
 1

Modelling Agile Software Processes Using Bayesian

Networks

by

Peter Stewart Hearty

Submitted for the degree of Doctor of Philosophy

Queen Mary, University of London

2008

 2

I certify that this thesis, and the research to which it refers, are the product of my

own work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

I acknowledge the helpful guidance and support of my supervisor, Professor

Norman Fenton, and the additional guidance of Professor Martin Neil. This work was

made possible through funding from the EPSRC ExDecide project. I also wish to

gratefully acknowledge the generous student grant provided by Agena Ltd.

 24 Sep 2008

--- ---------------

Peter Hearty Date

 3

Abstract

In a fast moving world, business requirements often change throughout the lifetime

of a project. Many organisations now recognise that software specifications can no

longer be fixed before development begins: software teams must “embrace change”

[18].

Competitive pressure demands rapid software development that can track these

changing requirements. “Agile” development methods attempt to address this by

adopting an iterative approach to software development. Each iteration delivers more

functionality but also responds to constant customer feedback. Functionality is

modified where necessary to ensure that the product continues to meet customers’

changing needs.

Agile environments eschew the formalisms of traditional specification and design.

They favour rapid application development techniques which lead to quicker working

prototypes of the final product. The downside of this is a lack of specification metrics

with which to plan the project. Yet managers of Agile projects have just as great a

need to cost and plan their projects as any traditional project manager.

This thesis shows how the iterative nature of Agile methodologies can be leveraged

to create a learning model of the software development process. This is illustrated

with a Dynamic Bayesian Net model of Extreme Programming’s key Project Velocity

metric. The model is validated against a real Extreme Programming project where it

demonstrates good predicative power.

 4

To Terry, who’s put up with me for the last 25 years.

 5

Glossary

API Application Programming Interface

BN Bayesian Network

CASE Computer Assisted Software Engineering

CI Conditionally Independent

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Net

DD Dynamic Discretisation

DEMC Data Extraction, Mapping And Cleansing

FPs Function Points

HMM Hidden Markov Model

IDE Integrated Development Environment

IED Ideal Engineering Day

JPD Joint Probability Distribution

JTA Junction Tree Algorithm

KFM Kalman Filter Model

KDSI Thousand (Kilo) Delivered Source Instructions

KLOC Thousand (Kilo) Lines Of Code

LOC Line Of Code

NPT Node Probability Table

OO Object Oriented

PP Pair Programming

TDD Test Driven Development

UML Unified Modelling Language

XP eXtreme Programming

 6

Table of Contents

1 INTRODUCTION 14

1.1 Hypothesis 15
1.2 Structure of this Thesis 15
1.3 Published Papers 16

2 SOFTWARE PROCESS MODELS 18

2.1 Aims of Software Process Models 18
2.2 Regression models 18
2.3 Function Points 20
2.4 Including Complexity 23
2.5 Multivariate Models 25
2.6 General Problems with Parametric Models 26

2.6.1 Data Collection and Tuning 26
2.6.2 Accuracy 27
2.6.3 Uncertainty in Parametric Models 28
2.6.4 Missing Data in Parametric Models 29

2.7 Other Types of Model 30

3 BAYESIAN NETS 32

3.1 Bayesian Net Modelling Techniques 32
3.1.1 Indicator Nodes 33
3.1.2 Ranked Nodes, TNormal Distributions, and Weighting

Functions 35
3.1.3 Deterministic Functions 38

3.2 State-Space Models 40
3.2.1 The Frontier Algorithm and the Interface algorithm 43
3.2.2 The Boyen-Koller Algorithm 46
3.2.3 Parameter Learning in DBNs 47
3.2.4 “Forward only” Learning in DBNs 54

3.3 Summary 55

4 EXISTING MODELS 56

4.1 Introduction to Bayesian Net Software Models 56
4.2 MODIST Project Model 57

4.2.1 Management and Communication Subnet 58
4.2.2 Resources Subnet 59
4.2.3 Functionality Delivered Subnet 60

4.3 Fenton, Krause & Neil’s “Phase” Model 61
4.3.1 Design and Development Subnet 63
4.3.2 Defect Insertion and Discovery Subnet 64

4.4 The Philips Model 65
4.4.1 Existing Code Base Subnet 66
4.4.2 Indicator Nodes Become Causal Factors 68
4.4.3 KLOC Instead of Function Points 69
4.4.4 Philips Model Results 71

4.5 Wooff, Goldstein and Coolen Software Test Model 72
4.6 Siemens Model 75

 7

4.7 Combination with COCOMO 76
4.8 Modelling Anti-Patterns in XP 77
4.9 Rational Unified Process 78
4.10 Conclusions 78

5 EXTREME PROGRAMMING 79

5.1 XP and other Development Processes 79
5.2 Values, Principles, Practices 80
5.3 XP Practices 81
5.4 The XP Lifecycle. 83

5.4.1 User Stories 84
5.4.2 System Metaphor 84
5.4.3 Architecture 85
5.4.4 The Planning Game 86
5.4.5 Iteration Planning 87
5.4.6 Ideal Engineering Days and Load Factors 88
5.4.7 Test Driven Development 89
5.4.8 Pair Programming 91
5.4.9 Development Practises 95
5.4.10 Workspace 96
5.4.11 Acceptance Testing and Onsite Customer 96

5.5 Project Velocity 98
5.5.1 Story Points 102
5.5.2 Project Velocity and Project Planning 103

5.6 XP Models 105
5.7 Summary 106

6 ADAPTING CAUSAL MODELS TO ITERATIVE DEVELOPMENT 108

6.1 Model Size 108
6.2 Entering Data into BN Models 111

6.2.1 Quantitative Data Collection 111
6.2.2 Problems with Data Collection 113
6.2.3 Software Reliability Theory 115

6.3 Separating Model and Object Structure 121
6.4 Summary 122

7 A LEARNING PROJECT VELOCITY MODEL 124

7.1 Causal vs. Learning Models 124
7.2 Why model Project Velocity? 125
7.3 Process factors 126
7.4 Bayesian Net Model of Project Velocity 127
7.5 Iteration Model 129
7.6 Setting the initial conditions 130
7.7 Model Behaviour 132

7.7.1 Parameter Learning in Different Scenarios 133
7.7.2 Indicator Nodes 135

7.8 Model Validation 137
7.8.1 The Motorola Project 138
7.8.2 Parameter Learning 139
7.8.3 “Onsite customer” as an Indicator Node 141

 8

7.8.4 Calibrating the Onsite Customer Node 144
7.8.5 Timescale Prediction 146
7.8.6 Accuracy of the FOFFBK Algorithm 148

7.9 Conclusions and Discussion 150

8 EXTENDING THE MODEL 153

8.1 Adding Quality to the Model 153
8.1.1 Model Structure 154
8.1.2 Validating Model Consistency 156
8.1.3 Model Learning and Prediction 158
8.1.4 Future Model Work 161

8.2 Creating an Iterative Model for Scrum 161
8.3 Extending BN Models to Other Agile Methodologies 164

8.3.1 FDD 165
8.3.2 AUP 165
8.3.3 Agile MSF 166

9 OVERALL SUMMARY AND CONCLUSIONS 167

9.1.1 Summary 167
9.1.2 Conclusions 168

APPENDIX A - AN INTRODUCTION TO BAYESIAN NETS 170

A.1 Conditional Independence and Bayesian Nets 173
A.2 The Chain Rule for Bayesian Networks 174
A.3 D-Separation 175
A.4 Algorithms Used 179
A.5 Advantages of Bayesian Nets 180

APPENDIX B – THE JUNCTION TREE ALGORITHM 192

B.1 Moralising 194
B.2 Triangulation 195
B.3 Join Trees and Junction Trees 196
B.4 Message Passing 198
B.5 Evidence Propagation 204

APPENDIX C – AGENARISK SCRIPTING LANGUAGE 205

C.1 Risk Object Commands 205
C.2 Node Commands 207
C.3 Scenario Commands 211
C.4 Output Commands 211
C.5 Miscellaneous Commands 213
C.6 - Example Scripts 215

APPENDIX D - NOISY OR 218

APPENDIX E – FORMAL DESCRIPTION OF DATA IMPORT AND MAPPING221

APPENDIX F – MODEL SCRIPTS 225

APPENDIX G - SOFTWARE COMPLEXITY REVISITED: AN APPROACH
FOR USE IN CAUSAL MODELS 227

G.1 The Problem 227
G.2 Factors excluded from Technical Complexity 227

 9

G.3 Technical Complexity Factors 229

APPENDIX H - AUTOMATED DATA IMPORT, EXAMPLE XML
CONFIGURATION 234

 10

Figures

Figure 2-1 Frequency distribution of FPs/hour ... 22

Figure 2-2 CC vs. LOC for methods in a large commercial program......................... 24

Figure 3-1 Indicator nodes .. 33

Figure 3-2 Combining ranked nodes... 36

Figure 3-3 A typical HMM ... 40

Figure 3-4 Types of inference in DBNs .. 42

Figure 3-5 Example DBN to illustrate the Interface Algorithm.................................. 44

Figure 3-7 The triangulated 1.5TBN... 45

Figure 3-8 Learning the parameters of a Normal distribution. 48

Figure 3-9 Two similar BNs.. 48

Figure 3-10 Two alternative learning models ... 50

Figure 3-11 Example of evidence subnets .. 50

Figure 3-12 Example of regular evidence subnets .. 51

Figure 4-1 The Project Level model – high level overview.. 57

Figure 4-2 Management and communication subnet .. 58

Figure 4-3 Effort subnet .. 59

Figure 4-4 Functionality delivered.. 60

Figure 4-5 Phase model overview... 62

Figure 4-6 Design and development subnet.. 63

Figure 4-7 Defect insertion and discovery subnet... 65

Figure 4-8 The Philips Model ... 66

Figure 4-9 Existing code base subnet.. 67

Figure 4-10 Philips model results, before and after inclusion of initial phase............ 71

Figure 4-11 The COCOMO 81 BN... 76

Figure 4-12 Anti-pattern Bayesian Net ... 77

Figure 5-1 Percentage of defect fixing tasks in different projects 97

Figure 5-2 A typical Burn Down chart.. 104

Figure 6-1 DEMC - the Data extraction, mapping and cleansing tool...................... 113

Figure 6-2 Musa fault data - Project 1... 117

Figure 6-3 Musa data - Project SS1C.. 118

Figure 6-4 phpMyAdmin bug reports ... 120

 11

Figure 7-1 Project velocity model... 127

Figure 7-2 PV Model as a DBN.. 129

Figure 7-3 Fragment 1 - Process effectiveness nodes ... 129

Figure 7-4 Fragment 2 - Effort nodes.. 130

Figure 7-5 Fragment 3 - Project Velocity ... 130

Figure 7-6 Initial Velocity model.. 131

Figure 7-7 Project velocity values Vi – median, mean, mean ± 1 SD 132

Figure 7-8 Bias distribution iteration 10, b10... 133

Figure 7-9 Effectiveness Limit li, median, 5 iterations ... 134

Figure 7-10 Process Improvement ri, median, 5 iterations 134

Figure 7-11 Bias bi, Average scenario, median, mean ± 1 SD.................................. 135

Figure 7-12 The "Collective Ownership" indicator node.. 136

Figure 7-13 Effectiveness Limit li with and without indicator node evidence 137

Figure 7-14 Distributions for Vi , one per timeslice.. 138

Figure 7-15 Predicted vs. actual Motorola V (medians). Actual values are bold,

predicted values are dashed. The shaded area shows predicted medians +/- 2

standard deviations. ... 139

Figure 7-16 Predicted and actual V, 2 observations. Actual values are bold, predicted

values are dashed. The shaded area shows predicted medians +/- 2 standard

deviations. ... 140

Figure 7-17 Relative error of model before and after learning 141

Figure 7-18 The "Onsite Customer" indicator node.. 141

Figure 7-19 Effectiveness Limit with and without indicator node evidence. Actual

values are bold, predicated values (after “Onsite Customer” evidence) are

dashed. The shaded area shows predicted medians +/- 2 standard deviations. The

dotted line shows the learned values without “Onsite Customer” evidence. 142

Figure 7-20 V with and without Onsite Customer evidence. Actual values are bold,

predicted values are dashed. The shaded area shows predicted medians +/- 2

standard deviations. The solid grey curve shows the predicted values before

Onsite customer evidence.. 143

Figure 7-21 Change in relative error with onsite customer....................................... 143

Figure 7-22 BN used to calibrate the Onsite Customer node.................................... 144

Figure 7-23 Defect effort % for each Onsite Customer setting................................. 145

Figure 7-24 Project Velocity summed to date... 146

 12

Figure 7-25 Sum Vi to date.. 146

Figure 7-26 Sum Vi to date, Relative Error ... 147

Figure 7-27 Iteration 8 cumulative distributions... 148

Figure 7-28 Magnitude of relative errors between the exact and approximate inference

algorithms’ PV predictions (both with and without noise). 149

Figure 8-1 - PV model updated to include code quality ... 153

Figure 8-2 Defects inserted d, defects found f and residual defects rd, as q is varied

from Very Low (0.1) to Very High (0.9), with E = 50 and V = 25................... 157

Figure 8-3 Defect insertion rate dr (α) and product quality q as number of defects

found varies from 1 to 10. C = 20, T = 20... 157

Figure 8-4 Defect insertion rate dr and product quality q with C = 10, f = 5 and rising

value of T... 158

Figure 8-5 Learned values for q under different scenarios. 159

Figure 8-6 Learned values of alpha in varying scenarios.. 160

Figure 8-7 Residual defects in each iteration for different scenarios........................ 160

Figure 8-8 Modelling burn down .. 163

Figure 8-9 Burn down graphs for the Motorola project. ... 164

 13

Tables

Table 2-1 COCOMO model.. 19

Table 3-1 Evaluating the expression An = An-1 .. 53

Table 4-1 FP to KLOC distribution parameters .. 61

Table 4-2 KLOC per FP based on ISBSG data... 61

Table 4-3 Indicator nodes and causal factors .. 68

Table 4-4 Scale of new functionality implemented in the two models....................... 70

Table 5-1 Principles in 1st and 2nd editions of Beck's book 81

Table 5-2 Practices in 1st and 2nd editions of Beck's book .. 82

Table 5-3 Pair Programming studies... 94

Table 5-4 Estimating user stories .. 100

Table 6-1 Largest clique sizes in Philips junction tree.. 110

Table 6-2 Model data sources and their uses .. 111

Table 7-1 Symbol definitions.. 128

Table 7-2 PV values for three scenarios.. 133

Table 7-3 Motorola project data.. 138

Table 7-4 The true functionality delivered after iteration i is si. The initial prediction

for si is si
0. The MRE for si

0 is MREi
0. The prediction for si after two iterations is

si
2. The MRE for si

2 is MREi
2. The Mean MREs are shown at the bottom of the

relevant columns. .. 147

Table 8-1 Quality model symbol definitions... 154

Table 8-2 Test results when E = 50, V = 25 and q is varied from Very Low through to

Very High (0.1 to 0.9 in steps of 0.2).. 156

Table 8-3 Dynamic quality model test scenarios .. 158

 14

1 Introduction

This thesis investigates the use of Bayesian Networks (BNs) to construct agile

software development process models. The main novel contribution is to introduce

and validate learning Dynamic Bayesian Nets (DBNs) as a means of constructing

models of agile environments.

Predicting the cost and quality of software is critical to many major business and

government projects. Yet despite decades of research, even the best industry practise

has a chequered history of success. Traditional approaches have proved to be either

unreliable, or require sophisticated metrics collection programmes to render them

reliable. Recent advances in software process modelling however, have shown that

many of the problems experienced by traditional models can be overcome by using

causal models based on BNs. The challenge in this research, is to adapt these

advances so that they can be applied in an agile environment.

Agile methodologies vary in their exact characteristics. However they all share

some common features. These include a lack of formal documentation and

specification, an iterative approach to software development and a willingness to

adapt to changing requirements. As a result, many of the metrics used to condition

existing BN models simply do not exist in an agile environment. This gives the agile

models an additional problem to contend with: if the basic input metrics are

unavailable, how can the models make accurate predictions?

The solution proposed here is to take advantage of the iterative nature of the

environment. Agile development teams always need some measure of productivity in

order to plan the next iteration of their project. By combining this data with

empirically derived prior distributions, it is possible to learn some basic abstract

parameters which govern the productivity of the team. This allows models to be

constructed which provide accurate predictions about future productivity and so

deliver estimates of timescale and cost. Unlike existing approaches, there is no need

to construct a full causal model of the environment - only changes in the environment

need to be included. This dramatically reduces the amount of data that the model

needs.

 15

1.1 Hypothesis

The main hypothesis of this thesis may be stated as follows.

H1. It is possible to construct learning models of iterative agile development

environments.

H2. These models require minimal “training” and minimal data collection

programmes.

Proof is by demonstration. I construct a learning model of the Project Velocity (PV)

metric in Extreme Programming (XP). I then show that, with surprisingly little data, it

is possible to produce highly accurate estimates of future values of PV which can in

turn be used to create time, effort and cost estimates.

1.2 Structure of this Thesis

The thesis is laid out as follows.

Chapter 2 discusses software process models, covering the need for both cost and

quality models. Parametric models are introduced together with a discussion of some

of the problems that simple regression based parametric models face. This is followed

by an overview of some of the previous attempts to overcome the shortcomings of

traditional modelling techniques. The chapter finishes with a brief mention of BNs

and how they can address many of the problems identified with other types of model.

Chapter 3 provides the necessary background on BNs and Dynamic BNs (DBNs).

An associated appendix (Appendix A) includes an overview of the conditional

independence relationships inherent in all BNs and how this leads to the chain rule for

BNs. This provides sufficient information to discuss the advantages of BNs when

applied to software process modelling.

Chapter 4 contains a detailed examination of existing software process BNs.

Chapter 5 takes an in-depth look at XP, one of the most popular agile development

methodologies. The lifecycle of a typical XP project is covered in detail together with

a review of the extensive literature associated with XP and its various recommended

practices. A rigorous definition is given of Project Velocity (PV), the principle

productivity metric in XP. PV is common to many agile development methods, thus

allowing any model of PV to be generalised beyond XP alone.

 16

Chapter 6 argues that existing BN models are inappropriate when applied to XP.

The main problems involve scalability, data collection, data entry, and data

consistency across iterations. I provide a general method for importing data from

multiple data sources into causal models and show how a simple scripting language

can be used to separate timeslice and model structure in a DBN.

Chapter 7 describes a DBN model of PV, validated using project data from a real

XP project. The model demonstrates how, with remarkably little data, and close to

zero project overhead, a DBN model can learn from its environment. The model

quickly adapts to a particular project and generates highly accurate predictions.

Chapter 8 discusses future directions that this research can take. In particular it

points out how future defect models can be created and combined with dynamic effort

models to provide classic tradeoffs between cost, functionality and quality. A simple

model is described and tested for internal consistency. I also show how the XP model

can be used in various other agile development environments, using SCRUM as an

example of the ease with which the model can switch from PV to alternative metrics.

Chapter 9 provides a summary of the main points of the thesis, expressed in list

format together with the thesis conclusion.

1.3 Published Papers

1. Hearty, P., Fenton, N., Marquez, D., & Neil, M. (in press). Predicting Project

Velocity in XP using a Learning Dynamic Bayesian Network Model. In IEEE

Transactions on Software Engineering.

This paper is largely based on chapters 5, 6, and 7 of this thesis. It includes a brief

overview of the problem being addressed and discusses why BNs, and in

particular DBNs, are an appropriate solution. The main XP model of project

velocity is discussed with the result of the real world validation that is presented in

chapter 7. The new research content of the paper is almost entirely my own work,

with contributions from the co-authors on presentation, style, accuracy,

terminology and background information.

2. Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., and Mishra,

R. 2007. Predicting software defects in varying development lifecycles using

Bayesian nets. Inf. Softw. Technol. 49, 1 (Jan. 2007), 32-43.

This paper describes how the “Philips Model” (see section 4.4) can be applied to

projects with different combinations of lifecycle stages. I created the component

 17

based version of the Philips model described here and also compared the model’s

predictions with the actual defect values at Philips .

3. Neil M. Tailor M. Marquez D. Fenton N. Hearty P. Modelling Dependable

Systems using Hybrid Bayesian Networks. Reliability Engineering and System

Safety, 2008. 93(7): p. 933-939.

I corrected some mathematical errors and ambiguities in this paper.

4. Martin Neil, Manesh Tailor, Norman E. Fenton, David Marquez, Peter Hearty:

Modeling Dependable Systems using Hybrid Bayesian Networks. ARES 2006:

817-823.

I corrected some mathematical errors in this paper.

5. Peter Hearty, Norman E. Fenton, Martin Neil, Patrick Cates: Automated

population of causal models for improved software risk assessment. ASE 2005:

433-434.

This paper describes a demonstration of the heterogeneous data import capability

described in Chapter 6 of this thesis.

6. Fenton NE, Neil M, Marsh W, Hearty P, Krause P, Radliński Ł. , "Project Data

Incorporating Qualitative Factors for Improved Software Defect Prediction, ICSE

PROMISE 2007 .

This paper presented the raw data and results from the Philips trials (see section

4.4). I created the regression based model against which the trial results were

compared and found a stronger correlation between actual and predicted defects in

the Philips model than for the regression model.

7. Neil M, Tailor M, Marquez D, Fenton N, Hearty P, Modelling Dependable

Systems using Hybrid Bayesian Networks, Reliability Engineering and System

Safety, Vol 99 No. 7, July 2008, pp. 933-939.

This paper relies on building a hierarchical model for predicting Mean Time

Between Failure (MTBF) of two untested subsystems based on reliability data for

three similar subsystems. The model is repetitive and requires multiple data

entries. To reduce the data entry workload and the probability of data entry errors,

the models were initially constructed using the scripting language described in

Appendix C of this thesis, although a scripted version of the model was later

found to be unnecessary.

 18

2 Software Process Models

In this chapter we examine traditional software process models. These vary in

complexity from simple parametric models through to complex simulations. Models

are covered in what is essentially historical order, beginning with regression models

and proceeding to multivariate models, followed by more dynamic models. We shall

see that, as models become progressively more sophisticated, they incorporate a wider

range of causal factors, and take an increasingly realistic view of project risk. This

allows us to build a strong case for constructing causal models of software processes

using BNs.

Novel contributions include a frequency analysis of developer productivity in

function points per hour from the ISBSG database [90], and a comparison of

cyclomatic complexity against lines of code for the classes in a large commercial

computer program. I also give a detailed hierarchical description of technical

complexity (via Appendix G).

2.1 Aims of Software Process Models

Most software process models fall into one of two broad categories [61]: cost

models and quality models. Cost models aim to provide estimates of cost, effort and

timescale. They generally take into account such factors as: the size of the

requirements, the type of application, the novelty of the project, the expertise needed,

interaction with other systems, level of testing required, the experience of the

manufacturer.

Quality models make predictions regarding defect counts and mean time to failure.

They are used to determine when a software product has reached the necessary level

of quality and to allocate appropriate support after release. In addition to the factors

listed above, they often include: code size, complexity metrics, defect reports. There

is clearly a large overlap between the constituent data used in both types of model.

Data collected in order to support a cost model can often be reused in a

complementary quality model.

2.2 Regression models

The most common types of software process models are regression models based

on empirically derived relationships. Data is gathered on two or more measurements

 19

which are believed to be related. A numerical relationship is then derived between

these measurements. Some attempts may be made to justify this relationship, usually

after the fact, but there is normally little or no theoretical foundation from which to

derive it.

As early as 1974, Wolverton [217] proposed a series of simple correlations between

various software and management measurements. In 1976, Walston [205] derived a

simple empirical relationship for use in projects at IBM.

91.02.5 LE = Equation 2-1

Where effort E is in man months, and code size L is in thousands of lines of code

(KLOC).

The most famous of this class of models is the COnstructive COst MOdel,

COCOMO, introduced by Barry Boehm in 1981 [24]. This considers three types of

software projects: organic, semidetached and embedded, supposedly in order of

increasingly strict compliance with specifications. “Organic” systems are essentially

data processing systems, while “embedded” correspond to real time systems.

“Semidetached” systems combine elements of both – a real time data feed for

example. The equations and coefficients are shown in Table 2-1. (This model uses

Thousands of Delivered Source Instructions - KDSI).

COCOMO equations
baLE = E = effort in man-months

L = code size in KDSI

dcED =
D = calendar months

COCOMO coefficients

 a b C d

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Table 2-1 COCOMO model

It is interesting to note, that even at this early stage, researchers had identified the

need for such models to be tailored to their environment by selecting one of three

 20

project types. The model in Table 2-1 is known as the Basic COCOMO model. An

additional multiplier can be applied when more information about a project is known.

In general, if we assume a relationship of the form E=aL
b, between E and L, then

the values of a and b can be calculated from a set of sample projects with known E

and L by simply plotting log(E) against log(L) and performing a regression analysis

(usually least squares). Note that, by doing this, we are losing information. Some

knowledge about the variation in the data points is lost. In the case of “outliers”, this

procedure may even explicitly discard some data, although it should be noted that

later versions of COCOMO incorporated more causal factors in an attempt to explain

outliers.

Simple defect prediction models arose at the same time as early effort models. For

example, Akiyama [10] of Fujitsu, in Japan, constructed the following formula:

D = 4.86 + 0.018L Equation 2-2

where D is the number of defects (in testing and two months after release) and L is the

number of lines of code. As discussed in section 2.6.1, care must be taken in the

definition of a “defect”.

All of the early authors were well aware of the crudity of these models. Walston, for

example, tried to augment Equation 2-1 by introducing measures of programmer

productivity. These measures relate to many of other factors, such as interface

complexity, experience of the programmers, quality of requirements and so forth.

Akiyama proposed alternatives that included the number of decisions in a program,

and the number of subroutine calls. Boehm extended the basic COCOMO model to

include a set of hardware, product, personnel and project attributes which could be

used to adjust the basic model.

2.3 Function Points

A major problem with the original COCOMO model is that it is driven by a variant

of LOC. Since LOC are only available at the end of a project, we must make do with

estimating its value in order to make predictions at the start of a project. But

estimating LOC can be just as hard as estimating the effort that we are trying to

predict. COCOMO II overcomes this weakness by allowing project size to be

estimated from the specifications. COCOMO II was further updated in 1998 by

 21

Chulani, Boehm and Steece [43] using a Bayesian analysis technique (see Chapter 3

for an overview of Bayes techniques). The authors claimed that this resulted in greater

accuracy for the resulting model.

An industry standard has emerged to measure project size without the need for

LOC. Function Points (FPs) claim to provide a technology independent means of

quantifying the size of a software specification [11]. FPs take into account the number

of interfaces, files and queries in a specification. These are then weighted according to

their complexity: simple, average or complex. The sum of these complexity weighted

attributes is the Unadjusted FP Count (UFC). This is then multiplied by a Technical

Complexity Factor (TCF) which is composed of a variety of technical and project

factors which make the development more complex. The result is an Adjusted FP

Count (AFC).

The International Function Point User Group (IFPUG) maintain a manual of FP

counting practises [89] which is updated regularly to reflect modern programming

techniques. This enables FP counting to be applied in GUI, object oriented and web

based applications, even though it was originally designed for batch based database

systems. According to Hotle [86], most trained IFPUG counters produce FP counts

which differ from each other by no more than ±11% for the same specification.

FPs can be used as an input to effort prediction models. This can be a simple

combination of the number of FPs multiplied by team productivity. Alternatively,

they can be used as inputs to regression based models, such as COCOMO. The big

advantage of FPs over LOC is that they are available before development commences.

By concentrating on functional requirements, FPs also avoid the many ambiguities

associated with LOC.

Fenton and Pleeger [61] have summarised some of the criticisms of FPs. These

include:

1. The subjective nature of the TCF.

2. Possible double counting of internal complexity.

3. Difficulty in comparing FP counts at project start and project end. These can

vary by several hundred percent [110]. Because of this difference, any metrics

collection programme must take care which values are stored and used for

future predictions.

 22

4. FPs are not completely technology independent. See for example Verner and

Tate [204], and Ratcliff and Rollo [168].

Updated versions of FPs have been proposed, such as Mark 2 Function points by

Symons [200], Object Oriented Function Points by Antoniol et al. [14] and Class

Points by Costagliola et al. [51]. Despite these criticisms and alternative proposals,

the original Function Point counting method (as updated by IFPUG) remains the most

popular. For example, in the ISBSG database [90], which contains metrics for over

3,000 software projects, IFPUG counting accounts for nearly 90% of the projects

listed.

The IFPUG database allows us to examine the productivity of developers and create

a frequency chart for productivity (Figure 2-1 – a log-normal distribution is shown as

a continuous line for comparison). The median productivity for this database is

approximately 0.1 FPs per person-hour. However there is a 26% chance that

productivity will be less than half this value and a 23% chance that it will be more

than double. Clearly, if these variations are not taken into account, any effort

predictions based on FPs have a considerable margin for error. This type of variation

in productivity is well known and is not restricted to FPs [175] [165].

Figure 2-1 Frequency distribution of FPs/hour

The problem with FPs in agile models is that they rely on a complete, detailed

specification being prepared in advance of the development stage of a process,

something which we certainly cannot rely on in agile environments. However, they

remain important because they demonstrate the uncertainty involved in judging

developer productivity. FPs are a relatively well defined measure of problem

 23

description. If FPs result in such uncertainty, then we can expect agile perceptions of

project size, which are often based on much less well defined criteria, to be even more

uncertain.

2.4 Including Complexity

We have already seen how FPs attempted to include software complexity into

regression based models. In both effort and quality prediction models it is assumed

that complexity will have a major effect. Complex software is assumed to be harder to

write and therefore more likely to contain program errors. Similarly, more complex

software is assumed to require greater attention and more debugging time, therefore

effort should also increase.

The word “complexity” is overloaded in its use in the English language. This

overloading extends to its use in technical and engineering environments. For

example, when we say that a software project is complex, we could be referring to

any of the following complications.

(1) The project is large and requires multiple relationships between many

managers and many development teams.

(2) The project is scattered across several locations.

(3) The project must handle radically different types of data and interfaces.

(4) The project involves new technology where there is little previous experience

of its use.

(5) The functionality requires a compromise between competing requirements.

(6) There are strict requirements in terms of quality, performance, cost or delivery

times.

(7) Specialised algorithms must be employed.

(8) The structure of the software is complex as measured by some well defined

metric.

In Appendix G, I give a much more detailed discussion of complexity in software

projects. Following Baccarini [17] and Xia and Lee [221], I draw a distinction

between management complexity and technical complexity and show how a hierarchy

of technical complexity factors can be constructed.

Computer Science has traditionally concentrated on point (8) above. For example,

McCabe’s cyclomatic complexity [130] measures the number of independent paths

through a piece of software. Watson and McCabe [208] point to several studies which

 24

seem to validate the claim that cyclomatic complexity is a good predictor of defect

counts. However, the cyclomatic number is also a strong indicator of program size

[187]. All but the most trivial of programs will include some conditional branching,

and the larger the program, the more branches there are likely to be. This can be seen

in Figure 2-2 which shows LOC against cyclomatic complexity for the classes in a

large, professionally developed program. Kitchenham et al. [111] give a more

systematic approach to this question.

This represents a general problem with static code metrics. Number of attributes,

number of methods, number of statements etc. are often used as complexity metrics.

All are strongly proportional to LOC.

Apart from this relationship between program size and cyclomatic complexity, this

metric has also been criticised for giving equal weight to all types of code branches,

even though it is widely believed that nested flow control changes are much more

likely to lead to programming defects [164][191].

Figure 2-2 CC vs. LOC for methods in a large commercial program

The McCabe complexity metric is one of the best known, however it is not the only

way to measure software complexity. For example, the coupling and cohesion [61] of

a module can also be regarded as a measure of complexity. High coupling between

modules reduces the maintainability of code, leading to higher defects and higher

 25

costs. Conversely, high cohesion within a module makes its behaviour clear and

predictable, leading to lower defects and costs. Equivalent definitions exist for OO

software (see for example [40] and [124]).

In addition to colinearity with LOC, all of these software complexity metrics have

other problems. While they may account for some of the variability seen in software

process models, they cannot account for all of it. They take no account of data

structure complexity (although other complexity metrics do [143][220]), programmer

experience, test quality, process maturity, problem domain or any of the other host of

factors that affect final defect count and production costs. Given these additional

factors, it makes sense to see if multivariate models, which attempt to combine a large

number of factors into the model, can be more successful.

2.5 Multivariate Models

Multivariate models attempt to extend size and complexity models by including

other aspects of the software development process. These can include different size

and complexity metrics as well as metrics covering requirements, testing and process

quality.

One major challenge with all multivariate models is to minimise colinearity. As

mentioned above, it is easy to choose size and complexity metrics which are

significantly correlated. When dealing with all of the factors that contribute to

software cost and quality there are many more such opportunities. As Munson and

Khoshgoftaar have pointed out [142], models based around up to 6 orthogonal metrics

can be almost as accurate as those using up to 30, demonstrating that multiple metrics

are in fact measuring the same underlying attribute.

Colinearity is minimised using techniques such as Principal Component Analysis

(PCA – see for example Lay [118]). This applies a linear transformation to the data

such that the variance of the data is maximised along the new basis vectors. (The

components with the largest variance vary the most with respect to the predicted

variable so a large change in the component causes a large change in the prediction).

The components with the smallest variance are closer to being constant and if below

some threshold value can be discarded. A similar technique, Factor Analysis [114],

can also be used to create multivariate models. A detailed discussion of the

application of multivariate techniques to software metrics can be found in Prof.

Martin Neil’s Ph.D. thesis [150].

 26

While this successfully reduces the data to a set of nearly orthogonal metrics, the

results are difficult to interpret in terms that would be understood by developers. Each

basis metric is now a linear combination of software engineering metrics. If we wish

to reduce the cost or defect count for a given class or module, it is not clear how to

proceed since the same result can be obtained by varying the underlying software

metrics in multiple ways.

2.6 General Problems with Parametric Models

All of the models discussed so far result in a simple set of algebraic formulae. The

number of metrics used in the formula and the methodologies used to establish

coefficients or exponents may vary, but their usage is always the same: a manager is

required to collect some metrics, put the values into the formula as parameters and a

prediction is made about effort, defects, or some other related value. This section

discusses some of the problems with this approach.

2.6.1 Data Collection and Tuning

These parametric models often require tuning to the local environment. There are a

variety of reasons for this.

1. Definitions may vary. A “defect” in one environment may be a simple failure

of a system test, whereas in another it may only be defects in released software

which count. The severity of a fault may also be significant. A customer

request to change the background colour of a form may be classified as a

defect by one organisation but as a change request by another.

2. There is a similar uncertainty surrounding what actually constitutes a line of

code. We must decide whether to include comments, blank lines, declarative

lines, required syntactic elements and so forth. Then there is the question of

how LOC should be compared across different programming languages and

different coding standards. This problem is discussed at length in [61]. This is

not to suggest that LOC is not a useful measure of program size. However, we

must always ensure that its exact meaning in any given circumstance is

carefully specified and that we are comparing like with like.

3. Standards for project size estimation vary. For example, function point

counting can vary between different organisations.

 27

4. The development process, environment and team skills can all vary, leading to

the type of uncertainty in productivity that we saw in Figure 2-1. Models such

as COCOMO try to take account of these variations by introducing a set of

cost drivers that modify the basic COCOMO equations. However even with

these modifications, the accuracy of the model is poor (see below).

Tuning a model to a particular organisation requires data collection and analysis,

often as part of projects which do not directly benefit from the process. In 2004, the

dominant method of software cost estimation remained expert judgement, with little

evidence that it was any less effective than model based assessments [101]. Given this

fact, many project managers regard data collection programmes as little more than an

unwelcome overhead.

