
Performance Evaluation 65 (2008) 417–440
www.elsevier.com/locate/peva

TCP-Illinois: A loss- and delay-based congestion control algorithm
for high-speed networks

Shao Liu∗, Tamer Başar, R. Srikant

Department of Electrical and Computer Engineering and Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
1308 West Main Street, Urbana, IL 61801-2307, USA

Received 31 October 2007; accepted 7 December 2007
Available online 28 December 2007

Abstract

We introduce a new congestion control algorithm for high-speed networks, called TCP-Illinois. TCP-Illinois uses packet loss
information to determine whether the window size should be increased or decreased, and uses queueing delay information to
determine the amount of increment or decrement. TCP-Illinois achieves high throughput, allocates the network resource fairly,
and is incentive compatible with standard TCP. We also build a new stochastic matrix model, capturing standard TCP and TCP-
Illinois as special cases, and use this model to analyze their fairness properties for both synchronized and unsynchronized backoff
behaviors. We finally perform simulations to demonstrate the performance of TCP-Illinois.
c© 2008 Published by Elsevier B.V.

Keywords: Congestion control; TCP; Fairness; Stability; Synchronization

1. Introduction

TCP-Reno [13], TCP-NewReno [10], and SACK TCP [22] are the standard versions of TCP congestion control
protocols currently deployed in the Internet, and they have achieved great success in performing congestion avoidance
and control. The key feature of standard TCP is its congestion avoidance phase, which uses the additive increment
multiplicative decrement (AIMD) algorithm [12]. Being a window-based algorithm, TCP controls the send rate by
maintaining a window size variable W , which limits the number of unacknowledged packets in the network from a
single user. This window size is adjusted by the AIMD algorithm in the following manner: W is increased by α/W
(α = 1 for standard setting) for each ACK, and thus is increased by a constant α/b per round trip time (RTT) if all
the packets are acknowledged within an RTT, where b is the number of packets acknowledged by each ACK (b = 1
for original TCP, and b = 2 for delayed ACK [30]). On the other hand, W is decreased by a fixed proportion βW
(β = 1/2 for standard setting) once some packets are detected to be lost in the last RTT.1 Under this algorithm, senders
gently probe the network for spare bandwidth by cautiously increasing their send rates, and sharply reduce their send

∗ Corresponding author. Tel.: +1 217 621 1632.
E-mail addresses: shaoliu@uiuc.edu (S. Liu), basar1@uiuc.edu (T. Başar), rsrikant@uiuc.edu (R. Srikant).

1 Within one RTT, W may decrease multiple times in Reno and can decrease only once in NewReno and SACK.

0166-5316/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.peva.2007.12.007

http://www.elsevier.com/locate/peva
mailto:shaoliu@uiuc.edu
mailto:basar1@uiuc.edu
mailto:rsrikant@uiuc.edu
http://dx.doi.org/10.1016/j.peva.2007.12.007

418 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

rates when congestion is detected. Along with other features like slow start, fast recovery, and fast retransmission,
TCP achieves congestion control successfully in the current low-speed networks.

However, the current TCP can perform poorly in networks with high-bandwidth-delay-product (BDP) paths, since
the AIMD algorithm, being very conservative, is not designed for large window size flows. First, it takes too long time
for a large window size user to recover after a backoff and the bandwidth is not effectively utilized [9]. Second, TCP’s
time average window size W̄ is related with the loss event probability2 p in the following manner [25]

W̄ ≈
√

3/2bp or p ≈
3

2b(W̄)2
. (1)

Since TCP interprets all packet losses as congestion signals, W̄ is upper bounded by
√

3/2bpt , where pt is the
transmission error rate [9]. pt is around 10−7 in optical fiber networks, and much higher in other lossy networks,
like wireless networks. So TCP, and its AIMD algorithm in particular, should be modified in high-bandwidth-delay-
product networks.

Several alternatives to current versions of TCP have been proposed for implementation in high-speed networks.
Some require the modification to router algorithms also, like XCP [15], and some modify the sender side only, like
HS-TCP [9], Scalable TCP [16], TCP-Westwood [36], H-TCP [18], BIC-TCP [35], CUBIC-TCP [27], TCP-Vegas [8],
FAST TCP [14], Adaptive Reno [28], and Compound-TCP [31]. Although each of these has shown advantages over
standard TCP in some aspects, none of them have yet provided convincing evidence that they are overwhelmingly
better than standard TCP and are very suitable for general deployment.

In this paper, we first list some desirable design specifications that a high-speed TCP variant should meet, and
then introduce the TCP-Illinois algorithm, which uses packet loss information as the primary congestion signal to
determine the direction of window size change (whether window size should be increased or decreased), and uses
queueing delay information as the secondary congestion signal to adjust the pace of window size change (the amount
of window size increment or decrement). We then show that TCP-Illinois satisfies all the design requirements we
listed, and outperforms standard TCP and many other TCP variants.

To study the fairness, stability, and responsiveness properties of TCP-Illinois, we extend the stochastic matrix
model [2–5,17,29,34] by allowing window size backoff probabilities to be functions of flow arrival rates at congestion
events. Our contribution to this modeling technique includes the following: (i) we show that a large class of general
AIMD algorithms, including standard TCP and TCP-Illinois, have similar fairness properties, and the fairness
properties only depend on the backoff behaviors for these algorithms; (ii) the backoff behavior can be characterized by
a function f (·), where f (·) is a user’s backoff probability as a function of its send rate: if f (·) ≡ 1, the backoffs of all
the users are completely synchronized; if f (·) is linear, the backoffs are completely unsynchronized; and in general,
the partially-unsynchronized backoff lies in the middle; (iii) f (·) is determined by the number of packets dropped
in each congestion event: heavy congestion causes synchronization and light congestion leads to unsynchronized
backoff; (iv) the heaviness of congestion (the number of packets dropped in one congestion event as compared to the
number of flows) depends on the window size increment of these flows just before the congestion event, and thus
a smaller (respectively, larger) increment before a congestion event causes the backoff to be more unsynchronized
(respectively, synchronized).

The paper is structured as follows. In Section 2, we list the requirements for a new version of TCP, compare the
existing protocols and point out their shortcomings, and describe our design objective. We next introduce the TCP-
Illinois protocol in Section 3, and study its fairness and stability properties using a new stochastic matrix model for a
class of general AIMD algorithms in Section 4. We further explore some other properties of TCP-Illinois in Section 5
and provide ns-2 simulation results in Section 6 for a comparative study of TCP, HS-TCP and TCP-Illinois.

2. Background and motivation

As we have mentioned above, several new protocols have been introduced to replace standard TCP in high-speed
networks. To compare these protocols and to provide insight into the development of an ideal protocol, we list below
some requirements that a new protocol should satisfy. This list broadens the list of requirements in [18].

2 All the packet losses within one RTT are regarded as one loss event. Loss event probability is the number of loss events divided by the number
of packets sent.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 419

Intra-protocol requirements: The requirements that the protocol should satisfy in a network consisting of a single
protocol are the following:

• Efficiency. The average throughput for the new protocol should be larger than that of standard TCP in high-speed
networks.
• Intra-protocol fairness. Network resources should be fairly allocated to all flows. Fairness here does not necessarily

mean that all flows sharing the same link achieve the same throughput. Instead, this means that the new protocol
should not be significantly more unfair than the current TCP. For example, under the current TCP, flows with
different RTTs achieve similar average window sizes, and their average throughput are inversely proportional to
their RTTs. The new protocol should not be significantly more biased against long RTT flows.
• Responsiveness. The congestion control algorithm should reach the fair operating point quickly, starting from any

initial condition.
• Heavy congestion3 avoidance. A simple idea to achieve a larger average window size for a given loss event

probability is to choose a large value for α (window increment parameter) and a small value for β (window
reduction parameter). However, rapid increase and small decrease in window size may cause large number of
packets to be dropped during a congestion event, which we call heavy congestion, and thus may lead to some
undesirable consequences. First, heavy congestion causes more timeouts and makes TCP enter the slow start phase
more often, and causes under-utilization. For example, HS-TCP faces timeouts regularly if SACK is not used.
Second, heavy congestion causes synchronization more often, which makes the resource allocation very unfair for
large RTT users, as will be discussed later.
• Router independence. The new protocol should work well regardless of router characteristics, like the buffer size

at the router, and the queue management algorithm of the router (Droptail or some Active Queue Management
(AQM) schemes). With a more advanced router, like with a larger buffer or an AQM support, the new protocol
might achieve better performance, but the performance with Droptail and small buffer should also be good.
• Robustness. The new protocol should be robust against the noise in congestion signal measurements, especially if

this new protocol uses queueing delay as the congestion signal, since queueing delay measurements are typically
noisy.

Inter-protocol requirements: The requirements on the protocol when it coexists in a network with standard TCP
are the following:

• Compatibility. In low-speed networks, the new protocol should achieve a similar rate as that of standard TCP; and
in high-speed networks, standard TCP should not suffer significant throughput loss when it coexists with the new
protocol.
• Incentive to switch. By switching to the new protocol from standard TCP, the users should achieve a higher average

throughput in a network that accommodates both protocols.

