
RMTP: A Reliable Multicast Transport Protocol

John C. Lin� Sanjoy Paul
Department of Computer Sciences AT&T Bell Laboratories

Purdue University Holmdel, New Jersey 07733
West Lafayette, Indiana 47907 sanjoy@research.att.com

lin@cs.purdue.edu

Abstract

This paper describes the design and implementation of a multi-
cast transport protocol called RMTP. RMTP provides sequenced,
lossless delivery of bulk data from one sender to a group of re-
ceivers. RMTP achieves reliability by using a packet-based selec-
tive repeat retransmission scheme, in which each acknowledgment
(ACK) packet carries a sequence number and a bitmap. ACK
handling is based on a multi-level hierarchical approach, in which
the receivers are grouped into a hierarchy of local regions, with
a Designated Receiver (DR) in each local region. Receivers in
each local region periodically send ACKs to their corresponding
DR, DRs send ACKs to the higher-level DRs, until the DRs in
the highest level send ACKs to the sender, thereby avoiding the
ACK-implosion problem. DRs cache received data and respond
to retransmission requests of the receivers in their corresponding
local regions, thereby decreasing end-to-end latency and improv-
ing resource usage. This paper also provides the measurements of
RMTP’s performance with receivers located at various sites in the
Internet.

1 Introduction

Multicasting provides an efficient way of disseminating data from
a sender to a group of receivers. Instead of sending a separate
copy of the data to each individual receiver, the sender just sends a
single copy to all the receivers. The technique used for distributing
the data to individual receivers is transparent to the sender. In fact,
there is an underlying multicast delivery system which forwards the
data from the sender to every receiver. Conceptually, the multicast
delivery system forms a multicast tree connecting the sender and
the receivers, with the sender as the root node and the receivers as
the leaf nodes (see Figure 1). Data generated by the sender flows
through the multicast tree, traversing each tree edge exactly once.
When receivers join or leave a multicast group, the multicast tree
is dynamically reconfigured.

Multicasting of real-time multimedia information has recently
been receiving a great deal of attention [12, 14, 15]. Also, re-
searchers have demonstrated multicasting real-time data over the
Internet using a multicast delivery system called MBone [2, 4].

�This work was supported in part by AT&T Bell laboratories and Uni-
Forum Association.

S

RR

RR

RR RR

Sender

Receiver

Receiver

Receiver Receiver

E1

Multicast delivery system

Figure 1: Illustration of a multicast delivery system forwarding
data from a sender to a group of receivers

Since most real-time applications can tolerate some data loss but
cannot tolerate the delay associated with retransmissions, they ei-
ther accept some loss of data or use forward error correction for
minimizing such loss. The main objective of multicast protocols
for transporting real-time data is to guarantee quality of service by
bounding end-to-end delay at the cost of reliability. In contrast, the
objective of our protocol is to guarantee complete reliability at the
expense of delay.

There are several multicast applications which require sequenced
and lossless delivery of data. Such applications cannot tolerate
data loss, but can tolerate delays due to retransmissions. Examples
include: a software house distributing the latest release of a soft-
ware to its clients, a financial institution disseminating market data
to its subscribers, a publisher distributing books electronically to
bookstores, and a hospital sending patients’ medical image data to
physicians in other hospitals.

For such applications, a separate TCP [19] connection can be
established between the sender and each receiver, delivering every
packet individually to each receiver. However, such a scheme is
very inefficient because every packet needs to be duplicated as
many times as the number of receivers. For example, in Figure 1,
when the sender uses TCP to transmit a packet to each receiver,
the same packet traverses path E1 four times. However, when the
sender multicasts a packet to all receivers, the packet traverses path

E1 only once. Thus, for utilizing network resources efficiently,
there is a need for a reliable multicast transport protocol.

Reliable multicast protocols are not new in the distributed sys-
tems environment [8, 9, 10, 13]. However, these protocols apply
to local area networks and do not scale well in wide area net-
works, mainly because the entities involved in the protocol need to
exchange several control messages for coordination among them-
selves. In addition, they do not address fundamental issues of
acknowledgment implosion [11] and propagation delays in wide
area networks.

The goal of this paper is to describe the design and imple-
mentation of a reliable multicast transport protocol for wide area
networks. Called RMTP, the protocol provides sequenced, loss-
less delivery of bulk data from a sender to a group of receivers.
The basic ideas of RMTP are derived from the Designated Status
Protocol (DSP) described in [16]. In particular, RMTP uses the
hierarchical approach and hence the notion of Designated Receiver
from DSP to avoid the ACK-implosion problem. In addition, the
periodic sending of status messages by RMTP receivers is adopted
from [7, 16]. RMTP builds on top of a best-effort network layer
such as IP [18]. We will describe RMTP in detail in the following
sections.

The remainder of this paper is organized as follows. Section 2
discusses the features of RMTP and the assumptions in the de-
sign. Section 3 describes the design and implementation of RMTP.
Section 4 describes how the MBone technology has been used to
implement the multicast packet delivery system used by RMTP.
Section 5 describes RMTP’s performance with receivers located at
various sites in the Internet. Section 6 discusses future work and
summarizes the contributions of the paper.

2 RMTP Features and Assumptions

Given the desired goal of providing efficient reliable delivery of
data to a potentially large and diverse group of receivers,some engi-
neering efforts are needed. In particular, emphasis has been put for
providing the features of: reliability, scalability, and heterogeneity.

Reliability means that all receivers receive an exact copy of the
file transmitted by the sender. The main technique used for achiev-
ing reliability is periodic transmission of status by the receivers,
and a selective-repeat retransmission mechanism. However, in
case of network-related problems, such as partitions, RMTP does
not guarantee reliability. In such cases, the receiving application
is notified. In addition, RMTP does not ensure reliable delivery of
data to receivers that voluntarily or involuntarily (due to a crash
or network partitioning) leave a multicast group. We assume the
existence of a Session Manager who is responsible for detecting
such anomalies and taking necessary actions.