Empirical formulae also provide no mechanism to explore “what-if” style analysis.

For example, suppose a company decides to invest in greater staff training. How will

this affect Equation 2-1? We cannot tell which of the two constants to vary in order to

reflect our (hopefully) improved performance. We can always conduct another

regression analysis, but how do we know how much of the change is the result of

better trained staff, and how much is due to different requirements or other small

variations in conditions? To do this, a company would have to perform a separate

regression analysis on trained and untrained staff working on identical projects with

otherwise identical resources. In practise this is impossible in an industrial setting.

2.6.2 Accuracy

The accuracy of parametric models also continues to be in doubt. Kemerer [109]

found variations of up to 772% between actual and predicted effort, although it is

possible to tune COCOMO-like models to work in different environments [77][25].

Molokken and Jorgensen [137] performed a review of surveys of software effort

estimation and found that the average cost overrun was of the order 30-40%. One of

the most famous such surveys, the Standish Report [194] puts the mean cost overrun

even higher, at 89%, (although this report is not without its critics [73]).

Briand et al. [28] used data collected by the same tool on 206 projects from 26

companies. They used various techniques to construct cost models, including ordinary

least squares, analysis of variance (ANOVA), classification and regression trees

(CART – discussed in section 2.7) and analogy based methods (the last two being

non-parametric models).

 28

If we define the actual effort in project i as Ai , and the predicted effort as Ei, then

the Magnitude of Relative Error for project i is given by: MRE = |Ai - Ei| / Ai. Briand

et. al. found that all of the models they constructed had a mean MRE of 0.5 or greater.

The median values, which are less sensitive to outliers, faired slightly better,

managing a median MRE of 0.41.

An alternative measure of prediction accuracy is the percentage of predictions

which are within 25% of the actual value. This is often referred to as PRED(25). The

models had PRED(25) level of between 14% and 34%. In other words, even the best

model’s predictions were out by more than 25% more than two thirds of the time.

2.6.3 Uncertainty in Parametric Models

Parametric models tell us nothing about the uncertainty of their estimates. We know

that this uncertainty is significant for several reasons.

1. The inaccuracy of many of the results, as detailed in [28] and [109], for

example, tells us that the predictions can often be significantly different from

the actual value.

2. Some of the inputs to the models consist of subjective expert judgements. For

example, suppose an expert is asked to judge the complexity of a data

interface on a five point scale when the true complexity resolution should be

much finer. There is immediate uncertainty from the fact that the expert’s

choice spans 20% of the whole range of options. If the expert’s judgement is

borderline, where the true value could be contained in one of two values on

the five point scale, then the “true” value could lie anywhere in a 40% range.

3. If the model has not been tuned to the local environment, then it is probably

based on coefficients and exponents chosen to form a best fit with a wide

range of projects. It is unlikely that these parameters will be a good fit for any

particular project. For example, suppose we are building a cost model and

have already estimated the size of the software in FPs. We now choose a value

for productivity based on the median value from Figure 2-1 and divide it into

the number of FPs in order to estimate the number of programmer-hours

needed. We know from the shape of Figure 2-1 that we have nearly a 50%

chance of being out by a factor if two.

Many of these sources of uncertainty are present no matter what type of process

model we build. However, in parametric models there is no explicit mechanism for

 29

expressing or quantifying this uncertainty. We can try varying the inputs to a

parametric model, using a simulation to explore its sensitivity to measurement errors,

but this is a cumbersome, ad-hoc, approach that has to be added onto the model. It is

not part of the model itself. We discuss this type of simulation further in the next

section on missing data.

2.6.4 Missing Data in Parametric Models

What should we do when required data is missing in parametric models? Suppose

we are constructing a defect model and our software includes significant amounts of

third party software. We would like to include the number of defects from the third

party software in our model, yet we may know little or nothing about the conditions

under which it was created.

As with uncertain data, we can use estimates of the missing data. One possible

approach is to estimate the minimum, maximum and mean values of the missing data

and run the model with each value. However, we also need to estimate the probability

of each estimate occurring. We can improve on this by choosing more estimates from

what we believe to be a likely range of possibilities, in each case attaching a

probability to our estimates. In effect, we are building a probability distribution for

the missing data and determining its effect on the model.

Now suppose we have, not one piece of missing data, but two. Again, we might

start by choosing a small number of discrete values for each missing data value. Now

however we must try out each combination of values in our model in order to

determine the full range of possible results. If we have N required data items missing,

and we choose M discrete states for each, then we must run our model M
N times to

get the full range of results. In addition, if we wish to determine the probability of

each model outcome, we must also determine the Joint Probability Distribution (JPD)

for these M
N states. If the missing variables are independent then the JPD is simply

the product of the probability distributions of each missing variable. However, we are

unlikely to be this lucky due to the co-linearity between software metrics.

As we shall see in the next chapter, the kind of calculation that we have just

attempted to do by hand in a parametric model is precisely the calculation that occurs

naturally in a BN. Furthermore BN models are not restricted to dealing with

independent variables. Causal relationships between variables are explicitly encoded

in BN models and are taken into account when calculating the JPD.

 30

2.7 Other Types of Model

Several alternatives have been suggested to parametric models[29]. Classification

and regression trees (CART) ask a series of “IF...THEN...ELSE” questions about a

project. Each set of answers leads to a specific value for some continuous variable.

Techniques are available for deciding what questions to ask and how deeply to nest

the decision tree [27]. Srinivasan and Fisher [192] found that CART models using the

COCOMO data had an MRE > 3.6. This was considered an improvement on

COCOMO itself, which had an MRE > 6.1.

Shepperd and Schofield [188] recommended a Case Based Reasoning (CBR)

method of cost estimation. A database of software projects is built. Each new project

is then compared against the existing projects, with each project attribute defining a

dimension in n-dimensional space. The project with the shortest Euclidean distance

to the new project is used as the basis for the effort estimation. In general, analogy

outperformed regression based models using both the MRE and PRED(25) measures.

However, Briand et al. [28] found them to be worse.

Finnie et al. [68] used Artificial Neural Networks (ANNs) trained using a random

sample of 50 projects chosen from a dataset of 299. The MRE for these ANNs was

approximately 0.3, considerably better than the 0.6 for regression models based on the

same data set. The same study also created CBR models which also had MREs of

approximately 0.3. The PRED(25) measures of the ANN and CBR models also

improved over the regression based models.

Although better at predicting costs, the CART, CBR and ANN models all require a

data collection and training phase, just as regression models do. They also share the

property with regression models, that they provide only point values, with no

automatic assessment of risk or uncertainty. In addition, ANN project models, are

open to the criticisms levelled at all ANNs: namely that ANNs are “black boxes”

where it is often difficult to map the model to rule based reasoning. i.e. ANNs give us

no insight into the reasoning behind the results.

Software process simulation models, such as Abdel-Hamid’s system dynamics

model [1][2], view the software process as a series of sources, sinks, queues and

feedback loops. So, for example, a requirement acts as a source of code requirements,

whereas coding acts as a code requirement sink which in turn acts a source of bugs.

 31

Testing is a bug sink, but is itself a code requirement source which feeds back into the

coding sink.

System dynamic models produce timeseries predictions of effort, cost and defects.

By varying the inputs, simulation models can also provide limited decision support,

tradeoff analysis and risk analysis. Ruiz et. al. [174] considered the full Abdel-Hamid

model to be too large and too complex, requiring too many metrics, and so reducing

its domain of applicability. They therefore proposed a simplified version of the model,

but based on the same essential principles. A good summary of software process

simulation in general can be found in [108].

However, as Christie has pointed out [42]:

“The predictive power of simulation is strongly dependent on how well

the models are validated. Although many scientific and engineering fields

can base their models on established physical law, organizational models

have to deal with human and other less quantifiable issues. Not only is

gathering data difficult when that data must come from human actors, the

reproducibility of scenarios used to validate models cannot as easily be

standardized as in experiments based on physical law.”

In other words, simulation of human processes is subject to the same limitations of

lack of data and measurement uncertainty as we found in simpler regression based

models.

 32

3 Bayesian Nets

We have seen how previous efforts to model the software development process

have met with mixed levels of success. There are wide variations in the requirements,

resources, skills and techniques in each project. This means that parametric models,

AI models and simulation models, all need an extensive data collection and/or

training phase. The presence of a mixture of expert judgement and often patchy data

only serve to complicate this further.

Appendix A provides a short introduction to the basic theory behind Bayesian nets

(BNs) and how they can overcome the problems described in the previous chapter.

Any reader who is unfamiliar with BNs is encouraged to read Appendix A before

proceeding. Readers unfamiliar with the Junction Tree Algorithm (JTA) are also

advised to read Appendix B.

In this chapter I concentrate on some of the techniques used by BN software

process models. I then define state-space models and in particular define Dynamic

Bayesian Nets (DBNs) which will be needed to build agile models in later chapters.

The novel contributions introduced in this chapter are:

1. A more compact notation for probability distributions for use when describing

BNs. (This is only used extensively in Appendix B so as not to place a

learning burden on anyone familiar with the more conventional notation.)

2. Suggestions for incorporating aspects of the Shenoy-Shafer algorithm into the

junction Tree Algorithm (Appendix B).

3. A proof of the equivalence of parameter learning in BNs and DBNs and a

demonstration of how such parameter learning can be achieved using the

implementation of deterministic functions in AgenaRisk.

4. A description of the advantages of Forward Only Learning in DBNs and the

circumstances where it is appropriate.

3.1 Bayesian Net Modelling Techniques

A Bayesian Network (BN) is a Directed Acyclic Graph (DAG), where the nodes

represent random variables and the arrows represent causal influences. Nodes without

parents are defined by a random variable’s probability distribution. Nodes with

parents are defined by Conditional Probability Distributions (CPDs). Probability

distributions and CPDs are collectively known as Node Probability Tables (NPTs).

 33

It can be a difficult task to elicit CPDs from experts. If there are a number of factors

involved then the size of the combined state space grows exponentially with the

number of factors. Deriving a consistent, comprehensible and comprehensive CPD in

such circumstances is not a trivial task. In this section we cover some of the

techniques which have been used to build the models discussed in this thesis.

3.1.1 Indicator Nodes

A technique used extensively by many of the models introduced in chapter 4 is

indicator nodes [65]. These are nodes with no children and a single parent. They are

often used to enter measures of an underlying node (the parent) which cannot be

directly measured. An example in software engineering might be a node like “Process

quality”. Software development process quality is an abstract quantity that cannot be

directly measured. However there are strong indicators of process quality, such as

Capability Maturity Model Integration (CMMI) level [44], requirements management,

risk management etc.

X1 Xn …

Y

Figure 3-1 Indicator nodes

An example of a BN with a single parent Y and a set of indicator nodes {Xi : i =

1,…,n}, is shown in Figure 3-1. The JPD is given by:

∏
=

=
n

i

in YXPYPYXXP
1

1)|()(),...(

Equation 3-1

Marginalising gives the posterior distribution for Y:

)())|(()())|()(()(
11

YPYXYPYXPYPYM
n

i X

i

X

n

i

i

ii

=== ∏ ∑∑ ∏
==

Equation 3-2

 34

So with no evidence present, indicators have no effect on their parent. Suppose we

now enter evidence in indicator node X1. Represent this evidence by the distribution

Λ1. Equation 3-2 then becomes:

Λ=

Λ=

Λ=Λ=

∑∏ ∑∑

∏ ∑∑ ∏

=

==

11

)|()(])|([)|()(

])|([)(]))|([)((()(

1

2

1

1

1

1

1

X

i

n

i X

i

X

i

n

i X

i

X

n

i

i

YXPYPYXPYXPYP

YXPYPYXPYPYM

i

ii

κκ

κκ

Equation 3-3

Where κ is a suitable normalising constant. i.e. Evidence in an indicator node back

propagates to update the posterior distribution of Y.

Deciding when to use indicator nodes is not always straightforward. Returning to

our software engineering example, the question of whether good requirements

management is an indicator of good process quality, or whether good requirements

management causes good process quality is an open one. The answer does more than

just dictate the direction of the arrow on a graph.

Let us simplify the example shown in Figure 3-1 by having only a single indicator

node, X. As before, the marginal distribution of Y is just its prior. However, consider

the case where X is now interpreted as a cause of Y. i.e. The arrow goes from X to Y

and not the other way around. The marginal probability distribution of Y is now given

by:

∑=
X

XPXYPYM)()|()(Equation 3-4

Y’s dependency on X means that X’s prior affects the marginal distribution of Y.

This was not the case when X was an indicator node of Y.

If we turn the multiple indicator nodes of Figure 3-1 into multiple causes of Y then

we must find a way to combine those causes into a single conditional probability

distribution for Y, a problem that we do not face when the X’s are indicator nodes.

This CPD is potentially very large. For every possible combination of states of {Xi},

we must define a probability distribution for Y. If Y has m states and each Xi has ni

states, then the CPD will have mΠni values in total. There are two problems with such

large CPDs.

 35

1 They are computationally complex, affecting the size of every clique and sepset

in which they appear in the JTA.

2 It is difficult to elicit large consistent CPDs from experts.

One technique for dealing with the computational complexity of large numbers of

causal factors (typically more than 4) is to introduce intermediate nodes which group

the factors into a tree. Techniques for addressing the elicitation problem are discussed

in the section below on “Ranked Nodes, TNormal Distributions, and Weighting

Functions”.

The D-separation properties of indicators and causes are also quite different. In the

case of multiple causes, each Xi is D-separated from the others until evidence is

entered in Y (or one of its descendents if it has any). The opposite is the case when

each Xi is represented as an indicator: indicators are D-connected until Y is blocked by

some evidence. These independence considerations should be one of the primary

determinants when deciding whether nodes should be causes or indicators.

3.1.2 Ranked Nodes, TNormal Distributions, and Weighting

Functions

Many of the models introduced in section 4 make extensive use of ranked nodes,

particularly those defined using the Truncated Normal (TNormal) distribution [52].

This is a Gaussian distribution that has been truncated at both ends.

Just as with a Gaussian distribution, the TNormal must specify its mean and

standard deviation. Unlike the Gaussian distribution however, the domain of the

distribution must also be specified. In the case of ranked nodes, this domain is always

the interval [0, 1]. The TNormal is an extremely versatile distribution. With

appropriate choices of parameters it can approximate a Gaussian, a uniform, a

monotonically increasing or a monotonically decreasing distribution. There is also no

need for the distribution to be fixed at zero at its extremes. This is an extremely useful

property which often appears in distributions elicited from experts.

Let N (µ, σ2) be a normal distribution with mean µ and standard deviation σ. Let

φ(x) be the probability density function for N. We write the truncated normal for N

over the interval [a, b] as follows.

 36

TNormal (µ, σ, a, b)

Where TNormal (µ, σ, a, b) has a probability density function, ϕ(x), given by:

∫
−−

==
b

a

t

dte
x

x
2

2

2

)(

2

1
,

)(
)(σ

µ

πσ
η

η
φ

ϕ .

When the node is a ranked node, which is always defined over [0, 1] in AgenaRisk,

we will omit the upper and lower bounds.

Another property that crops up regularly in expert opinions is the behaviour of

ranked nodes with multiple parents. An example of this, taken from [65], is shown in

Figure 3-2.

Figure 3-2 Combining ranked nodes

As Fenton and Neil point out in [65]:

In this case we elicit the following information:

1) When X1 and X2 are both ‘very high’ the distribution of Y is

heavily skewed toward ‘very high’.

2) When X1 and X2 are both ‘very low’ the distribution of Y is

heavily skewed toward ‘very low’.

3) When X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y

is centred toward 'very low'.

4) When X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y

is centred toward ‘low'.

 37

Intuitively, the expert is saying here that for testing to be effective

you need not just to have good people, but also to put in the effort. If

either the people or the effort are insufficient then result will be poor.

However, really good people can compensate, to a small extent, for

lack of effort.

We could try to capture this using a simple weighted average over the parent nodes.

∑

∑

=

==
n

i

i

n

i

ii

n

w

Xw

XX

1

1
1)(wmean K

Equation 3-5

In Fenton and Neil’s example above, point (3) suggests that the largest weighting

should go to X1. However, point (4) would then force the weighted mean to give a

value of ‘very high’. This suggests that we need a new function to produce the CPD

elicited from the experts.

The function used to combine X1 and X2 is a bit like a minimum function, except

that X1 can be weighted. To this end, we define a weighted minimum function, wmin,

as follows.

−+

+

=
∑

≠=

=)1(
min)(wmin

,1

..1
1

nw

XXw

XX
i

n

ijj

jii

ni
nK

Equation 3-6

Where the wi are weightings which can be applied by the model developer. When

all the weightings are set to one, wmin returns the mean value. When all the

weightings are equal and sufficiently large, wmin returns a value close to the

minimum value. For all other settings, wmin returns a value between these two.

A similar function, wmax, returns a value between the average and the maximum of

its inputs.

 38

−+

+

=
∑

≠=

=)1(
max)(wmax

,1

..1
1

nw

XXw

XX
i

n

ijj

jii

ni
nK

Equation 3-7

Even for relatively simple BNs, such as the one shown in Figure 3-2, ranked nodes

with just five states each leads to an NPT for the child node of 125 entries –

something which would be difficult to elicit explicitly. The combination of ranked

nodes, TNormal distributions and weighting functions allows a wide category of

NPTs such as these to be construct relatively easily. Ranked nodes provide a simple,

ordered set of values whose effects can be easily described be experts. The TNormal

distribution provides a flexible distribution which is not fixed at zero at its extremes –

something which is needed in order to construct distributions in ranked nodes which

are heavily skewed to one of the ranked node’s extreme values. Finally, the weighting

functions allow subtle interactions between multiple causes to be efficiently captured.

3.1.3 Deterministic Functions

Appendix A shows how we can define CPDs for discrete approximations to

continuous nodes and how standard statistical distributions can be used to initialise

these CPDs. However, there is another way to define the CPD of a node, namely via

an algebraic expression based on its parents. In other words, given a node A,

discretised using a set of states, {ai}, with CPD defined as some function of its

parents, f(π(A)), we wish to find the probability that A will be in any given state given

the states of its parents.

One possible approach is to sample f for each combination of parents, count the

results for each child state ai, and normalise when finished. However, as explained in

[153], this approach runs the risk that some of these counts will be zero simply

because of the sampling method. This error will then be propagated throughout the

model. Further, if the erroneous zero value is observed and entered as hard evidence

then the model will be inconsistent. AgenaRisk, the tool used to build my own

models, takes the alternative proposed in [153] and described below.

 39

for each combination of parents states q

 for each combination of upper and lower bounds in q, bi

 xi = f(bi)

 l = min({xi})

u = max({xi})

 P(A | π(A)=q) = Uniform (l, u)

As the discretisation of A and π(A) is made finer, the uniform distribution

assumption will become a better approximation to f. The following example illustrates

the method.

Example 3-1

Consider the case of three continuous nodes A, B and C with the states and

probabilities shown below.

A, B
states

P(A) P(B)

0.0 - 1.5 0.3 0.5

1.5 - 2.0 0.7 0.5

C states

0.0 - 1.0

1.0 - 2.0

2.0 - 3.0

3.0 - 4.0

P(C|A,B)

 f(A) = A + B

For each combination of parent states we evaluate f, using the possible

upper and lower bound combinations, and record the maximum and

minimum values. These are show in the table below.

A 0.0 - 1.5 0.0 - 1.5 1.5 - 2.0 1.5 - 2.0

B 0.0 - 1.5 1.5 - 2.0 0.0 - 1.5 1.5 - 2.0

min (A+B) 0 1.5 1.5 3
max (A+B) 3 3.5 3.5 4

The CPD for C is then set to uniform distributions across the above limits.

 40

A 0.0 - 1.5 0.0 - 1.5 1.5 - 2.0 1.5 - 2.0

B 0.0 - 1.5 1.5 - 2.0 0.0 - 1.5 1.5 - 2.0

0.0 – 1.0 1/3 0 0 0
1.0 – 2.0 1/3 1/4 1/4 0
2.0 – 3.0 1/3 1/2 1/2 0
3.0 – 4.0 0 1/4 1/4 1

Where the uniform distribution does not cover an entire state from node C,

it is adjusted in proportion to the amount that it does cover.

Note that the CPD depends only on f and on the states of the parents. As evidence in

the BN changes, the JPDs and marginals will vary, but the CPD will remain fixed.

3.2 State-Space Models

State space models assume that a system can be modelled by an underlying state

which evolves over time but which is normally unobservable. We can, however,

observe indicators of the system state that cause us to update our belief about the

unobserved variables.

Figure 3-3 A typical HMM

Hidden Markov Models (HMMs) [167] are the simplest possible state-space

models. In HMMs, such as the one shown in Figure 3-3, there is an initialisation

vector, x0, a series of unobserved system states, xi (i > 0), and a series of observations,

yi. All variables are discrete. In each case the transition matrix P(xi+1 | xi) and the

observation matrix P(yi | xi) are fixed.

If T is the number of observations then we can calculate the JPD as follows.

)|()|()()(
1

10..0..0 ii

T

i

iiTT xyPxxPxPyxP ∏
=

−= . Equation 3-8

 41

We can then marginalise to find the probability of any given node. This procedure

is exponential in T however and so is not a practical approach. The Forward-

Backward algorithm, described in [167] takes advantage of the fixed nature of the

transition and observation matrices to create an algorithm which grows as O(N 2
T),

where N is the number of states in x(i).

Dynamic Bayesian Nets (DBN) generalise HMMs by allowing both the hidden and

observed variables to consist of multiple nodes with complex dependencies. They

extend BNs by adding a temporal dimension to the model. Formally, a DBN is a

temporal model representing a dynamic system, i.e. it is the system being modelled

which is changing over time, not the structure of the network [144]. A DBN consists

of a sequence of identical Bayesian Nets, Zt, t = 1,2,..., where each Zt represents a

snapshot of the process being modelled at time t. We refer to each Zt as a timeslice.

The models presented here are all first order Markov. This means that:

P(Zt | Z1:t-1) = P(Zt | Zt-1). Equation 3-9

(Informally, the future is independent of the past given the present). The first order

Markov property reduces the number of dependencies, making it computationally

feasible to construct models with larger numbers of timeslices.

As Murphy [144] points out, any DBN that is not 1st-order Markov can be changed

to make it so by changing the state space appropriately. For example, suppose Xt is a

2nd order Markov DBN with states x, y and z at times t, t -1 and t -2 respectively. The

probability distribution at time t is: P(x|y,z). We can define a new DBN, Yt, over the

state space (x, y), with probability distribution:

),|()),(|),((zyxPzwyxP wyδ= ,

where w is a dummy holder for any possible state at time t –1, and δ is the Kronecker

delta.

Nodes that contain links between two timeslices are referred to as link nodes.

Figure 3-4 shows the different types of inference in a DBN (this diagram is based

on similar diagram provided by Murphy [144]). In Filtering we have evidence for all

observed nodes up to time t and wish to estimate the hidden state at time t: P(Xt | Y1..t).

 42

The process is referred to as “filtering” because of its use in signal processing where

we are attempting to determine a true, hidden, signal from a noisy one. The alternative

name for this type of inference is Monitoring and is perhaps more appropriate for our

models.

t

P(Xt | Y1..t)

t+h

P(Xt+h Yt+h |Y1..t)

Filtering (monitoring)

Prediction

t-h

P(Xt-h | Y1..t)

Smoothing

Figure 3-4 Types of inference in DBNs

We perform Prediction when we have evidence up to time t but wish to infer either

the hidden or observed states at time t + h. Smoothing takes place when evidence up

to time t is used to infer the most likely state at some point in the past.

The simplest way to perform inference in a DBN is to “unroll” the timeslices and

use an exact inference algorithm such as the JTA. However this tends to result in large

clique sizes which are repeated for each timeslice.

Several alternatives to the JTA have been developed for exact inference in DBNs.

These include the Forwards-backwards algorithm, the frontier algorithm and the

interface algorithm. These are discussed in detail by Murphy [144]. All of the

algorithms take advantage of the Markov condition which allow information from

previous timeslices to be marginalised once the present has been added to the JPD.

Exact inference in DBNs tends to be slow and memory hungry. Consequently,

various approximate inference algorithms have also been developed. These can be

split into stochastic (i.e. sampling) algorithms and deterministic algorithms. The latter

include the Boyen-Koller (BK) algorithm, the factored-frontier algorithm and loopy

belief propagation. Again, Murphy provides a detailed description [144]. With each

 43

deterministic algorithm, a similar procedure to the exact inference algorithms

mentioned above is used, but with different simplifying assumptions.

In the sections that follow we briefly describe some of these algorithms.

3.2.1 The Frontier Algorithm and the Interface algorithm

The Frontier Algorithm [224] (FA) begins by computing the JPD for the first

timeslice Z0. Child nodes in Z1 are then added to the JPD one by one (where “adding”

means multiplying a node’s CPD into the frontier). When all children of a given node

have been added, the parent can be marginalised. The set of nodes in the JPD at any

given time is called the frontier. This process continues until all of Z0 has been

removed and all of Z1 has been added. The same process is then repeated from Zi to

Zi+1 until all timeslices have been computed.

The preceding paragraph describes the forward pass of the algorithm. If we are only

interested in filtering or prediction then the forward pass is sufficient. For smoothing,

a similar procedure is repeated in reverse, the backward pass. There we begin with the

JPD of Zt and calculate Zt-1 by adding and removing nodes in precisely the reverse

order. In this case we “add” a node by expanding the domain of the frontier to contain

all the states of the node being added. A node is “removed” by multiplying its CPD

into the frontier and then marginalising. (The multiplication in the backwards pass

occurs when a node N is “removed” since it can only take place once the domain of

the frontier has been expanded to contain pa(N).)

The “frontier” in the FA is always at least the size of a timeslice (in terms of

number of nodes) and is often larger. For the types of BN involved in software

process models this results in JPDs which are too large to be currently practical.

The FA works because at every stage the frontier d-separates the past from the

future. Murphy [144] pointed out that it is not necessary to have the whole frontier to

perform this d-separation. The outgoing link nodes from one timeslice to another is

sufficient to d-separate the past from the future. This observation forms the basis of

the Interface Algorithm (IA). The IA uses a modified version of the JTA to ensure that

the outgoing link nodes from one timeslice are all part of the same clique. Similarly,

the JTA is modified to ensure that the incoming link nodes are also included in the

same clique. We illustrate this with the help of the example DBN shown in Figure

3-5. This shows Z0 and Z1 for a small, four node DBN. The links between the two

timeslices are shown as dashed lines.

 44

A0

B0

C0 D0

A1

B1

C1 D1

Figure 3-5 Example DBN to illustrate the Interface Algorithm

The diagram (Figure 3-5) shows a two timeslice BN (2TBN). If we restrict

ourselves to the initial timeslice Z0 and run the JTA on it, the algorithm will create a

junction tree with two cliques A0B0C0 and C0D0, where an underscore signifies the

base clique for a node. The IA algorithm modifies this as follows.

1. During triangulation, add undirected links between all outgoing nodes. In the

example, we force a link between A0 and D0. The resulting junction tree has

cliques A0B0C0 and A0C0D0 (see Figure 3-6).

2. Collect to A0C0D0. Denote the resulting potential by P0(A0 , C0 , D0). Note that at

this stage, no distribution from A0C0D0 is performed.

3. Marginalise C0 from P0(A0 , C0 , D0) to create P0(A0 , D0).

Inference is carried forward to Z1 as follows.

A0

B0

C0 D0

Figure 3-6 Modified triangulated graph for Z0

 45

1. A new BN is created consisting of the output nodes of Z0, together with all of the

nodes in Z1. This contains more than a single timeslice, but less than a 2TBN, so it

is often called a 1.5TBN.

2. Link the incoming nodes (A0 and D0) in the 1.5TBN so that they appear in the

same clique, and link the outgoing links (A1 and D1) so that they also share a

clique. The result, with dashed lines showing undirected links and including the

normal moralisation that results in the parents of B1 being linked, is shown in

Figure 3-7. The cliques are A0D0A1C1, A1B1C1 and A1C1D1.

3. Multiply the appropriate CPDs into the cliques in the 1.5TBN, except for the

following. Do not multiply the potentials for A0 and D0 into A0D0A1C1. Instead,

multiply P(A0 , D0) into A0D0A1C1. The JPD P0(A0 , D0) contains all the

information that we need from Z0 in order to do consistent forward propagation in

the 1.5TBN.

4. Collect to A1C1D1. Again, no distribution takes place at this stage.

A0

D0

A1

B1

C1 D1

Figure 3-7 The triangulated 1.5TBN

If we had more than two timeslices then the same 1.5 DBN could be used to

propagate from each timeslice Zt to its successor Zt+1, but since no distribution is

performed on each timeslice, only the clique At+1Ct+1Dt+1 contains a fully informed

distribution. When the forward pass on all timeslices is complete, the IA performs a

backwards pass. In the example in Figure 3-5 this consists of the following.

1. Distribute from A1C1D1 to the remainder of the Z1 1.5TBN.

2. Marginalise A1C1 from A0D0A1C1 in the Z1 1.5TBN to create P1(A0 , D0).

3. Modify the potential of A0C0D0 in Z0 as follows:

 46

),(

),(
),,(),,(

000

001
00000001

DAP

DAP
DCAPDCAP ×=

4. Distribute from A0C0D0 to the remainder of Z0.

If we are only interested in filtering or prediction then we can modify the IA to

include only a forward pass. In our example this would involve the following steps.

1. Create Z0 with the additional link between A0 and D0 as before.

2. Collect to A0C0D0 and then distribute from A0C0D0 to the rest of Z0. All cliques in

are now consistent with all information in Z0.

3. Marginalise A0C0D0 to create P(A0 , D0). There is no need to distinguish between

the forward and backward versions of this potential now since there will be no

backwards pass.

4. Create the 1.5TBN and add P(A0 , D0) as before.

5. Collect to A1C1D1 and then distribute to Z1. All cliques in the 1.5TBN are now

consistent with all information in Z0 and Z1.

I will refer to this modified version of the IA as the Forward Only Interface

Algorithm (FOIA).

3.2.2 The Boyen-Koller Algorithm

The IA links together all the interface nodes in a timeslice into a single clique. This

creates larger cliques than are normally created by the JTA. If there are a large

number of nodes in the interface, or the nodes represent continuous distributions, then

the cliques can become intractable. The Boyen-Koller algorithm (BKA) [26]

addresses this by representing the interface clique as the product of a set of smaller

cliques.

Clearly any correlation between interface nodes will be lost if the nodes are in

distinct cliques. Where this correlation is significant, the BKA only provides

approximate inference. What is remarkable about the BKA is that, for a wide range of

models, the error in the approximation does not grow across timeslices. This is due to

the fact that stochastic processes “mix” states when going from one timeslice to

another. As Boyen and Koller point out, two distributions φt and ψt over timeslice Zt

might have no overlap. However, after the transition to Zt+1, and providing the

 47

transition process involves at least some minimal mixing of states, φt+1 and ψt+1 are

likely to share some overlap in Zt+1.

In the case where φt is an estimate for ψt, the two distributions are likely to share a

considerable overlap to begin with. If the transition to Zt+1 is approximate, as is the

case with BKA, then the two distributions tend to grow apart. However this is

balanced by the stochastic nature of the process, which tends to bring the two

distributions back together again. Conditioning, due to evidence in Zt+1, further tends

to compensate for the errors due to approximate inference.

The IA only has a single interface clique. As such it is sufficient to collect to this

clique during forward propagation and to distribute from it during backwards

propagation. BKA has multiple interface cliques which must be updated. It must

therefore run a full collect and distribute cycle on each timeslice during both the

forwards and the backwards passes.

An extreme implementation of BKA assigns a separate clique to each interface

node. Copying cliques between timeslices is then the equivalent of copying the

marginals of the interface nodes across timeslices. Murphy [144] calls this the fully

factored BKA (FFBKA). A forward only FFBKA is the default algorithm employed

by AgenaRisk [8]. As we shall see shortly, not only is this adequate for the DBN

models developed in this thesis, it actually has several advantages over a full

forwards-backwards pass algorithm.

3.2.3 Parameter Learning in DBNs

Suppose we have a random variable Y, which we have reason to believe is normally

distributed. We also happen to know that the parameters governing Y, the mean m and

variance s, vary depending on the environment. We want to learn the values of m and

s using observations of the variable Y. If we were to use a BN to learn these values

then we could use a model similar to the one in Figure 3-8.

Each of the yi nodes has the same prior: Normal (m , s2). Evidence is entered as one

value per yi node. The prior of m is set to be uniform across its expected range. The

prior of s is set to an inverse gamma distribution (see for example [30] or [69] for an

explanation of this choice). The posteriors of m and s give the most likely values of

the mean and variance given the data.

 48

Figure 3-8 Learning the parameters of a Normal distribution.

The problem with this type of model is its potential size in memory. The size of the

junction tree grows linearly with the number of observations. Each new evidence

node, yi, results in a new clique {m, s, yi}. If the nodes are continuous and discretised

to say, 100 states, then there are 106 states in each clique. This is a relatively simple

model. When each observation node is replaced by a more complex subnet, the

cliques can be much larger. If we had a dynamic model then we could add

observations one at a time, enabling us to incorporate an indefinite number of

observations. The theorem which follows allows us to do this. Before embarking on

the set of formal definitions necessary to prove the theorem, it is worth looking at a

very simple example which shows the essence of the proof.

A

B

C′

B′

A′

Figure 3-9 Two similar BNs

Figure 3-9 shows two similar BNs. Let’s assume that each node is a boolean node

and the NPTs are set up as follows.

1. P(A′) = P(A) A′ and A have the same priors

2. P(B′|C′) = P(B|A) B′ has the same dependency on C′ as B has on A

 49

3. P(C′|A′) = δc
a The CPD of C′ is just the identity matrix.

Where c and a are the states of C and A respectively. The JPD of the right hand BN

is:

P(A′,B′,C′) = P(B′|C′)P(C′|A′)P(A′).

If we marginalise C′ and look at P(A′=true , B′=true) we get:

 P(A′=true, B′=true) = P(B′=true | C′=true)P(C′=true | A′=true)P(A′=true)

 + P(B′=true | C′=false)P(C′=false|A′=true)P(A′=true)

But we know that P(C′=true |A′=true) = 1 and P(C′=false|A′=true) = 0. We also

know that P(B′=true | C′=true) = P(B=true | A=true) and that A′ and A have the same

priors, so we get:

P(A′=true, B′=true) = P(B=true | A=true)P(A=true)

This is identical to the corresponding JPD entry of the left hand BN. since the JPDs

are the same, the marginals for the learned parameter A will also be identical in both

BNs. If we have evidence in B then it simply means that some of the JPD entries get

zeroed and a renormalizing constant has to be introduced. So evidence entered into B

on either BN has the same effect on A.

Definition 3-1

Let A be a node with no parents in a BN. The node A is called a root node. If A is

never instantiated with evidence then A is called a root learning node.

Definition 3-2

Let {Zi, i = 1...n} be a DBN. Let A1 ∈ Z1 be a root learning node. Let Ai ∈ Zi, i =

2..n, π(Ai) = {Ai-1}, P(Ai | Ai-1) = δc
d, where δ is the Kronecker delta, c is a state in

Ai and d is a state in Ai-1. Ai is called a proxy learning node of A1.

 50

D1

…

…

D2

Figure 3-10 Two alternative learning models

In Figure 3-10 (D1), A is a root learning node. Figure 3-10 (D2), A1 is a root

learning node and A2 through to An are proxy learning nodes (provided the transition

matrix is the identity matrix).

Lemma 3-1

All proxy learning nodes of a root learning node have the same marginal

probability distribution as the root learning node.