We now briefly discuss existing TCP variants to see whether they satisfy all these requirements. First, it is
impractical to modify routers if the benefit is marginal or can be achieved by sender-side modifications, and thus
algorithms which need router-side modifications, like XCP, are not ideal. Without modifying the router, a sender has
only two congestion signals: packet loss and queueing delay. We can thus classify the prior sender-side protocols
into one of two classes. Loss-based congestion control algorithms, like HS-TCP and Scalable TCP, use packet loss as
primary congestion signal, increase window size for each ACK and decrease window size for packet loss. Loss-based
algorithms can be regarded as generalizations of TCP’s AIMD algorithm, and we call them general AIMD algorithms,
since the only difference from AIMD is that they set different α and β values and allow them to be variables. On the
other hand, delay-based congestion control algorithms, like TCP-Vegas and FAST TCP, are fundamentally different
from AIMD, as they use queueing delay as the primary congestion signal, increase window size if delay is small and
decrease window size if delay is large.

The advantage of delay-based algorithms is that they achieve better average throughput, since they can keep the
system around full utilization. As a comparison, the loss-based algorithms purposely generate packet losses and

3 In our context, heavy congestion means that many packets are dropped when congestion happens. It only concerns the time when congestion
happens and it does not necessarily mean that the packet loss probability or the loss event probability is high. In some other papers, it is called
heavy synchronization.

420 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

oscillate between full utilization and under-utilization. However, existing delay-based algorithms suffer from some
inherent weaknesses. First, they are not compatible with standard TCP. TCP-Vegas gets a very small share of the link
capacity if competing with TCP-Reno [1,24]; and FAST TCP yields a non-unique equilibrium point if competing with
TCP-Reno: the allocation of the bandwidth between FAST and Reno users depend on which users enter the network
first [32]. Second, they require the buffer size at the router to be larger than a specified value and this value increases
with the number of users N . Both Vegas and FAST control the number of packets queued in the router for each flow,
and this number cannot be too small. The requirement for the router buffer is thus N times this number. For a fixed
buffer size, there is an upper bound on N for Vegas or FAST to work efficiently. Finally, the performance of these
delay-based algorithms deteriorates if the delay measurements are noisy [7,21,26]. On the other hand, none of the
existing loss-based algorithms satisfy all the requirements either. Scalable TCP sets α proportional to W , but it has
been demonstrated to be unfair (see [18], Fig. 2). HS-TCP sets α to be a step-wise increasing function of W , and β a
step-wise decreasing function of W , but its convergence speed is very slow (see [18], Fig. 1). H-TCP aims at a faster
convergence and better utilization by setting α to be an increasing function of the time elapsed since last backoff and
setting β to be such that the link is always around full utilization, even after the backoff. For all the above algorithms,
the increase is initially slow, when the window size is small and the network is far from congestion, but becomes fast
later, when the window size is large and the network is close to congestion. As a result, the window size curve between
two consecutive loss events is convex.

This convex nature is not desirable. First, the slow increment in window size when the network is far from
congestion is inefficient. For a given β, the convex window curve gets an even smaller average throughput than
traditional linear increase, and thus these algorithms have to choose a smaller β < 1/2, which is not friendly to
standard TCP. Second, the fast increment in window size when the network is close to congestion causes heavy
congestion more easily. As we have mentioned before and will further discuss later, heavy congestion causes more
frequent timeouts, more synchronized window backoffs, and is more unfair to large RTT users. In summary, the main
problem with existing general AIMD algorithms is the convexity of the W curve. An ideal window curve should be
concave, which is more efficient and avoids heavy congestion. It is proved in [23] that the optimal congestion control
should have a concave window curve.

BIC-TCP and CUBIC-TCP were proposed recently to yield a non-convex window curve. They achieve a concave
(linear to logarithmic) window curve at the initial stage by using a binary search method to lead the window size
to a reference point, which is the old “maximum” window size (the window size right before the last congestion
indication). However, after the reference point is reached, these two algorithms need to choose a max probing method
to detect the new maximum, and this yields a convex (linear to exponential) window curve. So the window curves
for BIC-TCP and CUBIC-TCP are first concave then convex. Although these two algorithms have better performance
than convex curve algorithms, they are still not optimal [23]. An objective of our work is to design a general AIMD
algorithm which results in a concave window curve throughout the whole congestion epoch (the time interval between
two consecutive congestion events). We will compare our concave window algorithm with the non-concave curve
algorithms (ex. HS-TCP and BIC-TCP) by ns-2 simulations in Section 6.

3. The TCP-Illinois protocol

To achieve the concave window curve, we should set α large when far from congestion and set it small when
close to congestion. To achieve a better throughput in networks with packet losses not due to congestion and to
be fair with standard TCP, we should also set β small when far from congestion and set it large when close to
congestion. The difficulty is in judging whether the congestion is imminent or not, since it requires an estimation of the
current congestion level. Before congestion (packet loss) really happens, the only congestion indicating information is
queueing delay. So our key idea is the following: when the average queueing delay da is small, the sender assumes that
the congestion is not imminent and sets a large α and small β; when da is large, the sender assumes that the congestion
is imminent and sets a small α and large β. As a result, α = f1(da) and β = f2(da), where f1(·) is decreasing and
f2(·) is increasing. Any combination of increasing f1(·) and decreasing f2(·) functions results in a concave window
curve and therefore, we call such algorithms Concave-AIMD or C-AIMD algorithms.

Note that C-AIMD algorithms use loss to determine the direction and use delay to adjust the pace of window size
change. So loss is the primary congestion signal and delay is the secondary congestion signal. This makes C-AIMD
fundamentally different from another recently proposed algorithm, called Compound-TCP (C-TCP) [31], which uses

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 421

alpha

da

dmd1 d2 d3 dm

beta

da

alpha_max

alpha_min

beta_max

beta_min

Fig. 1. α and β curves vs da .

loss and delay information as primary signals (determining direction of window size change) in different stages.
We will also compare the performance of C-AIMD and C-TCP by ns-2 simulations in Section 6. Aside from the
difference in performance demonstrated in Section 6, C-TCP differs from C-AIMD in the following senses: C-TCP
does not achieve the concave window curve (and thus not optimal), needs a sufficiently large buffer, and uses delay to
determine the direction of window change. As we have mentioned, one problem in using delay to control congestion
is that delay cannot be measured accurately since usually the RTT measurements are noisy. If delay determines the
direction of window size change, noisy RTT measurements could degrade the performance significantly. Our C-
AIMD algorithms which use delay only as a secondary signal, are much more robust to noise in RTT measurements,
as discussed in Section 6.4. There are numerous choices for f1(·) and f2(·). TCP-Illinois is a special case of C-AIMD
algorithms which use the following choices for f1(·) and f2(·):

α = f1(da) =

{
αmax if da ≤ d1

κ1

κ2 + da
otherwise. (2)

β = f2(da) =

βmin if da ≤ d2
κ3 + κ4da if d2 < da < d3
βmax otherwise.

(3)

We let f1(·) and f2(·) be continuous functions and thus κ1
κ2+d1

= αmax, βmin = κ3 + κ4d2 and βmax = κ3 + κ4d3.
Suppose dm is the maximum average queueing delay and let αmin = f1(dm); then we also have κ1

κ2+dm
= αmin. From

these conditions, we have

κ1 =
(dm − d1)αminαmax

αmax − αmin
and κ2 =

(dm − d1)αmin

αmax − αmin
− d1,

κ3 =
βmind3 − βmaxd2

d3 − d2
and κ4 =

βmax − βmin

d3 − d2
.

(4)

This specific choice is shown in Fig. 1.
We now describe the TCP-Illinois protocol in more detail:

• All the features of TCP-NewReno except the AIMD algorithm are retained.
• In the congestion avoidance phase, the sender measures RTT T for each acknowledgement, and averages the RTT

measurements over the last W acknowledgements (one RTT interval) to derive the average RTT Ta . The sender
records the maximum and minimum (average) RTT4 ever seen, as Tmax and Tmin, respectively, and computes the
maximum (average) queueing delay dm = Tmax − Tmin and the current average queueing delay da = Ta − Tmin.
• The sender picks the following parameters: 0 < αmin ≤ 1 ≤ αmax, 0 < βmin ≤ βmax ≤ 1/2, Wthresh > 0,

0 ≤ η1 < 1, 0 ≤ η2 ≤ η3 ≤ 1. The sender sets di = ηi dm (i = 1, 2, 3), computes κi (i = 1, 2, 3, 4) from (4),

4 The are two options here. In the default option, the maximum and minimum average RTTs are recorded. In an alternative option, the maximum
and minimum instantaneous RTTs are recorded. These two options yield almost identical results, unless the delay signal is buried with noise and
the noise is in a high level. Under this case, the default option is a better choice.

422 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

and computes α and β values from (2) and (3), respectively. The standard settings of these parameters are given in
Section 6.
• α← 1 and β ← 1/2 if W < Wthresh.
• The κi (i = 1, 2, 3, 4) values are updated if Tmax or Tmin is updated. The α and β values are updated once per RTT.
• W ← W + α/W for each ACK.
• W ← W − βW , if in the last RTT there is packet loss detected through triple duplicate ACK.
• Once there is a timeout, the sender sets the slow start threshold to be W/2, enters slow start phase, and resets α = 1

and β = 1/2, and α and β values are unchanged until one RTT after the slow start phase ends.

