and so it will

remove(m; t) at line 14.

(b) Assume that there is a (conflicting) acquisition preceding (m; t) in the projection tom of the firstn elements ofH l
and let(m; ti) be the one immediately preceding(m; t). If threadt tries to lockm before(m; ti) is extracted or(m; t) is

appended toproj queue[m], thent is suspended (it will find at line 13 the conditionan aquire mutex(m) false). t will

be resumed when(m; t) becomes the top entry inproj queue[m]. This happens either at line 14, when(m; ti) is eventually

removed18, or if proj queue[m] is empty when(m; t) is appended to it byon mt update. Once resumed,t will find the

conditionan aquire mutex(m) true and so it will remove(m; t) at line 14. Ift tries to lockm after(m; ti) is extracted and(m; t) is appended toproj queue[m], then it will find the conditionan aquire mutex(m) true and so it will remove(m; t) at line 14.

Consider condition (2). The conclusion follows from the fact that (m; t) 2 Hf =) (m; t) 2 H l;f (i.e., only mutex

acquisitions that are inH l;f can be granted) and from the fact thatH l;f is a prefix ofH l. �
Theorem 3 (Leader–Follower Correctness)In absence of failures, the leaderl and a followerf satisfy the correctness prop-

erty.

8.2. Follower–Follower Correctness

Safety, liveness (and, hence, correctness) between two nonfaulty followers are shown under the assumption that they receive

the same sequence of leader’s messages (which implies that leader’s histories reconstructed by them are such that one isprefix

of the other). This condition always holds in the failure-free scenario. More importantly, the condition also holds when a

corrupted mutex table is sent to the followers as long as all followers receive the same mutex table.

Lemma 4 Given two nonfaulty followersf1 andf2 withH l;f1 andH l;f2 such that one is prefix of the other, conflicting mutex

acquisitions are ordered inHf1 in the same way they are inHf2 : 8(m; ti); (m; tj) 2 Hf1 ;2 Hf2 : (m; ti) Hf1< (m; tj) ()(m; ti) Hf2< (m; tj).
Proof. Let (m; ti) and(m; tj) be both inHf1 andHf2 . Based on the Lemma 1 and on the fact thatH l;f1 andH l;f2 are such

that one is prefix of the other, it straightforward to show that (m; ti) and(m; tj) must be both inH l;f1 andH l;f2 . �
Theorem 4 (Follower–Follower Safety)Given two nonfaulty followersf1 andf2 withH l;f1 andH l;f2 such that one is prefix

of the other, they satisfies the safety property:8(m; t) 2 Hf1 ; Hf2 : �Hf1 (m; t) = �Hf2 (m; t).
Proof Sketch. The proof follows the same steps as for Theorem 1 except that instead of using Lemma 2, it is necessary to use

Lemma 4. �
18Note that(m; ti) Hl< (m; t); hence, it will be eventually removed by hypothesis.
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Lemma 5 Given two nonfaulty followersf1 andf2 that receive the same sequence of leader’s messages, if(m; t) exists inHf1
then it will be eventually appended toproj queue[m] of f2.

Proof. If (m; t) 2 Hf1 , then(m; t) 2 H l;f1 . If (m; t) is not already inH l;f2 , it will eventually be becausef1 andf2 receive

the same leader’s messages. Once inH l;f2 , (m; t) will be appended toproj queue[m] of f2 by on mt update. �
Theorem 5 (Follower–Follower Liveness)Given two nonfaulty followersf1 andf2 that receive the same sequence of leader’s

messages, they satisfies the liveness property:(m; t) 2 Hf1 =) �(m; t) 2 Hf2 .

Proof Sketch. The proof follows the same steps as for Theorem 2 except that instead of using Lemma 3, it is necessary to use

Lemma 5. �
Note that while liveness between leader–follower guarantees a continuous operation, liveness between follower–follower

only guarantees that followers will eventually grant the same mutex acquisitions.

Theorem 6 (Follower–Follower Correctness)Given two nonfaulty followersf1 and f2 that receive the same sequence of

leader’s messages, they satisfies the correctness property.

8.3. Deadlock

Theorem 7 A nonfaulty follower is in deadlock if and only if the following condition holds:8m 2 mutexes : (�proj queue[m℄ =;) _ (proj queue[m℄:head():t 2 suspended threads) _ (�proj queue[m℄:head():t 62 threads).19

Proof Sketch. ): Suppose there exists a mutexm that violates the above condition. If the threadproj queue[m℄:head():t
(which is a valid thread and is not suspended) requests mutexm, then the request can be served, contradicting the assumption

of deadlock.(: From the hypothesis, projection queues can be partitionedin three classes: (1) those the are and will always be empty,

(2) those whose thread in the top entry is suspended, and (3) those whose thread in the top entry does not and will always not

exist. Mutexes corresponding to class (1) and (2) will neverbe acquired because no top entry can be removed. Threads in top

entries of class (2) either form cyclic dependencies or depend on a mutex corresponding to class (1) or (3); therefore, nomutex

can be acquired. �
The following theorem exploits the presence the artificial mutex mc to express deadlock with a simpler condition than

that of Theorem 7. This new condition is used by the LSA pseudocode (predicatedeadlok) for detecting deadlock during

reconfiguration.