Three design features make RMTP scalable. First, the state in-
formation maintained at each multicast participant is independent
of the number of participants. Therefore, when a receiver joins or
leaves a multicast group, it does not affect the state information of
the senderor other receivers. Second,RMTP uses a receiver-driven

approach; it places the responsibility of ensuring sequenced, loss-
less data reception on each individual receiver. Thus, the sender
is relieved of the burden of tracking the status of each receiver.
Third, RMTP groups receivers into local regions and uses a Desig-
nated Receiver (DR) in each such region, so that the responsibilities
of processing ACKs and performing retransmissions is distributed
among several DRs and the sender. Receivers in each local region
send their ACKs to the DR, who is responsible for caching packets
received from the sender and retransmitting any packets lost in the
region. Thus, RMTP avoids the ACK implosion problem when the
receiver population becomes large. Currently, the DRs are stati-
cally chosen for a given multicast session. Ideally, the DRs should
be selected dynamically based on the topology of the multicast tree.
This issue is currently being investigated.

RMTP makes no assumption about the processing power or
the link bandwidth at each receiving node. It uses windowed
flow control with congestion avoidance to avoid overloading slow
receivers and links with low bandwidth. It also allows users to set
an upper bound on the sender’s data transmission rate. We assume
that the Session Manager is responsible for choosing and setting the
maximum transmission rate. To cope with receivers with varying
speed, RMTP takes a conservative approach by using the progress
of slow receivers to determine how much more data needs to be
transmitted by the sender. However, techniques to prevent a slow
receiver from slowing down faster receivers are being investigated.

As we will see in the following sections, the design and imple-
mentation of RMTP is fairly simple.

3 Protocol Description

RMTP provides sequenced, lossless delivery of bulk data from one
sender to a group of receivers. The sender divides the data to be
transmitted into fixed-size data packets, with the exception of the
last one. A data packet is identified by packet type DATA, and
type DATA EOF identifies the last data packet. The sender assigns
each data packet a sequence number, starting from 0. A receiver
periodically informs the sender about the packets it has correctly
received by sending ACKs. An ACK includes a sequence number
L and a bitmap V . SequencenumberL indicates that a receiver has
correctly received all the packets with sequencenumber less thanL.
A 0 in the bitmap corresponds to a missed (or incorrectly received)
packet while a 1 corresponds to a correctly received packet. For
example, an ACK with L = 15 and V = 011011111 indicates that
the receiver has correctly received all the packets up to sequence
number 14 and has requested for the retransmission of packets 15
and 18.

Table 1 lists the packet types currently defined in RMTP. Their
function will be described in the following subsections.

3.1 Designated Receivers

ACKs are needed from receivers in order to determine which pack-
ets need to be retransmitted. However, ACKs from a large number

1The most significant bit of the bitmap is on the right.

2

Sender Router Receiver ACK

Figure 2: Illustration of a group of receivers sending ACKs to a
sender

Packet Types

ACK ACK packet
ACK TXNOW ACK - immediate transmission req.
DATA Data packet
DATA EOF Last data packet
RESET Packet to terminate a connection
RTT MEASURE Packet to measure round-trip time
RTT ACK ACK to RTT MEASURE packet
SND ACK TOME Packet for selecting an AP

Table 1: RMTP packet types

of receivers may overwhelm the sender (i.e., the ACK implosion
problem). Furthermore, large number of ACK packets destined for
the sender and retransmitted data packets generated from the sender
may congest the sender’s neighboring routers and local networks.
In order to avoid this situation, RMTP uses Designated Receivers
(DRs) [16]. The DRs assist the sender in processing ACKs and in
retransmitting data. The concept of using DRs is best illustrated
by Figures 2 and 3. Figure 2 shows a multicast tree with 14 re-
ceivers and a sender. In the absence of DRs, the sender processes
ACKs from all 14 receivers. Figure 3 shows the same multicast
tree with DRs. The multicast tree is partitioned into three subtrees,
and the receiver rooted at each subtree has been selected as the DR
of the subtree. In this case, the sender processes ACKs from only
2 receivers.

A DR is a special receiver; it caches received data, emits ACKs,
and processes ACKs from the receivers in its subtree. Conceptually,
a DR hides a subtree of receivers from its up-tree DR or the sender.
Note that when a DR multicasts retransmissions, only the receivers
in the DR’s subtree receive the retransmissions. Thus, using DRs
not only reduces the number of ACKs the sender has to process,

ACKSender ReceiverRouter
Receiver
Designated

Figure 3: Using Designated Receivers to assist the sender in pro-
cessing ACKs

Connection Parameters

Wr receive window size in packets
Ws send window size in packets
Tdally delay after sending the last packet
Tretx time interval to process retx requests
Trtt time interval to measure RTT
Tsap time interval to send SND ACK TOME
Tsend time interval to send data packets
Packet Size data packet size in octets
Cache Size sender’s in-memory data cache size
CONGthresh congestion avoidance threshold
MCASTthresh multicast retransmission threshold

Table 2: RMTP connection parameters

but also improves the usage of network resources.

A DR serves the dual function of emitting ACKs (like any other
receiver) and processing ACKs (like the sender). In order to refer
to the entities that receive ACKs and process them, we will use the
term AP (ACK Processor) from now on. Thus, an AP denotes either
the sender or a DR. The term receiver refers to either a designated
receiver or a normal receiver. Subsection 3.10 describes how a
receiver selects its AP.