TCP-Illinois retains the fast recovery and fast retransmission features of NewReno in standard option. If the
receivers support selective acknowledgement, TCP-Illinois can also back off its window size when packet loss is
detected through selective ACK and adopt features from SACK TCP. However, the SACK support is not needed,
since TCP-Illinois avoids heavy congestion effectively.

In addition to the above major features of the protocol, TCP-Illinois also contains another feature to improve the
robustness against sudden fluctuations in delay measurements that can result from measurement noise, bursty packet
arrival process, etc. To understand this feature, note that ideally once da becomes greater than d1, it should stay above
d1 until some users reduce their window sizes. However, due to bursty packet arrival process or measurement noise,
it is possible for da to drop rather suddenly below d1 before some users reduce their window sizes. In this case,
we should not set α = αmax unless we are really sure that the network is not in a congested state. Therefore, once
da > d1, we do not allow α to increase to αmax unless da stays below d1 for a certain amount of time. TCP-Illinois
chooses another parameter θ , and lets θ times RTT be this amount of time. The standard setting for θ is again given
in Section 6.

We note that the adaptation of α is the key feature of TCP-Illinois, whereas the adaptation of β as a function of
average queueing delay is only relevant in networks where there are non-congestion-related losses, such as wireless
networks or extremely high-speed networks. In wireless networks, some packet losses arise from channel fluctuations.
In extremely high-speed networks, congestion loss probability is so small that it is at the same level as or even smaller
than the probability of packet transmission error at the link, and as a consequence, a non-trivial proportion of packet
losses are from transmission error. For these non-congestion-related packet losses, we wish to avoid a sharp window
size reduction. Then, the β adaptation of TCP-Illinois shows its advantage: although it still reduces window size, the
reduction percentage is very small, since the queueing delay is very small.

4. Fairness and stability

In this section, we study the fairness and stability of TCP-Illinois. This involves both the intra-protocol fairness
between different TCP-Illinois users and also inter-protocol fairness with standard TCP, i.e., the resource allocation
between TCP-Illinois users and standard TCP users. We first develop a new stochastic matrix model for a class of
general AIMD algorithms, which include standard TCP and TCP-Illinois as special cases, and then study the fairness
and stability properties of these algorithms using this new model.

4.1. Stochastic matrix model for general AIMD algorithms

There have been several recent papers on the stochastic matrix model of AIMD algorithms; see [2–5,17,29,34]. We
first provide an overview of this model, and then extend this model by modifying one of the assumptions in the earlier
work. Throughout, we consider networks with a single bottleneck link which uses Droptail, analyze the congestion
avoidance phase only, and assume that all packet losses are caused by congestion.

Suppose a link with capacity C and queue limit B is shared by N users, indexed by i (i = 1, 2, . . . , N). User i has
a transmission rate (or throughput) xi , a window size Wi , a window increment parameter αi , a window backoff factor
βi , and RTT Ti . We define W := [W1, . . . , WN]

T, and x := [x1, . . . , xN]
T. When the link is congested and one or

more packets are dropped, we call this a congestion event, and denote by tk the time at the kth congestion event. At a
congestion event, one or more flows see packet losses and backoff their window sizes, and we say that a loss event5

5 In our terminology, a congestion event is for a link, while a loss event is for an individual user.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 423

happens for these flows. For any variable v, we use v(t) to denote its value at time t , use v[k] (respectively, v[k+])
to denote its value just before (respectively, after) the kth congestion event, use E[v] to denote the expected value of
v[k], and use v̄ to denote the average of all v[k]’s. Here, v could stand for Wi , xi , αi , βi , Ti , W, x, as well as some
other variables to be introduced later.

We now consider the congestion event k for Droptail queue. When congestion happens, the buffer is full, so every
user experiences a maximum queueing delay dm = B/C , and thus Ti [k] ≡ T̂i := T p

i + dm,∀k, where T p
i is the

propagation delay of user i . At the congestion event, the instantaneous throughput for user i is Wi [k]/T̂i . Ignoring
the burstiness of packet arrival process, we can assume that the outgoing packets from one particular user are evenly
distributed along the path. For user i , altogether there are Wi [k] packets, and thus the number of packets from user i
queued in the link buffer should be Wi [k]dm/T̂i = xi [k]dm . The sum of the queued packets from all users should be
the link buffer limit B, and thus we have

B =
N∑

i=1

xi [k]dm =

N∑
i=1

xi [k]
B

C
, (5)

which leads to following equation:

N∑
i=1

xi [k] = C, ∀k ∈ {0, 1, 2, . . .}. (6)

As mentioned earlier, in this analysis we have ignored the burstiness of packet arrival process; if we had considered
this burstiness, then

∑N
i=1 xi [k] would not be a constant, and would be either greater than or less than C . We now

define Σ = {z = [z1, . . . , zN]
T
∈ RN

: zi ≥ 0,
∑N

i=1 zi = C}; then Σ is the set of all possible x[k]’s, and we call Σ
the feasible set of x[k].

Between two consecutive congestion events, Wi (t) is increased at rate αi (t)/Ti (t), and thus

Wi [k + 1] = Wi [k
+
] +

∫ tk+1

tk

αi (t)

Ti (t)
dt. (7)

If we define

T̃i [k] :=

∫ tk+1
tk

α(t)dt∫ tk+1
tk

α(t)
Ti (t)

dt
, (8)

then, we have

Wi [k + 1] = Wi [k
+
] +

1

T̃i [k]

∫ tk+1

tk
αi (t)dt. (9)

For any user i and congestion event k, T̃i [k] ∈ [T
p

i , T̂i]. If queueing delay is much smaller than propagation delay,
then T̃i [k] varies in a very small range. For analytical convenience, we assume that T̃i [k] ≡ T̃i ,∀k.

At each congestion event k and for each flow i , we define the loss event random variable Di [k]:

Di [k] :=

{
1 if flow i sees at least one packet loss,
0 otherwise,

(10)

and define D[k] := [D1[k], . . . , DN [k]]T. Note that Di [k] and D j [k] are correlated, since
∑N

i=1 Di [k] ≥ 1.
With the loss event random variables defined, we have

Wi [k
+
] = Wi [k](1− βi [k]Di [k]). (11)

Combining (9) and (11), and using the fact that xi [k] = Wi [k]/T̂i , we have

xi [k + 1] = xi [k](1− βi [k]Di [k])+
1

T̂i T̃i

∫ tk+1

tk
αi (t)dt. (12)

Eqs. (6) and (12) describe the discrete-time stochastic model of all general AIMD algorithms.

424 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

4.2. Markov chain for identical αi (t) and constant βi [k]

We consider the class of AIMD algorithms which have the following properties: (i) αi (t) = α(t),∀i , where α(t)
is the common window increment for all users at time t ; (ii) βi [k] ≡ β̂,∀i, k, where β̂ is a constant independent of
i and k. This class includes standard TCP obviously, since it satisfies αi (t) ≡ 1, βi [k] ≡ β̂ = 1/2,∀i, k. This class
also includes TCP-Illinois. First, αi (t) = α(t), since the queueing delay is the same for all users. Here, we ignore the
differences in α among different flows due to feedback delays, since the queueing delays are averaged to compute α.
Then, βi [k] ≡ β̂ = βmax,∀i, k, since the average queueing delay da is larger than the threshold parameter d3 when
congestion happens, if the parameters are carefully chosen. Recall our modeling of congestion events in the previous
subsection: we know that the maximum queueing delay dm is reached at each congestion event. Even considering the
averaging process, da[k] is close to dm and still larger than d3.

For this class of AIMD algorithms, from (6), we have

∫ tk+1

tk
α(t)dt

N∑
i=1

(T̃i T̂i)
−1
=

N∑
i=1

β̂ Di [k]xi [k], (13)

and thus∫ tk+1

tk
α(t)dt =

1
N∑

i=1
(T̂i T̃i)−1

N∑
i=1

β̂ Di [k]xi [k]. (14)

Define

γi := (T̃i T̂i)
−1
/ N∑

j=1

(T̃i T̂i)
−1, (15)

and γ = [γ1, . . . , γN]
T. Then

∑N
i=1 γi = 1. We now have

xi [k + 1] = xi [k](1− β̂ Di [k])+ γi

N∑
j=1

xi [k]β̂ Di [k]. (16)

In vector form, we have

x[k + 1] = A[k]x[k], (17)

where

A[k] = A(D[k])

= diag(1− β̂ D1[k], . . . , 1− β̂ DN [k])+ γ β̂(D1[k], . . . , DN [k]). (18)

We see that x[k] forms a discrete-time Markov Chain on the continuous state space Σ . For any k, A[k] is a non-
negative, random, column stochastic matrix [6,11]. The property of this Markov Chain is determined by the A matrix,
and thus determined by D[k].