Proof

This follows trivially from the definition of conditional probability and the

identity transition matrix.

)()(

)()|()(11

αβδ

ββαα

β
α ====

=====

∑

∑ ++

i

A

i

A

iiii

APAP

APAAPAP

i

i

Induction from A1 proves the lemma. QED

 R
A

A0 A1

Y1

D

E

Y2
F

H

G

Y0
B

C

Figure 3-11 Example of evidence subnets

 51

Y0

Y0
0

Y0
1

Y2

Y2
0

Y2
1

Y1

Y1
0

Y1
1

A

A0 A1

Figure 3-12 Example of regular evidence subnets

Definition 3-3 (See Figure 3-11)

Let D = (R , E) be a DAG with nodes R and edges E.

Let A = {A
i , i = 0...n} ⊂ R , be the set of root learning nodes of R.

Let {Yk ⊂ R, k = 0...m} be a set of subnets that span R/A, i.e. R/A = ∪{Yk , i =

0...m}, such that π(Y) ⊂ Y0, ∀Y∈ Y0 , and π(Y) ∈ A ∪ Yk ∪ Yk-1 ,∀Y∈ Yk when k

= 1...m. We call Y0 the prior subnet and {Yk} the evidence subnets of D.

Definition 3-4 (See Figure 3-12)

Let D1 = (R , E) be a DAG with nodes R and edges E, having root learning nodes

A and evidence subnets {Yk}. If each Yk consists of a set of nodes {Yk
i ⊂ R , i =

1...p} and P(Yk
i | π(Yk

i)) = P(Yj
i | π(Yj

i)), k ≠ j, k ≠ 0, j ≠ 0, then {Yk} are called

regular evidence subnets.

Definition 3-5

Let D1 = (R , E) be a DAG with nodes R and edges E, having root learning nodes

A and regular evidence subnets {Yk, i = 0...m}. Let D2 be a DBN with timeslices

{Zt, t = 0...m} constructed as follows:

1. Z0 = Y0 ∪ A ,

2. Zi = Yi ∪ Ai , i = 1...m, where Ai are proxy learning nodes of A,

3. π(Zk
i) = {π(Yk

i) / A } ∪ Ai , ∀Zk
i ∈ Zk ,

4. P(Zk
i | Ai) = P(Yk

i | A) .

We call D2 the derived DBN of D1.

 52

In Figure 3-10, D1 is a simple example of a BN consisting of root learning

nodes and regular evidence subnets. In this case Y0 = φ and there are no links

between evidence subnets. D2 is the derived DBN of D1.

Theorem 3-1

Let D1 be a BN consisting of root learning nodes A = {A
j, j = 0...n} and regular

evidence subnets {Yk, k = 0...m}. Let D2 be the derived DBN of D1. with proxy

learning nodes Ak
j and timeslices {Zk}. Then P(Ak

j) = P(Aj).

Proof

We have already shown via Lemma 1, that the proxy learning nodes in D2 have

the same marginal distribution as their corresponding root learning nodes in D2.

What remains to be shown is that the marginal distributions of the root learning

nodes in D2 have the same marginal distributions as the root learning nodes in

D1.

Let πk(Yk
j) = π(Yk

j) / Ak. The JPD J1 of the DAG D1 is given by:

k
j

k

m

k

nj
kk

j
k

njj
YYAAYYPAPAPYYPJ ∈∀= ∏

=

,)),(|()()())(|(
1

00
001 KK ππ

The JPD J2 of the DAG D2 is given by:

∏
=

−−=
m

k

n
k

n
kkk

n
kk

j
kk

j
k

njj
AAPAAPAAYYPAPAPYYPJ

1

1
0

1
000

002)|()|()),(|()()())(|(KKK ππ

We can examine the contribution to this expression from Zm. Call this Wm
m

)|()|()),(|(1
0

1
00∏ −−=

j

n
m

n
mmm

n
mm

j
mm

j
m

m
m AAPAAPAAYYPW KKπ

Marginalising the proxy learning nodes Am
0 through Am

n gives:

∑∏∑ −−=
mm A j

n
m

n
mmm

n
mm

j
mm

j
m

A

m
m AAPAAPAAYYPW)|()|()),(|(1

0
1

00
KKπ .

But each of the transition matrices P(Am
0 | Am-1

0) through P(Am
n | Am-1

n) is just the

identity matrix. They only have non-zero values when Am
i = Am-1

i , so the above

expression reduces to:

∏∑ −−
− =≡

j

n
mm

j
mm

j
m

A

m
m

m
m AAYYPWW

m

)),(|(1
0

1
1

Kπ .

Placing this back into our expression for J2 and adopting similar definitions for

Wk
k gives:

 53

∏∑
−

=

−=
1

1

10
002)()())(|(

m

k

k
k

m
m

njj

A

WWAPAPYYPJ

m

Kπ

We can now marginalise the proxy learning nodes Am-1
0 through Am-1

n . This

gives:

∏∑
−

=

−
−

−=
−

2

1

2
1

20
002)()())(|(

1

m

k

k
k

m
m

m
m

njj

AA

WWWAPAPYYPJ

mm

Kπ

Proceeding inductively, we eventually arrive at:

∏∑
=

=
m

k

k
njj

AA

WAPAPYYPJ

m 1

00
00

...

2)()())(|(

1

Kπ

which is identical to the expression for J1. Further marginalising down to any

required root learning node shows that their marginal distributions are identical

in both nets. QED

The proof of Theorem 3-1 is almost identical when evidence is present except that

the evidence selection vectors and suitable normalisation constants must be included.

In AgenaRisk, we can create link nodes with a transition matrix equal to the identity

matrix simply by setting the CPD for Ai equal to the arithmetic expression: Ai-1. To

see this, recall our discussion of deterministic functions in section 3.1.3. Let us take a

simple example where the Ai each have three interval states: 5-10, 10-15 and 15-20.

The rule when evaluating expressions is to find the minimum and maximum values

for the expression for each combination of states of parents, and then create a uniform

distribution between those limits as shown in Table 3-1.

Ai-1 5-10 10-15 15-20

min (Ai) 5 10 15
max (Ai) 10 15 20

Table 3-1 Evaluating the expression An = An-1

In this example, a uniform distribution gets created which fills exactly the same

state as the selected parent state. We therefore have a probability mass of one for the

state corresponding to the input parent state, and zero for all other states. This

therefore gives us the desired transition matrix.

 54

The combination of theorem 3-1 and the AgenaRisk expression evaluation

mechanism, therefore allows us to build dynamic learning models of any desired size

in AgenaRisk.

3.2.4 “Forward only” Learning in DBNs

We have seen how it is possible to perform parameter learning in DBNs, where the

learned parameter can be informed by an arbitrarily large number of observations.

Implicit in this is the assumption that, whatever algorithm is used, all observations

inform all timeslices. This is not always required, and indeed can complicate the

model unnecessarily.

Consider the DBN version of the model shown in Figure 3-10. If we are only

interested in filtering then it makes no difference whether we perform the backwards

pass or not. In both cases, at time t the posterior for At will be:

P(At | A1..t-1, Y1..t) = P(At | At-1, Yt)

(by the Markov property). Similarly, if we are interested in prediction at time t + n,

the forward only pass is sufficient to enable us to compute P(At+n | At, Yt).

There are advantages to performing forward only learning, the most obvious being

that the algorithm can complete in approximately half the time since the backward

pass is omitted. Another advantage is that forward only learning provides a “history”

of the learned parameters. We can show this be returning to the DBN model in Figure

3-10 and running a full forward and backwards algorithm. If we run the forwards-

backwards algorithm with n = t, then each of the Ai nodes will be conditioned using

all of the Yi nodes:

P(Ai) = P(Ai | Y1..t).

In the case where the transition is the identity matrix, they all end up equal. We then

advance time and add a new timeslice corresponding to n = t + 1. Again, the

forwards-backwards algorithm will condition each of the Ai’s using all of the Yi’s and

all of the Ai’s will end up equal. However, the value of the Ai’s at time t + 1 will be

different from the value at time t due to the extra conditioning provided by evidence

on node Yt+1.

 55

Now consider the same example, but this time using forward only learning. The

addition of evidence from Yt+1 affects only At+1. The previous values of the learned

parameter remain unaffected. Each Ai continues to be conditioned only on the

evidence up to its own point in time: P(Ai) = P(Ai | Y1..i). This enables us, for example,

to extract the mean and variance of each Ai and show how it changes as new evidence

is provided. Being able to track the changing value of a learned parameter over time

can be useful for descriptive and diagnostic purposes (as will become apparent when

we construct a DBN model of an agile software development environment).

3.3 Summary

This chapter has covered the various desirable properties of BNs. It has provided an

introduction to some of the theory needed to understand propagation and learning in

BNs and DBNs. In the next chapter we will see how this can be applied to building

software process models.

 56

4 Existing Models

This chapter examines existing BN software process models. It begins with a quick

reminder of the principle advantages of BNs with respect to software process

modelling. We then cover some of the BN models developed by Fenton, Neil and

Krause and finish with an overview of some of the other BN software process models

that have been developed.

Novel contributions include:

• an analysis of the ISBSG data set [90] with regard to KLOC per FP for Java and

C++,

• a description of some attributes of the “Phase” model that may make it suitable

as a starting point for an XP model,

• a proposed hierarchy of technical complexity (via Appendix G),

• an analysis of the result of the “Philips” model,

• a review of existing BN models of the software development process.

4.1 Introduction to Bayesian Net Software Models

In [64], Fenton and Neil explain the rationale behind creating causal models of the

software development process using BNs. Much of this argument has already been

outlined in the previous chapters and in Appendix A. It can be summarised as follows.

1. In BNs, cause and effect relationships between the elements are stated

explicitly in a way that is naturally understood by domain experts.

2. They can incorporate many of the empirical findings of previous regression

based models.

3. Both inductive reasoning (likely effect resulting from one or more causes) and

abductive reasoning (determining the likely cause of a perceived effect) are

possible.

4. Where evidence is available, either in the form of an observation or a

probability distribution, this can be propagated in a systematic fashion

throughout the model.

5. Where no evidence is available, prior conditional probabilities can be used to

make predictions.

6. Uncertainty is quantifiably built into all aspects of the model.

 57

7. Setting desired outcomes and observing the distributions of causal factors

allows us to perform trade off analysis.

Fenton, Krause, Neil and others have gone on to develop a series of BN models,

culminating in the AID tool [152], the MODIST models [63], and the extensive trials

of revised models at Philips [151]. Those models were used to provide improved

methods of risk assessment for project managers, with special emphasis on defect

predictions and effort prediction. A similar model has been developed by Siemens

[206].

Several other groups have also researched the use of BN based software process

models. Researchers at Motorola have followed Fenton, Krause and Neil’s lead in

creating defect prediction models: [135] and [76]. Wooff, Goldstein, and Coolen

[219] have developed BNs modeling the software test process while Bibi and

Stamelos [22] have shown how BNs can be constructed to model IBM’s Rational

Unified Process. These models are discussed in more detail in the sections that follow.

4.2 MODIST Project Model

Figure 4-1 The Project Level model – high level overview

 58

A high level overview of the MODIST Project Level model [7] is shown in Figure

4-1. It includes the main competing elements in all software projects: scope, cost,

timescale and quality. The aim of the model is to allow project managers to perform

various forms of trade off analysis and risk assessment. For example, the amount of

functionality to be delivered can be fixed and the model allowed to predict the effort

and overall timescale. Alternatively, the timescale can be fixed and the impact on

functionality and quality can be predicted.

Each of the boxes shown in Figure 4-1 is actually a subnet consisting of between 2

and 12 nodes, with the whole model containing 49 nodes. However, many of these

nodes are functions of other nodes. Only about half of them are generally input by the

user and as always with BN models, where information is not available, default

distributions are used.

We will not examine the full model in detail. Instead we shall examine a selected

set of subnets, in varying levels of detail, in order to examine some of the techniques

used.

4.2.1 Management and Communication Subnet

This subnet models the size of a project team, its geographical dispersal, the amount

of work that has been subcontracted and the quality of the subcontract work.

 Node type legend
R = Ranked

II = Integer Interval

Figure 4-2 Management and communication subnet

 59

In Figure 4-2 we see examples of the TNormal, wmin and wmax expressions

discussed in section 3.1.2. We also see the use of partitioned expressions, discussed in

the Heterogeneous Modelling section of Appendix A. Appendix A only covered

continuous nodes that are children of ordinal or nominal parents. The examples here

show integer interval nodes as the children. The algorithm is analogous to that for

continuous nodes except that a rounding stage is also required.

Ranked nodes are used extensively by this subnet, and indeed throughout the entire

model. The prevalence of ranked nodes is indicative of the scale of expert judgement

required in this model. This is because part of the aim of this type of model is to

quantify aspects of software development which are often omitted due to lack of

metrics.

The Scale of distributed communications node captures the extent to which a

project is developed across multiple sites. Managers would not be expected to enter a

value directly into this node. Instead, they would use some of the indicator nodes

provided.

4.2.2 Resources Subnet

This small but important subnet is shown in Figure 4-3.

Figure 4-3 Effort subnet

The exponent in Total effort adjusted by the Brooks factor, 0.8, is the Brooks factor

[31] that reduces the marginal contribution of each additional team member due to the

communications and training overhead.

 Node type legend
R = Ranked

CI = Continuous Interval

 60

The Total effective effort node is an example of a partitioned expression, where each

ranked value of Process and people quality gives rise to a different NPT distribution

across the Total effort adjusted by the Brooks factor.

An interesting question is whether the Brooks factor is changed by XP. i.e. Does the

introduction of pair programming, regular rotation of responsibilities and collective

ownership, increase the effectiveness of additional personnel? According to Williams

et al [215] the answer is “yes”. Using 30 responses to a survey that they sent out, they

constructed a system dynamics model which isolated the mentoring overhead of

assimilating new staff. Their model indicated that pair rotation and pairing of

experienced with novice staff, could substantially reduce the time taken for new team

members to become productive.

4.2.3 Functionality Delivered Subnet

This subnet models the project size. It is shown in Figure 4-4. As can be seen, the

subnet relates functionality to effort.

 Node type legend
R = Ranked
II = Integer Interval
CI = Continuous Interval
L = Labelled

Figure 4-4 Functionality delivered

F is measured in Function Points [11]. The exponent relating effort T to mean

functionality F is taken from the COCOMO model [24], where the inverse

relationship is defined:

 61

baKE = Equation 4-1

E is effort in person months, K is source code size in KLOC, and a and b are

constants. The value of b is always greater than one. i.e. All projects exhibit

diseconomies of scale. The default value is 1.2.

Function Points is not the only measure of program size that can be used.

Programming language and KLOC can also be entered. Data provided by Jones

[96][97], is used to convert from KLOC to FPs. Language is used to create a partition

function. Each partition is a normal distribution based around F using the parameters

shown in Table 4-1. Thus, a phase consisting of 100 FP would yield a distribution

with a mean of 100*0.07 = 7 KLOC of Java code.

Language µ σ2

Assembler 0.32F F

C 0.15F F

C++ 0.08F F

Java 0.07F F

Ada 0.05F F

Table 4-1 FP to KLOC distribution

parameters

Language µ σ2

C 0.17 0.09

C++ 0.087 0.005

Table 4-2 KLOC per FP based on ISBSG

data

My own analysis of the ISBSG data [90], shown in Table 4-2, is consistent with the

Capers Jones data. The similarity in the mean values is striking given that the datasets

involved span two decades of software development. It should be noted that the

meaning of σσσσ2 in the two tables is different. In Table 4-1 it is the variance for a project

of a given size in function points, whereas in Table 4-2 it is the variance of the overall

KLOC per FP distribution for the given programming language.

Other indicators of Function Points can be entered via the Number of distinct GUI

screens and Total number Inputs and Outputs nodes.

4.3 Fenton, Krause & Neil’s “Phase” Model

A high level overview of Fenton, Krause and Neil’s Phase Model is shown in

Figure 4-5. Its aim is to model the residual defects remaining in a delivered piece of

software.

As with the Project Model, it is too large to be considered all at once. Both models

lend themselves to a natural breakdown into smaller subnets. However, there is an

 62

important distinction between the two. The Project Model only makes sense when all

subnets are included. The Phase Model on the other hand was designed to reflect the

principal activities in any software production process: specification, design, code and

test.

The basic structure of the Phase Model is straightforward. The “Scale of new

functionality” subnet determines the size of the software being delivered. This gives

rise to a certain number of inherent potential defects in the “Defect insertion and

recovery” subnet. The remaining subnets then determine how many of these potential

defects are discovered through the specification, development and test activities.

It is not necessary to include all activities in each phase. For example, there could

be development only phases, development and test phases, or requirements gathering

phases. Individual phases can then be chained together, with the defects output from

one phase acting as an input to a subsequent phase.

Figure 4-5 Phase model overview

This gives this model a number of attractive features when used as a basis for any

XP model.

1. It readily lends itself to “objectification”. More details on an object based

version of this model, as created by me, can be found in Fenton et. al. [66].

2. The iterative nature of the Phase Model fits well with the iterative nature of

agile development methods in general, and XP in particular.

3. The clean separation of subnets allows the Specification and documentation

subnet to be simplified to reflect its lack of emphasis in XP.

 63

4. The greater detail afforded to development and testing compliments XP’s

similar concentration on these aspects of the lifecycle.

The phase model has several points where nodes must be “linked” to connect one

phase to another. It is important to set the inputs of the first phase to an appropriate

value. In some cases, such as the initial defect count, this must be explicitly set to

zero.

The model shown in Figure 4-5 is an example of the All Activities Phase Model: a

model that includes one copy of each activity. Other development phases with a

variety of activities have also been tested and validated. A description of these can

also be found in [66].

Some of the subnets of the model are now discussed in detail.

4.3.1 Design and Development Subnet

This subnet covers all effort expended on both design and code. It is shown in

Figure 4-6. Unless otherwise stated, all nodes are Ranked nodes.

Figure 4-6 Design and development subnet

Development process quality has a manually coded, triangular, prior probability

distribution. Evidence can be entered directly or updated using a set of indicator

nodes. Each of these is a TNormal centred on their parent.

Development process effort has the same prior probability distribution as

Development process quality. This is one of several cases where a Ranked node,

representing an ordinal scale of measurement is used, where a ratio scale, such as

person-days, might be expected. When we say it is High, we mean that it is high given

the needs of this phase. This is an extremely important point as it allows a subjective

 64

judgement to be used where a software metric might otherwise be needed. This is one

of the features that allows the models to be used without an extensive data gathering

phase.

It could be argued that extracting data from the project plan, or some other database

of effort, would make the model more objective, but this is not the case. Effort

estimates in the plan are either based on expert judgement themselves, or they are

based on some model such as COCOMO, which we have already seen (Jørgensen

[101]) is often no better than expert judgement. Even if the figures in the plan are

based on rigorous Function Point counting then they can only be turned into reliable

effort estimates if there has been an extensive metrics collection programme in

similar, previous projects – precisely the thing that we wish to avoid. Even then, the

results are only as good as the completeness of the specification and the model which

is used to turn the FP count into an effort estimate.

4.3.2 Defect Insertion and Discovery Subnet

The Defect Insertion and Discovery subnet is the core of the model and is shown in

Figure 4-7.

Any given amount of new functionality is associated with two different sets of

defects: specification defects, which are essentially inaccurately gathered

requirements, and software defects. Other subnets then predict the probability of these

defects being avoided, detected and fixed. Each of these possibilities is treated as a set

of Bernoulli trials on the remaining defects and therefore appears as a binomial

distribution in the model. We will now discuss some of the nodes in this subnet in

detail.

Defects from previous phases of the software can be included via the Residual

defects pre node. This node should always have some evidence entered. It should be

zero when this is the first phase of the software. Otherwise it should take its value

from previous phases.

The Residual defects post node is one of the main links between phases in the Phase

Model. By associating its value with Residual defects PRE in the next phase, we can

chain development phases to together to determine the cumulative number of defects

remaining.

 65

F , TNormal (300, 100000, 0, 30000)

Ds , TNormal

(0.4F 1.3, 20F, 0, 20000)

Di , TNormal

(0.7F 1.2, 20F, 0, 20000)

Ps

Da , Binomial (Ds , 1 – Ps)

Dt = Di + Da

Pd
Dn , Binomial (Dt , 1 – Pd)

Ds , TNormal

(100, 100000, 0, 1000000)
Dd = Dn + Ds

Pf

Df , Binomial (Dd , Pf)

Px

Dx , Binomial (Df , Px)

Do = Dd - Dx

Node type legend
R = Ranked
II = Integer Interval
B = Boolean
CI = Continuous Interval
L = Labelled

DR = Discrete Real

Figure 4-7 Defect insertion and discovery subnet

4.4 The Philips Model

This model was developed in collaboration with Royal Philips Electronics N.V.

Netherlands, and Philips PSC Bangalore.

The high level structure of this model is very similar to the All Activities Phase

Model described in the previous section. As with the Phase Model, this is a defect

prediction model. The subnet, Scale of new functionality implemented, gives rise to

a distribution of inherent potential defects. Depending on the process, development

 66

and test quality, these defects are gradually removed, leaving Residual defects post as

the final defect distribution.

However, there are also several significant differences between the Philips Model

and the Phase Model.

1. The introduction of an Existing code base subnet.

2. The introduction of a Common influences subnet.

3. Many nodes that were indicator nodes in the previous model have become

causal factors in the Philips Model.

4. A concentration on KLOC and complexity as the preferred size measure,

rather than Function Points.

Figure 4-8 The Philips Model

4.4.1 Existing Code Base Subnet

This subnet allows the defects present in existing code to be taken into account. It

consists of a highly simplified and very compact defect prediction model. It combines

code size and complexity with an overall estimation of the process and test quality.

As the code already exists there is no difficulty in describing its size in terms of

lines of code rather than Function Points.

 67

The subnet contains no mention of the primary programming language used. This is

because all programming at the Philips sites was in C. A more general version of this

subnet should include a dependence on programming language.

KLOC existing code base has a prior distribution set to a beta distribution with k (in

KLOC) normalised from the range 0 – 1000, to the range 0 – 1. The exact shape of

the KLOC distribution curve will normally be of very little consequence to the model.

If there is no pre-existing code base then zero will be entered in Residual defects pre,

blocking any propagation from the Existing code base subnet. If there is a pre

existing code base, then evidence will be entered in KLOC existing code making the

shape of the distribution irrelevant.

c , Uniform (0, 1)

k , Beta (1.5, 100, 0, 1000)

Di , TNormal (15K (c + 0.5), 100K, 0, 30000)

 q , triangular Dp , Binomial (Di , �[q])

Node type legend
R = Ranked
II = Integer Interval
B = Boolean
CI = Continuous Interval
L = Labelled

DR = Discrete Real

Figure 4-9 Existing code base subnet

Complexity of existing code base is a standard “Very low” to “Very high” ranked

node, with a uniform distribution.

Inherent defects combines the KLOC and complexity figures into a single NPT.

The node, Overall process and testing quality of existing code base, is a ranked

node with a manually created prior distribution that favours medium values. It

determines the probability of letting Inherent defects through to Residual defects pre,

by acting as the basis of a partition on the latter. Each partition is a binomial where

Inherent defects represents the number of trials. A low process and testing quality will

allow a lot of potential defects through, whereas a high process and test quality will

let fewer potential defects through.

 68

4.4.2 Indicator Nodes Become Causal Factors

We have already described some of the differences between indicator nodes and

causal factors in section 3.1.1. Many of the indicator nodes in the Phase model

become causal factors in the Philips model.

The causal relationship between many of the nodes in the Phase and Philips models

is ambiguous. For example, consider two of the nodes shown in the BN fragments in

Table 4-3: Programmer capability and Development process quality. Is Programmer

capability an indicator of Development process quality, or is it a cause? In the Phase

model it is an indicator, while in the Philips model it is a cause. In fact many of the

indicator nodes in the Phase Model have become causal factors in the Philips Model.

Indicator nodes – Phase Model

Causal factors – Philips model

Table 4-3 Indicator nodes and causal factors

Our knowledge of software production suggest that the various factors shown in

Table 4-3 are not independent. If Development staff training quality is high then we

would expect Programmer capability to be high also. This suggests that Fenton and

Neil’s original approach, to model the factors as indicators, was correct. The question

therefore arises as to why they decided to change these to causal factors, which

 69

remain independent provided no evidence is entered in the Development process

quality node.

The main reason for this was a tendency for the users in Philips to enter evidence in

both the indicator node and its underlying cause. Users were unaware that evidence

entered in an indicator node would be blocked by this behaviour. Although the same

is true when the direction of causality is reversed, users were able to more easily grasp

the nature of d-connectedness in the case of converging, rather than diverging

connections.

If this is true in general then it represents a serious disadvantage to the use of

indicator nodes. It would suggest that indicator nodes are convenient for model

builders, but misunderstood by users. This is clearly a topic of research that is beyond

the scope of this study.

4.4.3 KLOC Instead of Function Points

The Phase Model uses Function Points (FPs) as its primary sizing mechanism.

While FPs represent a widely accepted, technology independent size measure, there

were a number of problems when Philips used the Phase Model.

The main problem was that Philips did not normally use FPs. Introducing FPs into

Philips purely for these projects was not a practical option. Consequently Philips used

the indicator node, KLOC, to enter their size information (see top half of Table 4-4).

This was then back propagated to New functionality implemented this phase where it

gives rise to a distribution of function point values, as opposed to a single point value.

This immediately introduces a level of uncertainty into the model that was not

previously present. This uncertainty is undesirable for two reasons. First, the

uncertainty is propagated throughout the model, and second, the model tries to explain

away model outcomes using the FP uncertainty.

A second problem with FPs is that they conflate simple size measures with project

complexity. Some measure of software complexity is undoubtedly required: a

complex program can be expected to give rise to more defects than a simple one.

However, function points confuse two independent aspects of project complexity,

namely management complexity and technical complexity. These two distinct types of

complexity are explained in some detail in Appendix G. Briefly, management

complexity includes aspects of a project which complicate management tasks. This

might include factors such as the size of the project, its geographic dispersal or the

 70

amount of sub-contracted functionality. Technical complexity refers to complexity

which is inherent in the problem, such as the number of database interactions, timing

and throughput constraints or specialised mathematical algorithms. Management

complexity is already included in other parts of the Phase Model, thus leading to the

possibility of “double counting”.

The Philips model therefore removes FPs as the primary sizing mechanism and

replaces them with KLOC, as shown in the bottom half of Table 4-4. Since, FPs

already include a measure of technical complexity, the transfer to KLOC involves

adding some extra nodes to take account of this missing complexity element.

Phase Model

Philips Model

 Node type legend
R = Ranked
B = Boolean
CI = Continuous Interval
DR = Discrete Real

Table 4-4 Scale of new functionality implemented in the two models

 71

A dummy Ranked node (scale 1 to 10) is used to combine a complexity rating with

the Boolean node Integration with 3
rd

 party software. Depending on its value the

complexity can either be halved (False) or increased by 50% (True). A manually

defined translation table in the scaling factor node then transforms the dummy node

into a factor in the range 0.5 to 5 based on an empirically observed range provided by

Philips.

In Appendix G I outline how a hierarchy of technical complexity factors can be

constructed and added to models such as the Philips model. However, for reasons that

will be explained in chapter 6, this approach to managing complexity was not

pursued.

4.4.4 Philips Model Results

The Philips model was validated against 31 projects within Philips. The initial

results are shown in the left hand graph in Figure 4-10. This shows the median

predicted number of defects against the actual number of defects for each project. The

solid line shows a least squares best fit linear trend line. For a perfect model, the

predicted values would always exactly match the actual values. The trend line for a

perfect model would therefore have a slope of exactly one and a y-axis intercept of

exactly zero. Despite the reasonably good correlation of the predicted versus actual

values, the slope and intercept of the trend suggest some systematic problem with the

model.

Figure 4-10 Philips model results, before and after inclusion of initial phase

 72

After further investigation, Fenton, Neil and Krause determined that many projects

included some existing code taken from previous projects. These projects were

effectively built in two phases. Even where no code was included from other projects,

the Residual Defects PRE node (Figure 4-7) was often left to use its prior distribution

instead of being explicitly set to zero. Once these facts were taken into account, the

results improved considerably. The improved results are show in the right hand graph

in Figure 4-10.

Of course, it is often possible to get equally good results using an appropriate

regression analysis. The difference is that a regression analysis is only possible after

an extensive metrics gathering programme. The regression analysis also suffers from

all the other problems described in chapter 2. The Philips model results were obtained

without a metrics gathering programme.

A more detailed analysis of the Philips’ results can be found in [66], where I

contributed a component based version of the model together with the graphs shown

above (Figure 4-10).

4.5 Wooff, Goldstein and Coolen Software Test Model

Wooff, Goldstein and Coolen [219][49][50][169] have shown how Bayesian

models can be used to improve software testing. Their work does not present a single

model of the software test process. Instead, they have developed a method of creating

a set of test models for any particular software project.

The resultant models can be used as management decision support tools to

determine when a piece of software has reached the necessary level of reliability. The

models can also be used to optimise test ordering by, for example, placing tests with

the greatest chance of failure at the start of a test cycle, or by prioritising code where a

failure would have the greatest impact.

Wooff, Goldstein and Coolen develop their models in a set of discrete steps.

1. List the transactions that the software performs. These are the major pieces of

useful functionality. In object oriented terms these might roughly correspond to

use cases, or in the case of XP, of user stories (discussed in chapter 5).

2. Each transaction consists of a (possibly large) number of software actions (SAs).

Each SA is an individually testable processing function. Each SA becomes a node

in a test model.

 73

3. The relationship of the SAs must be determined. Some SAs depend on other SAs.

For example, an SA that checks if a debit card number is valid, might depend on

an SA which checks if a string is a number. The latter SA might be common to

several other SAs. Similarly, related SAs may share some code or data, even if

that shared code or data is not individually testable. The failure of common or

related SAs clearly affects the chances of dependent SAs and so defines graphical

dependency relationships.

4. The chronological ordering of SAs must be determined. If “number checking”

must complete before “debit card number checking” can commence then it is the

latter which depends on the former, and not the other way around.

5. For each SA the testable characteristics are identified. For example, the length of

debit card numbers might vary between card suppliers, in which case this would

be a testable characteristic. Each testable characteristic has a number associated

with it, p, which is the proportion of tests of that characteristic that are expected to

pass. This is an unknown and is modelled as a point mass (the probability that,

given a single test failure, all tests of that characteristic will fail), plus a binomial.

Each testable characteristic can have multiple SAs as parents.

6. Each characteristic must be partitioned into exchangeable sets. These are sets of

inputs that, if the SA successfully processes one set of inputs from an

exchangeable set, it will probably pass all of them. Likewise, if it fails on one set

of inputs, it will probably fail all other inputs from the same exchangeable set.

Each echangeable set corresponds to a single test case and becomes an indicator

node of the characteristic probability distribution, p, with probability equal to p.

7. Multiple inputs and multiple dependent SAs, are combined using the Noisy OR

function (Appendix D).

The above procedure results in a set of disconnected BNs. Root node priors are

determined by taking into account historic test results, the complexity of the code, the

amount of new code, the track record of the programmers, the application domain and

comparison with code of known validity. The following procedure is used to rank the

reliabilities of each root node.

1. Rank each BN in order of expected reliability.

2. Within each BN, rank according to the reliability of each testable

characteristic.

 74

3. Within each characteristic, rank exchangeable sets. In doing so, the tester must

be able to identify specific problems which are likely to affect the

exchangeable sets that partition a characteristic.

4. Make initial estimate of unreliability in most unreliable BN and most reliable

BN.

5. Use the initial estimates in 4 and the rankings to assign equidistant reliability

priors to the roots.

6. If the initial priors do not produce results in agreement with the testers

expectations (e.g. predicts too many or too few faulty modules) then adjust

until they do.

Wooff et. al.’s paper discuss two case studies. In the first, which involved the

management of several related credit card databases, they were able to produce the

following conclusions.

• Of the 233 tests of the software, when run in their original order, the last 57

tests produced no gain in information.

• Of the 168 observables, 55 were not tested.

• The best 11 tests reduced the probability of at least one fault remaining by

95%. The next 156 tests reduced this by a further 1.5%. The remaining 66

tests had no effect.

• It was possible to demonstrate that a single additional test could be created

that reduced the residual probability of software failure by a further 57%.

The BN approach was therefore able to reduce the number of tests that provided the

same level of coverage, assisted in designing tests to exercise the remaining

functionality and helped to schedule tests in a more efficient order.

In the second case study, a column of numbers in a database had to be changed

using a fixed set of rules. Wooff et. al.’s approach produced the following.

• Of the 20 tests to be run, the last 8 produced no gain.

• 9 of the 20 tests reduced the probability of a remaining fault by 74%.

• It was demonstrated that a suite of only 6 test cases produced 100% coverage

of the software characteristics.

In addition to quantifying the risk of remaining defects, the Wooff et. al. method

captures the knowledge of the software test team, and so represents a valuable asset

for a software project in its own right. However, in order to achieve this, a new model

 75

must be built for each system being tested. This is a highly skilled and specialised

task. In addition, the final software must be analysed and broken down into SAs,

testable characteristics and exchangeable sets. Apart from the overhead that this

involves, it assumes a relatively static code base - an assumption that is quite

inappropriate in XP projects.

4.6 Siemens Model

Wang et. al. [206] from the Siemens company, have developed a model which

shares characteristics with Fenton, Krause and Neil’s project and phase models. The

Siemens model is modular, like the Phase Model. Development of distinct models and

phases of development can be combined by connecting separately constructed BNs. In

common with the Project model, Wang et. al. claim to be able to perform trade off

analysis between effort, schedule and quality.

The model consists of four separate sub-nets.

• The Component Estimation Model. This is a size model and is used to predict

both the number of defects inserted and the duration of the code development.

COQUALMO defect estimation parameters and COCOMO II effort estimation

parameters are used.

• Test Effectiveness Estimation Model. Contains nodes relating to the experience of

the test team and the effort put into designing the tests. A single output node

contains the effectiveness of the testing process.

• Residual Defect Estimation model. The Component Estimation Model and Test

Effectiveness Estimation Model are combined in this model to determine the

number of residual defects after testing.

• Test Estimation Model. Uses information about the number of tests and the

number of people to make predictions about test effort and duration.

The four sub-nets can be combined to form a model of a single software

component. In their paper, Wang et. al. illustrate this further by combining models of

three unit tested software components into a single integration tested software

component with a further system test phase.

This model builds on the work of Fenton, Krause and Neil and is important in that it

demonstrates that it is possible to build a single comprehensive model which predicts:

 76

quality, effort and schedule, and that it is possible to perform trade-offs between the

three.

4.7 Combination with COCOMO

Stamelos et. al. [193] have implemented aspects of the COCOMO 81 [24] model

using BNs. This model is shown in Figure 4-11. Each of the four leaf nodes: Product,

computer, Personnel and Project, are combinations of the corresponding intermediate

COCOMO cost factors. For example, the Product node is an aggregation of the three

product based cost factors:

• RELY - Required Software Reliability

• DATA - Data Base Size

• CPLX - Software Product Complexity

The aim of the model is to give better predictions of productivity P = S/E where S is

the size of the software and E is the effort involved. Each node, except the

Productivity node is a ranked node with five values. The NPTs are defined manually

using a combination of the COCOMO 81 project data and the authors’ expert

judgement.

Figure 4-11 The COCOMO 81 BN

The model was tested using the COCOMO 81 project data [24]. The predicted

productivity range included the actual productivity in 52-67% of cases depending on

whether one or two neighbouring intervals were chosen.

Yang et. al. [222] took an almost identical approach, this time predicting effort

rather than productivity.