3.2 Connection and Connection Parameters

An RMTP connection is identified by a pair of endpoints: a
source endpoint and a destination endpoint. The source endpoint
consists of the sender’s network address and a port number; the
destination endpoint consists of the multicast group address and
a port number. Each RMTP connection has a set of associated
connection parameters (see Table 2). RMTP assumes that the
Session Manager is responsible for providing the sender and the

3

receiver(s) with the associated connection parameters. RMTP uses
default values for any connection parameter that is not given.

3.3 Connection Establishment and Termination

Once the Session Manager has provided the sender and the re-
ceivers with the session information, receivers initialize the con-
nection control block and stay in an unconnected state; the sender
starts transmitting data. On receiving a data packet from the sender,
a receiver goes from the unconnected state to the connected state
and starts emitting ACKs at Tack interval. (Tack is dynamically
adjusted based on the round-trip time (RTT) measured from a re-
ceiver to its AP to minimize unnecessary retransmissions; see sub-
section 3.8 for a detailed description.)

Connection termination is timer based. After it transmits the
last data packet, the sender starts a timer that expires after Tdally
seconds. (A DR also starts the timer when it has correctly received
all data packets.) When the timer expires, the sender deletes all
state information associated with the connection (i.e., it deletes the
connection’s control block). Time interval Tdally is at least twice
the lifetime of a packet in an internet. Any ACK from a receiver
resets the timer to its initial value. A normal receiver deletes its
connection control block and stops emitting ACKs when it has
correctly received all data packets. A DR behaves like a normal
receiver except that it deletes its connection control block only after
the Tdally timer expires2.

Because receivers periodically emit ACKs after connection es-
tablishment and the time interval between consecutive ACKs is
much smaller than Tdally , the sender uses ACK reception during
Tdally to deduce whether all receivers have received all data. If it
does not receive any ACK during Tdally , the sender assumes either
all receivers have received every packet, or something exceptional
has happened preventing the receivers from sending ACKs. Pos-
sible “exceptional” situations include: network partition and re-
ceivers voluntarily or involuntarily leaving the multicast group. As
described in section 2, RMTP assumes that the Session Manager
is responsible for detecting such situations and taking necessary
actions.

In addition to normal connection termination, RESET packets
can be used to terminate connections. For example, when RMTP
detects that the sending application has aborted before data transfer
is complete, it uses RESET to inform all the receivers to close the
connection.

3.4 Flow Control

RMTP uses a window-based flow control mechanism. The sender
has a send window of Ws packets, and all receivers have a receive
window of Wr packets. Ws indicates the maximum number of
packets the sender can transmit (without receiving acknowledgment
from the receivers), andWr determines a receiver’s receive buffer

2To prevent data from an old session from mixing with that of the current
session, the Session Manager must enforce a predefined delay before reusing
a connection.

1

1

15 22

L=15 Wr = 8

1110 0 0 00

U

Seq. #

Receive Sequence Space

32

2

3

receive window

Received packets already delivered to application

Received packets discarded

Received packets stored in the buffer

Figure 4: A receiver’s receive window and the associated bitmap

size. The receive window must be no smaller than the send window
to prevent receivers from dropping packets because of the lack of
buffer space.

In addition to the window-based flow control, RMTP allows
users to set an upper bound on the sender’s data transmission rate.
The sender initiates data transmission at a fixed interval Tsend.
The number of packets transmitted during each interval depends
on the amount of buffered user data, the usable send window, and
the congestion window (described in subsection 3.9). Thus, the
sender’s maximum transmission rate measured over Tsend is Ws �

Packet Size=Tsend. To set a multicast session’s maximum data
transmission rate, the Session Manager simply sets the parameters
Ws, Packet Size and Tsend accordingly.

Receivers use a bitmap ofWr bits to record the existence of cor-
rectly received packets stored in the buffer. As Figure 4 illustrates,
each bit corresponds to one packet slot in the receive buffer. Bit 1
indicates a packet slot contains a valid data packet. For example,
Figure 4 shows a receive window of 8 packets; packets 16, 17 and
19 are received correctly and stored in the buffer. When a receiver
sends an ACK to its AP, it includes the left edge of the receive
window L and the bitmap. The receiver delivers packets to the ap-
plication in sequence. For example, if the receiver receives packet
15 from the sender and does not receive packet 18, it can deliver
packets 15, 16 and 17 to the application and advanceL to 18.

3.5 Retransmissions and ACK Processing

If a multicast packet is lost, one or more receivers may miss the
same packet. RMTP provides mechanisms for an AP to determine
whether the lost packet should be retransmitted using unicast or
multicast. Three parameters are included in the design for this pur-
pose: Tretx , MCASTthresh, and a retransmission queue. During
Tretx , an AP processesACKs from the receivers in its local region.
If an ACK contains retransmission requests, the sequence numbers
of the requested packets are added to the retransmission queue.
A retransmission queue element contains the sequence number of
a packet to be retransmitted, a counter C that counts the number
of receivers that have requested the packet, a table AddrTab that

4

Send Sequence Space

send_nextswin_lb

send window

packet sent but not yet acknowledged

avail_win

Figure 5: A sender’s send window and related variables

records the requesting receivers’ network addresses, and a pointer
to the next queue element. At the end of interval Tretx , an AP pro-
cesses each element in the retransmission queue. If C exceeds a
threshold MCASTthresh

3, the AP delivers the packet using mul-
ticast; otherwise, the AP delivers the packet to each receiver in
AddrTab using unicast.

In order to determine whether a packet must be retransmitted by
unicast or by multicast, an AP has to wait for Tretx time interval to
collect retransmission requests from several receivers. This may
introduce a delay in delivering the requested packets to the waiting
receivers. However, there is an option for the Session Manager to
set Tretx to 0. In that case, an AP will immediately process each
received ACK and retransmit packets using unicast. There is an
obvious trade-off here between efficiency and latency.