Note that, although αi (t) determines the window curve, the recovery time after a congestion event, and the
utilization of the bandwidth, once all users see the same α(t) at any time, α(t) does not influence the discrete-time
Markov Chain at congestion events, and thus the exact form of α(t) is not important to understand the macroscopic
fairness properties of this class of algorithms. So this stochastic matrix model applies to the entire class of such
algorithms, and the special choice of α(t) in TCP-Illinois is not important when analyzing the fairness of TCP-
Illinois. This special choice of α(t) indeed influences many other properties, such as efficiency and synchronization,
as we will discuss later.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 425

4.3. Stability and fairness: General case

In this subsection, we study the stability and fairness properties of the Markov Chain defined in (17) and (18).
Let S be the set of all non-empty subsets of {1, 2, . . . , N }, and suppose s[k] ∈ S is the set of users that experience
a loss event at congestion event k. Define ρs[k] := Prob(s[k] = s), where s ∈ S. Then, the distribution of D[k]
is determined by the values of ρs[k],∀s ∈ S. Let qi [k] := Prob(Di [k] = 1), then qi [k] =

∑
s:i∈s ρs[k], and qi [k]

denotes the window backoff probability of user i at congestion event k.
Most prior work assumed that Di [k] is independent of x[k], i.e., ρs[k] is a constant independent of k, for each s ∈ S,

and s[k] is identically independently distributed (i.i.d.). From this assumption, qi [k] is also a constant independent of
k and x[k] for all users i . However, in reality, at different congestion events, a flow is more likely to see a loss event
when it has a larger throughput. Therefore, we modify the stochastic matrix model by allowing D[k] to be dependent
on x[k], and allowing qi [k] and ρs[k] to be functions of x[k] as well:

ρs[k] = ρs(x[k]), ∀l, k, and qi [k] = qi (x[k]), ∀i, k. (19)

We make the following assumption on ρs, qi , and D:

Assumption 1. (i) ρs(·) and qi (·) are continuous functions in x[k]. (ii) For any realization of the infinite length Markov
Chain defined in (17) and (18) and for any user i , Di [k] = 1 for infinitely many k’s almost surely, i.e., for any J > 0,

Prob(Di [k] = 0,∀k ≥ J) = 0, ∀i ∈ {1, 2, . . . , N }.

We now state the following theorem.

Theorem 4.1. Under Assumption 1, the Markov Chain defined in (17) and (18) has a unique invariant distribution,
and starting from any initial state, the distribution of x[k] converges to this invariant distribution. Moreover, the
Markov Chain is ergodic, i.e., for any continuous function h(·) : Σ → R, ¯h(x[k]), the time average of h(x[k]), equals
E[h(x[k])], the expected value of h(x[k]) under the invariant distribution.

Proof. See [19], a longer version of this paper. �

With the existence and uniqueness of the invariance distribution established, we now study the fairness among
different users, i.e., the resource allocation under the invariant distribution. We have the following theorems on
fairness.

Theorem 4.2. If N users sharing one link have homogeneous RTTs, under the unique invariant distribution of the
Markov Chain defined in (17) and (18), all flows share the same expected throughput E[xi [k]].

Proof. When all users have the same RTT, T̂i , T̃i and γi are the same for all users. Then, from (18), the A matrix
does not depend on i or Ti . If we swap user i and user j , the Markov Chain is the same as when we do not swap
user i and user j , but swap xi [0] and x j [0]. From Theorem 4.1, we know that the invariant distribution is unique,
independent of the initial condition. Therefore, the invariant distribution is unchanged if we swap user i and user j ,
and thus E[xi [k]] = E[x j [k]],∀i, j ∈ {1, 2, . . . , N }. �

Theorem 4.3. If N users sharing one link have heterogeneous RTTs, under the unique invariant distribution of the
Markov Chain defined in (17) and (18), the following equation holds:

T̂i T̃i E[xi [k]qi (x[k])] = E[Wi [k]T̃i qi (x[k])] = C1, ∀i, (20)

where C1 is a constant independent of i .

Proof. Taking expectation of xi [k + 1] given x[k] in (16), we have

E[xi [k + 1]|x[k]] = xi [k] − β̂qi (x[k])xi [k] + γi

N∑
j=1

β̂qi (x[k])x j [k]. (21)

426 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Under the invariant distribution,

E[xi [k]] = E[xi [k + 1]] = E[E[xi [k + 1]|x[k]]]

= E[xi [k]] − β̂E[qi (x[k])xi [k]] + γi β̂

N∑
j=1

E[q j (x[k])x j [k]]. (22)

So we have that E[xi [k]qi (x[k])]/γi = T̂i T̃i E[xi [k]qi (x[k])] = E[Wi [k]T̃i qi (x[k])] is independent of i and we have
proved (20). �

4.4. Models for ρs(·) and qi (·)

From Theorem 4.3, we see that the resource allocation depends on the form of qi (·). If qi (·) is constant, it is exactly
the same as the prior results in [34]. In our model, qi [k] is allowed to be a function of x[k]. We need to specify the qi (·)

function to further analyze the fairness property. Recall that the dependence of qi [k] on x[k] arises from the fact that
a flow with a larger throughput is more likely to see a loss event than a flow with a smaller throughput. Accordingly,
we make the following assumption:

Assumption 2. At each congestion event, the total number of packets dropped is a random variable that takes values
in {1, 2, . . . , Mmax}, and its distribution is independent of k. Furthermore, for any packet dropped at congestion event
k, the probability that it belongs to flow i is xi [k]/C .

This assumption is justified by the following reasoning: since the total arrival rate is independent of k, so is the
distribution for the total number of packets dropped; since at least one packet is dropped and only a finite number of
packets are dropped, there are lower and upper bounds for the total number of packets dropped; since the probability
of an arbitrary packet belonging to flow i is xi [k]/C , so is the probability of a dropped packet belonging to flow i .

Lemma 4.1. Assumption 1 holds given Assumption 2

Proof. We first prove that Assumption 1 (i) holds. Let M be the random variable indicating the total number of packets
dropped in one congestion event, let PM (m) = Prob(M = m) for all m ∈ {1, 2, . . . , M̄}, and let M̂ = E[M]. Then,
we have

qi = 1− Prob(no dropped packets from flow i)

=

Mmax∑
m=1

PM (m)

[
1−

(
1−

xi [k]

C

)m]
= f (xi [k]), (23)

where f (x) :=
∑Mmax

m=1 PM (m) fm(x), and fm(x) := 1 − (1 − x
C)m . Both fm(x),∀m and f (x) are strictly increasing

continuous functions in x ∈ [0, C]. Note that Assumption 1 allows qi [k] to be functions of all users’ rates, while
Assumption 2 further tells us that qi [k] is only a function of its own rate xi [k], and this relationship f (·) is common
for all users.

We then study ρs(·). For a specific s ∈ S, suppose s = {i1, i2, . . . , iH }, where 1 ≤ i1 < i2 < · · · < iH ≤ N . Then,
Prob(s[k] = s|M = m) = 0 if m < H . If m ≥ H , we have

ρs,m(x[k]) := Prob(s[k] = s|M = m)

=

∑
m1,...,m H

(
xi1 [k]

C

)m1

· · ·

(
xiH [k]

C

)m H
(

m
m1, m2, . . . , m H

)
,

where the summation is over all mh ≥ 1,∀h ∈ {1, 2, . . . , H}, and
∑H

h=1 mh = m. And we have

ρs(x[k]) = Prob(s[k] = s) =
∞∑

m=H

PM (m)ρs,m(x[k]). (24)

So both qi (x[k]) and ρs(x[k]) are continuous functions of x[k].

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 427

Next we prove Assumption 1(ii). At each congestion event, at least one user will decrease its window size by at
least 1, and thus

∑N
i=1 xi [k]β̂ Di [k] ≥ 1/Tm , where Tm = maxi T̂i . Hence, if user i does not back off at congestion

event k, xi [k + 1] ≥ γi/Tm . Since at least one packet is lost at congestion event k + 1 and the probability of a lost
packet belonging to flow i is xi [k+1]/C , we know that qi [k+1] ≥ xi [k+1]/C . Thus qi [k+1] ≥ ε := γi/(CTm) > 0.
So the probability that user i backs off at least once in any two consecutive congestion events is lower bounded by
ε > 0. As a consequence, for any user i ∈ {1, 2, . . . , N }, Di [k] = 1 for infinitely many k’s almost surely. �

Since Assumption 2 implies Assumption 1, we know that Theorems 4.1–4.3 hold under Assumption 2 also. In the
next subsection, we analyze the fairness property for the specific f (xi) function given by (23).

4.5. Synchronization and fairness

From Theorem 4.3 and Eq. (23), the f (·) function uniquely determines the backoff behavior and the fairness
property. Different f (·) functions lead to different backoff behaviors: for example, if f (·) ≡ 1, the backoffs are
completely synchronized; otherwise, they are not. The exact form of f (·) depends on the distribution of M , and is
thus unknown if PM (·) is unknown. However, we can bound f (x) in general and approximate f (x) for some special
cases. Since

1−
x

C
≥

(
1−

x

C

)m
≥ 1−

mx

C
, ∀ 0 ≥ x ≥ C,

we have

x

C
≤ f (x) ≤

Mmax∑
m=1

PM (m)

[
1−

(
1−

mxi [k]

C

)]
=

M̂x

C
. (25)

Note that the loss event for a flow is the union of the events that each dropped packet belongs to this flow, therefore
the bound on f (x) in (25) is just the union bound. Since x ≥ 0 and f (x) ≥ 0 always, we have

x2

C
≤ E[x f (x)] ≤

M̂x2

C
.