 77

This approach takes a traditional parametric formula and constructs a hierarchical

BN model from it. This allows it to make some predictions regarding risk. However

the approach makes no attempt to fully model causal interactions and therefore has

little value when trying to perform trade off analysis.

4.8 Modelling Anti-Patterns in XP

Settas et. al. [181] have shown how to model anti-patterns [32][33] as a BN. They

have given the name “Shaken but not stirred” to the particular anti-pattern chosen. It

is an example of a “commonly occurring solution to a problem that generates

decidedly negative consequences” [181]. In this case it is the problems created by

rushing to use pair programming on an XP project without taking into account the

personality profiles of the programmers involved. Psychology suggests that teams of

mixed personality types should outperform teams with two of the same personality

type [147], something that has been confirmed by Sfetsos et. al. [184].

Node type legend
L = Labelled
B = Boolean

CI = Continuous Interval

Figure 4-12 Anti-pattern Bayesian Net

The priors for this model were established empirically [182]. A set if 84

undergraduate programmers were paired according to their personality profiles as

established by standard psychological tests [147]. Eight variables, corresponding to

the eight nodes of Figure 4-12, were included in the data set. The PowerConstructor

tool [39], which analyses conditional independence relationships in datasets, was used

to examine the dataset and determine the topology of the BN.

 78

Setting Mixed Personality to True and Mixed Temperament to True resulted in

reduced Development Time, increased Design Correctness and increased Quality.

This is really a small causal model of a particular social factor affecting an XP

environment. A full causal model would include this and many other factors.

4.9 Rational Unified Process

Bibi and Stamelos [22] suggested using “iterative Bayesian Belief Networks” as a

means of modelling the software development process. They used IBM’s Rational

Unified Process (RUP). Although iterative in nature and designed to track volatile

requirements, RUP is far from being an agile methodology. It is a highly structured

approach closely related to a specific toolset.

RUP breaks software development down into four major phases: inception,

elaboration, construction and transition (essentially: analysis, design, development

and maintenance). Each phase involves nine identified disciplines such as: business

modelling, implementation and test. Each discipline can appear in any of the four

phases, although the effort in each discipline will vary from one phase to another. So,

for example, business modelling will be more prominent in the inceptions phase,

whereas the test discipline will dominate in the transition phase.

Bibi and Stamelos proposed using iterative (i.e. dynamic) Bayesian Nets to

represent a RUP. They pointed out the difficulty of building DBNs which fully

modelled the whole RUP and showed how this might be simplified. Although

examples of NPTs were given, there is no evidence that any of these BNs were ever

built or validated.

4.10 Conclusions

We have seen that it is possible to construct modular, causal models of the software

development process using BNs. The Fenton, Krause and Neil models have developed

techniques for combining large numbers of causal factors into a single coherent model

that can perform risk analysis, trade off analysis and aid in decision support. The

Siemens model shows that a single size and quality model can be produced, while the

Settas et. al anti-patterns model shows how a single XP factor can be modelled.

We will see in Chapter 6 that agile environments present particular challenges when

applying some of this existing research. Before doing so however, we take a detailed

look at XP, which we will treat as our “typical” agile methodology.

 79

5 Extreme Programming

The aim of Extreme Programming (XP) is to create an agile software development

environment that is responsive to changing user requirements. It does this by devoting

as much developer effort as possible to coding and testing. Unstable requirements are

no longer considered a demon that must be exorcised at all cost. XP recognises that

the world changes, and customer requirements change with them. As one of the

primary proponents of XP, Kent Beck, says in the subtitle of his book: we must

“embrace change” [18].

The philosophy and practical details of XP are outlined together with a review of

the relevant literature. The chapter ends by giving a rigorous definition of the main

management metric in XP: project velocity (PV).

Novel contributions include a proof that PV can be measured using any absolute or

relative measure of program functionality together with a demonstration that PV can

be used to predict development timescales and costs.

5.1 XP and other Development Processes

Various software process models have been described over the years. The most

basic is arguably the “Waterfall” model ([173]). The waterfall model splits the

software development process into a series of discrete phases: analysis, design, code,

test, maintenance. Each phase is completed before moving onto the next. In each

phase, completion is marked by well defined deliverables which act as input to the

next phase.

There are obvious problems with this approach.

• Its serial nature increases dependencies between analysts, system architects,

developers and testers.

• Mistakes made earlier in the development lifecycle are more costly since they

can only be fixed by going back and revisiting all intermediate phases. In the

worst case, costs can rise exponentially [24].

In practise, few software projects adopt a strict waterfall approach. It is far too

restrictive and inflexible for solving real world problems. Nevertheless, it remains a

useful ideal against which alternative models can be compared.

The demands on Software Engineering have changed substantially since the

inception of the waterfall method. Software is no longer confined to large mainframes

 80

in specialised IT service departments. It is ubiquitous and often mission critical to a

company’s business. Competitive pressures squeeze timescales while demanding ever

higher degrees of reliability, functionality and user friendliness. By the time

traditional analysis and design phases are complete, the business opportunity has often

passed [125]. Commercial organisations need, and demand, almost instant results. XP

aims to flatten the cost of change curve and be receptive to changing requirements at

any point in the project lifecycle: [18] p.23.

Extreme Programming (XP) [19] is, in many ways, the exact opposite of the

Waterfall approach. Large scale analysis, requirements and design phases are

(apparently) eliminated. After some relatively short consultations with the customer,

teams plunge straight into code development. As has been pointed out by Stephens

and Rosenberg [196] however, this elimination is more apparent than real.

Requirements gathering and design are still present. They are simply spread over the

development lifecycle and depend upon the successful implementation of various XP

practices.

XP is predicated on a small set of values which underlie everything and are

assumed to be desirable in any software project. These values are used to derive a set

of principles which must apply to everything that is done in an XP project. The

principles, in turn, are used to derive a set of practises. These are the mechanisms that

an XP project uses in order to uphold the principles and values.

Discussion of XP is complicated by the fact that Kent Beck has revised his ideas

considerably since the first publication of his book [18]. For example, the first edition

lists twelve XP practices; the second edition [19] lists thirteen primary practices and

eleven corollary practices. It is not the case that the later lists are a superset of the

earlier list. Some practices are common to both, some have been added, while others

have been dropped.

5.2 Values, Principles, Practices

XP values claim to be universal in nature, i.e. they apply to any software

development environment. These are:

• communication,

• simplicity,

• feedback,

 81

• courage,

• respect (added in Beck 2nd ed [19]).

These five values lead to a set of principles. Principles are less abstract and less

universal than values. Consequently, they tend to be more XP specific. The mapping

from values to principles however is not one-to-one, or even one-to-many. It is more

the case that all principles arise from, and must be consistent with, all values. The

relationship between principles and practices (see below) is similar.

Beck identifies the following XP principles in the two editions of his book:

First Edition Second Edition

• rapid feedback

• assume simplicity

• incremental change

• embracing change

• quality work

• teach learning

• small initial investment

• play to win

• concrete experiments

• open honest communication

• work with people’s instincts

• accepted responsibility

• local adaptation

• travel light

• honest measurement

• humanity

• economics

• mutual benefit

• self-similarity

• improvement

• diversity

• reflection

• flow opportunity

• redundancy

• failure

• quality

• baby steps

• accepted responsibility

Table 5-1 Principles in 1st and 2nd editions of Beck's book

It would be inappropriate to go into detail on each of these. To do so would take up

a great deal of space, none of which directly contributes to our models. For more

information on XP principles, see [18] and [19]. It is the practices that most people

think of as constituting XP. They have the most direct input into the models described

here, and so it is these that we choose to describe in most detail.

5.3 XP Practices

XP Practices are the specific working techniques associated with XP. However, as

with the values and principles, these have been revised over time by Kent Beck.

 82

The different practices listed in the two editions of Kent Beck’s book are listed in

Table 5-2. They are grouped together in three sections. The first section shows

practices that are simply renamed or are otherwise directly comparable. In some

cases, a single practice in the 1st edition has been split into several practices in the 2nd

edition. For example, what is simply the “planning game” in the 1st edition becomes:

stories, weekly cycle, quarterly cycle and slack in the 2nd edition.

 First Edition Second Edition

Comparable
practices

• pair programming

• continuous integration

• .

• .

• collective ownership

• planning game

• .

• .

• .

• small releases

• testing

• .

• 40-hour week

• refactoring

• on-site customer

• pair programming

• continuous integration

• 10 minute build

• single code base

• shared code

• stories

• weekly cycle

• quarterly cycle

• slack

• incremental deployment

• test-first programming

• code and tests

• energized work

• incremental design

• real customer involvement

Differing
practices

• metaphor

• simple design

• coding standards

• sit together

• whole team

• informative workspace

• team continuity

• shrinking teams

• root-cause analysis

• daily deployment

Business
practices

 • negotiated scope contract

• pay-per-use

Table 5-2 Practices in 1st and 2nd editions of Beck's book

The second section shows practices which appear to be quite different in the two

editions. A separate third section lists practices which only appear in the second

edition and which appear to define the software business model rather than the

software development methodology.

The radical changes between the Edition 1 and Edition 2 practices suggest that

some care must be taken when constructing XP models. This is a methodology that is

flexible and is still evolving. Models must not be tied too closely to any one set of

 83

practices. At the same time, the models must still capture the “spirit of XP”: its

promotion of coding and testing above analysis and design, its iterative nature, its

ability to react to changing requirements and expectations. These are properties

common to all agile development methods (see for example the Agile Manifesto [9]).

Again, it would be wasteful to discuss all of these practices individually. They are

explained in detail in [18] and [19]. Many are simply best industry practices and are

neither unique to XP nor universal within XP projects. For example, studies by

Aveling [16] and Sfetsos et al. [183] both show that projects tend to pick and choose

which XP practices to implement, yet they all consider themselves to be XP projects.

The high degree of satisfaction expressed by participants in the Aveling and Sfetsos

studies would also seem to refute claims by the likes of Stephens and Rosenberg [196]

that XP has to be adopted in its entirety in order to be successful. They argue, for

example, that discarding the traditional analysis phase without compensating with

constant customer input, is a recipe for disaster. Stephens and Rosenberg’s views are

corroborated to some extent in [131] and [53] where MacCormack et al demonstrate

that creating prototypes can compensate for poor functional specifications.

Whether XP should be adopted in its entirety or not, the important point is that XP

is often adopted piecemeal in practise. As such, it is important that the models

developed here make minimal assumptions about dependencies between XP practices.

Instead, we will give a summary of the XP project lifecycle, stopping to highlight

significant practices as they appear in context. This brings out the essentials of XP

without spending too much time on (possibly transient) practices.

5.4 The XP Lifecycle.

By examining the XP lifecycle, the practices will be seen in the context in which

they are used. This holistic approach gives a much better understanding of how the

various practices are interrelated, as well as showing how development roles and

management techniques are affected by XP.

This examination is not intended to be complete – this is not a user manual for XP

managers. Rather, the aim is to highlight those aspects of XP which differentiate it

from more traditional development environments and so indicate how XP models

might differ from existing software process models.

 84

5.4.1 User Stories

An XP project begins with a customer who writes the requirements. This will not be

in the form of a lengthy requirements specification with voluminous appendices.

Instead, it will be in the form of a set of User Stories. These are short, well defined

pieces of functionality which can be written on a small piece of card. The customer

allocates a priority to each user story.

The team may choose to put the user story cards on a wall in their workplace. These

are split up into completed tasks, those to be completed in this iteration, those to be

completed in this release and those to be done in the future. This is part of what Beck

refers to as an Informative Workspace – one of the second edition practices [19].

5.4.2 System Metaphor

The project may choose to define a System Metaphor. This is often an analogy with

a real world system. For example, an online purchasing website might use a

supermarket as its metaphor.

The system metaphor fulfils a variety of roles.

1. It provides a consistent story that everyone involved with the project:

customers, developers, managers and testers, can all understand.

2. It drives the architecture of the system. In our supermarket example we might

decide to add aisles, counters and checkouts that are analogous to their real

world equivalents.

3. It provides a means of exploring scenarios in the system and asking questions

about failure modes. For example, what if a customer visits an aisle and finds

a shelf empty?

4. Classes, objects, methods and attributes can all be named using a naming

convention that is consistent with the metaphor.

Metaphors are not trivial constructs, and a suitable metaphor or mixture of

metaphors may not always be available. When a team is unable to find a helpful or

appropriate metaphor, the Default Metaphor (or Naïve Metaphor) can be used instead.

This is not really a metaphor at all, and views the system as simply a computer system

with suitable functional components. In our online shopping example we might create

inventory, price and customer objects, gaining no further insight into their behaviour

than is determined by the User Stories.

 85

System metaphors have proved to be a difficult concept for many XP teams.

Consequently they are poorly rated in terms of their usefulness and the degree to

which they are adopted. Aveling [16] performed a review of eight XP studies and

included four additional project surveys. Only one of the twelve projects

unambiguously used a metaphor.

Beck himself seems to have abandoned the idea in the second edition of his book.

The role of developing system metaphors is allocated to “Interaction Designers”, who

might otherwise by known as analysts or architects [19] (p.75).

5.4.3 Architecture

At this point in the lifecycle, a project has a set of functional requirements in the

form of User Stories with associated priorities. There may also be a rudimentary

architecture in the form of a System Metaphor. If the development team have

experience of similar projects in the past, and the technologies and components are

already familiar, then the Planning Game (see 5.4.4) might commence immediately.

Otherwise it is likely to be preceded by a short exploratory phase where technologies

are evaluated and prototypes constructed. This adds some meat to the architectural

skeleton and gives the project an opportunity to evaluate any obvious skill shortages.

Note that analysis and high level design still take place in XP, they are just not

being documented in a structured fashion. The developers have engaged with the

customer to determine the functional requirements and the team are acquiring the

knowledge necessary to implement those requirements.

This approach imposes obvious limitations on XP when large systems are being

developed, especially where multiple locations are involved. There may also be

cultural or regulatory difficulties to overcome. If the team is working on government

contracts for example, the contracts may stipulate the form and scope of the required

documentation.

Cao et al. [35] describe a large (1,000 classes) banking application where XP

practices were used to implement modifications to the code. The development team

continued to employ a large scale architecture and design phase up front and found

that this supported agile practices such as pair programming, refactoring and iterative

releases. The use of predefined architectural design patterns was used to promote

agility in the design.

 86

Another large (500 KLOC) project involving XP [176][59], found the idea of a

system metaphor too simplistic, and lamented the lack of a coherent large scale

architecture and design. The lack of such an overall picture, which the whole team

could refer to, caused considerable misunderstanding about the scope and interactions

of user stories.

5.4.4 The Planning Game

The Planning Game attempts to break the project down into manageable releases of

a few months duration each. It proceeds with the customer selecting User Stories in

priority order. However, there must also be some input from the development team.

Riskier requirements may have to be included in earlier releases in order to allow

sufficient time to handle the risk. High risk aspects of the project should already have

been identified through the Architecture phase.

The development team then estimates how long each User Story will take to

complete. This should be no more than a few weeks. If the time required to complete

the story is too long then it must be split into several stories.

User stories continue to be selected until the contents of the first release have been

determined. The exact criteria for determining the contents of the first release are not

strictly specified, but will involve some combination of the following.

1. The first release should be useful. It should contain sufficient features to be

deliverable to the client and be used to solve real world problems.

2. The amount of time taken to deliver the release should be several months.

3. The principle constraint on the release contents can either be time based or

content based, depending on the preferences of the customer and the

developers.

Much of the main effort in the Planning Game may take place in a single Release

Planning Meeting. This should take a day or two to complete. However, it is

important to realise that the Planning Game is not a one-off exercise, it is an on-going

process. As each release is delivered, more User Stories are allocated to the next

release. The customer provides feedback about work done so far and the project team

assess their forecasting accuracy, their understanding of the customer’s requirements

and their familiarity with the technology.

One of the few experimental studies of the Planning Game [106] has concluded that

it is easier to use and faster to execute than pairwise comparison of requirements

 87

[105], although only where pairwise comparison is bereft of tool support. It also

turned out to be one of the least popular aspects of XP among students [134], although

this was attributed to an aversion to planning in general. Aveling’s study [16] perhaps

casts more serious doubts on the Planning Game. His literature review suggests that

several companies either explicitly rejected, or were forced to modify the Planning

Game because it did not fit in with the local culture.

The aspect of the Planning Game discussed so far is what Beck refers to as the

Quarterly Cycle in the 2nd edition of his book. This reflects a more prescriptive

approach than he adopts in his initial description of XP, where a release is only

defined as being one to three months in duration [18] (p.56).

5.4.5 Iteration Planning

Once the contents and timetable for a release have been agreed, the process is

repeated on a smaller scale. The release is developed in a series of Iterations. Each

iteration is a few weeks long – generally no more than three weeks.

User stories are split into Development Tasks of one to three days in duration. In

order to do this, a developer must have a good understanding of the exact

requirements of the story. This may involve further discussions with the customer.

At least one XP team, working on a large project, found this too restrictive and

allowed some stories to span multiple iterations [59]. As one of the developers

explains:

“Lately we have had some issues that we knew could not be

effectively split into iteration deliverables and allowed up to 5 two-

week iterations for completion.”

Task estimates are more accurate than story estimates as they are the result of a

more detailed breakdown of the requirements. They are also generally estimated by

the people who must implement them, so they are tailored to the productivity of the

developers concerned.

Iteration planning is called the Weekly Cycle in the second edition of Beck’s book.

As with Release Planning, he is more prescriptive in the 2nd edition. Where the first

edition suggested that iterations be one to three weeks in length, the second sets them

at a fixed length of one week.

The terminology here, which distinguishes between User Stories, which are

requirements at the project Release level, and Developer Tasks, which are more

 88

detailed requirements at the Iteration level is as described by Beck [18]. It is not

maintained by all XP proponents and practitioners. Many think of an XP project as

consisting of one large collection of detailed User Stories, each of which takes a

couple of days to complete. I will use Beck’s terminology throughout.

5.4.6 Ideal Engineering Days and Load Factors

Developers must produce estimates of how much effort is required to complete

User Stories. Within each User Story, estimates are produced of how much effort is

required to complete Developer Tasks. This includes design, coding, testing and

integration. In both cases the unit used for estimates is the Ideal Engineering Day

(IED). This is actually a unit of effort: a developer-day, rather than a unit of time.

An IED is a day spent only on development activities, free from distractions,

meetings or any other work. User Story and Development Task estimates therefore

represent the number of developer days that it would take to complete the activity if

all of the developer’s time could be spent on that activity.

For example, if a User Story is estimated as taking 10 IEDs to complete, then it is

assumed that it would take a single person 10 days of full time, uninterrupted work to

complete the story. If two people were assigned, and their communication overhead

was minimal, then it would take five calendar days of uninterrupted work to complete.

In practise, no developer is free to spend all their time on coding and testing. There

are meetings, interruptions, learning activities, paperwork etc. All estimates must

therefore be multiplied by a suitable value to bring the ideal engineering estimates

into line with traditional person-day effort measurements. This value is called the

Load Factor and normally lies between 2 and 3 [20]. So a ten day user story with a

load factor of 2.5 will actually take 25 person-days to complete.

We will give a more rigorous definition of the Load Factor when we come to define

our XP models.

There is no real upper bound to the Load Factor. It depends not only on the

experience of the developer, but also on how much of the developer’s time has been

allocated to the project. Anecdotal evidence from websites confirms that the range of

values suggested by Beck seems to by typical. Pelrine [162] varies the factor from 1.5

to 3.0 depending on how uncertain the estimate of the user story is, with a greater load

factor accompanying a more uncertain estimate.

 89

Although a single load factor is normally attributed to the team as a whole, they

normally vary between individuals. The ratio of 28:1 is often quoted as the ratio

between the productivity of the best and worst programmers. However this is based

on a single set of small experiments described by Sackman et al [175]. As Prechelt

has pointed out [165], the ratio of 28:1 actually comes from comparing two distinct

sets of data with three of the developers opting to use assembler instead of a high

level language. When like is compared with like, this ratio drops to 9.5:1. He goes on

to analyse the data from multiple experiments and shows that the ratio is rarely greater

than 4:1.

5.4.7 Test Driven Development

With the first iteration of the first release now planned, developers can set to work

on development tasks. Test code is written before production code. All of these tests

will initially fail, since there is no underlying code to be tested. Gradually, as user

stories are implemented, more and more tests will start to pass. Unit tests should be

independent and automatic in XP, concentrating on those aspects of the code which

are most likely to break (not trivial things). They must always run 100% correctly

([18] p.116).

This approach is called Test-First Programming or Test Driven Development

(TDD) and is seen as an important discipline in XP. It fulfils several functions.

1. It ensures that tests have been written for every development task.

2. It acts as a final detailed specification for the task.

3. The presence of a comprehensive test suite encourages developers to fix any

perceived problems in any part of the code, even if they were not involved in

its development. They can do this knowing that the essential functionality of

the code that they modify can be tested for correctness. This is an example of

collective (i.e. shared) code ownership – another one of the common XP

practises.

Although point one above may seem obvious, it is worth pointing out that in the

waterfall approach, tests are written at the end of the development cycle. If deadlines

are tight then it is often testing which suffers. There is also the psychological

advantage that testing at the end of the cycle is seen very much as a chore, whereas

when it is done up front it feels more constructive as it helps to fully define the

functionality.

 90

This unwillingness to do proper testing at the end of coding was starkly displayed in

an experiment by George and Williams [70], where three groups created a piece of

software using TDD, and three control groups created the same software using a test-

last approach. Despite explicit instructions, only one of the three control groups wrote

any worthwhile test cases. This was reflected in the results where the TDD groups

passed 18% more acceptance tests than the control, but took 16% longer to do so.

One of the most dramatic studies into the effectiveness of TDD was performed by

Maximilien and Williams [133] at IBM, where a relatively inexperienced team was

able to deliver a product with 50% fewer defects than expected when compared to the

a more experienced team. The more experienced team however used an ad-hoc

approach to testing.

There have been several studies which claim to show that TDD is no better than

traditional test last development. Jones [99] summarises eight such studies in various

schools and colleges and finds that results are mixed. Experiments with college

students, such as Pancur et al [157] and Geras et al. [71], similarly suggest that TDD

offer relatively little benefit over more traditional approaches. However all of these

studies suffer from a common problem in that they are performed with small scale

projects using university or school students. It is clear from the aims listed above for

TDD that its true benefit is only likely to be apparent on larger projects.

The study by Geras et al. [71] counts every failure of a unit test as a defect, even if

it can be trivially and immediately corrected. Highlighting once again the problem of

the definition of a defect. This however, is a particularly poor definition of a “defect”.

If the aim of counting defects is to measure software quality, then by this definition,

the more defects the developers fix, the poorer their software quality becomes.

In a carefully constructed experiment by Erdogmus, Morisio and Torchiano [60],

the experiment of George and Williams was repeated, this time using students and this

time ensuring that test last groups performed the necessary testing. They found an

increase in testing among the test-first groups and a proportional increase in

productivity. They found no statistically significant difference in quality. They

conclude by suggesting that the main benefit of TDD is the creation of test asset base

which is sometimes skipped in test-last development.

 91

5.4.8 Pair Programming

Programmers traditionally work on individually assigned tasks. They acquire an

expertise in particular areas of a project and normally go on to “own” the code that

they produce. We refer to this type of programming as Single Programming (SP).

Pair Programming (PP) is one of the most actively researched aspects of XP. The

idea is that programmers should work in pairs at a single PC. One programmer is

responsible for entering code while the other makes suggestions, looks for errors and

thinks more strategically. We will refer to these two roles as the driver and the

navigator respectively. The driver and the navigator are expected to switch roles

periodically.

Beck recommends that programming should always be done in pairs and that

anyone who refuses should be removed from the team [18] (p. 101). He also

recommends switching partners every few hours [19] (p. 43).

The following benefits are claimed for pair programming.

1. Greater communication between team members.

Programmers are constantly exposed to different parts of the system as they

swap programming partners. No single person therefore has exclusive

ownership of any one area of the project. This has two knock on effects. First,

it reduces project risk by minimising the effects of losing a critical team

member. Second it promotes collective code ownership by increasing the

willingness of team members to fix defects wherever they find them.

Sfetsos et. al. [184] performed controlled experiments with student pairs of the

same personality type (as identified by the Keirsey Temperament Sorter [107])

and student pairs of mixed personality types. They found that mixed

personalities were, on average, twice as communicative with their partner and

that this communication gave rise to an average 30% increase in productivity.

Communication volumes were measured by the pairs themselves, using

written logs.

 92

2. Constant review of code.

The navigator in each pair is constantly checking the code. Again this has two

purposes. First, it enables the navigator to point out potential errors in the

code. There may be boundary conditions, object states, or paths through the

code that the driver hasn’t noticed. The presence of the navigator should

therefore reduce coding defects in exactly the same way as a conventional

code review does. A study by Muller [140] seems to confirm this, in that he

was unable to distinguish between the productivity and cost of pair

programming in students and equivalent tasks performed by single student

programmers with code reviews.

The second benefit of the navigator checking the code is their ability to think

more strategically about the problem. The navigator doesn’t have the

immediate task of entering the code. They are therefore free to think about

how the code resembles, or might take advantage of similar code elsewhere in

the system. This might lead to better code reuse or potential refactoring

operations which might take place. This should lead to smaller, cleaner code,

with better class cohesion and lower coupling between classes (see, for

example, Lethbridge and Laganiere [123], section 9.2, for a good discussion

of cohesion and coupling).

3. More intensive programming.

There are fewer opportunities for a programmer to be distracted when pair

programming. Both pair members are keen to use their partner’s time

efficiently. This, together with the improved coding efficiency mentioned

above, may be part of the reason why pair programming does not result in the

halving of productivity so often feared by project managers. The effect of pair

programming on productivity is discussed further below.

The intensive nature of pair programming is also one of the reasons why Beck

recommends strictly limited working hours (the practise of “40 hour week” in

 93

Beck 1st edition [18] and “energized work” in the 2nd edition [19]).

4. Enhanced team spirit.

Everyone in the team must work closely with everyone else. It is also claimed

that, once initial scepticism have been overcome, developers often prefer to

work in pairs.

5. Shorter learning curve.

Inexperienced developers or new team members are quickly assimilated. They

are able to see the work of their more experienced colleagues at close hand

and ask questions about the structure of the system and the programming

techniques being employed.

The two most studied aspects of PP are its claim to reduce coding defects and its

claim that PP is just as productive as individual programming. This latter claim is

particularly bold since two people acting on the same piece of code, must now

produce that code at twice the rate if they are to match the productivity of two

individuals working independently.

A summary of some of the studies relating to PP is shown in Table 5-3. (These

papers have been summarised by Williams and Kessler [212]. Williams and Kessler

also provide an extensive discussion on different programmer pairing strategies:

expert with novice, extrovert with introvert etc.) In terms of programmer productivity,

they appear to give contradictory results depending on which study you choose to

examine. However, when we look at the studies in more detail, a pattern does begin to

emerge. Studies which involve short exercises (Nosek, Nawrocki, Heiberg, Lui,

Canfora), tend to produce results which either show no clear pattern or show that PP

is worse than SP in terms of total effort required. It is only in the longer term studies

(Williams, Hulko, Vanhanen) that we see PP matching, or even exceeding the

productivity of SP.

This is consistent with the hypothesis of Williams, Kessler, Cunningham and

Jeffries [213]. They point out that it takes time for programmers accustomed to solo

 94

work, to learn to work in pairs. They refer to this process as “Pair Jelling”. Once pair

jelling is complete productivity increases dramatically.

Paper Results Comments

Nosek [154]
1998

Subjects were all professional programmers.
Solos took 42.6 minutes to complete a task.
Pairs took 30.2 minutes (so 60.4 mins effort – 50%
more than SP).

Produced more functional,
more readable code.

Cockburn and
Williams [46]
2000

Students in software engineering.
Initially PP took 60% more effort (pair jelling).
PP required 15% more effort.
PP produced 15% fewer defects.
10-20% code size reduction for PP.

90% enjoyed PP more.
Also in Williams, Kessler,
Cunningham and Jeffries
[213] 2000

Nawrocki and
Wojciechowski
[148] 2001

5 SP, 5 x 2 PP, final year CS students.
Found development time identical, so PP took twice
the effort.

Williams et. al
[214] 2003

Students achieve 3% to 18% better project scores
when PP.

Students more likely to
stay with CS major when
PP.

Heiberg et. al.
[85] 2003

1st year students. Measured number of test cases
passed. PP was better than SP at the start. About the
same later. The control group in this case consisted of
two programmers who split the task work between
them.

SP assumed to be slower at
the start because they had
to figure out how to split
the tasks between
themselves.

Lui and Chan
[128] 2003

Performed two IQ test problem solving tests in pairs
and solos. Also Transact SQL problems in PP and SP.
1st IQ problem took 20.9% more effort when PP.
2nd IQ problem took only 5.3% less time when PP, but
was 85% correct vs. 51% for singles.
SQL PP took same time as best member while poorer
member learned.

Parrish et. al.
[158] 2004

Professional programmers working in small teams are
roughly 4 times more productive if they do not work
concurrently on the same code.

Concludes that driver/
advisor roles are essential
to success of PP.

Hulko and
Abrahamsson
[88] 2005

4 case studies using a mixture of students and
researchers.
States that no pattern could be detected in
productivity, either over time or in PP vs. SP.
However figures are close for case 2 (18 LOC/hr PP,
21 SP) and are better in cases 3 and 4 (15 v13, 14 v 5,
case 1 not available).
States there’s no evidence for reduced defects. This
was true in one of the two cases where this was
measured, but figures show a 6-fold increase in defect
densities in case 4 when SP was used.

Found that PP was worse
for coding standard
deviations, but better for
comment density.

Vanhanen and
Lassenius
[203] 2005

Students with several years programming experience.
PP required 100% more effort initially.
PP required 5% less effort in later cases.
PP resulted in 8% fewer defects, however 3 times as
many defects were found post-delivery.

PP productivity vs. SP
productivity not correlated
with use case complexity.
Not conclusively better in
terms of method size and
cyclomatic complexity
(slightly better for PP
case).

Canfora et. al.
[34] 2005

Masters students.
SP required 61% more “hours” initially. Only 3%
more hours on a second run with same students.

Unclear whether this study
is reporting effort or
elapsed time.

Table 5-3 Pair Programming studies

 95

The same study by Williams et. al. [213] also provides evidence to substantiate the

claim that most programmers quickly overcome their suspicions and eventually prefer

pair over solo programming. In an experiment with students at the University of Utah,

90% consistently expressed a preference for working in pairs. The programs produces

by the pairs passed 10 to 17% more of their test cases than those produced by a

control group of solo programmers.

The shorter studies also ignore some of the more intangible benefits of PP, namely

increased team communication, common code ownership and enhanced team spirit.

The extent to which these reduce project risk does not appear to have been studied so

far.

Net Present Value (NPV) models have been created [125] which show that similar

returns can be gained from project investments in both the SP and PP cases. Padberg

and Muller have created a more comprehensive NPV model [156] which suggests that

pair programming is most advantageous when time to market is critical.

5.4.9 Development Practises

XP development can involve a range of additional practises.

Developers are encouraged to constantly refactor their code. Refactoring involves

identifying inefficiencies in the existing design and restructuring the class and

package arrangement in order to remove those inefficiencies. Refactoring can be done

a little bit at a time, by gradually reducing the functionality in a class until it

eventually disappears. It doesn’t have to be done all at once. The result should be

smaller code with greater class cohesion and lower inter class coupling. Some

evidence for this has been found, for example, by Wood and Kleb [218], by Cockburn

and Williams [46] and by Nawrocki and Wojciechowski [148].

Refactoring also helps to promote another XP practise: maintaining a simple design.

XP aims to create the simplest design that does the job. Hooks for unspecified

features that might come in useful one day are to be avoided in XP.

Code is integrated frequently, so that the whole team is always working with the

most up to date version of the code. This, together with the other XP practices of pair

programming (with rotation) and extensive unit testing, promote a sense of common

code ownership. All of the code in an XP project belongs to the whole team. No

single person “owns” particular parts of the project.

 96

Strict adherence to coding standards is expected in such an environment, although

curiously, in one of the few studies to measure this Hulkko and Abrahamsson [88],

found more deviations from coding standards amongst paired programmers than

among single programmers.

5.4.10 Workspace

The XP workspace should be an informative workspace. Story cards are placed on

walls, neatly arranged into completed, ongoing and unassigned sections. At a glance,

anyone entering the workspace can get an immediate overview of project progress.

Any metrics being measured should also be shown in public wall charts.

The workspace itself should be open plan with the team all sitting together. Beck

claims this leads to more and better team communication, although he recognises the

need for privacy and advocates individual cubicles as well [18] p.79.

Between 1984 and 1986, Lister and DeMarco [56] (p. 49) performed a series of

programming experiments. Of those who performed best, the majority described their

environment as scoring better in terms of privacy, quiet, workspace size and freedom

from interruptions. This would seem to be evidence against the use of open plan

workspaces. Open plan advocates, including Beck, counter that team spirit and

communications are improved in a more open environment. Becker and Sims [21]

argue for a balance between these two extremes.

5.4.11 Acceptance Testing and Onsite Customer

User stories are not considered complete until the customer has accepted them.

Each user story must pass the functional tests written by the customer. This does not

necessarily mean that 100% compliance is required. It is up to the customer to decide

whether their requirements have been met.

Unlike unit tests, which are written by developers in order to verify that their code

works as expected, acceptance tests are written from the customer’s perspective.

Acceptance tests are intended to prove that the business requirements expected by the

customer have actually been delivered.

User stories that do not pass their acceptance tests must be carried over to the next

iteration. The amount of rework effort allocated to the failed user story will obviously

depend on how seriously flawed the implementation is. Trivial details about the user

 97

interface will require less rework than major misunderstandings about the business

requirements.

Major misunderstandings can be avoided by employing the XP practise of having

an onsite customer. XP projects have no extensive requirements specifications to draw

upon – only the user stories. This leaves considerable room for ambiguity. The small

story cards used to write down user stories do not provide a great deal of space. This

gives the author very little scope to write down examples that might illustrate a user

story or clarify any subtleties.

Martin, Biddle and Noble [132] have pointed out that the role of the XP customer is

an extremely demanding one. They must act as the only conduit between all other

stakeholders and the development team. It is their responsibility to refine the

requirements into user stories, to write acceptance tests and be available all of the

time, at an instant’s notice to developers. (As an aside, it is interesting that in all three

cases examined in [132], some form of formal requirements and architecture are

developed before the XP methodology is applied.)

Decreasing
customer

communication.

Figure 5-1 Percentage of defect fixing tasks in different projects
1

As Deursen [58] noted, XP provides developers with a whole range of techniques

with which to accomplish their role. These include common code ownership, constant

refactoring, test first development etc. However, no such guidance is offered for the

1 This diagram is included with the kind permission of the authors [112]

 98

customer. Deursen’s workshop recommends that the onsite customer should actually

be an onsite team, capable of fulfilling the multi-faceted role of the onsite customer

role. The workshop also recommended the inclusion of a “so that” section in each

user story. This should show how the user story helps to meet a particular business

requirement.

Despite these difficulties, the role of the onsite customer in XP is essential. Korkola

et. al. [112] performed a case study comparing four different projects, with different

levels of customer communication. They measured the different rates of rework for

each of the four projects over four “releases” (“iterations” in Beck’s terminology).

The results are shown in Figure 5-1. Case 1 had the customer onsite for 80% of the

time; case 2 had the customer onsite at the start and end of each iteration, but was

available for face to face communication the rest of the time; case 3 had the customer

available only at the start and end of each iteration, and in case 4 the customer was

only onsite for the first two weeks of the project.