The sender uses three variables, swin lb, send next, and
avail win in the connection control block for managing the send
window. As Figure 5 illustrates, variable swin lb records the
lower bound of the send window, send next indicates the next se-
quence number to use when sending data packets, and avail win
is the available window size for sending data. The sender increases
send next and decreases avail win after sending data. When
ACKs acknowledging the receipt of packets with sequence number
swin lb are received, swin lb is increased and so is avail win.

One of RMTP’s design decisions is to use the progress of slow
receivers to determine how much more data to transmit. Thus, the
sender computes the smallest L (Lmin) among the L values of all
the ACKs received duringTsend4. IfLmin is greater than swin lb,
it increases avail win by (Lmin � swin lb) and sets swin lb to
Lmin .

3.6 Immediate Transmission Request

Since RMTP allows receivers to join anytime during an ongoing
session, a receiver joining late will need to catch up with the rest.
In addition, some receivers may temporarily fall behind because
of various reasons such as network congestion or even network
partition. The immediate transmission feature is introduced in

3The sender and DRs can have different MCASTthresh values.
4The L value in an ACK TXNOW packet, which will be described in

section 3.6, is not used to compute Lmin.

RMTP to allow lagging receivers to come up to the speed of the
group.

A receiver uses an ACK TXNOW packet to request its AP for im-
mediate transmission of data. An ACK TXNOW packet differs from
an ACK packet only in the packet type field. When an AP receives
an ACK TXNOW packet from a receiver R, it checks bitmap V . If
V indicates missed packet(s), it immediately transmits the missed
packet(s) to R using unicast. If V indicates no missed packet,
it computes the sequence number of the packet that R expects to
receive next (call it recv next). If send next > recv next, it
immediately unicastsMin(Ws; (send next�recv next)) pack-
ets of data to R5. Since R sends an ACK TXNOW packet once
per RTT, the AP’s transmission rate in response to ACK TXNOW
packets is bounded by Ws=RTTR�AP , where RTTR�AP is the
RTT between the requesting receiver R and its AP.

3.7 Data Cache

RMTP allows receivers to join an ongoing session at any time and
still receive the entire data reliably. However, this flexibility does
not come without a price. In order to provide this feature, the
senders and the DRs in RMTP need to buffer the entire file during
the session. This allows receivers to request for the retransmission
of any transmitted data from the corresponding AP. A two-level
caching mechanism is used in RMTP. The most recentCache Size
packets of data are cached in memory, and the rest are stored on
file system. In-memory cached packets contain application data as
well as protocol headers to improve efficiency.

Although keeping all the transmitted data increases the size of
state information maintained at each AP, the state size is not a
function of the number of multicast participants (i.e., state size
is still independent of the number of multicast participants). The
buffered data size at the sender and the DRs can be reduced by
determining how much data can be discarded based on the ACKs
from the receivers. However, in such a scheme, the protocol will
not be able to guarantee complete reliability to the receivers joining
late, or to the receivers rejoining an ongoing session after being
temporarily disconnected (partitioned). It will also require each
AP to maintain a complete list of receivers in its region. RMTP
does not impose these restrictions.

3.8 Measuring RTT and Calculating Tack

Recall that the receivers in RMTP send ACKs periodically. If these
ACKs are sent too frequently, the AP may end up retransmitting
the same packet multiple times without knowing if the first retrans-
mitted packet was received correctly by the receivers. In order
to prevent such redundant retransmissions, RMTP requires each
receiver to measure the round-trip time (RTT) to its AP dynami-
cally. The measured RTTs allow each receiver to compute Tack ,
the interval of sending ACKs.

A receiver uses RTT MEASURE packet to measure the

5Because a DR does not have send next, it uses the left edge of the
receive window, L in Figure 4, for the calculation.

5

Receiver Sender

T2

T3

T1
ACK

Retransmissions

Time Time

T

ACK

Figure 6: The components in calculating Tack

RTT between itself and its AP. A receiver sends the first
RTT MEASURE packet right after connection establishment. Sub-
sequent RTT MEASURE packets are sent at a fixed interval, Trtt .
To measure RTT, a receiver R includes a local timestamp in an
RTT MEASURE packet and sends the packet to its AP. When the
AP receives the RTT MEASURE packet, it immediately changes the
packet type to RTT ACK and sends the packet back to R. Upon
receiving the RTT ACK packet,R calculates RTT as the difference
between the time at which the RTT ACK packet is received and the
timestamp stored in it.

RTT measurements allow a receiver to calculate Tack , the inter-
val of sending ACKs. As Figure 6 illustrates, a receiver can reduce
the possibility of causing redundant retransmissions by sending one
ACK at beginning of T and sending the next ACK shortly after the
end of T . T is the sum of T1, T2 and T3. RTT is the sum of T1
and T3, and the interval T2 is the delay incurred in an AP owing
to the processing of ACKs. Tack is computed based on T using a
TCP-like scheme [1, 5].

3.9 Congestion Avoidance

RMTP provides mechanisms to avoid flooding an already con-
gested network with new packets, without making the situation
even worse. The scheme used in RMTP for detecting congestion
is described below.

RMTP uses retransmission requests from receivers as an indi-
cation of possible network congestion [6, 5]. The sender uses
a congestion window cong win to reduce data transmission rate
when experiencing congestion. During Tsend, the sender com-
putes the number of ACKs, N , with retransmission request. If
N exceeds a threshold, CONGthresh, it sets cong win to 1.
Since the sender always computes a usable send window as
Min(avail win; cong win), setting cong win to 1 reduces data
transmission rate to at most one data packet per Tsend if avail win
is nonzero. If N does not exceedCONGthresh during Tsend, the
sender increases cong win by 1 until cong win reaches Ws

6.
The procedure of setting cong win to 1 and linearly increasing

6If the sender and all the receivers are located in an environment in which

cong win is referred to as slow-start. The sender begins with a
slow-start to wait for the ACKs from far away receivers to arrive.