From Theorem 4.3, we have

T̃ j

M̂ T̂ j
≤

¯W 2
i
¯W 2

j

≤
M̂ T̂i

T̃i
, ∀i 6= j. (26)

The bounds are tight and ¯W 2
i ≈

¯W 2
j if M̂ is close to 1 (very light congestion). If the variance of Wi [k] is much smaller

than (E[Wi [k]])2, then ¯W 2
i ≈ (W̄i)

2, and thus the average window sizes of all flows are almost the same under the very
light congestion case. From simulations which will be presented later, we observe that Var(Wi [k]) � (E[Wi [k]])2

indeed. If M̂ is very large (heavy congestion), the bounds are meaningless and ¯W 2
i and ¯W 2

j can be significantly
different.

We then consider the approximation of f (x) under some special cases. When x is small, such that mx/C � 1, the
probability that more than one dropped packet belong to one flow (with rate x) is very small, and thus the union upper
bound is nearly reached: fm(x) ≈ mx/C . If Mmaxx/C � 1, then f (x) ≈ M̂x/C , and f (x) ∝ x . When x is large,
such that mx/c � 1, then fm(x) ≈ 1. If M � c/x with very high probability, then f (x) ≈ 1. In general, f (x) is a
concave curve, and f (x) ∝ xλ, where 0 ≤ λ ≤ 1, and λ→ 1 as Mmax → 1, and λ→ 0 as M̂ →∞.

As we have mentioned, simulations show that the standard deviation of xi [k] is very small compared with E[xi [k]],
so with high probability, xi [k] lies not far away from E[xi [k]]. If the RTTs of different users do not differ significantly,
E[xi [k]] is not significantly different from C/N , and the probability of xi [k] � C/N or xi [k] � C/N is very small.
So if Mmax � N , which we call “light congestion”, almost always Mxi [k]/c � 1, and thus f (xi [k]) ∝ xi [k]
(λ ≈ 1), and the window backoffs of different users are completely unsynchronized. If M̂ � N , which we
call “heavy congestion”, almost always Mx/c � 1, and thus f (x) ∝ 1 (λ ≈ 0), and the window backoffs are
completely synchronized. In the middle of these two extreme cases, 0 < λ < 1, and the window backoffs are partially
unsynchronized.

428 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Plugging f (x) ∝ xλ into (20), we get that T̂i T̃i E[(xi [k])λ] is the same for all users. If the variance of xi [k] is small,
and if the difference between T̃i and T̂i is small also, we get the following fairness property:

x̄i ∝
1

T̂ 1+µ
i

, and W̄i ∝
1

T̂ µ
i

, (27)

where µ = (1 − λ)/(1 + λ). We know that 0 ≤ µ ≤ 1 in general; µ ≈ 0 for light congestion and completely
unsynchronized window backoff; and µ ≈ 1 for heavy congestion and completely synchronized window backoff. So
when the variance of xi [k] is small and when the RTTs are not significantly different, the fairness depends on the
synchronization, which further depends on the heaviness of congestion. Light congestion leads to unsynchronized
window backoff and equality of window sizes (µ = 0); heavy congestion leads to synchronized window backoff and
an inverse proportional relationship between window size and RTT (µ = 1); and the general case (0 < µ < 1) lies in
the middle of these two extreme cases. We then explore the factors that influence the distribution of M . Consider the
homogeneous RTT case and suppose the system is slotted with each slot being one RTT. Since the pipe can hold at
most CT + B packets and Wi increases by αi within each slot,

∑N
i=1 Wi ∈ [CT + B + 1−

∑N
i=1 αi , CT + B] in the

slot just before congestion, and
∑N

i=1 Wi ∈ [CT + B + 1, CT + B +
∑N

i=1 αi] in the slot of congestion. As a result,
anywhere from 1 to

∑N
i=1 αi packets could be dropped at one congestion event, and we know that the congestion

is heavier if the increment before congestion is larger. Approximately, we can assume that M takes values from 1
to
∑N

i=1 αi with equal probability, and thus Mmax = max(1,
∑N

i=1 αi), and M̂ = max(1, (1 +
∑N

i=1 αi)/2). Since
TCP-Illinois chooses very small α � 1 just before congestion, Mmax � N and light congestion condition is satisfied.
From this analysis, one advantage of TCP-Illinois is that it avoids heavy congestion and synchronized backoff, and
it reaches a fair resource allocation between different users. On the contrary, convex curve algorithms, like HS-TCP,
yield heavy congestion regularly, and this further causes synchronization and unfairness, as shown in Section 6.

We finally perform Matlab simulations to support our assumption of small xi [k] variance and validate our analysis
on the relationship between heaviness of congestion and fairness. We have performed a large number of simulations
on the evolution of the Markov Chain defined in (17) and (18). We vary N (the number of users) from 4 to 10. For
each N , we select three probability distributions of M : (i) light congestion, M is uniformly distributed in [1, N/2]; (ii)
medium level congestion, M is uniformly distributed in [1, N]; (iii) heavy congestion, M is uniformly distributed in
[1, 2N]. For each scenario, we perform 50 simulations. For each simulation, x[0] and Ti ,∀i are randomly generated
initially, γi ,∀i are computed by (15), and M[k] and s[k] are randomly generated according to Assumption 2 at each
congestion event k, and thus each A[k] and the sample path of the Markov Chain are derived. For each sample path, we
average 1000 congestion events after the distribution converges, to compute average throughput x̄i , standard deviation
of throughput Std(xi) :=

√
Var(xi), for each user i . We also compute x∗i for all i by assuming that (27) holds for

µ = 0, i.e., all users share the same window size. We plot x̄i/x∗i and Std(xi)/x̄i for all users and all simulations
performed, and plot log(xi) vs log(Ti) for all users in each simulation. The results are shown from Figs. 2–7.6 From
the figures, we have the following observations: (i) the x̄i/x∗i ratio is very close to 1 for light congestion, which
indicates that all users share almost the same window size under light congestion, and as the congestion becomes
heavy, the range of this ratio becomes wider and thus the difference between Wi ’s becomes larger; (ii) the Std(xi)/x̄i
ratio is always much smaller than 1 for any N and any heaviness of congestion, which supports our assumption of
small variance; (iii) log(xi) is linear with log(Ti), which validates the fairness property in (27): xi ∝ 1/T 1+µ

i , where
µ ∈ [0, 1], and µ increases as the congestion becomes heavy.

Remark 1. In Eq. (27), the average of W and x is over their values at the congestion events, and not over all time.
Since a general AIMD algorithm can yield any window size curve, it is a challenging problem to compute the average
W and x over all time, and it is an open problem whether the above conclusion on fairness holds for time averages
of W and x . However, for general AIMD algorithms, since the all time average of Wi lies between E[Wi [k]] and
E[Wi [k+]] = E[(1− β̂qi [k])Wi [k]] ≥ (1− βmax)E[Wi [k]], we know that time average of W for one user is similar
to the average at congestion events. For TCP-Illinois, in particular, since x increases to near full utilization very
quickly and stays around full utilization for a long time, the time average of x is very close to E[x[k]], and thus the

6 Due to space limitation, we only provide the case for N = 4 and 10. For other values of N , the results turn out to be similar.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 429

Fig. 2. N = 4, light congestion, M ∈ [1, N/2], uniformly distributed.

Fig. 3. N = 4, medium level congestion, M ∈ [1, N], uniformly distributed.

Fig. 4. N = 4, heavy congestion, M ∈ [1, 2N], uniformly distributed.

430 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Fig. 5. N = 10, light congestion, M ∈ [1, N/2], uniformly distributed.

Fig. 6. N = 10, medium level congestion, M ∈ [1, N], uniformly distributed.

Fig. 7. N = 10, heavy congestion, M ∈ [1, 2N], uniformly distributed.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 431

fairness property should hold approximately for time average also. From our ns-2 simulations in Section 6, we observe
that the time averages of W for different users are also approximately the same.

4.6. Compatibility with the standard TCP

We now consider the equilibrium allocation when TCP-Illinois coexists with TCP-Reno (NewReno and SACK
are the same) and all flows share the same RTT.7 If we use T̂ to denote the common maximum RTT for all
flows, then Wi [k] = xi [k]T̂ . The users are divided into two classes, Illinois user set I and Reno user set R, and
αi (t) = αI L(t), βi [k] = βI L [k],∀t,∀k,∀i ∈ I, α j (t) ≡ 1, β j [k] ≡ 1/2,∀t,∀k,∀ j ∈ R. Define

ᾱi [k] =

∫ tk+1
tk

αi (t)
T (t) dt∫ tk+1

tk
1

T (t)dt
. (28)

Then, we know that ᾱi [k] ≡ 1,∀k,∀i ∈ R and αmin ≤ ᾱi [k] = α j [k] ≤ αmax,∀k,∀i, j ∈ I, and we have

Wi [k + 1] = (1− βi [k]Di [k])Wi [k] + ᾱi [k]
∫ tk+1

tk

1
T (t)

dt

From similar steps in (13)–(16), we have

Wi [k + 1] = (1− βi [k]Di [k])Wi [k] +
ᾱi [k]

N∑
i=1

ᾱi [k]

N∑
i=1

βi [k]Di [k]Wi [k]. (29)

Suppose ᾱi [k] is independent of Wi [k], and define α̂i = E[ᾱi [k]], and β̂i = E[βi [k]]. Then, α̂i = 1, β̂i = 1/2,∀i ∈
R, and α̂ j = α̂k, β̂ j = β̂k,∀ j, k ∈ I. We use α∗I L and β∗I L to denote the common α̂ j and β̂ j values for TCP-Illinois
users. If all packets dropped are due to congestion, and Droptail is used, β∗I L ≈ βmax. Taking conditional expectation
of Wi [k + 1] given Wi [k], we get(

N∑
j=1

α̂ j

)
E[Wi [k + 1]|W[k]] =

(
N∑

j=1

α̂ j

)(
Wi [k] − β̂i f

(
Wi [k]

T̂

)
Wi [k]

)
+ α̂i

N∑
j=1

β̂ j f

(
W j [k]

T̂

)
W j [k].