The percentage of effort devoted to fixing defects, including specification defects,

varied greatly in the four case studies. Where customer input was very high, only 6%

of effort was spent fixing defects. Moreover this level remained constant across

iterations. At the other extreme, when customer input was very low, the time spent

fixing defects grew across iterations until it reached about 40% in iteration 3.

5.5 Project Velocity

At the end of the first XP iteration the following should have taken place.

1. The customer will have met the developers and given them an overview of the

project.

2. The customer will have written down the project requirements in the form of

user stories. The customer will have assigned priorities to each user story;

developers will have assigned effort in ideal engineering days (IEDs). Each

user story will occupy a couple of weeks of effort.

3. An architecture, possibly including a system metaphor will have been selected.

4. A release planning meeting will have selected the user stories needed for the

first release.

5. An iteration planning meeting will have selected the user stories to be

completed in the first iteration of the first release. These user stories will have

 99

been split into development tasks. These tasks will have been assigned an

effort of the order of a couple of IEDs each.

6. Unit tests for the user stories selected for the iteration will be complete.

7. The customer will have written acceptance tests for the user stories.

8. Some of the user stories selected for the iteration will have passed their

acceptance tests, others will not. Those user stories which have passed are

deemed to be completed.

A new meeting will now be required in order to plan the second iteration. This has

two objectives.

1. Uncompleted stories from iteration 1 are re-examined. The effort required to

complete these stories is assessed.

2. New stories must be selected for the second iteration.

XP employs a simple rule in order to meet the second of these objectives: take the

estimate for all the stories completed in the previous iteration and add them together.

This is the project velocity [20] (p.59). Uncompleted user stories are selected in

priority order until the sum of their estimated IEDs equals the project velocity. These

are the user stories that are selected for the next iteration.

If we denote the estimated effort for the jth completed user story in iteration i by Ui
j

then the project velocity Vi, for iteration i, is given by:

∑=
ij

j

ii UV
 in completed

 Equation 5-1

Note that we are using User Stories in our definition of velocity. These have IEDs

which are measured in weeks, even though iteration length is itself only a week or two

(depending on which version of Beck you read). The rationale behind this is not

explicitly stated by Beck, nevertheless it does make some sense. User Stories are the

unit of functionality – they are the things which are acceptance tested and can

therefore be signed off as complete by the customer. Presumably the more accurate

IED estimates, arrived at after splitting each User Story into development tasks, are

used.

 100

Example

Suppose that there are 8 user stories in total for a project prioritized as

shown in Table 5-4.

User
Story

Priority Ideal Engineering
Days

Iteration

US1 1 U1
1 = 10 1

US2 2 U1
2 = 5

US3 3 U1
3 = 15

US4 4 U2
1 = 20 2

US5 5 U2
2 = 10

US6 6 U3
1 = 20 3

US7 7 U3
2 = 10

US8 8 U4
1 = 10 4

Table 5-4 Estimating user stories

 Suppose that in the first iteration the developers feel they will have a total

of 30 IEDs available. Then they will plan to complete the first three user

stories US1, US2 and US3 in iteration one. If the first three stories pass their

acceptance tests in iteration 1, then the project velocity V1 will by 30.

It is important to emphasize this is an estimate of how many IEDs the team thought

it would take to complete the work. It is not the number of actual person-days taken,

nor is it the calendar time taken.

Assuming that the next iteration, i + 1, is the same length as iteration i, the customer

selects the highest priority uncompleted user stories whose estimated IEDs sum to Vi.

These user stories are then scheduled for iteration i + 1. The work scheduled for

iteration i + 1 therefore has the same estimated ideal effort as the estimates for the

actual work completed in iteration i. Expressed more concisely: we can expect to be

as productive in the next iteration as we were in the last. So, using the example shown

in Table 1 we have V1 = 30, and so we would schedule tasks US4 and US5 for

iteration 2 since the estimated IEDs required for these two user stories is 30. If it turns

out that in iteration 2 we only manage to complete US4 then V2 = 20.

Note that the actual time taken to complete a user story is not used here. To

illustrate why it is unnecessary, let us suppose that the developers working on US1,

US2 and US3 had carefully filled in time sheets and determined that the time spent on

those stories was not the 30 days that was estimated, but actually took 36 IEDs, i.e.

 101

there was a bias, b1, in their estimates. (Note that the use of the word “bias” here is

not intended in the statistical sense of a biased estimator).

If A1
j are the actual efforts taken then:

∑∑

∑
==

j

j

j

j

j

j

A

V

A

U

b
1

1

1

1

1

Equation 5-2

In this case, b1 is 30/36. A project manager might assume that the remaining tasks

have been underestimated by the same amount and multiply them by 6/5 to

compensate. US4 and US5 would then have new estimates of 24 and 12 respectively.

The manager knows that the team did 36 actual IEDs work in iteration 1 and, all

things remaining equal, are likely to do 36 actual IEDs in iteration 2, so he schedules

tasks whose updated estimates add to 36. This would result in US4 and US5 being

scheduled for the next release - exactly the same as we had before (except that there is

now a lot more time tracking and form filling being done).

This scheduling mechanism assumes that the ratio of effort (people × working days)

to PV remains constant. This assumption can be justified by examining the two

possible estimation scenarios.

1. User story estimates are being consistently overestimated or underestimated.

This consistency ensures that any bias in the estimates for the previous

iteration will be repeated in the current iteration.

2. If there is no consistent bias in the effort estimations, i.e. there is as much

overestimation as underestimation, then these inaccuracies will even

themselves out over multiple iterations. This further assumes that teams are

able to schedule additional work in an iteration when the effort of existing

tasks has been over-estimated and slack time is available.

If the next set of user story estimates do not sum to exactly Vi then various options

are possible.

• One of the user stories can be broken down further. In fact, as we have already

seen, each user story is broken down into development tasks.

• An alternative user story can be selected, although this breaks the

prioritization guidelines in XP.

 102

• Stories with estimates slightly less than Vi can be chosen.

It is recognized that in real world projects there are dependencies between

iterations. Efficient implementation sometimes demands that the order of work differ

from the customer’s desired prioritization. There are also rework tasks which arise

when work in a previous iteration must be revisited. We will not explicitly address

any of these issues. In the models we develop, inter-iteration dependencies will

simply be subsumed within other, more general, overheads.

The introduction of pair programming has no effect on how these calculations are

performed. If the developers in our example are paired then the number of user stories

completed in iteration one might decrease, say to a set of user stories whose estimates

totalled 20 IEDs instead of 30. User stories adding up to 20 IEDs are then scheduled

for the next iteration. Similarly, the extent to which user stories are complete serially

or in parallel has no effect on project velocity.

5.5.1 Story Points

Story Points provide an alternative way of measuring User Story size [48]. A single

story is taken as a benchmark for measuring the relative size of all other stories. If the

story chosen is identified as the smallest story then it will be given a story point value

of one. A story that is twice its size is allocated a story point value of two and so on.

Story points for completed stories are then added up at the end of an iteration and

their sum used to allocate user stories for the next iteration.

There is a common misconception that story points are in some fundamental way

different from IEDs. Story points are perceived as being on a ratio scale while IEDs

are perceived as being absolute. In fact this is not relevant. To see this, consider the

IED estimates for stories completed in iteration i as shown in Equation 5-1. Now

consider the same user stories estimated using story points. Let the story point

estimate for story j in iteration i be Si
j.

If we assume that IEDs represent an absolute size measure then they also preserve

the relative sizes of the stories. In other words there exists a constant α such that:

j

i

j

i SU α= Equation 5-3

 103

It follows that the PV measured using IEDs, is just α times the PV measured using

story points (call this Vi').

′==== ∑∑∑ i

j

j

i

j

j

i

j

j

ii VSSUV ααα
Equation 5-4

A team measuring PV using IEDs will choose stories for iteration i +1 such that their

estimates for the stories, Ui+1
k, match the velocity in iteration i:

∑∑ ==+
j

j

ii

k

k

i UVU 1 Equation 5-5

Similarly, a team measuring velocity using story points will choose stories such that:

∑∑ =′=+
j

j

ii

k

k

i SVS 1 Equation 5-6

But Equation 5-6 is just Equation 5-5 multiplied by α so both teams will choose

identical stories. The reason this happens is that the ratio between the two measures

produces the same ratio in their respective project velocities. So even if IEDs

represent an absolute scale, it is only their measure of relative size that is used in

determining which stories are chosen in the next iteration.

The example in the previous section, where it was shown that actual effort

measurements result in exactly the same tasks being scheduled, works for exactly the

same reason. In that case, both measures are assumed to be absolute, and therefore

they too are related by a scaling constant.

We can conclude that any relative or absolute measure of user story size will result

in the same stories being scheduled in each iteration. We will continue to measure

user stories and PV using IEDs, but the reader should bear in mind that everything

that is said about PV from now on is applicable regardless of the measurement used.

5.5.2 Project Velocity and Project Planning

We have seen how PV can be used to allocate user stories to the next iteration.

Clearly, if we can determine how PV varies over time we will be able to predict the

 104

rate at which new functionality will be delivered. In particular, it allows us to predict

the point at which all of the functionality has been delivered and therefore when

development is complete. This in turn has a clear impact on project resourcing and

cost.

Suppose there are N stories in a project in total. If Ui is the estimated effort in IEDs

to complete story i, then the total development effort D to complete the project is:

∑
=

=
N

i

iUD
1

Equation 5-7

If the project velocity V is constant over each iteration then the number of iterations n

required to complete the project is:

V

D
n =

Equation 5-8

This formula is essentially what is being used in burn down charts [179] which are

traditionally used in one of the other agile development methods: Scrum [201]. Burn

down charts show the amount of functionality still to be delivered at the end of each

iteration (or sprint as iterations are referred to in Scrum). A hypothetical burn down

chart is shown in Figure 5-2. The slope of the graph is the project velocity and the

point at which the graph intersects the horizontal axis is the point at which all of the

functionality has been delivered.

There are several problems with this simple approach.

Figure 5-2 A typical Burn Down chart

 105

1. It takes no account of the trends in PV over time. Many projects report low initial

productivity, gradually rising on subsequent iterations [3][6][215].

2. It takes no account of the uncertainty in user story estimates. Jorgensen et. al. have

shown that there are wide variations in developers’ estimates for the same task,

and that even a single developer can give widely different estimates for a task on

two separate occasions [101][102][103][137].

3. Similarly there is risk associated with the size of the project. In iteration 5 in

Figure 5-2 more story points have been added than have been completed causing

the number of story points remaining to increase. If the velocity at iteration 4 were

extrapolated without taking account of this risk it would produce a highly

inaccurate and optimistic prediction for the project delivery time.

4. The simple approach relates development effort, measured in IEDs or story points,

to velocity. A manager needs to know how much actual effort in person-days to

allocate to the project. Actual effort E is related to development effort D via the

load factor l (E = l × D, see section 5.4.6).

5. Changes to the project environment, such as changes in XP practises, are not

taken into account.

These problems can all be addressed using BNs. BN learning can be used to

identify trends in PV and to determine the load factor. Risk is inherently modelled in

BNs by appropriate choice of uncertainty in the priors. Finally, environmental

changes can be modelled as causal relationships. Successfully attacking these

problems should result in a model which is richer and more accurate than a simple

burn down chart.

5.6 XP Models

Most of the effort models in common use on commercial XP projects are little more

than variations on the simple burn down chart discussed in the previous section. The

lack of formal requirements and a culture of minimising software process overheads,

mean that there are relatively few process metrics to model.

Williams and Erdogmus [211] developed a Net Present Value (NPV) [172] model

of Pair Programming (PP) – one of the key practices advocated by XP. NPV models

take into account the fact that earnings in the future are worth less than the same

dollar earnings today. The model combines:

 106

1. productivity rates,

2. code production rates (derived from the literature),

3. defect insertion rates

4. and defect removal rates.

Using empirical values for PP productivity and delivered defect rates

[46][154][213], the model predicts that pair programming is a “viable alternative to

individual programming”.

Padberg and Müller [156] also created an NPV model of XP. Their model uses

market pressure as the principle means of discounting the NPV. The model was tested

under various different assumptions about performance and defect rate improvements

under PP. The results indicate that the value of both of these parameters is crucial.

When market pressure is high, and there is sufficient improvement in both LOC and

defect rates, then PP can indeed deliver an advantage.

Several groups have constructed System Dynamics (SD) Models of XP. SD models

a system as a collection of stocks, flows and feedback loops, and was first applied to

software engineering by Abdel-Hamid [1][2]. Misic, Gevaert, and Rennie [136]

attempted to model the interaction of various XP practices. They particularly

concentrated on pair programming, refactoring, test driven development and iterative

development. Simulation results indicated that XP has an advantage when pairs

worked well together and did not swap frequently.

Kuppuswami, Vivekanandan, and Rodrigues [117] also created an SD model. They

were able to successfully simulate the flattened cost of change curve claimed by Beck

[21] (p. 23).

Cau et al [37] developed a custom simulation to model the XP process, calibrated

using data from a real XP project. Once calibrated, their model was able to reproduce

empirically derived results [70] about the effects of test driven development (one of

the recommended XP practices).

All of the above provide explanation, insight or validation of XP techniques. What

none claims to do is offer combined prediction and risk assessment for project

managers.

5.7 Summary

Extreme Programming is an agile development method which seeks to flatten the

cost of change curve over the development lifecycle. It’s core practices, such as

 107

iterative development, pair programming, test first development and onsite customer

interaction have been extensively studied and have been found to be generally

effective.

XP is still evolving however. Practices are being added and removed over time, and

the effectiveness of core practices continues to be studied. It is imperative therefore

that models of the XP development process make minimal assumptions about XP.

PV is the key metric in XP. It can be measured using any ratio scale. If we can

model how it changes over time using BNs then we can predict delivery dates with

greater accuracy as well as providing estimates of the uncertainty surrounding the

predictions.

 108

6 Adapting Causal Models to Iterative Development

We have seen how BNs can be successfully used to model software development

processes. There is an obvious way to extend these models to iterative environments:

simply take an existing model, such as Fenton, Krause and Neil’s Philips model (4.4),

and replicate it multiple times. Each copy then becomes a separate timeslice in a DBN

(3.2). There are several questions that must be raised when dealing with this approach

however.

1. What is the size of the resulting BN and are posteriors computable in an

acceptable period of time?

2. Is the data collection and data input required acceptable in agile projects?

3. Can multiple sources of project data lead to inconsistencies in the data?

4. Is an unambiguous interpretation of the project data always possible?

5. In an interactive tool like AgenaRisk [8], used to test the models developed in this

thesis, how can we build iterative models efficiently?

I address these questions in this chapter. As a result, we shall see that this approach

is unlikely to be practical in an agile environment. Instead, we shall start to develop

the case for learning BN models.

Novel contributions include a general purpose data extraction and mapping

mechanism for populating BN models with data from heterogeneous databases, and a

scripting language for building DBNs which separates out timeslice definition from

timeslice connection and observations.

6.1 Model Size

Suppose we use the PHILIPS model (4.4) as a template for building a DBN model

of an iterative software development environment. The Philips model contains 63

nodes. A small XP project might contain 10 iterations in a single release, giving a

total of 630 nodes for the total model. What impact will this have on the

computability of the model if we use the Junction Tree Algorithm (JTA) outlined in

Appendix B? We consider each of the stages of the JTA.

Moralisation

Suppose we have a moral graph M of a BN B. If B has n nodes, then adding a new

node N will add at most n -1 edges in M as moral connections are established to every

 109

node for which N is a parent. Typically this will only consist of one or two edges

however. The moralisation stage therefore grows as O(n).

Triangulation

Optimal triangulation, in the sense of minimising the sum of the edge lengths (in

effect the number of edges), is NP hard [141]. Optimal triangulation, in the sense of

minimising the weighted state space (i.e. the product of the number of states in each

node in a clique), is NP complete [15]. The algorithm used by Agena, is a greedy

algorithm (i.e. it makes a locally optimal decision at each stage in the hope that the

global solution will be close to optimal). The greedy algorithm works in polynomial

time [115].

Message Passing

Let C be the collecting clique in the Collect-Evidence phase. All cliques except C

emit a single message. Similarly, during the Distribute-Evidence phase every clique

except C receives a message. So if n is the number of cliques in the junction tree, then

2n - 2 messages will be passed in total. The number of messages passed therefore

grows as O(n). The number of cliques will not necessarily be the same for every

timeslice, since this depends on the exact operation of the triangulation algorithm.

However, the Markov condition limits the connectivity between timeslices, ensuring

that the number of cliques will grow as O(t), where t is the number of timeslices

[144]. We can therefore expect that the total number of messages passed will also

grow as O(tn).

Clique and Message Size

Clique sizes and message sizes all grow as the product of the number of states of

the nodes involved. If all nodes have s states, then cliques and messages will have sn

states, where n is the number of nodes. Clique and message sizes therefore grow

exponentially with the number of nodes.

Looking at these four items: moralisation, triangulation, message passing and clique

and message sizes, it is the size of the cliques which is the most serious concern.

Software process models include either effort or defect counts (or both). These are

 110

modelled as either continuous distributions or as integer interval distributions. In both

cases a wide range of values with suitable discretisations is required. This results in a

large number of states for these nodes. There also tend to be multiple instances of

effort and defect nodes as we have already seen in the Philips and Fenton, Krause and

Neil Project Level models. Cliques containing these nodes will therefore contain the

products of large numbers of states.

The JTA retains all of its cliques throughout the execution of the algorithm (so that

it all posteriors can be made available at once). A single junction tree for a software

process DBN model will therefore contain multiple copies of these large effort and

defect cliques.

Nodes in clique Number

of states

New_defects_in,
Pot_defects_given_spec_and_documentation_adequacy,
Prob_of_avoiding_defect_in_dev,
Quality_of_any_previous_documentation

200,000

Residual_defects_post,
Defects_fixed,
Total_defects_in

169,785

Defects_fixed,
Defects_found_in_testing,
Total_defects_in

153,615

Residual_defects_pre,
Total_defects_in,
New_defects_in

126,500

Inherent_pot_defects,
Prob_avoiding_spec_defects,
Pot_defects_given_spec_and_documentation_adequacy

61,600

Table 6-1 Largest clique sizes in Philips junction tree

As an example, the number of states in the five largest cliques in the Philips model

is shown in Table 6-1. Linked timeslices would likely include even larger cliques. The

total number of all states in all cliques in the Philips junction tree is of the order one

million. If each of these probability values is held as an eight byte double precision

real number, then the cliques require 8 Mbytes of storage. Adding the sepsets nearly

doubles this value to 16 Mbytes. If before and after values are held (to prevent

recalculation under different scenarios) then this value doubles again to 32 Mbytes.

This does not include, priors, marginals, evidence masks and graphical display

information. In fact, when run in AgenaRisk, the Philips model has a memory

footprint of over 100 Mbytes.

 111

This limits the usefulness of the JTA when constructing DBNs. This does not mean

that we cannot use models, such as the Philips model as the basis of a DBN timeslice.

However it does mean that we cannot unroll all of those timeslices and evaluate the

resultant BN using a single junction tree. We will have to use one of the specialised

inference algorithms mentioned in section 3.2.

6.2 Entering Data into BN Models

The Philips model was trialled extensively by Philips. Each project had to provide

29 separate pieces of information [67], of which 27 were qualitative in nature and two

were quantitative (both being code size in KLOC). If we used the Philips model as the

basis of a DBN model for an iterative environment, and we wished to preserve the

Markov property by not sharing common factors across timeslices, then we would

have to enter comparable amounts of information in every timeslice. In this section,

we examine how this data might be collected and how it might be input into the

model.

6.2.1 Quantitative Data Collection

Software process models can potentially combine quantitative data from a variety of

sources: defect data can be extracted from bugs databases, scheduling and effort

estimates from project plans, usage information from sales databases and web

download statistics. Examples are listed in Table 6-2.

Data Source Examples Usage

Bugs database Bugzilla Previous defect counts.
Model calibration.
Reliability growth curve estimation.

Project plan MS Project Key dates, effort estimates, actual efforts.

IDE Eclipse Software size metrics.
OO metrics.

Code management CVS
Perforce

Entropy measures.

Sales database Dates of new operational profiles where
software use changes.

Code coverage Cenqua
Coverlipse

Test coverage metrics.

CASE tools Rose Object oriented metrics.
Function points.

Table 6-2 Model data sources and their uses

 112

Much of this data must be entered into the model manually - a task which is both

laborious and error prone. This overhead is particularly unacceptable where metric

collection programmes are designed to tune a model to the local environment. If data

collected in one project only becomes useful in subsequent projects, after the model

has been tuned, then the project that collects the data derives no benefit from the

exercise.

Similarly, designers and developers are reluctant to sacrifice valuable time to

extract data from their own tools and enter it into the model. If causal models, such as

the Philips model, are to be effective as practical agile development tools then

automated data collection and analysis would seem to be highly desirable.

As can be seen from Table 6-2, there is a disparate set of data sources, possibly

used and maintained by quite separate individuals. This presents a problem since there

is no single coherent data dictionary across these diverse data sources. For example, a

software release identified as “release 1” in the project plan might be known as “phase

1” in the bugs database.

My initial attempt to build causal models focused heavily on this data collection

task. The aim was to extract data from multiple data sources and enter it directly into

the Philips, or equivalent, models. Timeslices could then be replicated at will,

knowing that the quantitative data required could be easily collected and inserted into

the model.

To address this, I developed a general purpose Data Extraction, Mapping And

Cleansing (DEMC) capability for use in AgenaRisk. DEMC had the following

requirements.

1. To extract data from any of the data sources listed in Table 6-2.

2. To map any value from one data source to any value in any other data source.

This acts as a substitute for a common data dictionary and as a partial

substitute for the lack of referential integrity.

3. To map query results to nodes in BN models. This enables the model to

automatically populate evidence from the data sources.

4. To use the query results from one source as parameters for queries in another

data source. For example, the project plan might define the phases of a project.

These phases would then be used to query the number of defects recorded in

the bug database.

 113

Data sources and queries could be defined interactively via dialog boxes, such as

the one shown in Figure 6-1, or via XML configuration files (see Appendix H for an

example). A demonstration of these capabilities was accepted for the 20th IEEE/ACM

International Conference on Automated Software Engineering [83]. A formal

description of the data import and mapping capabilities is given in Appendix E.

Figure 6-1 DEMC - the Data extraction, mapping and cleansing tool

6.2.2 Problems with Data Collection

The DEMC techniques described in 6.2.1 proved to be sufficiently flexible to

extract raw data provided by Philips from a spreadsheet and use it to create multiple

copies of the Philips model. It was also used to experiment with extracting and

combining data from Microsoft Project and Bugzilla. However, from the XP

perspective, it soon became apparent that there were problems with this approach.

1. Qualitative data, other than those items already entered into a spreadsheet, still

had to be entered manually.

2. Much of the qualitative data is meaningless in an agile environment.

3. There were problems trying to interpret the meaning of “residual defects”.

 114

The first problem is the simplest to explain. Very little of the qualitative data could

be replaced with project metrics. For example, consider the node “Regularity of spec

and doc reviews”. This is a ranked node with five possible choices. It specifies

whether sufficient specification and documentation reviews were taking place. In

order to arrive at this figure in some systematic way, it would be necessary to record

the number of such reviews as well as having an algorithm for deciding if that number

was sufficient. Further, this data would have to be maintained consistently across all

iterations in the agile environment. This is precisely what we wish to avoid: a

significantly enlarged metrics collection programme.

Without metric data, most of the data entry in the Philips model remains qualitative

and subject to expert judgement. Not only does someone have to enter this data

manually (because there are no metrics to import), but the interpretations of terms

such as “regularity”, “stability” and “quality” – terms with which the Philips model is

replete, must remain consistent across iterations. We cannot make these recurring

factors “global” since we wish to preserve the 1st order Markov property for

performance reasons.

The second problem is also quite straightforward to explain: much of the qualitative

data used in the Philips model simply does not exist in agile projects. The node

“Requirements stability” is a good example of this. In a traditional project, stable

requirements are a necessary condition for stable, and hopefully more reliable, code.

In an agile environment, the requirements are uncertain from the start and are

expected to be unstable.

The third problem, the interpretation of “residual defects”, is more complex. There

are two reasons why we wish to enter defect numbers into models.

1. In an iterative environment, we may be interested in the residual defect

predictions for the most recent phase. This prediction is more accurate if we

know the defect counts for previous phases and numbers of defects fixed.

2. Our model may have to learn some parameters associated with defect

prediction.

This gives us the problem of interpreting the meaning of “residual defects”. The

problem can be broken into two similar sub-problems.

3(a) When do you count a defect?

3(b) When do you stop counting defects?

 115

Problem 3(a) boils down to determining the definition of a defect. Do we only count

defects that cause the software to be unusable, or do we also count things that users

simply don’t like? Does our definition include missing functionality? Are multiple

reports of the same defect being included in the data? This is a well-known problem

and is discussed in detail in [61]. There are at least two distinct approaches we could

take to solving this.

1. We could build additional causal factors into the model to make the definition

of a defect unambiguous. For example, we might believe that a poor analysis

and design process leads to missing or poorly implemented requirements,

whereas inexperienced programmers lead to more instances of program

crashes. This would lead us to two distinct types of defects based on different

causal chains. Observations would then consist of the two defect types that we

had defined and these would have to be recorded separately in the bugs

database using criteria defined by the model. This makes the model larger and

increases the amount of data that must be collected – both things that we

would like to avoid.

2. We could try to learn the definition of a defect from the environment. In this

approach, the definition of a defect is “whatever gets recorded in the bugs

database”. We then adjust the parameters of the model to automatically make

predictions using the users expectation of what constitutes a defect.

This is the first time we have come across this basic choice between causal

modelling and learning. It provides a hint that there may be an alternative to building

large, comprehensive causal networks to model the agile software development

process.

Problem 3(b) is simply a statement of the well-known aphorism that no large piece

of software is entirely bug free – there are always more bugs to find. We can however

appeal to software reliability theory to perhaps provide us with a solution here.

6.2.3 Software Reliability Theory

The number of residual defects in a piece of software is not easy to estimate. If a

piece of software is released, and four bugs have been added to the bug database, this

does not mean that there are four residual defects. If the software has received little

use then there could be many more bugs remaining. Perhaps if we can model how the

 116

number of defects discovered varies with time, then we can estimate the total number

of defects remaining? This is the domain of software reliability theory [146].

The problem of estimating the number of residual defects in software is closely

related to the software modality and operational profiles. We adopt the definition of a

system mode given in [129] p.174:

“A system mode is a set of functions or operations that you group for

convenience in analyzing execution behaviour.”

Each mode has a distinctive operational profile, where the term “operational

profile” is as generally accepted within software reliability theory [129] – essentially

this is a probability distribution of the functional usage for a given system mode.

It is useful to introduce three categories of software modality.

• Single-mode software has a single operational profile.

• Multi-mode software has multiple operational profiles.

• Modeless software has no typical operational profile.

With single-mode software, the number of operations it is expected to perform is

well-defined and their statistical likelihood is well understood. The operational profile

used in testing has a high probability of being similar to the operational profile of the

operational system. Because of their well-defined behaviour, they perform the same

regardless of who tests the software and regardless of whether the tests are performed

in the lab or in the field. Examples of single-mode software might include such

elements as software switches, embedded consumer device controllers and avionics

measurement devices. A good example of single and double mode systems is given in

[121] where Levendel describes an early approach to iterative programming in the

telecoms industry and where a major introduction of new functionality lead to a

sudden increase in defect reporting.

With their single operational profile, single-mode programs appear to have a finite

number of faults where the rate of fault discovery decreases with time. (Note that

Musa [146] p.91 recommends that fault recording be measured with respect to

program execution time. Outside of controlled laboratory conditions this is almost

impossible to achieve. We must normally work with some surrogate, or estimate of

execution time). Because of this we might expect them to be ideal candidates for

 117

models such as the Goel and Okumoto (G-O) model [75]. This assumes that software

failure can be modelled as a non-homogeneous Poisson process. The resulting

estimate for the cumulative number of failures M(t) is given by:

)1()(bteatM −−= (4.13)

A brief derivation of this model can be found in [54]. The number a is the total

number of faults in the system, while b controls the rate at which the cumulative

number of failures asymptotically approaches a.

Figure 6-2 Musa fault data - Project 1

Musa [145] collected sixteen high quality data sets for use in software reliability

studies. Project 1 (Figure 6-2) shows a clear fit with the G-O model.

The G-O model works reasonably well for single-mode systems. As Whittaker

[210] points out:

“Software reliability theory appears to work accurately in telecommunications

and aerospace.”

By extension, he seems to imply that its value in other fields is sometimes limited.

 118

Multi-mode programs have multiple uses. For example, an email client will often

double as a newsreader. Tests that cover the email operational profile are unlikely to

uncover faults in the newsreader functionality. Here, one user of the program might

use an entirely different operational profile from another user and so may have quite

different perceptions of the program’s reliability.

Figure 6-3 Musa data - Project SS1C

Another example of the Musa data is shown in Figure 6-3. In this example it is less

clear that the G-O model is being followed. There are several places where the graph

looks as if it might be about to level off when the rate of fault discovery suddenly

begins to increase again. Failure to recognise the multi-modal nature of this software

product could lead to the misinterpretation of any one of these levelling off points as

the final value for the post-release defects count.

Modeless programs have no typical operational profiles. Examples include word

processors, operating systems, modelling programs etc. Attempts to test such

programs in the lab are unlikely to encounter exactly the same conditions as any user

experiences in the field. Any given user is equally likely to explore combinations of

functionality that have not been explicitly tested. With modeless programs, every new

user is likely to experience their own operational profile and consequently to

encounter faults which have never been detected before: the more users such a

program has, the more bugs will be found.

 119

In building early models of iterative development environments, I had hoped that it

would be possible to make estimates of the residual defects using a procedure similar

to the following.

1. Use expert judgement to select the modality of the software.

2. Knowing the modality, select an appropriate software reliability model.

3. Having selected a software reliability model, fit it to a time based analysis of

the bug database.

4. Use the reliability model to estimate the number of residual defects.

However, it soon became clear that this would be a major area of research in its

own right. Limits on the applicability of software reliability models have been known

for some time. As long ago as 1987, Dale [54] pointed out:

“Whilst it is possible to estimate current failure rates in fixed usage

environments with a fair degree of accuracy on the basis of failure data, it is

not possible to relate such estimates to different usage environments.”

Part of the problem lies in the simplistic definition of operational profiles.

Whittaker [210] argues that the notion of operational profiles must be extended to

take account of software complexity and the operational environment. Gittens,

Lutfiyya and Bauer [72] extend this further by including the need to measure the size

and complexity of runtime data structures.

In [72] the example happened to be a relational database. Data structures will

include results sets, table caches, indexes and so forth. These cannot be predicted in

advance and can in principle be of any size and complexity. The same is true of office

programs such as a word processor or spreadsheet. Their internal data structures

reflect the problem currently being addressed rather than any operational profile

which might have been tested prior to release.

Contrast this with single-mode programs. These typically run in embedded devices.

Their state is characterised by the state of their internal variables, most of which will

have been explicitly created by the programmer. Dynamic data structures are limited

both by hardware constraints and by the operational profile of the device.

Even where a program is clearly single mode, it is not always possible to assume a

characteristic software reliability model. Figure 6-4 shows the total number of bugs

over time in the bug database for a popular open source utility [163]. The utility in

 120

question provides a web based administration utility for the MySQL database. There

could be any number of reasons why there is no clear levelling off of this graph. For

example, it may simply be that as the tool increases in popularity, many duplicate

bugs get recorded (there is no cleansing of the data shown in this graph).

Figure 6-4 phpMyAdmin bug reports

Littlewood argues (see for example [127]) that, given a well defined operational

profile and high quality test data, it is possible to retrospectively test reliability models

against the data and choose the best model with reasonable accuracy. The problem is

that in most situations, neither of these conditions is true. Further, reliability models

assume that correcting a software defect does not introduce new defects, an

assumption that for the most part cannot be relied upon.

For the moment, software reliability theory does not provide a single well

understood reliability model that can be applied to every project, nor does it provide a

robust means of a priori choosing which reliability model to apply.

 121

6.3 Separating Model and Object Structure

The AgenaRisk tool provides numerous facilities which make it an appropriate tool

for building Dynamic Bayesian Nets (DBNs): the easy linking of predefined BNs, its

forward only fully factored Boyen-Koller inference algorithm [3.2.4], mixing of

discrete and continuous approximation nodes, and its ability to easily incorporate a

wide range of distributions and expressions when constructing NPTs.

However, AgenaRisk is primarily a GUI tool - BNs are created and manipulated

graphically. This provides a highly intuitive interface which allows BNs to be rapidly

constructed by inexperienced users. However, as with all GUI interfaces, it excels

when individual changes must be made, but quickly becomes inefficient when many

repetitive tasks have to be performed.

The creation of DBNs involves many such repetitive tasks. A typical DBN

development lifecycle might look something like this.

1. Create the main timeslice object. This includes creating the basic causal link

topology as well as the NPT expressions.

2. Optionally create an initial timeslice to provide some initial input to the

model. This is often necessary since the main timeslices contain a set of

outputs to feed the next iteration’s inputs. The first timeslice can either have

default distributions and/or evidence entered, or an initial object can be used to

supply these values.

3. Create multiple instances of the necessary Risk Objects and link outputs and

inputs together.

4. Test the model.

5. Determine any errors in the mode.

6. Edit the timeslices used in the model and repeat from step 3.

The main problem with this is that changes made to timeslices in step 6 do not

automatically get replicated in all timeslices in the model. The model must be rebuilt

using the newly edited timeslice. In OO parlance, there is no distinction between

classes and objects. We would like to be able to edit a BN class and then have all

instances of that class include the new changes.

A similar situation exists when building hierarchical statistical models. Here, a

small number of nodes encapsulate parameters which define a statistical distribution.

The values of these parameters are learned by creating multiple evidence nodes which

 122

cause the parameters to be updated. Here, many copies of the evidence nodes must be

created which replicate their own internal structure as well as their relationships with

the parameter nodes and with each other.

Agena have created an API to allow the AgenaRisk engine to be accessed from Java

code. This is a powerful facility which makes it relatively simple for Java

programmers to create arbitrarily large hierarchical or dynamic BNs. This however

suffers from its own problems.

1. The API sacrifices one of AgenaRisk’s greatest strengths, namely its powerful

user interface. In many cases this may be exactly what is wanted, however to

make models that are easily understood by non-specialists the GUI is essential.

2. The amount of code required to create non-trivial models quickly becomes

quite large.

3. Users need to know the Java programming language and have a suitable

development environment to support it.

To overcome some of these difficulties, I have added a scripting language to the

AgenaRisk toolset. Scripts consist of short text files with lists of commands which

allow Risk Objects to be created, nodes to be copied, links to be created or deleted,

and evidence to be entered. This scripting capability provides many of the facilities

needed to construct DBNs and hierarchical models, without the need to either

sacrifice the GUI interface or setup a Java development environment.

The DBN development lifecycle remains the same, except that step 3 is now

performed by the script. Step 4 can also be placed in scripts. This automates two of

the most time consuming aspects of model development, greatly reducing the time

required to refine and test models. When a change has to be made to a node in a

repeated timeslice, it is a simple matter of editing the script and re-running it. Models

can be rebuild in a matter of minutes, rather than hours, and with a greatly reduced

probability of mistakes being made.

The full syntax of the scripting language, together with some example scripts, can

be found in Appendix C.

6.4 Summary

We have seen that the naïve approach, of simply taking a model like the Philips

model and replicating it over multiple timeslices leads to several problems.

1. The model becomes extremely large and memory intensive.

 123

2. Large amounts of qualitative data need to be supplied with each iteration.

3. There are problems in estimating the number of residual defects for use in

defect prediction models. Software reliability theory does not help us with this

problem.