3.10 Selecting An ACK Processor (AP)

Although the DRs are chosen statically for a multicast group, a
receiver uses a mechanism to dynamically choose a DR as its AP.
The idea is to choose the DR least upstream in the multicast tree
with respect to a receiver as its AP. Note that a DR may fail. In
that case, a receiver must be able to dynamically pick another DR
as its AP. This is achieved in RMTP using a special packet called
SND ACK TOME packet.

The selection of an AP is done as follows. The sender and
all DRs multicast a SND ACK TOME packet along their subtrees
periodically at a fixed interval Tsap. All SND ACK TOME pack-
ets have identical initial time-to-live (TTL) value in the header.
Because routers decrement the TTL value when forwarding pack-
ets and all SND ACK TOME packets have identical initial TTL, the
SND ACK TOME packet with maximum TTL value contains the ad-
dress of the nearest uptree AP. A receiver stores the address of the
nearest uptree AP and the associated TTL in its connection control
block. It replaces the selected AP and the associated TTL value
whenever a SND ACK TOME packet with a higher TTL value is
received. To recover from the failure of the selected AP, a receiver
associates the selection with a timeout. Each SND ACK TOME

packet from the selected AP resets the timeout; expiration of the
timeout causes the receiver to set the stored TTL value to 0 and
start selecting a new AP.

A receiver selects the senderas its initial AP. The associated TTL
value is set to 0, so that the receiver can select the nearest uptree
AP. To allow a receiver to set its AP shortly after connection es-
tablishment, DRs multicast the first SND ACK TOME packet when
they receive the data packet that establishes their connections. To
prevent the loss of the initial SND ACK TOME packet, they subse-
quently multicast a SND ACK TOME packet for each data packet
received, until the number of SND ACK TOME packet transmitted
exceeds a constantX . Currently, X is set to 3.

Recall that a receiver calculates Tack based on the measured
RTTs between it and its AP. If the AP changes, the receiver needs
to update its RTT and hence Tack . Therefore, whenever a receiver
selects a new AP, it immediately sends a RTT MEASURE packet to
the new AP and resets Tack to a default value. Eventually, Tack is
computed based on the new measurements.

3.11 Overall View of the Protocol

Having described the various features of RMTP, there is a need
to tie things together into a coherent form. In this subsection, a
high-level perspective of the overall organization of the protocol
is provided. The protocol has three main entities: (1) Sender, (2)
Receiver and (3) Designated Receiver. A block diagram description
of each of these entities is given in Figure 7.

the sender’s maximum data rate is unlikely to cause congestion, one can
bypass RMTP’s congestion avoidance scheme by setting CONGthresh

to “1.”

6

AS RTT

T_RttT_Ack

R

AS RTT

T_RttT_Ack

R

RECEIVER ENTITY

DESIGNATED RECEIVER ENTITY

SENDER ENTITY

R_CONTROLLER

T_CONTROLLER STATUS_PROCESSOR

DR_CONTROLLER STATUS_PROCESSOR

Tx RTx AP_A

T_Send T_Retx T_Sap

 RTx AP_A

 T_Retx T_Sap

Figure 7: Block Diagram of RMTP

The Sender entity has a controller component called
T CONTROLLER, which decides whether the sender should be
transmitting new packets (using the Tx component), retransmitting
lost packets (using the RTx component), or sending messages ad-
vertising itself as an ACK Processor (using the AP A component).
There is another component called STATUS PROCESSOR, which
processes ACKs (status) received from receivers and updates rele-
vant data structures.

Also, note that there are several timer components: T Send,
T Retx and T Sap in the Sender entity, to inform the controller
about whether the Tx component, the RTx component or the AP A
component should be activated.

The Receiver entity also has a controller component called
R CONTROLLER which decides whether the receiver should be
delivering data to the receiving application (using the R compo-
nent), sending ACK messages (using the AS component), or send-
ing RTT measure packets (using the RTT component) to dynam-
ically compute the round-trip time (RTT) between itself and its
corresponding ACK Processor.

Note that there are two timer components: (1) T Ack and (2)
T Rtt to inform the controller about whether the AS or the RTT
component should be activated. The component R is not timer
driven. It is activated asynchronously whenever there are packets
in sequence at the protocol buffer.

The DR entity is, in fact, a combination of the Sender entity and
the Receiver entity.

4 MBone technology and RMTP

RMTP uses MBone technologies to deliver multicast packets.
MBone consists of a network of multicast capable routers and
hosts. MBone routers use IP tunnels to forward multicast pack-
ets to IP routers that cannot handle multicast packets. An MBone
router consists of two functional parts: a user-level process called

P P

P P P

P

R

R

R R

Host
umrouted

process
protocol

(application)

(application)

UDP

sender

receiver

Figure 8: Multicast packet delivery from a sending application to
a group of receiving applications using UDP

mrouted and a multicast kernel. Anmrouted exchangesrouting
information with neighboringmrouteds to establish a routing data
structure in the multicast kernel. The multicast kernel then uses
the routing data structure to forward multicast packets. To deliver
multicast packets to receivers on a local subnet, an MBone router
uses data-link layer multicasting (e.g., Ethernet multicasting).

4.1 User-level Implementation of RMTP

To make prototyping faster and debugging easier, we implemented
multicast packet forwarding and RMTP protocol processing at user
level. We modified mrouted to incorporate the routing functions
of a multicast kernel. (We refer to the modified mrouted as
umrouted.) Communications among umrouteds are via User
Datagram Protocol (UDP) [17]. Thus, multicast packets travel on
UDP-tunnels among umrouteds. By executing umrouted, a
host with unicast kernel becomes a user level multicast router.

A user-level protocol process implements the RMTP protocol.
Application-level receivers and senders use UDP to communicate
with the RMTP protocol process. To deliver multicast packets
to protocol processes on a local subnet, a umrouted uses UDP
unicast instead of data-link multicast (see Figure 8).