Equating E[Wi [k + 1]] and E[Wi [k]], we have

E

[
Wi [k] f

(
Wi [k]

T̂

)]
β̂i

α̂i
= C2, (30)

where C2 is a constant independent of user i . If the congestion is light and the backoff is unsynchronized (M̂ ≈ 1 or

M̂ � C/x), f (x) is approximately proportional to x , and thus we have that β̂i
α̂i

E[(Wi [k])2
] is the same for all users i .

And as Var(Wi [k]] � (E[Wi [k]])2, approximately we have that β̂i
α̂i

(E[Wi [k]])2 is the same for all users i .

Since α̂i and β̂i are the same within each protocol, we know that at equilibrium, all Reno users share the same
average window size W̄R and all Illinois users share the same average window size W̄I L , and

W̄I L

W̄R
≈

√
α∗I L

2β∗I L
≈

√
α∗I L

2βmax
.

In simulations presented later, for typical scenarios,
√

α∗I L is slightly larger than 1 and βmax is usually picked to be
1/2 for friendliness with TCP-Reno. Thus, W̄I L is usually slightly larger than W̄R . This means that in a network with
both TCP-Illinois and TCP-Reno users, the TCP-Reno users will not suffer a significant degradation in performance.
Furthermore, unlike TCP-Vegas which performs poorly when used with TCP-Reno, TCP-Illinois actually performs
better than TCP-Reno, thus providing the right incentive for users to switch to TCP-Illinois.

7 Due to lack of space, here we considered only the homogeneous RTT case. For the heterogeneous RTT case, a similar method can be used to
derive the equilibrium allocation.

432 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

5. TCP-Illinois properties

In Section 2, we listed some requirements for the new TCP variant to satisfy, and in Section 4, we showed that
TCP-Illinois maintains the intra-protocol fairness the same way as standard TCP, satisfies the stability and scalability
requirement, avoids heavy congestion, and is compatible with the current TCP. In this section, we consider the
remaining requirements.

Since qa increases with increasing W , α decreases with increasing W , and thus the W curve is concave. We can
show that the curve is actually at first linear, and then close to a parabola, and finally linear again. The proof is omitted
due to space limitations and is available in [19]. In [19], we also show that TCP-Illinois achieves a better average
throughput than standard TCP for any router buffer size B, and its average throughput increases as B increases, since
compared with standard TCP, TCP-Illinois increases its rate to full utilization faster and stays around full utilization
longer (the length of time it stays around full utilization increases with increasing B). Thus the requirements of
efficiency, router buffer independence, and incentive to switch are all met.

From Section 4, we see that convergence speed in k for TCP-Illinois is the same as that for standard TCP. So the
response time is only determined by the time interval between two consecutive congestion events. We can show that
this time interval of TCP-Illinois is similar to or smaller than that of standard TCP for a wide range of αmin values
(see [19] for a proof), and thus the responsiveness requirement is also satisfied.

In lossy networks such as wireless networks, many packets are dropped not due to congestion. These packet drops
greatly reduce the throughput for standard TCP, but for TCP-Illinois, the degradation is not as severe, since when
a packet is dropped before congestion, the average queueing delay is always almost zero, and thus β ≈ βmin and
α ≈ αmax always, and TCP-Illinois is essentially an AIMD algorithm with a larger α = αmax and smaller βmin. Since
W ∝

√
α/βp, the ratio of the average window size of TCP-Illinois to that of standard TCP can be up to√
αmax/(2βmin). (31)

This improvement is significant. For example, if αmax = 9, βmin = 1/8, then WIllinois can be up to 6WReno.

6. Simulation results

In this section, we provide ns-2 simulation results to validate the properties of TCP-Illinois and compare its
performance with TCP-Reno, HS-TCP, BIC-TCP, C-TCP and TCP-Vegas. HS-TCP and TCP-Vegas are in the standard
ns-2 simulation package, and we use the Linux TCP implementation for ns-2 [33] to simulate BIC-TCP and C-TCP.
For HS-TCP, BIC-TCP and C-TCP, we use the default parameter settings. For TCP-Vegas, we let α = β = γ and
vary the γ values. For TCP-Illinois, without explicit explanation, we choose the following standard parameter setting:
αmax = 10, αmin = 0.1, βmax = 1/2, βmin = 1/8, Wthresh = 10, η1 = 0.01, η2 = 0.1, η3 = 0.8, and θ = 5.
Throughout, we consider a dumb-bell network topology with single bottleneck link shared by one or multiple users.
For each simulation scenario, we run the simulation for a sufficiently long time so that tens to hundreds of cycles
(congestion epochs) are covered in one simulation run.

6.1. Single user: Efficiency property

We first perform simulations for a single user (choosing one of the above algorithm) scenario, with C = 100 Mbps,
B = 100 packets,8 and Tp = 100 ms. The window sizes are plotted in Fig. 8. The simulations clearly demonstrate the
concave nature of the curve of TCP-Illinois and show that TCP-Illinois achieves a larger average window size than
TCP-Reno. For HS-TCP, we have chosen the Reno base, NewReno base and SACK base, and we have found that HS-
TCP generates timeouts frequently for Reno and NewReno bases, and only works well if SACK is used.9 This supports
our claim that HS-TCP causes heavy congestion. From the figure, we also see that BIC-TCP has a concave–convex
curve, and the window curve for C-TCP is not concave either. We then compare the average goodputs for different
protocols, and plot them in the left subplot of Fig. 9. From the figure, it can be seen that TCP-Illinois has the best
network bandwidth utilization among these algorithms.

8 The packet size is 1000 bytes throughout.
9 Henceforth, we mean SACK-based HS-TCP when we mention HS-TCP without specifying its base. BIC-TCP and C-TCP are also SACK

based.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 433

Fig. 8. Single user, TCP-Reno, HS-TCP, TCP-Illinois, BIC-TCP, and C-TCP. Top plot: Reno and Illinois (β = 0.125 and β = 0.5). Middle plot:
HS-TCP, with Reno, NewReno, and SACK bases. Bottom plot: BIC-TCP and C-TCP.

Fig. 9. Left: Average goodput of 1 users. From left to right: Reno, HS-TCP, Illinois with β = 0.5, Illinois with β = 0.125, BIC-TCP, C-TCP.
Right: Average goodputs of 4 homogeneous RTT (100 ms) users. From left to right: Reno, HS-TCP, Illinois, BIC-TCP, C-TCP.

We then study the effect of the buffer limit on the window size curve. We fix C = 10 Mbps, Tp = 60 ms, and vary
B from 10 to 50 packets, and the window curve is plotted in Fig. 10. It is clear that as B increases, there is more time
around full utilization and the average window size increases.

6.2. Multiple users: Fairness property

We now perform simulations for multiple (N = 4) users. The network parameter is still C = 100 Mbps and
B = 100 packets. For homogeneous RTT scenarios, Tp = 100 ms for all users; for heterogeneous RTT scenarios, the
RT T s for the four flows are 60, 80, 100, and 120 ms, respectively.

434 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Fig. 10. The window size curve for different buffer sizes.

Fig. 11. Left: Average throughput of four homogeneous RTT users, two use Reno, two use a new algorithm. Right: Average window of four
heterogeneous RTT users, all use the same algorithm.

We first simulate on the same protocol homogeneous RTT scenario, and plot average goodputs in the right subplot
of Fig. 9. We see that in the multiple user case, TCP-Illinois is still the most efficient algorithm.

We then demonstrate the inter-protocol fairness (the bandwidth allocation when Reno and a new algorithm coexist)
in a homogeneous RTT scenario; and demonstrate the intra-protocol fairness (RTT fairness) of these algorithms in a
heterogeneous RTT scenario. The average throughput in the homogeneous RTT inter-protocol scenario and average
window size in the heterogeneous RTT intra-protocol scenario are plotted in Fig. 11. From this figure, we see clearly
that TCP-Illinois is more fair to the competing Reno user and large RTT users than HS-TCP, BIC-TCP and C-TCP.
For inter-protocol fairness, we also simulate TCP-Vegas, and we see that TCP-Vegas users get very small rates when
competing with TCP-Reno. Therefore, TCP-Vegas is not compatible with TCP-Reno and provides no incentives for
Reno users to switch.