4. We have highlighted the need to build BN timeslices independently of the

DBN which ties them together.

We saw in section 6.2.2, that there were two ways to deal with the ambiguous

definition of defects. One was to construct causal models of the various defect types

and record them separately in the defects database. The other was to learn what was

meant by a defect in a particular project environment. We will see in the next chapter

how this latter approach greatly simplifies our software process models and leads to a

practical agile development model of XP project velocity.

 124

7 A Learning Project Velocity Model

In Chapter 2 we showed why traditional software process models, particularly

regression based models, were often inadequate and provided no natural measure of

risk assessment. We then went on to describe Bayesian nets in chapter 3 and

explained why they were relevant to software projects. Examples of existing Bayesian

net models were then presented in chapter 4. Initial attempts to simply replicate these

models in an iterative environment faltered for the reasons described in Chapter 6.

However, in the process of trying to develop these early models, it became clear that

there was an alternative to purely causal models. That alternative was to create a

learning model.

The main novel contribution of this chapter is to introduce and validate dynamic

Bayesian nets as a means of modelling iterative software development. PV data is

collected from the first iteration in any XP project. This is incorporated into the

model, enabling it to learn key parameters and increase the confidence of its

predictions in subsequent iterations. We show that, with very little data, it is possible

to correct the model’s prior assumptions and quickly produce accurate models of PV

with associated risk assessments.

First, we must discuss the difference between causal and learning models.

7.1 Causal vs. Learning Models

All of the software process models that we have seen so far, attempt to model the

causal relationships between different factors in the software development process.

So, for example, experienced developers will be more productive, producing more

code in a shorter period of time, but they will be less productive if the requirements

are sufficiently complex. There are a number of possible problems with this approach.

1. We may get the causal relationships wrong. Causal models rely on the

expertise of the modeller to include all of the relevant factors with their proper

causal relationships and the strength of those relationships. (Although it

should be noted that considerable research has been performed in learning the

topology of BNs from databases. See for example Neapolitan [149] (Ch. 8).

These techniques are not applied in causal models of the software

development process dues to the lack of a sufficiently comprehensive

database.)

 125

2. Much of the data is subjective. Clear rules must exist for selecting a particular

subjective value. Those who enter the observations must be aware of any

assumptions that the modeller has made. For example, the node “Programmer

capability” in Figure 4-6, is intended to mean “Programmer capability relative

to what is required on the project”. If the programmer is inexperienced, but the

programming task is simple, then their lack of experience may not be a

problem. In a large causal model, such as the Fenton, Krause and Neil models

of Chapter 4, there can be a large number of these rules.

3. In an iterative environment the interpretation of a node must be consistent

across iterations. If the person who enters data into the model changes from

one iteration to the next, then their assessment of some subjective judgements

might change also.

An alternative to causal modelling, is to learn about the local environment. So

instead of trying to ascertain all the possible influences on productivity, say, we

simply measure the actual productivity. This looks like it suffers from the same

problem we highlighted in section 6.2.1, namely collecting metrics in one project

which are only of value to a later project. However, in an iterative environment this is

not the case. We can learn about productivity, for example, from early iterations and

then use this to modify our initial assumptions (which can be based on industry

averages).

Note that these two approaches, causal modelling and dynamic learning, are not

mutually exclusive. We can have a learning model which still includes some causal

factors. Conversely, we can have a largely causal model which learns some of it

parameters. The models presented later in this chapter are primarily learning models,

but they still include some causal elements. A good discussion of causality and

learning in probabilistic models can be found in Krause [116]. Before looking at these

models in detail, it is useful to consider the learning technique that we will use.

7.2 Why model Project Velocity?

In section 5.5 we defined Project Velocity (PV) as the sum of the ideal engineering

time estimates of user stories completed in the last complete iteration. PV is therefore

a measure of how much functionality a team can deliver in an iteration. We have

shown in section 5.5.2 why PV is so important to project planning and how it can

naively be used to predict project timescales. We also pointed out the pitfalls of

 126

ignoring trends in PV and in ignoring project risk. We will now build a DBN model

of PV which addresses these concerns.

Project Velocity (PV) is the one management metric that is nearly always available

in XP. By modelling PV, as opposed to some other effort based metric, we are

therefore leveraging data collection which we know already takes place. We set the

following key requirements that the model must satisfy.

1. It must monitor and predict PV, taking into account the impact of relevant

process factors.

2. For computability reasons, the core model must be very small. This enables

it to be replicated multiple times in order to represent the multiple iterations

of an agile development environment.

3. The model must be able to handle different types of data for different

environments. In particular, the model must handle key XP practices, while

being dependent on none of them.

4. The model must be capable of replicating empirical behaviour. In particular,

many projects report low initial productivity, gradually rising on subsequent

iterations [3][6][215].

5. The model must learn from data, either as a result of observations or as a

result of expert judgment entered as evidence.

6. It must give useful and clear advice to managers.

7.3 Process factors

It is useful to distinguish between total iteration effort and actual productive effort.

Total iteration effort (“total effort”) is simply the product of the number of people

available on the project (possibly non-integer) and the number of days in the iteration.

Actual productive effort (“productive effort”) is that part of total effort that directly

contributes to user story completion. This includes designing, coding and testing

activities. Other project overheads, such as team meetings, administrative duties,

mentoring and learning, while they may be perfectly constructive uses of time, are not

counted in productive effort.

This definition of productive effort is intended to mimic the definition of PV. The

sole difference between the two is that productive effort is the actual effort which

goes towards delivering functionality (just as if it had been measured using timesheets

– see section 5.5), whereas PV is the estimated effort for the same work.

 127

To model the relationship between total iteration effort and actual productive effort,

we introduce a single controlling factor which we call Process Effectiveness, e.

Process Effectiveness is a real number in the range [0,1]. A Process Effectiveness of

one means that all available effort becomes part of the productive effort.

The Process Effectiveness is, in turn, controlled by two further parameters:

Effectiveness Limit, l, and Process Improvement, r. The Process Improvement is the

amount by which the Process Effectiveness increases from one XP iteration to the

next. To allow for failing projects, the Process Improvement can take on negative

values.

The Effectiveness Limit recognizes the fact that there are often limits to how

productive a team of people can be. Effectiveness Limit is therefore the maximum

value which the model allows Process Effectiveness to take.

Note that all of this relies on minimal assumptions: effort either contributes to

completed User Stories, or it does not. The ratio between productive effort and total

effort exists whether we call it Process Effectiveness or not. This ratio varies between

iterations and has a limit, even if the limit is unity. As the core model contains

variables based only on these factors, it too is based upon minimal assumptions.

7.4 Bayesian Net Model of Project Velocity

li-1

ri-1

ei-1

bi-1

Ei Ai

Vi bi

li

ri ei

= bi Ai

= ei Ei

= TNormal (ei-1+ ri × (li - ei-1) ,
 0.05 , 0 , 1)

Figure 7-1 Project velocity model

The BN used to model project velocity is shown in Figure 7-1. Table 7-1

summarizes the model variables for the BN. Measures of effort are denoted by capital

letters. All other variables use lower case letters. Subscripts are used to denote a

specific XP iteration. For example V2 denotes the velocity in iteration 2. Where the

iteration is not important, we drop the subscript and refer simply to V.

 128

Symbol

Meaning

di Number of working days in iteration i. di = 0, 1, 2, ... This is an integer value.

pi Number of team members in iteration i. This can be fractional if one or more

people do not work full time on the project. ei ∈ [0, ∞).

si Productive effort to date. si = si-1 + Vi = ΣVi, si ∈ [0,∞).

Ei Iteration effort in man-days. Ei = pi × di, Ei ∈ [0,∞).

Ui
j
 Estimated effort of jth user story in iteration i. Ui

j ∈ [0,∞).

Ai Actual productive effort in iteration i. Ai = Ei × ei, Ai ∈ [0,∞).

Vi Project Velocity in iteration i. ∑=
j

j

ii UV , Vi ∈ [0,∞).

bi Estimation bias. bi = Vi / Ai, bi ∈ [0,∞).

ei Process effectiveness in iteration i. Vi = Ei × ei, ei ∈ [0,1].

fi Load Factor in iteration i. fi = Ei / Vi = 1 / ei. Used to estimate timescales.

li Effectiveness limit. The maximum value that the ei can take, li ∈ [0,1].

ri Process improvement. ei = ei-1+ ri × (li - ei-1), ri ∈ [-1,1].

Table 7-1 Symbol definitions

When we wish to distinguish between a model prediction and a measured value, we

will use an underscore to denote the measurement. So if V3 is the predicted value for

the velocity at iteration three, then V3 is the measured value.

Not all of the variables shown in Table 7-1 are shown in Figure 7-1. Several of the

variables are included only to make the definitions of others more rigorous (d, and p).

Some exist to relate the model to XP concepts (f and U), and others to relate the

model to management concepts (s).

 Figure 7-1 shows a single timeslice but with the link nodes from the previous

timeslice shown lightly shaded. The link nodes to the next timeslice are shaded black.

Figure 7-2 shows the same model, this time “rolled out” as a three iteration DBN (link

nodes are shaded).

 129

l1

r1

e1

b1

E1 A1

V1

l2

r2

e2

b2

E2 A2

V2

l3

r3

e3

b3

E3 A3

V3

Figure 7-2 PV Model as a DBN

The process effectiveness limit (li) and rate of process improvement (ri) are the key

parameters in this model. Between them they control the process effectiveness node,

which in turn controls the velocity node. It is important that the model is capable of

adjusting these parameters as a result of entering data about the project. In particular,

the model must respond to observations of V i.

7.5 Iteration Model

li-1

ri-1

ei-1

li

ri ei = TNormal (ei-1+ ri × (li - ei-1) ,
 0.05 , 0 , 1)

Figure 7-3 Fragment 1 - Process effectiveness nodes

The BN shown in Figure 7-1 is best thought of as comprising three distinct

fragments. Fragment 1 controls the Productive Effort (Figure 7-3). A single variable,

Process Effectiveness (ei), is assumed to determine the Productive Effort. High

Process Effectiveness means a high Productive Effort and a correspondingly high

velocity. Process Effectiveness increases or decreases based on the value of the

Process Improvement (ri). It is constrained to the range [0, li].

 130

The CPD of li is a function of li-1. In this case li is set equal to li-1. The process

effectiveness limit (li) is really a single variable which is global to all timeslices.

Copying it between timeslices allows us to preserve the first order Markov property.

Similarly ri is just a copy of ri-1. This is the same process of parameter learning that

we saw in section 3.2.3.

The process effectiveness in the current iteration is just the process effectiveness

from the previous iteration plus the process improvement times the difference

between the previous process effectiveness and the effectiveness limit. For positive ri

this gives a rising ei which rises asymptotically towards li. The whole expression for ei

is surrounded by a TNormal expression with a variance of 0.05. As explained in

section 7.8.6, this was needed in order to improve the effectiveness of the

approximate inference algorithm.

Ei Ai = ei Ei

Figure 7-4 Fragment 2 - Effort nodes

Fragment 2 contains the "effort" nodes (Figure 7-4). It combines the total Iteration

Effort (Ei) with the process effectiveness (ei) to create the actual Productive Effort

(Ai). Note that we do not expect Ai to be observed in real projects.

bi-1 Vi bi = bi Ai

Figure 7-5 Fragment 3 - Project Velocity

Fragment 3 holds the project velocity (Figure 7-5). Velocity can either be predicted

by the model (Vi), or once an iteration is completed, it can be entered as evidence (Vi)

and used to learn the model parameters. The bias, bi, allows for any consistent bias in

the team’s effort estimation. If there was no bias then the productive effort, A, would

be the same as V and there would be no need to distinguish between the two.

7.6 Setting the initial conditions

An initial timeslice, Iteration 0 (shown in Figure 7-6), is used to set the initial model

conditions.

 131

l1

r1

e1

b1

E1 A1

V1

l0

r0

e0

b0

Figure 7-6 Initial Velocity model

For iteration 0, the prior distributions of the input effectiveness limit (l0), process

improvement (r0) and process effectiveness (e0) are all set to be normal distributions,

with variances of 0.1 and means of 0.8, 0.2 and 0.3 respectively. These values are

based on a controlled case study by Abrahamsson and Koskela [3], where process

effectiveness varied between 0.4 and 0.75. We have simply extended this range

slightly and chosen r0 so that the lowest to highest transition can take place within

four iterations.

The prior of the estimation bias (b0) is set to a log normal distribution with a mean

of approximately 1.0, and a variance of 0.1 (the expression “Log Normal 0 0.3”

shown in the script in Appendix F, gives the figures for the underlying normal

distribution). The log normal distribution follows from the fact that the bias cannot be

less than zero but has no upper bound. For example, a pessimistic bias, where

estimates are 2 times the actual, results in a bias of 2, whereas an optimistic bias

results in a bias of 0.5. This distribution is confirmed empirically, for example by

Little [126].

The estimation bias reflects the cumulative bias of the whole team. In order to

significantly deviate from a value of one, there must be a systematic tendency for the

team to overestimate or underestimate the size of user stories (for example, due to a

different choice of measurement units). As such, the variance of this node is not

directly related to the estimation bias of individuals, as reported by Jørgensen et. al.

[102][103][137]. The variance has therefore been chosen to be considerably smaller

than typical values reported by Jørgensen.

 132

The choice of these priors is discussed further in the “Conclusions and Discussion”

section at the end of this chapter.

Evidence is entered in all of the Ei nodes so the prior distributions of the Ei nodes

have no effect.

7.7 Model Behaviour

Figure 7-7 shows the predicted values of the PV for a hypothetical project with 10

iterations and 50 hours of effort available in each iteration (i.e. Ei = 50, i = 1,…,10).

The central dotted line is the mean, with the outer dotted lines showing +/- one

standard deviation. The solid line is the median value. This is based solely on the

model’s initial conditions.

The Process Effectiveness increases with each iteration by an amount equal to the

Process Improvement. It flattens out as it begins to hit the Effectiveness Limit. As can

be see from the graph, this leads to the PV starting fairly low and gradually increasing

with each iteration. Being able to model and predict this type of behaviour was one of

the main objectives of the core model.

Figure 7-7 Project velocity values Vi – median, mean, mean ± 1 SD

This is our “Baseline” scenario, with no PV evidence entered into the model. By

entering PV evidence, we can construct various alternative scenarios and compare the

learned parameters and predicted values of future PV. The values shown in Table 7-2

were used to construct three such scenarios, all based on 50 hours of available effort

per iteration. No values were entered for V9 or V10, allowing the model to predict these

 133

values. The three scenarios represent projects that are: failing, performing as

expected, or progressing with great success. We refer to these as the “Failing”,

“Average” and “Success” scenarios respectfully.

Note that the “Success” scenario uses deliberately unrealistic figures in order to test

the range of the model.

Scenario\PV V1 V2 V3 V4 V5 V6 V7 V8

Failing 2 3 3 4 4 3 4 4
Average 20 25 27 28 28 29 30 31
Successful 200 205 210 215 219 223 225 227

Table 7-2 PV values for three scenarios

7.7.1 Parameter Learning in Different Scenarios

Figure 7-8 shows the resulting distributions of the bias node, b10. There are four

distributions, one for each scenario. The “Failing”, “Average” and “Baseline”

scenarios have mean values close to one, although both the Failing and Average

scenarios have reduced variances compared to the baseline. The reduced variances are

to be expected from scenarios where evidence has been entered.

Success
Mean 4.3

Var 0.016

Average
Mean 0.90

Var 0.001

Baseline
Mean 1.05

Var 0.1

Failing
Mean 0.64

Var 0.03

Bias

P
ro
b
ab
il
it
y

Figure 7-8 Bias distribution iteration 10, b10

In Figure 7-7 the Baseline scenario predicted values for V1 to V8 in the range 18-30.

However the Success scenario entered evidence in the range 200-227, indicating that

 134

the project team has done 200-227 estimated IEDs in a single iteration with only 50

man-days of effort. Clearly this can only come about if their estimates are

significantly biased, and indeed, the model suggests that the bias in this case has a

mean value of 4.3. This only accounts for part of the high PV values however. The

remainder is accounted for by an increased effectiveness limit (Figure 7-9) which

allows a greater process effectiveness.

 Success

Average

Baseline

Failing

Figure 7-9 Effectiveness Limit li, median, 5 iterations

Success

Average

Baseline

Failing

Figure 7-10 Process Improvement ri, median, 5 iterations

As we might expect, the Failing scenario shows a poor effectiveness limit and a

very small improvement in process effectiveness (Figure 7-10). Surprisingly, the

success scenario shows an even worse process improvement. However, this is because

 135

the model is forced to assume a very high process effectiveness in the initial

iterations. The values provided are so far outside the normally expected range that the

model is continually trying to compensate by bringing the process effectiveness back

down again. By iteration 6 the process improvement finally begins to stabilize.

Both the Effectiveness Limit (Figure 7-9) and the Process Improvement (Figure

7-10) change as evidence is entered in the first eight iterations. The model therefore

learns as new evidence is entered and changes its predictions accordingly.

Figure 7-11 shows the behavior of the Bias node, bi, in the Average scenario. The

central dotted line, which is almost co-incident with the solid line, shows the mean

and median values respectively. The outer dotted lines show the mean ± 1 standard

deviation (SD). The SD gets smaller as more evidence is entered into the model. This

illustrates that, not only does the model learn the values of its parameters, but the

uncertainty in those values decreases as more evidence becomes available.

Figure 7-11 Bias bi, Average scenario, median, mean ± 1 SD

7.7.2 Indicator Nodes

XP practices cannot be categorized as simply being “implemented” or “not

implemented”. There are degrees to which various practices are adopted. For

example, a team may choose to program in pairs for complex parts of the code and

program individually when writing routine code. It is important therefore that XP

practices are represented by nodes with a sufficient range of states to reflect the

degree of variation of that practice within the project. Boolean nodes are not sufficient

for this.

An indicator node for the Effectiveness Limit is shown in Figure 7-12: the

 136

“Collective ownership” node. This is the extent to which collective code ownership is

practiced. It is a ranked node, consisting of five discrete values ranging from Very

Low to Very High. Ranked nodes allow the user to enter a range of values for

“Collective Ownership”. The probability of these five values is derived from a

truncated normal distribution whose mean is li, and whose variance is arbitrarily set to

0.1. This distribution ensures that a high degree of collective ownership leads to a

high effectiveness limit. The variance determines the strength of the relationship.

More information on ranked nodes and the use of the truncated normal distribution

can be found in section 3.1.2.

li-1

ri-1

ei-1

li

ri ei

Collective

ownership

Figure 7-12 The "Collective Ownership" indicator node

With no evidence, the node plays no part in the model, and its parent, li, remains

constant from one iteration to the next (the “Baseline” scenario). However, when we

set the value of “Collective ownership” in each iteration to "Very High" (the “High”

scenario) then the situation changes. The evidence back propagates to li. Because of

the learning mechanism described in section 7.1, the effect is cumulative and the

mean value increases across iterations. The difference is shown in Figure 7-13.

Values entered into this node are examples of expert judgment. Just as we saw with

the causal BN models in chapter 4, it is easy to combine subjective judgements, such

as the extent of “Collective ownership”, with numeric values such as total iteration

effort.

Two other scenarios are also shown, one where the Collective Ownership node is

always set to “Very Low” (the “Low” scenario) and a slightly more realistic case (the

“Mix” scenario). In the Mix scenario, Collective Ownership starts off “Very Low”.

However management realise that there is a problem and take steps to improve

 137

collective ownership. By iteration 4 Collective Ownership improves to “Medium” and

by iteration 6 it achieves a “High” value.

High

Mix

Baseline

Low

Figure 7-13 Effectiveness Limit li with and without indicator node evidence

The extent to which XP practices are implemented can therefore have a dramatic

effect on the model parameters, which in turn propagates through to the model’s

predictions.

It is not necessary to include all XP practices as indicator nodes in all iterations. If a

practice, such as pair programming say, is consistently maintained at the same level in

all iterations, then its effect will be included in the learned values of the model

parameters. Only practices which affect project velocity and which vary significantly

between iterations, need to be included as indicator nodes.

7.8 Model Validation

In this section we apply the model to an industrial case study (section 7.8.1). The

model learns from the initial data entered from the project (section 7.8.2) and adjusts

its predictions once beneficial XP practices are taken into account (section 7.8.3).

Section 7.8.4 provides an example of how the model can be calibrated for a specific

XP practice. Finally, in Section 7.8.5 the model provides predictions for the time

taken to deliver a fixed amount of functionality. These are in good agreement with the

actual functionality delivered.

 138

7.8.1 The Motorola Project

Williams, Shukla and Anton [215] provided a detailed description of an XP project

developed at Motorola. The project was developed in a series of eight iterations of

between two and three weeks duration. The number of people on the team varied from

three to nine over the duration of the project. The full data set is shown in Table 7-3.

 i 1 2 3 4 5 6 7 8

di 15 15 15 16 12 10 8 10
pi 3 3 6 6 7 7 9 4
Ei 45 45 90 96 84 70 72 40
V i 9 13 35 30 40 40 36 20

Table 7-3 Motorola project data

The definition of Project Velocity used by the Motorola team corresponds to what we

have called Process Effectiveness. We will continue to use the definition given in

Equation 5-1. The values for Vi given in Table 7-3 have been calculated using our

definition.

Iteration 1

Iteration 8

Project Velocity

P
ro
b
ab
il
it
y

Figure 7-14 Distributions for Vi , one per timeslice

Initially we simply enter values for Ei into the model (no values for Vi entered).

Figure 7-14 shows the resulting marginal distributions which are generated for the Vi

node. There is one distribution for the node in each timeslice.

The median values from the Vi distributions are shown in Figure 7-15 (the

“Predicted” graph). Actual values for Vi are shown in the same figure for comparison

(the “Actual” graph). The large “Actual” dip in iteration 4 is put down to a post-

Christmas malaise by the Motorola team. (Surprisingly, given the extent of the dip in

 139

productivity, this is a phenomenon which does not appear to have been extensively

studied.)

Predicted

Actual

Figure 7-15 Predicted vs. actual Motorola V (medians). Actual values are bold, predicted

values are dashed. The shaded area shows predicted medians +/- 2 standard deviations.

7.8.2 Parameter Learning

There are a number of problems with the predicted values in Figure 7-15. The most

obvious is that, apart from iteration 6, the predicted values are consistently too high.

In this section we demonstrate how the model can learn from real project data and

quickly improve the accuracy of its predictions.

The effect of this learning process can be seen by taking the “Predicted” scenario

and entering Vi observations for completed iterations. As each new piece of

information is entered, back propagation takes place, causing the distributions for the

model parameters to be updated. These updated parameter distributions then affect the

predictions of future iterations.

The graphs in Figure 7-16 show the change in predicted values when V1 and V2

have been entered. The whole of the “Predicted” graph moves to lower values as the

model learns from the observations. The predictions for V3 and V4 improve as a result.

However, the predicted values for V5, and V6 are worse.

 140

Predicted

Actual

Figure 7-16 Predicted and actual V, 2 observations. Actual values are bold, predicted values

are dashed. The shaded area shows predicted medians +/- 2 standard deviations.

We can examine this more quantitatively by calculating the Magnitude of Relative

Error (MRE) of the model before and after learning takes place. The results,

calculated from:

i

ii

i
V

VV
MRE

)(Median−
=

Equation 7-1

are shown in Figure 7-17. (We use median values from the PV distributions rather

than means. The large range of the model causes distributions to grow “tails” which

skew the mean values.) Taking the Mean MRE (MMRE), the MMRE improves from

0.34 before learning to 0.16 after learning. The variance of the model’s 8 MRE values

also decreases from 0.08 to 0.004, showing that there is greater consistency in its

predictions.

The Williams, Shukla and Anton paper [215] points out that various XP practices

were implemented more effectively in later iterations. In the next section, we show

how this can be incorporated into the model.

 141

Figure 7-17 Relative error of model before and after learning

7.8.3 “Onsite customer” as an Indicator Node

An indicator node for the Effectiveness Limit is shown in Figure 7-18: the “Onsite

Customer” node. This is the extent to which an authoritative customer was available

to answer questions about requirements and provide feedback on development. It is a

ranked node, consisting of five discrete values ranging from Very Low to Very High.

These discrete values define five equal, discrete partitions of the real number range

[0,1].

li-1

ri-1

ei-1

li

ri ei

Collective

ownership

Onsite

Customer

Figure 7-18 The "Onsite Customer" indicator node

The probability of these five values is derived from a truncated normal distribution

whose mean is li, and whose variance is set to 0.1. This distribution ensures that a

 142

high degree of customer input leads to a high effectiveness limit.

It is important to emphasize that the values entered into the “Onsite Customer” node

must be relative to the need for customer input. If the project team have developed

similar projects for this customer in the past, or are themselves experts in the

application domain, then constant customer input may not be useful. In these

circumstances a “Very High” value for “Onsite Customer” might be appropriate, even

if the customer is not physically present, but was still able to provide input when

needed.

Figure 7-19 Effectiveness Limit with and without indicator node evidence. Actual values are

bold, predicated values (after “Onsite Customer” evidence) are dashed. The shaded area shows

predicted medians +/- 2 standard deviations. The dotted line shows the learned values without

“Onsite Customer” evidence.

 Figure 7-19 shows how the indicator node’s parent is affected by changes in its

values. The median Effectiveness Limit when only effort data has been entered is

simply a straight line, since no learning takes place (not shown). When all the Vi data

is entered, then the Effectiveness Limit varies throughout the project (the solid, bold

curve). The dotted curve shows the Effectiveness Limit that is learned when only V1

and V2 have been entered as observations. This is the curve which is responsible for

the modified predictions shown in Figure 7-16.

At the start of the 4th iteration the Motorola team’s access to their customer

improved and from the 5th iteration onwards the team had constant access to their

customer onsite. The “Onsite Customer” indicator node was therefore set to “High”

for the fourth iteration and “Very High” for the subsequent iterations. The result is the

dashed curve. It shares the same values for the Effectiveness limit as the “Learned”

 143

curve, until the values for the Onsite Customer indicator node are modified.

Figure 7-20 V with and without Onsite Customer evidence. Actual values are bold, predicted

values are dashed. The shaded area shows predicted medians +/- 2 standard deviations. The

solid grey curve shows the predicted values before Onsite customer evidence.

Figure 7-21 Change in relative error with onsite customer

The result of entering indicator node evidence is an improvement in the predicted Vi

values, as shown in Figure 7-20. Again, we can graph the relative error of the median

predictions as shown in Figure 7-21. In 3 out of 5 iterations, the MRE improves as a

result of taking the onsite customer into account. It becomes worse in iterations 4 and

8 however. In iteration 4 it predicts an increase in PV, but it does not take into

account the post-Christmas malaise. Iteration 8 was the final iteration. In the words of

the paper authors who reported the Motorola project [215]:

 144

“The velocity is only approximate for the last iteration because the

team created and destroyed story cards throughout the iteration.”

The MMRE drops from 0.157 without the onsite customer node, to 0.139 with it.

The variance of the relative errors also drops from 0.004 to 0.002 demonstrating

greater consistency in the model’s predictions.

7.8.4 Calibrating the Onsite Customer Node

The distribution for the “Onsite Customer” node is based on data from Korkala,

Abrahamsson and Kyllönen [112]. This paper is discussed in section 5.4.11.

li-1

ri-1

ei-1

li

ri ei

mi = 1 - ei

di oi = mi - oi

Onsite

Customer

Figure 7-22 BN used to calibrate the Onsite Customer node

Our model does not explicitly include details of defect fixing effort (including

requirements defects); they are simply included as effort which does not contribute to

V. We therefore make the following definitions and assumptions concerning the

relationship between defect fixing effort and non-velocity effort.

1. Define “Miscellaneous Effort”, mi, to be the fraction of effort that does not

contribute to completed user stories: Ei = Vi + mi.

2. Miscellaneous effort is composed of a variable component due to defect

fixing effort, di, and a set of process overheads, oi: mi = di + oi. This does not

provide a full description of miscellaneous effort, but it is adequate for this

model. Note that the process overheads oi are not necessarily fixed across

iterations. Indeed, we might expect these overheads to decrease as the team

 145

become more familiar with the software development process.

3. When the onsite customer input is at its maximum, the defect fixing effort is

at its minimum.

With these assumptions in place, we can use the BN shown in Figure 7-22 to

calibrate the Onsite Customer node. The algorithm proceeds as follows.

1. An initial guess is made at the Onsite Customer distribution.

2. The values of oi are chosen so that, when the Onsite customer node is set to

“Very High”, di produces a constant mean value of about 6% across all

iterations. The values of oi are entered as observations in the model.

3. Modify the Onsite Customer distribution, with the value set to “Very Low”

until the time spent fixing defects in iteration 3 is about 40%.

4. Repeat steps 2 and 3 until both conditions are satisfied simultaneously.

Very H igh

H igh

M ed ium

Low

Very Low

Figure 7-23 Defect effort % for each Onsite Customer setting

The resulting defect effort percentages for each value of “Onsite Customer” across

four iterations are shown in Figure 7-23. These are similar to the empirical curves of

Figure 3 in [112] and reproduced in Figure 5-1 (p.97). Note that our calibrated node

results in less than 55% of time being spent on rework in the case of iteration 4 with a

Very Low level of onsite customer communication. Figure 5-1 shows a level of 100%

for the corresponding real case. However, as is explained in [112]:

“The last release of Case 4 concentrated solely on defect-fixing,

 146

because all the other scheduled functionalities were cancelled.”

I am therefore assuming, that had further releases been available, some

development of new functionality would still have taken place in release 4 of Case 4.

7.8.5 Timescale Prediction

Figure 7-24 shows a slightly modified version of the velocity fragment of the

model. This includes an additional link node, si, which acts as the cumulative sum of

V to date.

bi-1 Vi bi

si-1 si = si-1 + Vi

Figure 7-24 Project Velocity summed to date

Plots of si for the initial prediction, the learned prediction and the actual scenarios

are shown in Figure 7-25. If the total estimate to complete the entire project is, say,

200 IEDs, then we can immediately read off from the graph how long it will take to

complete the project.

Initial

Actual

Learned

Figure 7-25 Sum Vi to date

The initial predictions of the model are too optimistic. However, once the model has

learned from the V1 and V2 observations, and account has been taken of the onsite

 147

customer, the predictions are virtually indistinguishable from the actual outcome.

Iteration

si si
0 MREi

0 si
2 MREi

2

1 9 17.6 0.96

2 22.5 39.0 0.73

3 57.9 84.6 0.46 54.1 0.07

4 87.9 136 0.55 91.4 0.04

5 127.8 184 0.44 129.0 0.01

6 168.4 225 0.34 164.4 0.02

7 204.4 269 0.32 204.4 0.00001

8 224.4 294 0.31 228.4 0.02

MMRE 0.51 0.026

Table 7-4 The true functionality delivered after iteration i is si. The initial prediction for si is si
0
.

The MRE for si
0
 is MREi

0
. The prediction for si after two iterations is si

2
. The MRE for si

2
 is

MREi
2
. The Mean MREs are shown at the bottom of the relevant columns.

Figure 7-26 Sum Vi to date, Relative Error

 The model’s initial median predictions have MRE values between 0.3 and 0.96.

This range reduces to 1E-5 to 0.07 after learning. The improvement is summarized in

Table 7-4. As further evidence is entered into the model however, the accuracy of its

predictions do not necessarily improve. For example when V3 is entered, the model

has no way of knowing that the next PV will be affected by the Christmas break. It

therefore predicts a much higher value than is actually achieved. This causes the

model’s accuracy to degrade when V3 is entered. We can examine this effect

quantitatively by taking the Mean of the MRE values (MMRE) for the model’s future

median si predictions after each Vi is entered. After V3 is entered, this jumps suddenly

 148

before gradually improving once again. This is illustrated in Figure 7-26.

IEDs completed after 8 iterations

C
u
m
u
la
ti
v
e
p
ro
b
ab
il
it
y

Initial 25%

Learned
65%

Figure 7-27 Iteration 8 cumulative distributions

The Motorola project completed 224 IEDs of functionality before the project ended.

The model can quantify the uncertainty involved in completing 224 IEDs within 8

iterations. Figure 7-27 shows the cumulative distribution functions for the si node in

iteration 8. The vertical line allows us to read off the probability of completing up to

224 IEDs by the end of the 8th iteration. For the “Initial” scenario, there is only a 25%

chance of completing up to 224 IEDs (i.e. there is a 75% chance of delivering more

than 224 IEDs). Once the model has learned from V1 and V2, the probability is revised

up to a 65% probability. This means that the model was initially too optimistic in its

predictions (a 65% chance of delivering up to 224 IEDs means a 35% chance of

delivering more than 224 IEDs).

7.8.6 Accuracy of the FOFFBK Algorithm

The PV model described in this chapter was built using AgenaRisk, with

propagation between timeslices achieved using a Forward Only Fully Factored Boyen

Koller algorithm (FOFFBK). As discussed in section 3.2.2, this is an approximate

algorithm. If we are to have any confidence in the PV model then we must have some

indication of the size of the error introduced by this approximation.

The PV model is sufficiently small that it is possible to run all eight iterations of the

Motorola project as a single, unrolled, BN. We can therefore compare the results

generated from running the “unrolled BN” model against the FOFFBK model. The

 149

unrolled BN should produce more accurate results since it performs exact inference

(subject to the limitations of the model, such as its choice of discretisation).

Care must be taken when comparing the unrolled BN model with the FOFFBK

model. When we look at iteration i in the FOFFBK model, it includes information

previous iterations, i - n, but not from future iterations, i + n. This is not the case in

the unrolled BN. In the unrolled BN, every iteration includes information from all

other iterations, including future ones. To ensure that we are comparing like with like

we have to run the unrolled model eight times: once with one iteration, then with two

iterations, then with three, and so on. In each case, we take the values from the final

iteration included in that run of the unrolled BN model.

Figure 7-28 Magnitude of relative errors between the exact and approximate inference

algorithms’ PV predictions (both with and without noise).

Initially, the results of comparing the two models were poor. Early versions of the

FOFFBK model did not include the TNormal expression shown in Figure 7-3.

Instead, the ei node had its CPD set to the arithmetic expression: ei-1+ ri × (li - ei-1).

The only mixing of states, required by all Boyen-Koller algorithms, is due to the

priors and the choice of discretisation. The result is shown as the dashed line in Figure

7-28. This shows the magnitude of relative error between the median predicted PV for

the unrolled BN model (exact inference) and the FOFFBK (approximate inference). In

 150

both cases, the models included observations of PV for the first two iterations, and

included the Onsite customer values. As can be seen, after iteration 5, the two models

start to diverge, with the approximation errors apparently growing over time.

The PV model described in this chapter included extra noise in the form of the

TNormal expression surrounding ei. The variance of 5% was found empirically by

testing the model with different TNormal variances ranging from 1% to 25%. The

magnitude of relative errors between the “noisy” FOFFBK model and the unrolled

model is shown as the solid line in Figure 7-28.

The mean MRE for the approximation algorithm is approximately 3.5%. However,

this does not necessarily translate into a 3.5% error in timescale predictions, as Figure

7-26 shows. The PV approximation errors can be either positive or negative, with a

tendency to cancel one another out when summed to give functionality delivered.

The “noisy” FOFFBK algorithm therefore behaves better than the FOFFBK without

“noise” when compared to the exact inference algorithm.

7.9 Conclusions and Discussion

We have developed a model of XP project velocity and shown that it reproduces

known empirical behaviour from iterative projects.

The model has been applied to a real industrial project. Incorporating data from the

early part of the project enabled the model to update its parameters and improve its

predictions. When this was combined with knowledge about the presence of an onsite

customer, the model was able to make extremely accurate predictions about the level

of functionality delivered over time. Other XP practices can be incorporated in the

model using similar techniques.