A protocol process uses a configuration file to learn about the
location of the umrouted that handles its multicasting requests.
When a protocol process wishes to join a multicast group, it sends
an Internet Group Management Protocol (IGMP) [3] Host Mem-
bership Report packet via UDP to its umrouted. The Host
Membership Report message requires an acknowledgment from
the umrouted. Thus, a umrouted builds a list of protocol pro-
cesses’ host addresses that it handles. A umrouted periodically
sends an IGMP Host Membership Query message to each pro-
tocol process it handles using UDP unicast. Note that protocol
processes and umrouteds do not follow the IGMP protocol stan-
dards to obtain multicast group membership information because
they encapsulate IGMP messages in UDP and do not use data-link
multicast.

In essence, we built a multicast delivery system at user level

7

Ws 15 packets
Wr 32 packets
Tsend 600 milli-second
Tretx 300 milli-second
Trtt 1 second
Tsap 3 seconds
Tdally 250 seconds
Packet Size 512 octets
Cache Size 128 packets
CONGthresh 0
MCASTthresh 3

Table 3: Connection parameters used

using MBone technologies. Since routing is done at the user level,
it is easy to implement local (subtree) multicasting (described next),
which would otherwise require some support from the routers.

4.2 Router Support for Subtree Multicasting

Multicast routers compute a multicast delivery tree based on the
sender’s network address and the multicast group address. Thus, if
there are two senders with different network addressesmulticasting
to the same group, two different multicast trees will be set up. In
RMTP, the DRs need to multicast along the subtree of the multicast
tree rooted at the sender. Achieving this objective without some
support from the router is a difficult task. In this section, we
describe the trick used to circumvent this problem.

Our implementation uses IP encapsulation and a new IP packet
typeSUBTREE MCAST to inform a router that subtree multicasting
needs to be done. To achieve subtree multicasting, a DR forms a
multicast packet with the sender’s address as source and the group
address as destination, encapsulates the packet in an IP packet with
type SUBTREE MCAST, and delivers the packet to a nearby router.
When the router receives the packet, it decapsulates the packet, and
performs multicast forwarding based on the source and destination
addresses of the exposed packet as if the exposed packet originated
from the sender.

Subtree multicasting results in the reception of duplicate packets
for the DR who sends out the encapsulatedIP packet. However the
DR can discard such duplicates.

5 Measurements on the Internet

We measured the prototype implementation’s performance with
18 receivers located at 5 geographic areas. Figure 9 shows the net-
work configuration used. We implemented a simplified version of
the Session Manager (SM) and its clients. Each receiving host exe-
cutes the client process and the protocol process in the background,
and the SM uses TCP to transport session-related information (e.g.,
session ID, connection parameters) to each client. Upon receiv-
ing the information, the client process invokes an application-level
receiver process and informs the protocol process about the ses-
sion information. Each client reports back to the SM when the
application-level receiver process is ready. SM starts the sender

1
2
3
4

6
7
8
9

10

No. # Slow

1

1
1

1
max.avg.min.

0.00

0.00
0.00

0.00

Throughput (Kb/sec)
Startsender

Retransmissions (%)

0.00 0.00

0.00 0.00 1

90.33 90.35 90.38

0.00
0.00 10.00

0.00 0.00 1

0.00 1.37 1
0.00 0.00 1

91.33
90.62
81.38
73.05
86.92
91.78
92.26
91.62
91.07

91.37
90.64
81.40
73.08
86.93
91.78
92.29
91.65
91.22

91.38
90.65

73.10
86.95
91.79

91.68

0.00 0.00 1
0.05

DR1

81.41

92.31

91.31

5

Mean throughput: 88.07 Kb/sec.
* No duplicate reception observed.

Table 4: Results of multicasting to area A1

when all the application-level receiver processes are ready.

Table 3 shows the connection parameters assigned by the SM. A
maximum data rate of 100 Kbits/second (Kbps) is chosen to avoid
overloading the Internet links of the test sites. The CONGthresh

is set to 0 so that the sender invokes slow-start whenever it receives
a retransmission request from a receiver. DRs are chosen by using
a configuration file. Note that the sender only processes the ACKs
from the DRs.

We conducted 10 experiments. Each experiment consists of 3
measurements of multicast file transfer in different network envi-
ronments — M1: the sender multicasts to area A1, a LAN environ-
ment; M2: the sender multicasts to areas A1 through A4, a WAN
environment; M3: the sender multicasts to all areas, a WAN envi-
ronment including an international link with 512 Kbps bandwidth.
For each measurement, the sender reads a 1 megabyte file from
file system and multicasts it to the receivers. Receivers store the
received data in a file for integrity check. Each receiver computes
throughput independently after successful reception of the file. We
also measured, in each area, the total number of retransmitted pack-
ets and duplicate packets by examining the log files created by the
sending or receiving protocol processes.

All the experiments were conducted between January 25 and Jan-
uary 28, 1995. The first 3 experiments are conducted between 9:00
and 12:00 EST; the second 3 experiments are conducted between
12:00 and 17:00 EST; and the rest are conductedbetween 21:00 and
24:00 EST. The hosts used in the experiments are all workstation-
class computers (e.g. Sun IPC, Sun IPX, Sun Sparc10). The ex-
periments were conducted with the normal user processes running
on them. No special treatments were given to the hosts running
RMTP.

The results of the experiments are categorized by their measure-
ment types (i.e., M1, M2, or M3). Tables 4 to 6 show the results.
The average throughput is plotted in Figure 10. Since each receiver
computes its own throughput independently, the Tables show the
minimum, average, and maximum throughput among the through-
put numbers reported by receivers. Note that the Tables report the
total number of retransmitted data packets observed by each AP,
and the total number of duplicate data packets observed in each

8

Receiver Router
(umrouted)

Designated
Receiver

18

17

(New Jersey Inst. of Tech.)