Theorem 8 A nonfaulty follower is in deadlock if and only if the following condition holds:8m 2 mutexes : (�proj queue[m℄ =;) _ (proj queue[m℄:head():t 2 suspended threads) _ (proj queue[m℄:head():t 62 threads).
Proof. ): We first show that if the replica is in deadlock then8m 2 mutexes : �((proj queue[m℄ = ;)_(proj queue[m℄:head():t 2suspended threads)_ (proj queue[m℄:head():t 62 threads)). Supposing by contradiction that this condition does not hold,

i.e.,9m 2 mutexes : �((proj queue[m℄ 6= ;)^ (proj queue[m℄:head():t 62 suspended threads)_ (proj queue[m℄:head():t2 threads)), then eventually the threadproj queue[m℄:head():t will exist, will not be suspended, and will be in the top entry

of proj queue[m℄. Therefore, if this thread requestsm, the request will be eventually served, contradicting the hypothesis of

deadlock.

Since�((proj queue[m℄ = ;)_(proj queue[m℄:head():t 2 suspended threads)_ (proj queue[m℄:head():t 62 threads))
is equivalent to(�proj queue[m℄ = ;)_ (�proj queue[m℄:head():t 2 suspended threads)_ (� proj queue[m℄:head():t62 threads), and since if a predicate is true from now on, it is also true now, it follows that8m 2 mutexes : (�proj queue[m℄ =;) _ (proj queue[m℄:head():t 2 suspended threads) _ (proj queue[m℄:head():t 62 threads).

19We use the linear temporal logic symbol� to denotefrom now on.
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(: From the hypothesis, projection queues can be partitionedin three classes: (1) those the are and will be empty, (2) those

whose thread in the top entry is suspended, and (3) those whose thread in the top entry is not in the set of the current threads.

Clearly, mutexes corresponding to class (1) will never be acquired since no more entries will be stored in any projectionqueue.

Mutexes corresponding to class (3) can be acquired if and only if the thread in their top entry is created in the future. Butfor

this the mutexmc—which is used to serialize accesses to the functioncreate new thread—must be acquired by the parent.

If mc corresponds to class (3), then it is evident that no thread can be created in the future and, thus, mutexes corresponding to

class (3) will never be acquired. Therefore, assume thatmc corresponds to class (2).

Mutexes corresponding to class (2) can be acquired in the future if and only if the thread in the top entry of their projection

queue is resumed. But these threads are suspended because are waiting for the top entry of another projection queue to be

removed, a projection queue that must be either in class (1),(2), or (3) by hypothesis. These dependencies imply that no thread

can be awaken at all; hence, no mutex can be acquired (and in particularmc). �
The following corollary is a consequence of the follower–follower correctness theorem.

Corollary 1 Given two nonfaulty followersf1 andf2, if one deadlocks, eventually so does the other:f1 deadlocks=) �f2
deadlocks.

Proof. By contradiction, suppose there exists(m; t) that is acquired inf2 (i.e., (m; t) 2 Hf2 ) but cannot be acquired inf1
becausef1 is in deadlock. Sincef1 andf2 satisfy the liveness property (in both directions; hence, in thef2 ! f1 direction),

eventually(m; t) must be inHf1 (i.e., will be acquired inf1), which contradicts the hypothesis. �
Deadlock detection during normal operation. The absence of output observed by the voter (replica hang) may be caused

by a replica thread being suspended because of a deadlock condition on a subset of the replica mutexes. The generalization of

Theorem 7 for a subset of mutexesM0 is given by: (A)8m 2 M0 : (�proj queue[m℄ = ;) _ (proj queue[m℄:head():t 2suspended threads ^ (9m0 2 M0 : proj queue[m℄:head():t waits for m0)) _ (�proj queue[m℄:head():t 62 threads),
where the predicatet waits for m0 is true if the threadt is suspended because of requesting mutexm0. The difference

between (A) and Theorem 7 is in an extra predicate in the second condition, which accounts forM0 possibly not containing all

the replica mutexes by requiring that dependencies remain inM0. The deadlock condition on a subset of mutexes corresponds

to the existence of a subsetM0 for which (A) holds.

In practice, the� operator preceding a predicatep can be evaluated by observing thatp has held for a sufficient amount of

time T , whereT is the maximum waiting time on a projection queue and includes the maximum time between reception of

subsequent mutex table updates.

The existence of a subsetM0 for which (A) holds can be evaluated with linear complexity by forming a dependency graph.

Nodes are both the threads in the top entries that are suspended—the first part of second condition of (A)—and mutexes for

which either the projection queue is empty or the thread in the top entry is not valid—the first and third conditions of (A).An

edge connects a threadt1 to a threadt2 if t1 is suspended because of requesting the mutex for whicht2 is top entry; an edge

also connects a threadt to a mutexm if t is suspended because of requestingm—the second part of second condition of (A).

A subsetM0 for which (A) holds exists if there is a cycle in the graph or there is a path terminating on a mutex whose status

has not changed for more thanT time units since the last time a thread was suspended becauseof requesting this mutex.
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