While the model presented here has successfully demonstrated the benefits of using

a learning BN model in XP projects, it is recognized that there are a number of threats

to its validity.

1. The model relies on having sufficient degrees of freedom to learn from its

environment. This is principally accomplished by updating the parameter

nodes li and ri. It is possible those are insufficient to accommodate the full

range of behaviors of real XP projects, or that some future XP practices

cannot be wholly accommodated as indicators of one of these nodes.

2. Only a single industrial test case has been used. Greater confidence in the

model will be achieved through exposure to a greater variety of data sets.

 151

3. The example shown had the benefit of real effort data from a completed

project. At the start of a project, only projections of available effort are

available.

4. No sensitivity analysis has been performed on the model priors in Iteration

0. However, regardless of the initial values, the model will adapt to the

current project’s local conditions as soon as the first few iterations are

completed. Clearly, any change in the means or standard deviations of the

priors will affect the model’s initial predictions. We would expect that more

mature software development organizations would replace the supplied

values with distributions based on their own previous metrics programmes.

5. Two XP practices have been included in the model: “Collective ownership”,

using hypothetical data, and “Onsite customer”, using data from a single

study. Empirical data on the effectiveness of other XP practices needs to be

used in order to calibrate appropriate indicator nodes.

Despite these concerns, there are a number of clear benefits to this approach.

1. Although prior metrics information is valuable, an extensive data collection

phase is not essential. The model starts off making generic predictions, but

quickly alters them as local data becomes available. Developers tasked with

metrics collection therefore see an immediate benefit from doing so:

predictions about their own project will improve as a result. Contrast this

with traditional metrics collection programs, which often founder because of

the need for long-term commitment.

2. Empirical data, project data, prior assumptions and expert judgment are

combined in a single intuitive, learning model.

3. The predictions provide probability distributions, not just single values. The

model tells you what the chances of various outcomes are.

4. Provided suitable empirical evidence is available, it is relatively simple to

add new XP practices or other environmental features, making the model

extremely versatile.

The model presented here differs from many of the causal models described in

section 4. Rather than trying to construct a complex graph of causal relationships, it

opts instead for a very simple structure. This model recognizes that, for a large variety

of reasons, software productivity varies throughout the iterations of an agile project. It

therefore learns the cumulative effect of these variations rather than trying to model

 152

their interactions explicitly.

Users of the model only need to provide three items of information:

1. available effort over the timescale of the project,

2. measured project velocity as it becomes available,

3. the extent to which XP practices are varying between iterations.

The first two should be available anyway in any XP project and the third can be

supplied using subjective judgment. The burden to developers and managers in

maintaining this model is therefore minimal. In return for this small overhead,

projects get improved PV predictions such as in Figure 7-25 and a quantitative

assessment of the risk, as in Figure 7-27.

 153

8 Extending the Model

The previous chapter showed how a very simple DBN can be used to model PV in

XP projects. In this chapter I show how this model can be extended in two distinct

ways.

1. A measure of quality is introduced into the model. This extension allows the

model to make predictions about defects. When evidence is entered for the

observed number of defects this enables the model to learn the value of quality

parameters.

2. The model gets applied to a second agile environment: Scrum.

The models presented in this chapter should be regarded as “proof of concept” only.

Further research is required to externally validate the models. Both of these

extensions to the model represent novel contributions.

8.1 Adding Quality to the Model

li-1

ri-1

ei-1

bi-1

Ei Ai

Vi bi

li

ri ei qi-1 qi

Ti

Ci

fi

di

 �i

�i-1 �i

Figure 8-1 - PV model updated to include code quality

In this section we add the notion of quality to the XP PV model. There are two aims

in doing this.

1. Knowing the quality of the delivered code allows the model to make

predictions about the number of defects present. Entering the observed

number of defects allows the model to update its assumptions about code

quality and so improve its predictions.

2. Varying the quality enables the model to perform trade-off analysis within

 154

individual iterations.

The model should also show the same useful characteristics that the PV-only model

displayed, namely: simple data input, learning across iterations and compatibility with

existing XP practises and philosophy. The updated model is shown in Figure 8-1 with

the new nodes enclosed in the dashed box. A formal description of the new nodes is

given in Table 8-1.

Symbol

Meaning

qi Quality of code produced in iteration i. This is a ranked node with 5 values

ranging from Very Low to Very High. This is not directly observable.

Ti Test and design effort in man-days. Ti = Ai × qi.

Ci Code effort in man-days. Ci = Ai - Ti.

α i The rate at which defects are inserted per man-day of effort.

αi = Normal (1, 0.1), αi ∈ [0, ∞).

di The number of defects inserted given the code effort and defect insertion rate.

di = Ci × αi , di ∈ [0, ∞).

fi The number of defects found. fi = Binomial (di, qi).

ρi Residual defects. ρi = di - fi.

Table 8-1 Quality model symbol definitions

8.1.1 Model Structure

For simplicity we introduce a single parameter, qi, which defines the quality of the

code being produced. (Note that this is a product quality parameter. Process quality is

effectively defined by ei.) This is a five state ranked node. We take a high value for qi

to imply the following.

1. A greater proportion of the actual productive effort will be taken up by

design and testing.

2. There is a higher probability that testing will discover defects.

In the actual model shown I have used the simplest possible implementation that is

consistent with these assumptions. The “Test” Effort, Ti, is taken to be directly

proportional to qi, with Ti = Ai × qi. Similarly, the probability of discovering a defect

is taken to be exactly qi. Both of these are possible because the AgenaRisk toolset

implements the ranked node as an underlying real value in the range [0,1].

 155

For the purposes of this model, “test” effort also includes effort spent on the

detailed design of components. Ideally this would be a separate node. In this idealised

model it is combined with test effort because they have similar relationships with qi.

As the quality goes up, we expect the effort spent on design to also go up. As the

design effort increases, the chance of finding and removing defects in the design also

increases.

It is tempting to think that, as quality goes up, the number of user stories delivered

in an iteration goes down and that the PV therefore goes down too. If this were true

then we would need to add a link from our new quality parameter, qi, to the process

effectiveness, ei. However, this is not the case, as the following example illustrates.

Suppose Vi is observed to have a value of 80. Four user stories: US6, US7, US8 and

US9, are scheduled for iteration i +1. All four have been estimated to take 20 IEDs to

complete. During the planning meeting for iteration i +1, the team decide that stories

US6 and US7 are particularly crucial parts of the system. They should therefore be

produced to a particularly high level of quality. The team revise their estimates for

US6 and US7, up from 20 IEDs to 40 IEDs each, so only US6 and US7 are included

in iteration i +1. The total estimate for the next velocity remains the same, even

though the number of user stories has halved.

In each iteration, the node Ai determines the amount of effort available for

development. This can be split between the design/test effort Ti and the code effort Ci.

It is this split between code and design/test that allows the model to perform trade-off

analysis. More effort can be allocated to generating poorly thought out and poorly

tested code, or less code can be generated but of a higher quality with a greater chance

of removing defects.

Measuring design, code and test effort explicitly is precisely the type of project

overhead that we do not wish to impose on agile projects. We therefore need some

proxy for these measurements. Code and test effort could possibly be indicated by the

LOC measures of the relevant packages, with the ratio of production code to test code

matching the ratio of code to test effort. Measuring design effort is more problematic.

Possibilities include the number of code management check-ins (with more check-ins

implying more revisions of the design), or the number of fully specified method

definitions prior to coding.

Whatever metrics are chosen, there is a clear need for model integration with IDEs,

code management systems, bug tracking systems and other development tools. This

 156

querying across heterogeneous data sources implies the kind of integrated approach to

data extraction and normalisation specified in section 6.2.

The model assumes a fixed distribution of defect insertion for each man-day of

effort, αi. Multiplying this by the amount of code effort Ci, gives the number of

defects inserted into the code di.

Interpreting the code quality qi as being numerically equal to the probability of

finding a defect allows the model to use the binomial distribution with di as the

number of trials and qi as the probability of success. This is exactly the same as the

approach used in the Modist model (4.3.2) and the Philips model (4.4).

8.1.2 Validating Model Consistency

We can test the defects model by looking at a typical iteration. Table 8-2 shows the

result of a single iteration, where E is set to 50, V is set to 25 and q is varied through

each of its values from Very Low to Very High. All values are median values.

q 0.1 0.3 0.5 0.7 0.9
e 0.465 0.465 0.465 0.465 0.465
T 2.73 7.28 11.8 16.3 20.7
C 20.1 16.07 11.4 6.85 3.26
d 19.4 15.3 10.8 6.35 3.14
f 1.92 4.34 5.17 4.24 2.69

α 1 1 1 1 1

ρ 17.1 10.7 5.34 1.83 0.682

Table 8-2 Test results when E = 50, V = 25 and q is varied from Very Low

through to Very High (0.1 to 0.9 in steps of 0.2).

Test and design effort T and code effort C both vary linearly in the expected

direction. The process effectiveness e and defect insertion rate α both remain

constant. The defects inserted d, defects found f and residual defects are more

interesting.

As expected, as the product quality increases, the number of defects inserted

decreases. This is primarily due to less code being generated. However, even though

the number of defects generated decreases, the probability of detecting an error

initially goes up. This causes the number of defects found to also go up, even though

there are fewer defects to be found. It is only when the number of defects generated

becomes sufficiently small that the number of defects found begins to decline again.

 157

Figure 8-2 Defects inserted d, defects found f and residual defects rd, as q is varied from

Very Low (0.1) to Very High (0.9), with E = 50 and V = 25.

Figure 8-3 Defect insertion rate dr (αααα) and product quality q as number of

defects found varies from 1 to 10. C = 20, T = 20.

We can perform a similar test to see the effect of changing fi (defects found).

Figure 8-3 shows the result when C = 20, T = 20 and the number of defects found is

varied from 1 through 10. The product quality increases slightly. The bulk of the

increase in defects found is explained by an increase in the number of defects being

inserted. This is as we would expect, all other things being equal.

As a final test we can keep the code effort constant, the number of defects found

constant and increase the amount of testing. As the amount of test code, relative to the

amount of production code is increasing we would expect the product quality to

 158

increase. The product quality is the same as the probability of finding a defect in this

simple model. If the probability of finding a defect is increasing, but we are still

finding the same number of defects, the defect insertion rate must be going down.

This is exactly what the model does, as shown in Figure 8-4.

Figure 8-4 Defect insertion rate dr and product quality q with C

= 10, f = 5 and rising value of T.

8.1.3 Model Learning and Prediction

The previous section shows that the defects model behaves largely as our intuition

expects when we vary the evidence within a single iteration. We must now see how

the model behaves when multiple iterations are linked together to form a dynamic

model.

 Ei Vi Ti fi

Scenario name

Baseline Ei = 50

High test low faults Ei = 50 V1 = 15
V2 = 20
V3 = 24
V4 = 27

T1 = 10
T2 = 15
T3 = 18
T4 = 20

f1 = 3
f2 = 3
f3 = 4
f4 = 4

High test high faults Ei = 50 V1 = 15
V2 = 20
V3 = 24
V4 = 27

T1 = 10
T2 = 15
T3 = 18
T4 = 20

f1 = 5
f2 = 6
f3 = 6
f4 = 7

Low test low faults Ei = 50 V1 = 15
V2 = 20
V3 = 24
V4 = 27

T1 = 5
T2 = 6
T3 = 7
T4 = 8

f1 = 3
f2 = 3
f3 = 4
f4 = 4

Low test high faults Ei = 50 V1 = 15
V2 = 20
V3 = 24
V4 = 27

T1 = 5
T2 = 6
T3 = 7
T4 = 8

f1 = 5
f2 = 6
f3 = 6
f4 = 7

Table 8-3 Dynamic quality model test scenarios

 159

To construct a dynamic quality model we make the same linkages as we did for the

PV model. In addition, we link qi from iteration i to qi-1 in iteration i +1 and αi in

iteration i to αi-1 in iteration i +1.

We can examine the behaviour of the dynamic quality model by constructing

different scenarios. These are shown in Table 8-3. All of the scenarios have 8

iterations. The Baseline scenario sets all of the Ei values to 50. No other evidence is

entered. The Baseline scenario provides a comparison against which the other

scenarios can be measured. All of the alternative scenarios also have each Ei value set

to 50. The alternative scenarios also have the same values for V1 to V4, however they

have different values for T1 to T4 and for f1 to f4. There are four alternative scenarios

and their names are self-explanatory: High test low faults, High test high faults, Low

test low faults and Low test high faults. (In all scenarios, the term “faults” means

“defects found through testing”).

Baseline

High test low faults

High test high faults

Low test low faults

Low test high faults

Figure 8-5 Learned values for q under different scenarios.

Figure 8-5 shows how product quality q is learned as the amount of testing varies.

Although the number of defects found has some impact on q it is the amount of

testing which has the biggest effect. As expected, a high level of testing leads to a

high product quality.

Figure 8-6 shows the corresponding graph for the defect insertion rate α. The

dominant factor here is the number of defects discovered. However, the amount of

testing is also significant. To understand this we have to take two similar cases where

 160

the same number of defects are discovered. In one case the defects are discovered

after very little testing, suggesting that there are a large number of defects present and

so a high defect insertion rate. In another case the same number of defects are found,

but after much more rigorous testing, suggesting that few defects remain and so

implying that the defect insertion rate must be lower.

Baseline

High test low faults

High test high faults

Low test low faults

Low test high faults

Figure 8-6 Learned values of alpha in varying scenarios.

Baseline

High test low faults

High test high faults

Low test low faults

Low test high faults

Figure 8-7 Residual defects in each iteration for different scenarios.

 161

Figure 8-7 shows the number of residual defects predicted. The residual defect

prediction curves are ordered as we would expect: low test scenarios predict larger

number of defects and low defect discovery scenarios predict lower residual defects

for the same amount of testing.

8.1.4 Future Model Work

The simple model demonstrated in the previous sections shows that it is possible to

construct a learning model of product as well as process quality that is consistent with

our common-sense notions of how a software project “ought” to behave. However

there are many outstanding problems which require further research.

• Proper priors for the quality parameter q and the defect insertion rate α need

to be established.

• The single quality parameter q needs to be mapped to the proportion of

effort devoted to testing and separately mapped to the probability of finding

a defect.

• Test and design effort need to be included separately.

• We need to find metrics to measure design, code and test effort.

• Establish data sources and automated data extraction for above.

• The model needs to be validated against a real project.

• The model currently takes no account of the effort required to fix defects. At

the moment this is simply subsumed within the process effectiveness e. It is

an open question whether there is any benefit to be gained from modelling

rework effort.

• The PV model assumes a trend in process quality. Is there a similar trend in

product quality q?

8.2 Creating an Iterative Model for Scrum

We briefly mentioned Scrum in section 5.5.2. Scrum is an agile development

method which bears a close resemblance to XP. The name “Scrum” derives from a

rugby scrum where a small number of players act together to achieve a well defined

goal. The term was first applied as a project methodology by Takeuchi and Nonaka

[201]. It was subsequently applied independently in software projects by Schwaber

[178] [179] and Sutherland [199].

 162

Scrum places less emphasis on individual programming practises than XP, although

the short scale iterative nature of the method inevitably leads to a large overlap. As

with XP, a product owner is responsible for creating a prioritised list of requirements.

Initial effort estimates are allocated to these requirements by the development team.

In scrum this list is called the Product Backlog. Each iteration (a Sprint in Scrum

terminology) is preceded by a sprint planning meeting where the contents of the next

sprint are decided. This involves a discussion between the product owner and the

development team, who must decide how much of the product backlog they can

implement in the next sprint. The length of each sprint is usually 3-6 weeks and, as

with XP, is expected to deliver a functioning piece of software.

Once the contents of a sprint have been agreed they cannot be altered. The agreed

contents are then transferred from the product backlog to the Sprint Backlog where

they are broken down into smaller tasks which can be measured in hours. The total

number of hours on uncompleted tasks are then plotted daily on a Burndown chart

Figure 5-2.

Every day there is a team meeting (the Daily Scrum) where each team member

provides three pieces of information.

• What they did yesterday.

• What they will do today.

• What problems they face.

Anecdotal evidence (see for example [171]) suggests that the daily scrum can act as

a clearing house for code refactoring where small changes in one task can unblock

problems being encountered elsewhere, or where code to solve common problems can

be shared. This in turn can lead to the kind of “hyper-productive” state described by

Sutherland [199]. Other teams report similar feelings of increased productivity [139],

although to this author’s knowledge there has been no systematic attempt to

demonstrate this.

There are clear parallels between Scrum and XP, even the low productivity in initial

iterations seems to be shared between the two [178] (which is hardly surprising given

their similarity). Detailed project management issues are not addressed by Scrum.

However, in practise most Scrum projects use the definition of project velocity which

has been used in this thesis. The units vary, Schwaber recommends function points

[180], but it is easy to find examples where story points [198] or IEDs are used

 163

instead. As we have already shown in 5.5.1, provided the units used to measure PV

form a ratio scale, the exact nature of those units are immaterial. We can therefore

take the PV model unaltered across to a Scrum project. However we can also do more

than that.

Scrum typically uses burn down charts (Figure 5-2) to report progress. Using the

information from the Motorola project (7.8.1) we can construct real and predicted

burn down charts for that project. Burn down charts are a more natural tool for Scrum

projects than PV. It is extremely simple to adapt the PV model described in 7.8.5.

Instead of taking the sum of the project velocities to date (which shows the amount of

functionality delivered to date), we define si to be the amount of functionality still to

be completed at the end of sprint i and initialise s0 with the total amount of

functionality to be delivered by the project. When sprint i is completed, we deduct Vi

from si-1 to give the functionality remaining at the end of sprint i. The revised node is

illustrated in Figure 8-8.

bi-1 Vi bi

si-1 si = si-1 - Vi

Figure 8-8 Modelling burn down

In the scrum model we do not have to enter values for Vi. Evidence is entered for si

instead. As burn down values become available after each sprint, the model adapts its

predictions for Vi and ei leading to improved predictions for future iterations. Figure

8-9 shows three versions of the burn down chart for the Motorola project. In all three

cases the project begins with 224 IEDs to be delivered (this is the amount that the

project actually delivered before being cancelled). The “Initial” graph shows the

predicted burn down chart when only effort values Ei have been entered. The

“Actual” graph shows the final burn down chart as it would actually appear in the

Motorola project. Values for si were calculated by simply subtracting Vi-1 from si-1.

The “Learned” graph shows the predicted burn down graph after s1 and s2 have

been entered and with appropriate values for the onsite customer node. As with the

PV model, the burn down model has learned from the evidence entered and improved

its predictions as a result.

 164

Initial

Actual

Learned

Figure 8-9 Burn down graphs for the Motorola project.

8.3 Extending BN Models to Other Agile Methodologies

The previous sections have shown how the PV model of chapter 7 can be extended

to encompass quality in an XP project and how a simple modification can be made to

make it more applicable to Scrum. Although XP and Scrum are two of the most

popular agile methods in use, they are not the only ones. In 2006 Dr. Dobb’s Journal

published the results of a survey [12] into the adoption of agile methods. Over 54% of

the survey respondents who used agile methods used either XP or Scrum, with XP

alone accounting for over 36% of agile method usage. The models shown so far can

therefore claim to be applicable to the majority of the agile community. In this section

we look at some of the other agile methodologies available.

A good overview of 9 of the most popular agile methods can be found in [4]. The

authors describe the relationships between each method and explore them through

five distinct perspectives: software lifecycle coverage, project management, abstract

principles versus concrete guidance, universal versus situation specific and empirical

evidence. We will restrict ourselves to the three further methodologies which,

together with XP and scrum, account for nearly 90% of the Dr. Dobbs survey

responses.

 165

8.3.1 FDD

The second largest agile methodology in the Dr. Dobb’s survey, accounting for

nearly a fifth of respondents, was Feature Driven Development (FDD) [45]. FDD is

different from XP and Scrum in that it is quite prescriptive in defining the tools, roles

and processes that should be used on a software project. It begins with large upfront

processes that create an overall design in UML (modified to include a colouring

convention for class diagrams), builds a “feature” list (with a feature being essentially

equivalent to a user story in XP) and create a project plan. It then launches into an

iterative cycle of detailed design and feature development. The big difference is that

teams are fluid, being created as needed for a given feature, with each team working

to its own start and end dates. There are also many minor differences from XP, such

as prescribing class ownership rather than common code ownership. The processes

involved in FDD have spawned a small industry of support tools.

The issue as to whether FDD is truly “agile” or not arises from time to time on web

forums. Ron Jeffries, one of the founders of XP, seems to think not [5]. If we take the

definition of “agile” to be the Agile Manifesto [9] then we can test FDD against the

various statements from that manifesto. FDD clearly provides some of the iterative

and people oriented processes that the manifesto demands. It also concentrates on

software production with the minimum overhead required for upfront modelling

(FDD is geared towards larger projects where some architectural and overall design

work is essential). It is less clear that FDD can handle fluid requirements and constant

customer feedback.

The overlapping development cycles and fluid development teams of FDD clearly

present a problem for the type of model developed so far in this thesis. The

controversy over whether FDD constitutes an “agile” method in the first place

suggests that FDD is significantly different from other agile methodologies. If this is

the case, then it is not surprising that models designed to fit other agile methodologies

are less applicable to FDD.

8.3.2 AUP

The Agile Unified Process (AUP) [13] was used by just over 8% of the Dr. Dobbs’

respondents. AUP tries to combine the Rational Unified Process (RUP - see section

4.9) with the practises common to agile development. RUP is really a framework

from which a more project specific process can be constructed. AUP reflects this by

 166

defining a wide range of activities and artefacts which a project may choose to

implement. As with RUP, AUP makes the distinction between project phases:

inception, elaboration, construction and transition, and the disciplines undertaken in

those project phases: model, implementation, test, deployment, configuration

management, project management, environment.

At the heart of the construction phase, the implementation discipline in AUP is

highly iterative. The project management discipline specifically lists collection of

project velocity as one of its responsibilities. Clearly, the PV model can be directly

applied in AUP.

8.3.3 Agile MSF

Microsoft Solutions Framework (MSF) for Agile software development, is

Microsoft’s contribution to agile methodologies. It defines a set of roles, principles,

work items and reports for use in agile projects. Each role is associated with a well

defined set of work streams. The Project Manager role, for example, is associated

with the Plan an Iteration work stream. Each work stream is then subdivided into a

set of work items each of which has a corresponding database record which includes

the status of the work item and the effort involved. This database can then be used to

generate a set of standard reports showing project activity in the form of burn down

charts or project velocity.

Project managers are expected to use PV in their iteration planning. Work item

sizes are measured in different units depending on the type of work unit. Task work

items are measured in hours, although it is not clear from the Microsoft

documentation if this is elapsed time or effort. Regardless of whether elapsed time or

effort is used, they both form a ratio scale and so can be used in the PV model

presented in chapter 7.

Scenario work items, which roughly correspond to use cases or user stories, are

measured on a ranked scale with values 1, 2 or 3. The value 1 corresponds to items

requiring up to 12 calendar days; 2 corresponds to 12 to 24 calendar days, and 3

corresponds to more than 24 calendar days (with a recommendation that items with a

value of 3 be split if possible). The PV model could be used with Scenarios, but

clearly it will be more accurate once a Scenario has been broken down into tasks.

 167

9 Overall Summary and Conclusions

This section provides a summary list of the main points of this thesis. In the

conclusion, the summary points that support the hypothesis are highlighted.

9.1.1 Summary

1. Chapter 2 showed why existing, mainly regression or multivariate based

models are unable to capture the full complexity of software development

projects.

2. Chapter 3 showed how learning can be extended from a BN to a DBN.

3. Chapter 4 showed how existing Bayesian Net (BN) models can address

software processes by building causal models of the software development

environment.

4. Chapter 5 provided a review of the literature on XP and showed that any ratio

scale could be used to measure Project Velocity (PV).

5. Chapter 6 showed why we would have difficulty applying the same techniques

in iterative development environments.

6. Chapter 7 demonstrated a learning Dynamic Bayesian Net (DBN) model of

Extreme Programming’s (XP) key PV metric.

7. The model exhibited key characteristic properties of real world XP projects,

including slow initial productivity and the ability to vary productivity by

changing XP practices.

8. By entering PV data, the model learned about its local environment, altering

its future PV predictions.

9. Varying the PV data supplied to the model showed that the model was capable

of operating in a consistent manner over a wide range of conditions.

10. Using data from a real XP project at Motorola, the model’s predictions were

verified to a good degree of accuracy.

11. Providing only one or two measurements of real PV from the Motorola project

was sufficient to calibrate the model. Since these PV measurements would be

made anyway, the model essentially places zero overheads on the management

of the project.

12. The PV model in this thesis was developed using PV measured in Ideal

Engineering Days. It was shown in section 5.5.1 that using PV to plan

 168

iterations can be used with any measure of PV, provided that measure forms a

ratio scale. This model therefore works equally well with Story Points and

Function Points.

13. The model uses a forward only, fully factored, Boyen-Koller DBN inference

algorithm. As was shown in section 3.2.4, forward-only learning is faster than

full forwards-backwards learning and has descriptive and diagnostic

advantages in that we can easily show the history of learned parameters.

Forward only has the disadvantage that it prevents DBN smoothing, limiting

the usefulness of the model as a decision support tool.

14. Chapter 8 has shown possible ways in which the XP PV model might be

extended. We have seen how quality measures might be introduced and

suggested topics for further research such as finding adequate proxy

measurements for design, code and test effort.

15. The need to access measures of effort and quality, together with the

requirement to minimise project overhead, implies the type of tool integration

and heterogeneous query capability described in section 6.2.

16. The PV model was easily modified to use Scrum’s burndown metric instead of

XP’s PV metric. The Scrum model showed similar learning capability using

minimal data and demonstrated the same high level of accuracy once

calibrated.

17. Applicability of the PV model to other popular agile methodologies was

discussed. This concluded that the PV model could be applied in AUP and

MSF. However, in FDD development teams are mutable in nature and

irregularly stagger iterations across teams. The model is not directly applicable

to such an environment. Although FDD is widely used, there is controversy in

some quarters as to whether it constitutes an agile method at all.

18. A lightweight scripting language was defined to create repetitive Bayesian

nets. The implementation of this language is specific to the AgenaRisk

development tool. However, the principle of using an essentially declarative

programming language to define BNs and DBNs is generally applicable.

I claim novelty for points 4 through 10, and 12 through 16.

9.1.2 Conclusions

The hypothesis given in section 1.1 states the following.

 169

H1. It is possible to construct learning models of iterative agile development

environments.

H2. These models require minimal “training” and minimal data collection

programmes.

H1 is supported by summary points 6, 7, 8, 9, 10, 12, 14, 16 and 18. H1 is partially

supported by 17, although we have identified at least one agile development method,

FDD, to which the models developed here cannot easily be applied.

H2 is supported by 11, 15 and 16.

 170

Appendix A - An Introduction to Bayesian Nets

A Bayesian Network (BN) is a Directed Acyclic Graph (DAG), where the nodes

represent random variables and the arrows represent causal influences. Nodes without

parents are defined by a random variable’s probability distribution. Nodes with

parents are defined by Conditional Probability Distributions (CPDs). Probability

distributions and CPDs are collectively known as Node Probability Tables (NPTs).

The theory of BNs has been developed mainly since the early 1980s, by Pearl [160],

Neapolitan [149], Jensen [93], Lauritzen and Spiegelhalter [120].

Example A-1

Figure A-1 A simple "Temperature and snow" BN

The T node represents the probability, on any given day, that the

outside temperature is 0°C or below. The S node gives the probability

that it will snow or hail on a particular day.

The probabilities assigned to these random variables are shown

below.

T P(T)

true 0.01

false 0.99

T true false

S P(S |T)

true 0.05 0.01

false 0.95 0.99

As can be seen from the tables, a low probability (1%) is assigned to

a sub-zero temperature. If the temperature is above zero then we

assign a small probability of snow or hail, but increase this by a factor

of 5 when the temperature is sub-zero.

 171

Note that, in Example A-1, given a particular value of T, the probabilities

for S must add up to one:

1)|(=∑
S

TSP . Equation A-1

From elementary probability theory we get:

)(

),(
)|(

TP

TSP
TSP = . Equation A-2

This can be justified on the basis of frequentist arguments (see for example [23]) or

taken as an axiom. From this we can see that we can easily calculate the joint

probability P(S,T). Given a Joint Probability Distribution (JPD) of two variables S

and T, we can find the probability P(S = s1), where s1 is one possible state of S, by

summing over all of the n mutually disjoint states of T.

∑
=

====
n

i

itTsSPsSP
1

11),()(. Equation A-3

We refer to this process as marginalisation and call the probability

distribution P(S) the marginal of S with respect to P(S, T).

Using simple symbol substitution, we can derive a second expression for

P(S,T):

)()|()()|(),(SPSTPTPTSPTSP == . Equation A-4

Rearranging gives us Bayes Theorem:

)(

)()|(
)|(

SP

TPTSP
STP = . Equation A-5

Bayes Theorem allows us to calculate a CPD that we may not otherwise

have access to. In Equation A-5, P(T) is called prior probability of T. In

Example A-1 it is our belief that it will be sub-zero outside given no other

 172

information. The left hand side, P(T|S) is the posterior : our belief that it is

sub-zero given our knowledge of whether it is snowing or not.

Hard evidence, otherwise known as an observation, is entered into a node, A, in a

Bayesian Network when we know its value, ai, for certain. This is equivalent to

setting its posterior distribution to:

jiaAP

aAP

j

i

≠==

==

,0)(

1)(

Equation A-6

When evidence is entered into a node, the distributions of all other nodes must be

recalculated to take account of this change in its probability distribution.

Example A-2 (Taken from the Stanford Encyclopedia of Philosophy [195])

C

T

Figure A-2 Test for Drug use

In this example C represents the probability that an individual in a

population is a cocaine user. We will assume that it is 3%. The T node

represents the probability, that a particular test will reveal a cocaine

user’s habit. It correctly identifies cocaine users 95% of the time and

correctly identifies non-users 90% of the time. Given that an

individual has tested positive, what is the probability that they are a

cocaine user?

The NPTs for the two nodes are shown below.

C P(C)

true 0.03

false 0.97

C true false

T P(T | C)

true 0.95 0.10

false 0.05 0.90

 173

We want P(C = true | T = true). Using Bayes Theorem.

)(

)()|(
)|(

trueTP

trueCPtrueCtrueTP
trueTtrueCP

=
===

===

We can find P(T) by calculating P(T,C) = P(T | C)P(C) and

marginalising out C.

227.0
97.010.003.095.0

03.095.0

)()|()()|(

)()|(

)|(

=
×+×

×
=

===+===
===

=

===

falseCPfalseCtrueTPtrueCPtrueCtrueTP

trueCPtrueCtrueTP

trueTtrueCP

This highlights the very real misperception that often arises, even

among qualified physicians, that a seemingly reliable test can have

quite counter-intuitive implications. In this case, the number of false

positives from the non-drug users (0.10 x 0.97) is significant compared

to the number of positives from the small number of drug users.

A.1 Conditional Independence and Bayesian Nets

Let A, B and C be random variables. If, for all values of A, B and C:

)|()|(BAPBCAP = . Equation A-7

then A is said to be conditionally independent (CI) of C given B.

There is a notational ambiguity in Equation A-7. The discrete probability

distribution on the left hand side is indexed by three nominal variables A, B and C,

whereas the discrete probability distribution on the right hand side is only indexed by

two variables, A and B. The notation is really just a short hand for:

)dom(),|(),|(CcbBaAPcCbBaAP ∈∀====== . Equation A-8

 174

where dom(C) is the domain of the random variable C.

The topology of a BN defines a set of CI conditions. These are summarised by the

Markov condition: for each node Ai in the network:

))(|())(),(|(iiPiiAP i πϕπ = . Equation A-9

where π(i) denotes the parents of Ai, and ϕ(i) denotes its non-descendents. This means

that, knowing any information about the non-descendents of a node tells us nothing

about the likely value of a node if all of its parents are specified.

A.2 The Chain Rule for Bayesian Networks

The “chain rule” for a set of random variables R = {X1, ..., Xn} can be stated as:

∏
=

−=
n

i

iin XXXPXXP
1

111)...|()...(. Equation A-10

This can be proved by examining the case for two variables: P(X1X2) = P(X1 | X2) ×

P(X2) and extending it by induction. By combining this with the Markov condition,

we are able to derive the chain rule for Bayesian networks.

Theorem A-1 (Chain Rule for Bayesian Networks)

Let R = {X1, ..., Xn} be a set of random variables, and let G = (R, E) be a

directed acyclic graph with edges, E, that satisfies the Markov condition. Then:

∏
=

=
n

i

iin XXPXXP
1

1))(|()...(π . Equation A-11

Note: as a notational convenience we represent the prior probabilities of nodes

without parents as P(Xi) ≡ P(Xi | φ), where φ is the empty set.

 175

Proofs of Theorem A-1 can be found in any standard text on BNs. Neapolitan [149],

for example uses the Markov condition to prove the theorem. Jensen [93] gives a

similar proof, but uses d-separation (see below) instead of the Markov condition.

 Theorem A-1 is critical to understanding Bayesian Nets. Equation A-11 provides

us with the mechanism to calculate the Joint Probability Distribution (JPD) of any

BN. If we view the numbers on the right hand side of Equation A-11 laid out in a

hyper-cube, with each axis of the hypercube defined by the states of one of the

random variables Xi, then we can include evidence in this JPD by masking out hyper-

planes corresponding to impossible values and normalising the result. However, the

number of calculations involved is exponential in the number of nodes. Much of the

research in BNs is therefore directed at calculating marginal distributions without ever

having to manipulate the full expression in Equation A-11. These inference

algorithms employ two general techniques in order to make the calculation

manageable.

1. They take advantage of the CI relations inherent in a BN.

2. They marginalise variables that have been fully incorporated into the calculation

but are no longer part of the desired marginal distribution.

Conditional independence in BNs is sometimes expressed in terms of the concept of

d-separation, which is introduced in the next section.

A.3 D-Separation

The Markov condition leads to the concept of d-separation [149][159].

According to Jensen [93]:

Two distinct variables A and B in a causal network are d-

separated if, for all paths between A and B, there is an

intermediate variable V (distinct from A and B) such that either

- the connection is serial or diverging and V is instantiated

or

- the connection is converging, and neither V nor any of V’s

descendents have received evidence.

By “instantiated”, Jensen means that hard evidence has been applied to a

node. The definitions of serial, diverging and converging connections are

 176

illustrated in Figure A-3. Two nodes are d-connected if they are not d-

separated.

Serial

connection

Diverging

connection

Converging

connection.

Figure A-3 Node connections

Figure A-3 show the three ways that nodes can be connected in a BN. In a

serial connection, evidence entered into A will affect B, which will in turn

affect C. A and C are d-connected. However, if there is evidence entered in B

then A and C become d-separated. Changing A will have no effect on C.

We can see how the Markov condition implies this as follows. Using the

chain rule (and therefore the Markov condition):

)|(),()|()|()(),,(BCPBAPBCPABPAPCBAP == . Equation A-12

From the definition of conditional probability (Equation A-2), we also

have:

)|(
),(

)|(),(

),(

),,(
),|(BCP

BAP

BCPBAP

BAP

CBAP
BACP === . Equation A-13

i.e. C is CI of A given B. (The above demonstration and those that follow in

this section are due to Jensen [93]). Exactly the same argument applies to

diverging connections:

)|(),()|()|()(),,(BCPBAPBCPBAPBPCBAP == . Equation A-14

 177

For converging nodes the situation is different. In Figure A-3, A and C both

contribute to B; they can vary independently and so are d-separated:

)()(),|()()(),,(),(

),|()()(),,(

CPAPCABPCPAPCBAPCAP

CABPCPAPCBAP

BB

===∴

=

∑∑
Equation A-15

Notice that this argument depends on the CPD of B adding to one when

summed over B. Adding evidence to B is equivalent to masking off some of

the possible states of B, thus removing this property. So if evidence is present

in B then A and C lose their independence and become d-connected.