To further demonstrate the performance of these protocols, we also plot the window curves of these simulations in
Figs. 12 and 13. From all these figures, it can be seen that TCP-Illinois outperforms HS-TCP, BIC-TCP and C-TCP
in terms of efficiency, fairness, and compatibility, and is the only algorithm which yields a concave window curve
throughout a congestion epoch.

6.3. Performance in lossy/wireless networks

We then perform simulations for lossy/wireless links. It is a single link single user scenario, with the user choosing
either TCP-Reno or TCP-Illinois, and the link randomly dropping packets with dropping probability pd much larger
than the congestion loss probability (since pd is large, the link is under-utilized and there is no congestion loss at
all in many cases). The capacity and buffer length of the link are 40 Mbps and 200 packets, respectively, and the
propagation delay for the single user is 100 ms. Instead of choosing the default setting, the TCP-Illinois user sets

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 435

Fig. 12. Homogeneous RTT Users. First: 4 TCP-Illinois. Second: 4 Hs-TCP. Third: 2 TCP-Reno and 2 TCP-Illinois. Fourth: 2 TCP-Reno and 2
HS-TCP. Fifth: 2 TCP-Reno and 2 BIC-TCP. Sixth: 2 TCP-Reno and 2 C-TCP. TCP-Illinois is demonstrated to avoid synchronization effectively
and to be compatible with TCP-Reno. Algorithms like HS-TCP are demonstrated to generate synchronization frequently and to be more unfair to
TCP-Reno.

η1 = 0.2. We vary pd values from 0.0005 to 0.05, and plot the average window size10 for TCP-Illinois and Reno and
the ratio of these two multiplied by 20, as in the left plot of Fig. 14. From the plot, we see that WIllinois ≈ 4WReno

10 We had only one run for each simulation scenario, but this run lasts for a long time. We choose different time intervals to compute the average
window size, and to compute the confidence interval from the averages over different time intervals.

436 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Fig. 13. Heterogeneous RTT Users. First: 4 TCP-Illinois. Second: 4 HS-TCP. Third: 4 BIC-TCP. Fourth: 4 C-TCP. TCP-Illinois and Reno are fair
to large RTT users, while HS-TCP, BIC-TCP, C-TCP are not.

in most cases. From (31), the ratio should be
√

αmax/(2βmin) =
√

40 ≈ 6.32. The difference of the ratio between
simulation and analysis can be explained if we observe the window curve plot of TCP-Illinois and Reno, as in the right
plot of Fig. 14. From the window curve plot, we see that timeout happens frequently for the TCP-Illinois user, since
the increment amount α is very large before a packet loss happens. Eq. (31) only considers the congestion avoidance
phase, and timeout is the reason that WIllinois/WReno is around 4 instead 6. However, TCP-Illinois achieves a much
better throughput than Reno in wireless networks.

6.4. Performance with noisy RTT measurement

We finally perform simulations to compare the performance of TCP-Illinois and TCP-Vegas when the delay
measurement is inaccurate. We consider a single link and two user scenario. For the link, C = 10 Mbps and B = 50
packets (correspondingly, the maximum queueing delay dm = 40 ms). For the users, either both choose TCP-Illinois
or both choose TCP-Vegas, and the propagation delay is Tp = 60 ms for each user. We now suppose that there is
an extra white noise term in the RTT measurement, denoted by n, and let n be uniformly distributed between [0, 2σ]

(the noise term is an extra delay due to reasons other than propagation and queueing, so it is non-negative). Then,
RTT = Tp + d + n, where d is the queueing delay. We vary the value of σ to vary the noise level and study the
performance of TCP-Vegas and TCP-Illinois under noisy RTT measurement. For each protocol, we have two groups
of simulations. In group one, both users face the noise term in the RTT measurement; and in group two, only one user

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 437

Fig. 14. Window sizes of TCP-Illinois vs Reno in Lossy Networks. Left: Average window vs p. The squares and diamonds connected by the solid
lines are the average values. The stars above and below the average values are the average values plus/minus standard deviations. So the distance
between the stars gives the confidence interval with the confidence level being 0.95. Right: Window curve over t for p = 0.005.

faces the noise term and the other user measures RTT accurately. The average throughput of the users under different
noise levels are plotted in Fig. 15. From Fig. 15, we see that as the noise level increases, TCP-Illinois is very robust to
noise, while TCP-Vegas is not: there is a threshold on σ , which depends on the γ parameter. If the noise level exceeds
this threshold, the performance is degraded significantly: if both users have noise terms, both get a much smaller
throughput than the noise free case and the link is under-utilized; if one user has the noise term and the other one does
not, then the resource allocation is very unfair to the user with inaccurate RTT information. It is easy to explain the
degradation when σ is larger than the threshold. At equilibrium, the Vegas user satisfies

diff =
(

W

Tp
−

W

Tp + da

)
Tp = W

da

Tp + da
= γ ⇒ W ∗ = γ

d∗a + Tp

d∗a
, (32)

where d∗a and W ∗ are the equilibrium values of da and W . So W ∗ is an decreasing function of d∗a , and d∗a is a positive
value such that the sum of W ∗/(Tp + d∗a) over all users equals the capacity C . If RTT = Tp + da + n, then since n
may hit zero, still we have BaseRTT = Tp, and (32) becomes the following equation:

diff =
(

W

Tp
−

W

Tp + da + n

)
Tp = W

da + n

Tp + da + n
= γ

⇒ W = γ
da + Tp + n

da + n
and W̄ ≈ γ

d̄a + Tp + n̄

d̄a + n̄
, (33)

where n̄, d̄a and W̄ are the time average values of n, da and W . We see that if n̄ = σ ≤ d∗a , we can pick d̄a = d∗a − σ

so that W̄ = W ∗; and if n̄ = σ > d∗a , then W̄ is definitely smaller than W ∗. And when σ > d∗a , as σ increases,
W̄ decreases. So there exists a threshold of n̄ = σ such that if the noise level is smaller than this threshold, the
performance can be similar to the noise free case; and if the noise level is larger than this threshold, the performance
is degraded and the degradation becomes more significant as σ increases. Since this threshold approximately equals
d∗a and d∗a is proportional to γ , we know that this threshold is also proportional to γ , as shown in Fig. 15.

7. Conclusion

In this paper, we have considered some natural requirements for a new TCP protocol for high-speed networks and
have introduced a class of C-AIMD algorithms, which use loss to determine the direction and use delay to adjust
the pace of window size change. This idea is rooted in the following two assumptions or understanding of the entire

438 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

Fig. 15. Average Throughput vs Noise Level. Top left: TCP-Illinois. Top right: Vegas, γ = 2. Bottom left: Vegas, γ = 5. Bottom right: Vegas,
γ = 10.

congestion control system: (i) delay is indeed a useful signal, i.e., congestion or packet loss is indeed correlated to
delay information; (ii) delay is not an accurate signal, i.e., the correlation between loss and delay is weak. Combining
these two, we should use loss as the primary signal and delay as the secondary signal. Using this idea, we have
designed a specific protocol called TCP-Illinois, which achieves a concave window size curve and a better throughput
than standard TCP, and maintains the fairness of standard TCP. Various properties of TCP-Illinois are studied, and
TCP-Illinois is shown to satisfy all the requirements for an ideal high-speed TCP variant.

To analyze the fairness property of TCP-Illinois, a new stochastic matrix model of general AIMD algorithms is
introduced. Using this model, we have shown that TCP-Illinois leads to unsynchronized backoff and yields similar
window sizes for different RTT users. There are still some open problems regarding the new model, however, which
include: (i) the exact relationship between E[Wi] and E[W j],∀i 6= j for the N > 2 heterogeneous user scenario; (ii),
the relationship between E[W̄i] and E[W̄ j],∀i 6= j , where the expectation is over all time.

S. Liu et al. / Performance Evaluation 65 (2008) 417–440 439

Acknowledgements

We thank Professor F. Baccelli and Professor S. Meyn for helpful discussions. We also thank Dr. D.X. Wei for
helpful instructions on simulating BIC-TCP and Compound-TCP.

The research was supported by the NSF ITR Grant CCR 00-85917. This is an extended version of [20], a paper with
the same title, which was presented at the First International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS), October 2006.