1

3

5

Area A1

Area A2
(U. of Kentucky)

Area A3 Area A5

Area A4

6

7

8 10 11 12 13

14

15

9

16

IP AddressRcvr. #

128.211.1.29
128.10.3.101
128.10.3.102
128.10.3.101
128.163.134.10

129.2.102.15
128.163.134.11

129.2.94.139
129.2.94.140

129.2.98.121
128.8.111.173
128.8.111.197

140.112.8.27
140.112.8.26
140.113.13.10118

17
16
15
14
13
12
11
10

1
2
3
4
5
6
7
8
9

(Purdue University) (U. of Maryland) (Taiwan)

2

LAN WAN

4 128.235.200.8
128.235.200.1

129.2.98.137DR1 DR2 DR3 DR4 DR5

Sender (128.10.2.1)

Sender

Figure 9: Network configuration used for measuring RMTP’s performance

1
2
3
4
5

7
8
9

10

No.
avg.min. max.

0.44

Slow
Start

Throughput (Kb/sec)

36.43 36.46 36.48 0.10
0.00

0.00
0.00

0.00
0.00
0.00

0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.10
0.00

0.10

0.54

0.83

21.40 21.42 21.44 0.05 0.34
28.14 28.15 0.59
28.57 28.57 28.58 2.69
38.79 38.82 0.54
41.09 41.10 0.24 1.07
39.72 39.73 39.74 0.24 0.10
41.91 41.93 41.93 0.05 0.78

0.29 8.30

0.59 2.49
0.44

9.23

8.94

8.54

10.64

3.56
24.50 24.53 24.56 0.00 2.44 2.20 0.055.32

32

73
65
29
23
26
22

0.10 0.15
1.76
2.83
0.20
2.34
2.39

0.050.63

3.22

Total # of Retransmissions (%)

11.46 11.48 11.49 2.0054.88

DR1 DR2 DR3 DR4sender

4.93

6.49
6.59
2.93

19.48
28.12
83.35

14.31

10.55

10.06

11.87

12.35 599
113

136

Total # of Duplicates (%)

3.61
3.81

3.71

14.11

0.00
0.00

0.49
0.00

38.91
41.11

28.15
3.71

14.116

Table 5: Results of multicasting to areas A1, A2, A3, and A4.

Mean throughput: 31.22 Kb/sec.

A1 A2 A3 A4

23.54

24.76
27.00
22.02
15.77

13.48

16.80
18.55

19.29

20.41

1
2
3
4
5
6
7
8
9

10

No.
Throughput (Kb/sec)

avg.min. max.
Slow

Start

0.10

0.00 0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.15

0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.15

0.10
0.54 24.1218.17 18.22

18.27 18.85 18.97 0.68 0.20 20.90
25.47 25.53 25.55 1.03 0.10
16.62 16.62 16.63 0.05 0.00
17.52 17.57 17.58 0.15 0.20
19.28 19.30 19.30 0.10 0.05
20.67 20.83 20.89 0.00 0.20 24.66

14.26

35.30
29.79

212
206
100
264
232
197
1530.052.73

1.17 0.00 0.00
0.100.83

1.42 0.00 0.00
0.88 0.000.20
3.03

0.051.03

Total # of Retransmissions (%) Total # of Duplicates (%)
A5A4A3A2A1DR5DR3DR2DR1 DR4

1.03
2.20
2.39
0.68
0.73
0.68
0.20

14.70

21.29
29.88

0.88 0.34 1.66 1.03
21.27 21.34 21.36 0.24 0.98 2.20 15.43

0.00
0.00
0.00

0.00
0.00
0.00

0.00

0.00
0.150.29 1.90 144

20.67
18.23
20.72 0.15 0.20 1.22 19.53 1.46 0.10

14.36
17.58 153

35.21

20.71

10.55

17.09

10.55

7.96

8.25

20.81 20.81 20.82 16118.56
sender

Table 6: Results of multicasting to all areas

Mean throughput: 19.98 Kb/sec.

9

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (K

bi
ts

/s
ec

)

Measurement

Average Throughput

M1

M3

M2

Figure 10: Average throughput among a group of receivers mea-
sured in various network environments

area. Thus, the numbers depend on the number of receivers in
each area. As described in subsection 4.2, a DR receives duplicate
packets from router when it uses subtree multicasting to deliver re-
transmitions. The total number of duplicate data packets reported
in the Tables does not include these duplicates. The numbers in
percentage are calculated as the number of packets divided by 2048
(i.e., the size of the data file in number of packets).

From the results, we observe the following:

1. DRs play a major role, as expected, in caching received data,
processing ACKs, and handling retransmissions. This is ob-
vious from the “Total # of Retransmission” columns in Tables
4, 5 and 6. In particular, note that in Table 6, seven out of ten
numbers in the column corresponding to DR5 are greater than
those of the sender. This means that the DR in A5 (Taiwan)
retransmitted more packets to its area than did the sender (in
Purdue) to all areas. That means, if the DR were not there, all
these retransmissions would have to be done by the sender.
Effectively, the DRs shield the sender from handling local
retransmission requests and provide faster response to the
requests.

2. The small difference between the “max.” and the “min.” val-
ues of all the throughput measurements in Tables 4,5 and 6,
indicates that receivers, regardless of their geographic loca-
tion, take about the same time to correctly receive the file.
This shows that RMTP is able to adapt to receivers in various
network environments.

3. In a heterogeneous environment,slow receivers and links with
low bandwidth limit RMTP’s performance. For example,
with the same connection parameters,RMTP achieved a mean
throughput of 88.07 Kbps in M1 (a LAN environment), and a
mean throughput of 19.98 Kbps in M3 (a WAN environment
with a low bandwidth international link). On the one hand, it
indicates RMTP has achieved its design decision of not over-
running slow receivers and not wasting network bandwidth.
On the other hand, it shows suboptimal throughput for fast
receivers.