References

[1] J. Ahn, P. Danzig, Z. Liu, L. Yan, Experience with TCP vegas: Emulation and experiment, in: Proceedings of ACM SIGCOMM, 1995.
[2] E. Altman, D. Barman, B. Tuffin, M. Vojnovic, Parallel tcp sockets: Simple model, throughput and validation, in: Proc. IEEE INFOCOM,

Barcelona, Spain, 2006.
[3] F. Baccelli, D. Hong, Interaction of TCP flows as billiards. Technical Report, INRIA Rocquencourt, April 2002.
[4] F. Baccelli, D. Hong, The AIMD model for TCP sessions sharing a common router, in: Proceedings of 39th Annual Allerton Conf. on

Communication, Control and Computing, October 2001.
[5] F. Baccelli, D. Hong, AIMD, fairness and fractal scaling of TCP traffic, in: Proceedings of IEEE Infocom, June 2002.
[6] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences. SIAM, 1979.
[7] S. Biaz, N. Vaidya, Is the round-trip time correlated with the number of packets in flight, in: Proceedings Internet Measurement Conference,

IMC, October 2003.
[8] L. Brakmo, S. O’Malley, L. Peterson, TCP vegas: New techniques for congestion detection and avoidance, in: Proceedings of ACM

SIGCOMM Symposium, August 1994. p 24–35.
[9] S. Floyd, Highspeed TCP for large congestion windows. Internet draft, draft-floyd-tcp-highspeed-01.txt, Available at:

http://www.icir.org/floyd/hstcp.html, December 2003.
[10] S. Floyd, T. Henderson, The new reno modification to TCPs fast recovery algorithm, RFC 2582, 1999.
[11] A. Graham, Nonnegative Matrices and Applicable Topics in Linear Algebra, Ellis Horwood Limited, Chichester, England, 1987.
[12] V. Jacobson, Congestion avoidance and control, ACM Computer Communication Review 18 (August) (1988) 314–329.
[13] V. Jacobson, Berkeley TCP evolution from 4.3-tahoe to 4.3-reno, in: Proceedings of the Eighteenth Internet Engineering Task Force, July

1990.
[14] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,

S. Ravot, S. Singh, FAST TCP: From theory to experiments, April 2003.
[15] D. Katabi, M. Handley, C. Rohrs, Congestion control for high bandwidth-delay product networks, in: Proceedings on ACM Sigcomm, 2002.
[16] T. Kelly, On engineering a stable and scalable TCP variant, Cambridge University Engineering Department Technical Report CUED/F-

INFENG/TR.435, June 2002.
[17] D. Leith, R. Shorten, Analysis and design of synchronised communication networks, Automatica 41 (2005) 725–730.
[18] D. Leith, R. Shorten, Y. Li, H-TCP: A framework for congestion control in high-speed and long-distance networks, HI technical report.

Available at: http://www.hamilton.ie/net/htcp/, August 2005.
[19] S. Liu, T. Başar, R. Srikant, TCP-illinois: A delay and loss-based congestion control algorithm for high-speed networks, technical report,

UIUC. Available at: http://www.ews.uiuc.edu/˜shaoliu/tcpillinois full.pdf, 2006.
[20] S. Liu, T. Başar, R. Srikant, TCP-Illinois: A loss and delay-based congestion control algorithm for high-speed networks, in: Proc. First

International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS, Pisa, Italy, October 2006.
[21] J. Martin, A. A. Nilsson, I. Rhee, Delay-based congestion avoidance for TCP, IEEE/ACM Transactions on Networking (June) (2003) 356–369.
[22] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP selective acknowledgement options. RFC 2018. Available at:

http://www.icir.org/floyd/sacks.html, April 1996.
[23] B. Miller, K. Avrachenkov, K. Stepanyan, G. Miller, Flow control as stochastic optimal control problem with incomplete information, in:

Proc. IEEE INFOCOM, Miami, FL, 2005.
[24] J. Mo, R. J. La, V. Anantharam, J. C. Walrand, Analysis and comparison of TCP reno and vegas, in: Proceedings of IEEE INFOCOM, 1999.
[25] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP throughput: A simple model and its empirical validation, in: Proceedings of ACM

SIGCOMM, 1998.
[26] R. S. Prasad, M. Jain, C. Dovrolis, On the effectiveness of delay-based congestion avoidance, in: Proceedings of Second International

Workshop on Protocols for Fast Long-Distance Networks, 2004.
[27] I. Rhee, L. Xu, CUBIC-TCP: A new TCP-friendly high-speed TCP variant, White paper. Available at:

http://www4.ncsu.edu/˜rhee/export/bitcp/cubic-paper.pdf.
[28] H. Shimonishi, T. Hama, T. Murase, TCP-Adaptive Reno: Improving Efficiency-Friendliness Tradeoffs of TCP Congestion Control Algorithm,

PFLDnet, February 2006.
[29] R. Shorten, F. Wirth, D. Leith, A positive systems model of TCP-like congestion control: Asymptotic results, IEEE/ACM Transactions on

Networking 14 (3) (2006) 616–629.
[30] W. Stevens, TCP/IP Illustrated, in: The Protocols, vol. 1, Addison-Wesley, 1994.
[31] K. Tan, J. Song, Q. Zhang, M. Sridharan, A compound TCP approach for high-speed and long distance networks, in: Proceedings of IEEE

Infocom, April 2006.

http://www.icir.org/floyd/hstcp.html
http://www.hamilton.ie/net/htcp/
http://www.ews.uiuc.edu/~shaoliu/tcpillinois%5Ffull.pdf
http://www.icir.org/floyd/sacks.html
http://www4.ncsu.edu/~rhee/export/bitcp/cubic-paper.pdf

440 S. Liu et al. / Performance Evaluation 65 (2008) 417–440

[32] A. Tang, J. Wang, S. Low, M. Chiang, Equilibrium of heterogeneous congestion control protocols, in: Proceedings of IEEE Infocom, Miami,
FL, March 2005.

[33] D. X. Wei, P. Cao, Ns-2 tcp-linux: An ns-2 tcp implementation with congestion control algorithms from linux, in: Proceeding from the 2006
Workshop on ns-2: The IP Network Simulator, Pisa, Italy, 2006.

[34] F. Wirth, R. Stanojevic, R. Shorten, D. Leith, Stochastic equilibria of AIMD communication networks, SIAM Journal on Matrix Analysis and
Applications 28 (3) (2006) 703–723. Available at http://www.hamilton.ie/chris/SIMAX july28.pdf.

[35] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion control for fast long-distance networks, in: Proceedings of IEEE INFOCOM, 2004.
[36] A. Zanella, G. Procissi, M. Gerla, M. Y. Sanadidi, TCP westwood: Analytic model and performance evaluation, in: Proceedings of IEEE

Globecom, 2001.

Shao Liu (S’05) received B.S. degree from Peking University, Beijing, and M.S. and Ph.D. degrees in electrical
engineering from University of Illinois at Urbana-Champaign. He is currently with Princeton University, where he is a
Postdoctoral Researcher in the Department of Electrical Engineering. His research interests include congestion control for
communication networks, service differentiation and quality of service, peer-to-peer streaming and IPTV. His email address
is: shaoliu@princeton.edu.

Tamer Başar (S’71-M’73-SM’79-F’83) received B.S.E.E. from Robert College, Istanbul, and M.S., M.Phil, and Ph.D.
from Yale University. After stints at Harvard University and Marmara Research Institute (Gebze, Turkey), he joined the
University of Illinois at Urbana-Champaign in 1981, where he is currently the Swanlund Endowed Chair in the Department
of Electrical and Computer Engineering, Center for Advanced Study Professor, and Research Professor in the Coordinated
Science Laboratory and the Information Trust Institute. He has published extensively on systems, control, communications,
and dynamic games, and has current research interests in modeling and control of communication networks, control over
heterogeneous networks, resource management and pricing in networks, and security and trust in computer systems.

Dr. Başar is the Editor-in-Chief of Automatica, Editor of the Birkhäuser Series on Systems & Control, Managing Editor
of the Annals of the International Society of Dynamic Games (ISDG), and a member of editorial and advisory boards of
several international journals. He has received several awards and recognitions over the years, among which are the Medal

of Science of Turkey (1993), Distinguished Member Award (1993), Axelby Outstanding Paper Award (1995) and Bode Lecture Prize (2004) of the
IEEE Control Systems Society (CSS), Quazza Medal (2005) of IFAC, and Bellman Control Heritage Award (2006) of the American Automatic
Control Council. He is a member of the National Academy of Engineering, a member of the European Academy of Sciences, a Fellow of IEEE, a
Fellow of IFAC, a past president of CSS, and a past (founding) president of ISDG.

R. Srikant (S’90-M’91-SM’01-F’06) received his B.Tech. from the Indian Institute of Technology, Madras in 1985, his
M.S. and Ph.D. from the University of Illinois in 1988 and 1991, respectively, all in Electrical Engineering. He was a
Member of the Technical Staff at AT&T Bell Laboratories from 1991 to 1995. He is currently with the University of Illinois
at Urbana-Champaign, where he is a Professor in the Department of Electrical and Computer Engineering, and a Research
Professor in the Coordinated Science Lab.

He was an associate editor of Automatica and the IEEE Transactions on Automatic Control, and is currently an associate
editor of the IEEE/ACM Transactions on Networking. He has also served on the editorial boards of special issues of the
IEEE Journal on Selected Areas in Communications and IEEE Transactions on Information Theory. He was the chair of the
2002 IEEE Computer Communications Workshop in Santa Fe, NM and a program co-chair of IEEE INFOCOM, 2007. His
research interests include communication networks, stochastic processes, queueing theory, information theory, and game

theory.

http://www.hamilton.ie/chris/SIMAX_july28.pdf

	TCP-Illinois: A loss- and delay-based congestion control algorithm for high-speed networks
	Introduction
	Background and motivation
	The TCP-Illinois protocol
	Fairness and stability
	Stochastic matrix model for general AIMD algorithms
	Markov chain for identical alphai (t) and constant betai [k]
	Stability and fairness: General case
	Models for rhos (.) and qi (.)
	Synchronization and fairness
	Compatibility with the standard TCP

	TCP-Illinois properties
	Simulation results
	Single user: Efficiency property
	Multiple users: Fairness property
	Performance in lossy/wireless networks
	Performance with noisy RTT measurement

	Conclusion
	Acknowledgements
	References