4. Low number of duplicate packets reported in areas A1,A2, A4
and A5 shows the effectiveness of RMTP’s Tack calculation.

The main cause for A3’s high number of duplicates is DR3
uses multicast for delivering retransmitted packets. It can be
explained by a simple example. Suppose thatMCASTthresh

is set to 3. Now if, 4 out 6 receivers in A3 miss the same
packet, DR3 will use subtree multicasting for retransmission
of the missed packet. If all 6 receivers correctly receive the
retransmission, two receivers will report duplicate reception.

6 Summary and Future Work

We have described the design and implementation of RMTP, and
measured its performance. RMTP is designed for use as a reliable
transport protocol by non-realtime applications that use multicas-
ting to disseminate bulk data. It provides a rate-limited, window-
based flow control with congestion avoidance to adapt to various
network environments. Designated receivers prevent ACK implo-
sion and improve response time for receivers far away from the
sender by processing ACKs and retransmitting lost packets. DRs,
by virtue of their hierarchical cacheing mechanism, also allow re-
ceivers to join late, or to rejoin an ongoing multicast session after
being temporarily disconnected because of network partitions, for
example. Putting the responsibilities on each receiver to ensure se-
quenced, lossless reception allows the state information maintained
at each multicast participant to be independent of the number of
participants.

The multicast delivery system, based on MBone technology,
used for the implementation of RMTP was also described. This
framework is useful for doing research on Internet multicasting at
user-level using UDP, without relying on the availability of mul-
ticast capable routers and hosts. The prototype implementation is
being used for our continued research on evaluating multicast con-
gestion control schemes, comparing techniques for dynamically
choosing DRs for a given multicast tree, finding ways to achieve
subtree multicasting without router support, and investigating the
trade-offs of network resource usage and protocol performance in
a heterogeneous environment with receivers of varying speeds.

7 Acknowledgments

The authors are grateful to the following people and their associated
institutions for providing assistance and resources that make the
measurement of RMTP’s performance possible: Prof. Douglas
Comer, Prof. D. Karvelas, Prof. Tsern-Hui Lee, Yi-Ching Liaw,
Chueng-Hsun Lin, Yi-Jan Lin, Prof. Der-Ming Liou, Shun-Jee
Liu, Prof. Janche Sang, Tai-Kang Shing, Prof. Ben-Jei Tsuang,
and Prof. Raj Yavatkar.

References

[1] R. Braden, “RFC-1122: Requirements for Internet Hosts –
Communication Layers,” Request For Comments, October
1989.

[2] S. Casner, and S. Deering, “First IETF Internet Audiocast,”
ACM Computer Communication Review, 22(3), July 1992.

10

[3] S. Deering, “RFC-1112: Host Extension for IP Multicasting,”
Request For Comments, Aug. 1989.

[4] H. Eriksson, “MBone: The Multicast Backbone,” Communi-
cations of the ACM, (8):54–60, Aug. 1994.

[5] V. Jacobson, “Congestion Avoidance and Control,” Proceed-
ings of ACM SIGCOMM ’88, pages 314–328, Aug. 1988.

[6] R. Jain, “A Timeout-Based Congestion Control Scheme for
Window Flow-Controlled Networks,” IEEE Journal on Se-
lected Areas in Communications, SAC-4(7):1162–1167, Oct.
1986.

[7] A. N. Netravali, W. D. Roome, and K. Sabnani, “Design and
Implementation of a High-Speed Transport Protocol,” IEEE
Transactions on Communications, 38(11), Nov. 1990.

[8] J. Chang, and N. F. Maxemchuk, “Reliable Broadcast Proto-
cols,” ACM Transactions on Computer Systems, 2(3), Aug.
1984.

[9] K. P. Birman and T. A. Joseph, “Reliable Communication in
the Presence of Failures,” ACM Transactions on Computer
Systems, 5(1), Feb. 1987.

[10] H. Garcia-Molina, and A. Spauster, “Ordered and Reliable
Multicast Communication,” ACM Transactions on Computer
Systems, 9(3), Aug. 1991.

[11] B. Rajagopalan, “Reliability and Scaling issues in Multi-
cast Communication,” Proceedings of ACM SIGCOMM ’92,
pages 188–198, Aug. 1992.

[12] R. Yavatkar, and L. Manoj, “Optimistic Approaches to Large-
Scale Dessemination of Multimedia Information,” Proceed-
ings of ACM MULTIMEDIA ’93, Aug. 1993.

[13] R. Aiello, E. Pagani, and G. P. Rossi, “Design of a Reliable
Multicast Protocol,” Proceedings of IEEE INFOCOMM ’93,
pages 75–81, Mar. 1993.

[14] N. Shacham, and J. S. Meditch, “An Algorithm for Opti-
mal Multicast of Multimedia Streams,” Proceedings of IEEE
INFOCOMM ’94, pages 856–864, Jun. 1994.

[15] F. Adelstein, and M. Singhal, “Real-Time Causal Message
Ordering in Multimedia Systems,” to appear in Proceedings
of the 15th. ICDCS ’95, Jun. 1995.

[16] S. Paul, K. K. Sabnani, and D. M. Kristol, “Multicast Trans-
port Protocols for High Speed Networks,” Proceedings of
International Conference on Network Protocols, pages 4–14,
1994.

[17] J. Postel, “RFC-768: User Datagram Protocol,” Request For
Comments, Aug. 1980.

[18] J. Postel, “RFC-791: Internet Protocol,” Request For Com-
ments, Sept. 1981.

[19] J. Postel, “RFC-793: Transmission Control Protocol,” Re-
quest For Comments, September 1981.

11