For example, suppose B is a Boolean node, with states {b , b}. With no

evidence in B:

())()(),|(),|()()(

),|()()(),,(),(

CPAPCAbPCAbPCPAP

CABPCPAPCBAPCAP
BB

=+=

== ∑∑
.

Equation A-16

Setting B=b, gives the following:

κ),|()()(

),|()()(),,(),(

CAbPCPAP

CABPCPAPCBAPCAP
BB

=

== ∑∑

Equation A-17

where κ is a suitable normalising constant. Since P(b| A,C) is not a

constant (it varies with A and C), P(A,C) is no longer a simple product of the

priors of A and C and so they are not independent.

Example A-3

This a modified version of Example A-1. Three new boolean nodes

have been added: W, which says whether it is winter; F, to indicate if

there is a frost and R, to say if precipitation is likely.

 178

Figure A-4 Updated Winter Snow example

If evidence is entered in T, then the Markov condition ensures that

any change in W or F has no effect on S. Normally, precipitation and

temperature are independent. However, if we know that the

temperature is below zero, and we also know that there is snow on the

ground, then it must be true that there has been precipitation. Entering

evidence in S has made R and T d-connected.

There is a further subtlety in Example A-3. Suppose we are locked in an office

basement and unable to see outside. We know it is cold outside because it was cold

when we arrived, but we can’t see outside to see if it has been snowing. A colleague

then arrives with snow on their boots. From this we infer that it is snowing outside,

and therefore that there must have been precipitation. We can represent our new

evidence in the BN if we had a further node, B, representing “snow on colleague’s

boots”, as shown in Figure A-5. This illustrates that it is not only evidence in S which

connects R and T, but also evidence in any of S’ descendents.

The importance of d-separation is that it encapsulates our common sense

understanding of how causal relationships “ought” to work. This correspondence

between d-separation and our expectation of causal reasoning is part of what makes

BNs so simple and intuitive to use.

 179

Figure A-5 "Snow on Boots" Node

A.4 Algorithms Used

Most of the models described in this thesis have been evaluated using an exact

inference algorithm for discrete BNs called the Junction Tree Algorithm (JTA). This

algorithm is capable of calculating all the marginal distributions in a large BN without

having to store the complete JPD. The algorithm is described using a detailed example

in Appendix B.

The AgenaRisk toolset [8] was used to build the agile models described later and to

run the JTA. AgenaRisk was chosen for a number of reasons.

1. It provides a wide variety of built-in statistical distributions.

2. CPDs can be constructed as analytic expressions based on a node’s parents.

3. The toolset uses a simple point and click interface.

4. Access to the source code was available. This allowed the creation of the

custom extensions necessary to build models suited to agile environments.

The extensions mentioned in point 4 are discussed in some detail in the main text,

but they can be summarised as follows.

1 Database connectivity between the AgenaRisk tool and a series of diverse data

sources. This allows the tool to create complex queries using mappings between

heterogeneous databases. When combined with these query results, BN models

can be generated automatically using some simple rules. Nodes can be updated

with evidence using similar query results.

2 A scripting capability has been added. This allows both the definition of models

and the creation of links between models to be handled outside of the GUI

 180

provided by AgenaRisk. As with all point and click interfaces, what is convenient

for one-off tasks, is not always convenient for repetitive tasks. Clearly Agile

models, with their inherently iterative nature, involve some degree of

repetitiveness. The scripting capability also adds many other highly desirable

features, such as common discretisations across many instances of the same

model. (The importance of discretisation is discussed in section A.5.6).

3 The iterative nature of agile models means that aspects of the model change over

time. It is highly desirable to be able to capture these time dependent aspects and

view them visually. The ability to extract and display such aspects graphically

has also been added to the AgenaRisk tool.

A.5 Advantages of Bayesian Nets

In this section we cover the main benefits of BNs.

A.5.1 Intuitive Models

One of the most obvious benefits of BNs is their intuitive graphical nature. With the

correct tools, models can be created manually using a simple point and click interface.

The domain expert does not require any understanding of conditional independence,

probability theory or Bayes Theorem. All that is required is a qualitative

understanding of the variables involved, the causal relationships between them and

some means of judging the relative strengths of those relationships.

Causal reasoning is highly compatible with the way humans construct arguments.

We naturally regard events as being the result of a network of cause and effect

relationships. What is more, humans realise that an event can have more than one

possible cause: the grass can be wet because it is raining or because of the lawn

sprinkler. Similarly, some events can only happen when the correct combination of

causes are present: it only snows if there is cloud precipitation and it is sufficiently

cold. This kind of reasoning is easily handled by BNs as shown in the example below.

Example A-4

We can model multiple alternative causes of the same outcome. Suppose A

and C are Boolean variables. If either is true then so is B. This is expressed by

the CPD shown on the right below, which in this case is simply the truth table

for the Boolean OR operation.

 181

Figure A-6 Boolean OR as a BN

A T T F F

C T F T F

B

1 1 1 0 T
F 0 0 0 1

Figure A-7 Boolean AND as a BN

A T T F F

C T F T F

B

1 0 0 0 T
F 0 1 1 1

Similarly, we can model the case where multiple causes must all be present

for an outcome to occur. Again, let A and C be Boolean variables. Both must be

true for B to be true. This is expressed by the CPD shown on the right, which in

this case is simply the truth table for the Boolean AND operation.

BNs can encapsulated more complex logical operations than simple AND and

OR models. Appendix D, for example, explains the concept of Noisy Or.

A.5.2 Learning

In cases where there is sufficient data, it is sometimes possible to learn the structure

of the network from a database. Various algorithms exist to determine the best fitting

structure for a dataset (see for example [149], [170], [38] and [84]). This can rely on

either a searching and scoring approach, or a search for statistical relationships

between variables. In general, learning the structure of a BN using a search and score

algorithm is NP-hard [41]. Nevertheless, where the data is complex, structure learning

may turn out to be more practicable than the domain expert approach. There is rarely

sufficient data available in software engineering to perform automated structure

learning. For this reason it plays no part in the models discussed here.

Parameter learning, as distinct from structure learning, occurs when the

distributions for one or more random variables is unknown and must be learned.

Sometimes this uses algorithms such as Maximum Likelihood Estimation based on

 182

tools and data external to the BN model. However it is also possible to get the BN

itself to learn its parameters by entering evidence into the model.

Example A-5

Figure A-8 Learning the parameters of a Normal distribution

Figure A-8 shows how we can learn the parameters of a normal

distribution. We have a series of observations which we assume are

normally distributed, however the mean and variance of their distribution

is unknown. In the model shown, the ‘mean’ node and the ‘variance’

node are set to uninformative priors, which in this case are just uniform

distributions. (We have chosen a uniform distribution for simplicity in

this example. It should be noted that an uninformed prior is not always

best represented by a uniform distribution. See section 3.2.3 for a better

real life choice.) Each ‘observation’ node has a CPD which is set to:

Normal (M, V).

 183

Where M is the value of the mean node and V is the value of the

variance node. Let us look at a single observation variable – call it O. The

prior of the observation node is:

P (O | M, V).

Entering hard evidence into the model masks off all of P(O | M, V),

except for the observed state, call this o (lower-case letter “o”). The only

non-zero states that remain are:

P (O=o | M, V).

We can now construct the JPD for the whole model. Let the i’th

observation variable be Oi, with evidence oi, then the JPD (excluding the

predicted variable) is:

),|()()(VMoOPVPMP ii

i

=∏

The distributions P(M) and P(V) are both uniform, so they can be

treated as constants and ignored, this leaves only the product of the

observation variables. We marginalise each Oi by summing over the

states of Oi, but only one of these values is non-zero: the one with the

selected evidence, so summing has no effect. Subject to a constant, we

therefore have:

),|(),(VMoOPVMP ii

i

== ∏

Those combinations of values of M and V with the highest probability

of explaining the evidence oi (as determined by the CPD of will Oi) will

dominate this distribution. I.e. We have learned the most likely values of

M and V.

 184

We return to parameter learning in section 7.1 where we show how to learn

parameters in Dynamic Bayesian Nets (discussed below).

A.5.3 Reasoning Under Uncertainty

One of the problems with simple regression based models is their inability to deal

with uncertainty. This is something that human decision makers must deal with on a

daily basis. We rarely have complete evidence in any given situation and what

evidence we do have will normally have an uncertainty attached to it. BNs have the

ability to deal with both missing data and uncertain data.

When evidence is missing, the prior distributions of each node are propagated

through the network. Where no knowledge whatsoever is known about the prior state

of a node then the prior distribution can be set to an uninformed prior. In many cases

however, more detailed information will be available. This may involve the exact

form of the distribution as garnered from either theoretical or empirical studies, or it

may be as simple as a hunch, based on experience, that some values are more likely

than others.

We have already seen how hard evidence is incorporated into the model in Example

A-5. Some soft evidence, such as findings (where certain values are excluded), can

also be incorporated using this mechanism. Arbitrary distributions can also be entered

by setting each value of the evidence potential, Λ, to appropriate real number values.

A.5.4 Heterogeneous Modelling

By heterogeneous modelling we mean the ability to include multiple types of data

in the same model. The data can be said to be heterogeneous in at least three distinct

senses.

1. It may belong to numeric, ordinal or nominal scales.

2. If numeric, then it can be continuous or discrete (mixed continuous and

discrete models are referred to as hybrid models).

3. Data can include observations, prior knowledge or beliefs.

Point 3 has been largely covered above in Reasoning Under Uncertainty. Although

we shall mix continuous and discrete nodes in the models described here, the

continuous distributions are in fact always approximated by splitting the distribution

into discrete ranges. This leaves us only point 1 left to consider.

 185

None of the theory described so far, including the propagation algorithm, depends

on any properties of the states of nodes. Provided a (conditional) probability

distribution can be defined across the complete set of discrete node states, we can

construct a consistent BN and propagate any evidence entered. We will therefore

illustrate with some examples how CPDs can be generated for various combinations

of data types.

Example A-6, Continuous Variable with Ordinal Parent

Let A be a continuous variable with a single ordinal parent, B. Let B have

the set of states:

b1,…,bn , i < j ⇒ bi < bj

and let A be discretised into the ranges:

[a1..a2), [a2..a3),…,[am-1..am) , i < j ⇒ ai < aj.

For each value bi and range [ak..ak+1) we can define a probability

P(A=[ak..ak+1) | bi), such that

1)|)..[(1 ==∑ +
k

ikk baaAP .

P(A=[ak..ak+1) | bi) therefore forms a CPD for A. We can model the ordinal

variable by another continuous variable C, discretised into ranges:

[c1..c2), [c2..c3) ,…, [cn..1) , i < j ⇒ ci < cj , ci+1 - cj = 1/n.

The ranges preserve the ordering of the ordinal variable B and each range

[ci..ci+1) is then associated with the ordinal value bi. With this association in

place we can use any function ϕ : A × C → ℜ, suitably normalised, as a

shortcut to setting up the CPD for A. For example:

 186

 ++

= ++

2
,

2
11 iikki

k

ccaa
P ϕ .

I.e. we can use the value of ϕ defined at the midpoint of the corresponding

ranges. The net effect of this is that we can define the CPD of a continuous

node with an ordinal parent in terms of standard statistical distributions. For

example, if Normal (µ, σ) represents a Normal distribution with mean µ and

standard deviation σ, then we can define:

()2/,)|(BBNormalBAP = .

This creates a Normal distribution over the values of A for a given value of

B with the mean and standard deviation specified and suitably normalised so

that the probability mass sums to 1.

Clearly the technique used in Example A-6 to associate a continuous variable

with an ordinal node can be used wherever an ordinal node appears. This allows

us to assign standard statistical distributions to ordinal nodes themselves, or to

ordinal nodes with numeric or ordinal parents. Wherever a statistical distribution

is specified over a continuous variable with an ordinal parent, a procedure similar

to the above should be assumed.

Example A-7, Continuous Variable with Nominal Parent

Let A be a continuous variable with the states shown in Example A-6. Let A

have a single nominal scale parent, B, with the states:

b1,…,bn

The technique used in Example A-6 can no longer be used. The states of B are

no longer ordered, therefore it is impossible to setup a unique isomorphism

between B and an ordered partition of the range [0..1]. We can still define

continuous distributions over A however. Now we use a set of functions ϕi : A

 187

→ ℜ, i = 1..n, one for each value of B. These are assigned to probabilities as

follows:

 +

== +
+

2
)|)..[(1

1
kk

iikk

aa
baaAP ϕ

We call ϕi a partition of B over A. The set of functions {ϕi } is known as a

partitioned expression.

Partitions can be defined using ordinal as well as nominal variables. This is

particularly useful when the relationship between the parent ordinal variable, as

represented by it associated partition of the [0..1] range, and the continuous

child variable is not easy to express as an analytic function.

A.5.5 Induction and Abduction

The ability to perform abductive, as well as inductive reasoning is closely related to

parameter learning. Abductive reasoning occurs when an event is known to have

taken place and we wish to ascertain the probable cause. We illustrate this with an

example of “explaining away”.

Example_A A-8

Consider the case of a student sitting an exam. Assuming that appropriate

precautions exist to prevent cheating, there are two possible ways to get a

good score. The student can be hard working, or alternatively, they might be

lucky and just happen to have read up on the subjects that appear in the exam

paper.

Let E be the event “Exam Passed”, with possible causes “Good Student”, S,

and “Luck”, L. We assume that we know nothing about the student in advance

and that they are equally likely to be hard working and lucky. Both causes are

therefore given uniform priors. If the student is hard working (S = true) then

they will normally get a good score. However, it is possible that they are

unlucky that day (L = false) and they feel unwell. In this case there is a small

probability that they will get a poor exam score.

If the student is lazy (S = false) then they will almost certainly get a poor

exam score, unless they happen to be lucky on the day, in which case there is

 188

a small possibility that they will get a good score. This information is

summarised in the probability distributions shown below.

Figure A-9 Explaining away

 P(S) P(L)

F 0.5 0.5

T 0.5 0.5

S F F T T

L F T F T

P(E|S,L)

E = False 1 0.9 0.1 0

E = True 0 0.1 0.9 1

The distribution P(E|S,L) is symmetric with respect to S and L, so initially

the model shows a 50/50 chance of the student achieving a good mark.

Suppose the exam is now marked, and the student achieves a good score. This

is equivalent to zeroing out the E = false line in the P(E|S,L). We can get from

the CPD, P(E|S,L), to the JPD P(E,S,L) as follows.

P(E,S,L) = P(E|S,L)P(S)P(L)

Since P(S) and P(L) are equal, the P(E,S,L) will have the same “shape” as

P(E|S,L). The bulk of the probability mass is therefore concentrated in the

bottom right corner of P(E,S,L) where S = true and L remains almost evenly

split between true and false:

S F F T T

L F T F T

P(E,S,L)

 189

E = False 0 0 0 0

E = True 0 0.1 0.9 1

This is as we would expect: if the student achieves a good score then they

are probably a hard worker, with luck playing little part on the exam day.

Now suppose we have another indicator of whether the student is a good

student. The node “Previous good marks”, P, has the table shown below.

S F T

P(P|S)

P = False 0.9 0.1

P = True 0.1 0.9

If we now discover that the student had previously gained good marks then

the row corresponding to P = False gets zeroed out in the above table. It is

now almost certainly the case that the exam has been passed because the

student is hard working, and not because of luck. We have “explained away”

the “lucky” explanation.

A.5.6 Discretisation

The propagation algorithm outlined in Appendix B produces exact results for

discrete variables. Exact solutions are also possible in hybrid models (where discrete

and continuous variables are intermixed) but only by restricting the continuous

variables to Gaussian distributions [119]. This is too strong a restriction for most

models.

Example A-6, in the section on Heterogeneous Modelling, showed how we could

approximate a continuous distribution by splitting it into a finite set of discrete ranges.

Other approximation techniques have been proposed, and these are discussed in [153],

however discretisation remains the only simple, general-purpose algorithm available.

Clearly, getting the discretisation right is crucial to the success of any model. Figure

A-10 shows the marginal distributions for three nodes initialised with the same

distribution: Normal (5, 1). The leftmost graph illustrates the result of an

inappropriate choice of discretisation, while a better choice of discretisation results in

the middle graph.

 190

Figure A-10 Bad, good and dynamic discretisation.

Various undesirable effects can flow from a poor discretisation.

1. The shape of the distribution can been entirely misleading, as is the case in

Figure A-10.

2. Summary statistics, such as mean median and variance, become inaccurate.

3. Evidence entered into a poor discretisation becomes less precise. For example,

if a variable is numeric and covers the range [0, 100] and it is discretised into

5 equal ranges, then entering a value of 10 (say) means that the [0, 20) range

will be selected. A more refined discretisation would result in a much smaller

range being selected.

In iterative models, such as dynamic BNs or object oriented BNs, these errors are

cumulative, leading to serious distortions in the calculations.

This would all seem to argue that higher resolution discretisations will result in

more accurate models, and indeed this is the case. However there is a computational

penalty to pay for this higher resolution. A large number of states in a node results in

a similarly large number of states in every clique which includes the node, causing the

multiplication of potentials and their marginalisation to take longer. There is therefore

an incentive to only use as many states as are necessary, concentrating the high

resolution states at locations of highest probability mass.

The problem facing modellers is that it is not always clear in advance where the

main body of the probability mass will reside. This can be particularly problematic for

dynamic BNs (discussed later), where the model includes a timeseries element. In this

case, the probability mass will often move across timeslices, so that a discretisation

which is appropriate for one timeslice turns out to be inappropriate for another.

A possible solution, involving dynamic discretisation, has been proposed by Neil,

Tailor and Marquez [153]. The dynamic discretisation algorithm begins with a very

small number of states, and by continually splitting and combining states, arrives at a

 191

discretisation which minimizes the relative entropy error [113]. A marginal

distribution resulting from this algorithm forms the third graph in Figure A-10.

A.5.7 Discretisation and Ranked Nodes

In Example A-7 we introduced the concept of an ordinal variable represented by an

ordered set of discrete ranges which partition the range [0, 1]. We refer to a node

containing such a variable as a ranked node. Ranked nodes are discussed extensively

in [65]. They typically include a set of 3, or 5 values with labels such as

{Very Low, Low, Medium, High, Very High},

although other values and numbers of labels are possible.

As pointed out in the previous section, entering evidence into any discrete partition

of a continuous variable results in the entire discrete range containing the evidence

being selected. In effect, the model introduces an extra level of uncertainty in the

measurement.

Ranked nodes are typically used to express expert judgement. This judgement is

usually subjective and uncertain. If this were not the case, if it were objective and

definite in value, then we would use a continuous variable instead. In the case of

ranked nodes therefore, this uncertainty is a desirable attribute. More information on

ranked nodes and the important role that they play in eliciting CPDs from experts is

contained in the section on Ranked Nodes, TNormal Distributions, and Weighting

Functions.

 192

Appendix B – The Junction Tree Algorithm

Note – because of the size of some of the probabilistic expressions in this chapter, I

am using a more compact notation for probability distributions. The notation is

summarised in Table B-1.

 Standard

Notation

Component

Notation

Probability distribution of a random variable A.)(AP
AP

Conditional probability distribution of A given B.)|(BAP B

AP

Probability that variable A takes the value “a”.
)(aAP = aaA PP or =

Joint Probability of a set of random variables
{X1,..., Xn}

),,(1 nXXP K nP ..1

Potential indexed by a random variable. (A)or)(ψAm
Am

Table B-1 Notation used in this appendix.

This appendix provides an outline of an algorithm that allows evidence to be

propagated consistently while allowing marginal probabilities to be calculated from

much smaller arrays of numbers. This is often called the “Hugin” algorithm after a

piece of software in which it was first implemented. Hugin is an extension of the

Lauritzen and Spiegelhalter algorithm [120]. Another alternative is due to Shenoy and

Shafer [186]. All share the property that a secondary graph is created from the BN,

with local potentials updated via message passing. The three methods are compared in

[122].

Rather than provide a formal proof, we will illustrate the method using an example

from Huang and Darwiche [87]. A rigorous derivation of the algorithm can be found

in [94][95]. The example BN is shown in Figure B-1. For simplicity, each node is a

boolean variable with two states: true and false.

We could calculate any probability distribution for the example by first creating the

JPD:

EG

H

C

G

DE

F

C

E

B

D

A

C

A

BAABCDEFGH PPPPPPPPP = . Equation B-1

 193

Figure B-1 Huang and Darwiche example

We can then marginalise to calculate the marginal probability distributions for each

node. In this case, with only 28 = 256 entries, this might be a practical approach, but in

general this is not the case. The Joint Probability Distribution (JPD) of a ten node

network, with each node having ten states, is a ten dimensional array of numbers

containing a total of 1010 entries. Clearly, constructing the full JPD for any non-trivial

BN is not a practicable task.

The key to simplifying the task is to realise that each random variable only appears

in a small number of potentials. Summing over all variables that do not appear in

those potentials results in an expression that is much simpler. For example, suppose

we wish to calculate the marginal distribution for PH in Equation B-1. We would have

to sum over all the remaining variables:

∑=
ABCDEFG

EG

H

C

G

DE

F

C

E

B

D

A

C

A

BAH PPPPPPPPP . Equation B-2

Most of the distributions in Equation B-2 do not involve H. Consequently, we could

pre-compute many of these values to create the potential:

∑=
ABCDF

C

G

DE

F

C

E

B

D

A

C

A

BAEG PPPPPPPm . Equation B-3

Calculating PH then becomes much simpler:

 194

∑=
EG

EG

EG

HH mPP . Equation B-4

We would therefore like to create a second graph, derived from Figure B-1, which

has a node with the potential:

EGHEG

EG

HEGH PmPm == . Equation B-5

This potential can also be summed over either of its other dependent variables to

give PE and PG. i.e. mEGH = PEGH.

B.1 Moralising

 A

B C

D E

F

G

H

A

B C

D E

F

G

H

Figure B-2 Moralised graph, GM

We begin by “moralising” the graph, G, to produce a new graph GM (Figure B-2 –

this figure and many of those that follow for this example, are reproduced with the

kind permission of Prof. Martin Neil). We moralise the graph by removing the

directions and linking together all parents of a common child. The need to moralise

the graph arises from the fact that there are domains for potentials in Equation B-1

which are not represented by edges on the graph. For example PF
DE has domain

{D,E,F}. Moralisation guarantees that these three nodes will end up as part of the

same clique in the (non-unique) triangulation step explained below. This in turn

ensures that there will be a clique to which the potential PF
DE can be assigned.

 195

B.2 Triangulation

Once the moral graph has been obtained, the next step is to triangulate the graph.

We do this by selecting a node V, and pairwise connecting it and all of its neighbours.

This set of neighbours forms a cluster. V is chosen so as to minimise the number of

connections added to create the cluster and to minimise the total number of states of

the cluster. The domain of each cluster is added to a domain list. The node, V, is then

removed from the graph.

The order of node removal is not unique. One possibility in the example is as :

shown in Figure B-3.

 A

B C

D E

F

G

H

1

Node H is already pairwise

connected to all its

neighbours. Together with

its neighbours it forms a

cluster with domain

{G,E,H}. Remove H.

 A

B C

D E

F

G

2

Node G is already pairwise

connected to all its

neighbours. Together with

its neighbours it forms a

cluster with domain

{C,E,G}. Remove G.

 A

B C

D E

F

3

Node F is already

pairwise connected to

all its neighbours.

Together with its

neighbours it forms a

cluster with domain

{D,E,F}. Remove F.

 A

B C

D E

4

Pairwise connect node C

with its neighbours A and E.

 A

B C

D E

5

Node C is now part of a

cluster with domain

{A,C,E}. Remove C.

 A

B

D E

6

Pairwise connect node

B with its neighbours A

and D.

 196

 A

B

D E

7

Node B is now part of a

cluster with domain

{A,B,D}. Remove B.

 A

D E

8

The remaining nodes are all

pairwise connected in a

cluster with domain

{A,D,E}. Remove D.

 A

E

9

Remove E.

Figure B-3 Triangulation and node elimination

The remaining domain sets, {A,E} and {A} are excluded because they are subsets

of {A,D,E}. This last step ensures that only maximal complete sets, or cliques, are

included in the domain set. This results in the domain set: GEH, CEG, DEF, ACE,

ABD, ADE. If we include all the links added during triangulation to the moral graph,

we obtain the graph shown in Figure B-4, the triangulated graph.

 A

B C

D E

F

G

H

Figure B-4 The triangulated graph.

B.3 Join Trees and Junction Trees

Next, we build a join tree, J. Each node in J corresponds to one of the cliques

identified during the triangulation stage. We build the join tree one clique at a time in

the order in which we discovered them.

GEH

The first clique we discovered had domain {G,E,H}, so we

create a node in J corresponding to that clique.

 CEG GEH

The next clique discovered had domain {C,E,G}. This shares

an edge in the triangulated graph with clique {G,E,H}. In J,

this shared edge becomes a link between the nodes

corresponding to the two cliques.

 197

DEF

CEG GEH

The next clique discovered had domain {D,E,F}. This did not

share any edges in the triangulated graph with any of the

cliques added to J so far. For the moment this clique remains

disconnected.

DEF

ACE CEG GEH

The next clique discovered had domain

{A,C,E}. This shared an edge in the

triangulated graph with clique {C,E,G}. In J,

this shared edge becomes a link between the

nodes corresponding to the two cliques.

ABD DEF

ACE CEG GEH

The next clique discovered had domain

{A,B,D}. This did not share any edges in the

triangulated graph with any of the cliques

added to J so far. For the moment this clique

remains disconnected.

ABD ADE DEF

ACE CEG GEH

Finally we discovered the clique with domain

{A,D,E}. This shared edges in the triangulated

graph with the cliques {A,B,D}, {D,E,F}, and

{A,C,E}. Each of these edges are represented

by links in J.

The join tree J has the property that, given two cliques, say DEF and GEH in J, all

nodes in the path between DEF and GEH contain DEF ∩ GEH . We call this the join

tree property. A corollary of this is that there exists a set of cliques for any given node

(E say), such that E appears in all paths between any two cliques in the set and

nowhere else. In other words, E exists exclusively in one “joined up” section of J.

This property is crucial for the message passing algorithm explained later.

Having obtained the join tree, we now separate each clique by a separation set, or

sepset. Sepsets contain the intersection of neighbouring cliques. The resulting join

tree, referred to as a Junction Tree, is shown in Figure B-5.

 198

ABD AD ADE DE DEF

AE

ACE
CE CEG EG GEH

Figure B-5 Junction tree with cliques and sepsets

Each node, V, from the original BN is assigned to a clique in J which contains both

V and π(V) (the latter can be empty if V has no parents). The moralisation step

guarantees that such a clique exists. The potentials associated with all variables

assigned to a clique are then multiplied together to form the initial clique potential.

This assignment is not necessarily unique. An example is given in Table B-1. PA

could have been assigned to any of the cliques containing A. Sepsets and unassigned

cliques are initialised to a potential with all values set to one.

Clique X
ASSIGNED

NODES

mX

ABD
B, D B

D

A

B PP

ADE A
AP

DEF F DE

FP

ACE C A

CP

CEG E, G C

G

C

E PP

GEH H EG

HP

Table B-1 Initial clique potentials

B.4 Message Passing

Let X and Y by adjacent cliques separated by a sepset S. Let them have potentials

cX, cY and r respectively. Denote the modified versions of these potentials by c′X, c′Y

and r′ respectively. A message passed from X to Y consists of the following steps.

1. ∑=
SX

Xcr
/

' . i.e. The potential cX is projected onto S by marginalising out all

variables in X that are not in S.

 199

2.
r

r
cc YY

'
' = . i.e. The projection from X is multiplied into Y, but with the

previous sepset potential divided out. Initially the sepset potentials are all set

to one.

A single clique is selected. Messages are then passed from all outer cliques to the

selected clique, starting from the cliques that are farthest away from the selected

clique. This is called the collect evidence phase. Messages are then sent from the

selected clique to all other cliques. This is called the distribute evidence phase.

In what follows, we need to keep track of multiple versions of various potentials.

We denote the version of a potential with a numeric superscript. So cx
1 is version one

of a potential, cx
2 is version 2 and so forth. The subscript is simply the set of nodes

assigned to a clique or a sepset. These are always unique. We shall also distinguish

between clique potentials, c, and sepset potentials, s.

AB BC
B

Clique Assigned
potentials

AB PA PB
A

BC PC
B

Figure B-6 A simple BN with its junction tree

The easiest way to see how the algorithm works is to give a very simple example.

Figure B-6 shows a simple BN, together with a valid junction tree and the potentials

assigned to its cliques.

We choose clique AB to be the starting clique. Messages are then sent in the

following order.

1. AB to

BC:

∑=
A

A

BAB PPs2
BC

A

ABC

A

A

BA

B

C

B

B
BCBC PPPPP

s

s
cc ==== ∑∑1

2
12

2. BC to

AB:

∑=
C

BBCB scs 213
∑∑ ====

C

ABABC

C

BC

A

BA

B

B
ABAB PPcPP

s

s
cc 1

2

3
12

As an optimisation, we can remove the division by s1
b in stage one above.

 200

Theorem

The message passing algorithm sets the potential of each clique equal to the JPD of

that clique.

Justification

A rigorous proof of the above theorem is available in [94][95]. Instead, we illustrate

the algorithm by applying it to the example used throughout this section. It should be

apparent that the mechanism is sufficiently general to cope with any junction tree.

We choose the GEH clique as the starting clique. Messages are then passed from

outer cliques in the following order:

ABD AD ADE DE DEF

AE

ACE
CE CEG EG GEH

1 2

5 4
3

Collect-

Evidence(X)

X

1. ABD
to ADE:

∑=
B

ABDAD cs 12 ∑==
B

ABDADE

AD

AD
ADEADE cc

s

s
cc 11

1

2
12

2. DEF
to ADE:

∑=
F

DEFDE cs 12
∑==
BF

DEFABDADE

DE

DE
ADEADE ccc

s

s
cc 111

1

2
23

3. ADE
to ACE:

∑=
D

ADEAE cs 32 1111

1

2
12

ACE

BDF

DEFABDADE

AE

AE
ACEACE cccc

s

s
cc ∑==

4. ACE
to CEG

∑=
A

ACECE cs 22 11111

1

2
12

CEGACE

ABDF

DEFABDADE

CE

CE
CEGCEG ccccc

s

s
cc ∑==

5. CEG
to GEH

∑=
C

CEGEG cs 22 111111

1

2
12

GEHCEGACE

ABCDF

DEFABDADE

EG

EG
GEHGEH cccccc

s

s
cc ∑==

The point at which the summations take place is important. Take, for example, the

summation over A in step 4. This happens because the algorithm says to sum over all

nodes included in the clique ACE which are not included in the sepset CE. The join

 201

tree property ensures that A can appear only in cliques and sepsets which have already

passed a message. I.e. The summation is taking place over all potentials that include

A. In particular, it guarantees that A does not exist in the clique selected as the origin

for message passing, whose nodes we must not sum over.

The final potential, c2
GEH, contains the product of all the initial potentials, and so

contains the product of all the probability distributions from the model. So the product

of all the probability distributions has been summed over all nodes which are not

included in the selected clique. I.e.

∑ ==
ABCDF

GEHABCDEFGHGEH PPc2

We could repeat this procedure for each clique in the tree. However as we shall see

below, the distribute-evidence phase is sufficient to create JPDs in all of the

remaining cliques.

Having collected evidence from all other nodes, we now distribute messages

outwards from GEH in the following order.

 ABD AD ADE DE DEF

AE

ACE
CE CEG EG GEH

X

4 5
3

2 1

Distribute-
Evidence(X)

1. GEH

to CEG

CEGGEHCEGACE

ABDFH

DEFABDADE

CEGACE

ABCDF

DEFABDADE

GEHCEGACE

ABCDFH

DEFABDADE

CEGACE

ABDF

DEFABDADE

EG

EG
CEGCEG

H

GEHEG

Pcccccc

ccccc

cccccc

ccccc
s

s
cc

cs

==

==

=

∑

∑
∑

∑

∑

111111

11111

111111

11111

2

3
23

23

 202

There is another way to construct this:

CEG

H

GEHCEGACE

ABDF

DEFABDADECEGCEG

H

GEH

Pccccccmcc

cm

===

=

∑∑

∑
))((111111123

11

This has removed the division. Division takes twice as much time as

multiplication, so this calculation should be three times as fast. It has also

removed the need to store s2
EG. Although not described in Huang and

Darwiche [87], this optimisation is described in Jensen [93].

2. CEG

to ACE

ACEGEHCEGACE

BDFGH

DEFABDADE

ACE

ABDF

DEFABDADE

GEHCEGACE

ABDFGH

DEFABDADE

ACE

BDF

DEFABDADE

CE

CE
ACEACE

G

CEGCE

Pcccccc

cccc

cccccc

cccc
s

s
cc

cs

==

==

=

∑

∑
∑

∑

∑

111111

1111

111111

1111

2

3
23

33

ALTERNATIVELY:

ACE

GH

GEHCEGACE

BDF

DEFABDADEACEACE

G

CEG

Pccccccmcc

cmm

===

=

∑∑

∑
)(111111223

112

We have replaced one multiplication and one divisin by two

multiplications. This should run 50% faster. We no longer need s2
CE.

3. ACE

to ADE

ADE

BCFGH

GEHCEGACEDEFABDADE

BDF

DEFABDADE

GEHCEGACE

BCDFGH

DEFABDADE

BF

DEFABDADE

AE

AE
ADEADE

C

ACEAE

Pcccccc

ccc

cccccc

ccc
s

s
cc

cs

==

==

=

∑

∑
∑

∑

∑

111111

111

111111

111

2

3
34

33

Alternatively:

 203

ADEACEGEHCEG

BCFGH

DEFABDADEADEADE

C

ACE

Pccccccmcc

cmm

===

=

∑

∑
111111334

123

This calculation will typically be 50% faster. No longer need s2
AE.

4. ADE

to ABD

ABDABDACEGEHCEG

CEFGH

DEFADE

B

ABD

ACEGEHCEG

BCEFGH

DEFABDADE

ABD

AD

AD
ABDABD

E

ADEAD

Pcccccc

c

cccccc

c
s

s
cc

cs

==

==

=

∑

∑
∑

∑

111111

1

111111

1

2

3
12

43

Alternatively:

ABDABDACEGEHCEG

CEFGH

DEFADE

F

DEF

C

ACE

G

CEG

H

GEH

E

ADEABDDEAEADABDABD

AE

E

ADEAD

Pcccccc

ccccccssscc

ms

cs

==

==

=

=

∑

∑∑∑∑∑

∑

111111

11111123312

33

13

))()((

We have multiplied the potentials of the ABD clique, the ADE clique and

the AE and DE branches. This has 3 mults instead of 1 mult + 1 div.

Should take roughly the same time to compute. Note that we do have to

retain s2
DE. We also have to retain s2

AD for the next branch below.

5. ADE

to DEF

DEFDEF

ABCGH

GEHCEGACEABDADE

F

DEF

ABCFGH

GEHCEGACEDEFABDADE

DEF

DE

DE
DEFDEF

A

ADEDE

Pcccccc

c

cccccc

c
s

s
cc

cs

==

==

=

∑

∑
∑

∑

111111

1

111111

1

2

3
12

43

 204

Alternatively:

DEFABDACEGEHCEG

ABCGH

DEFADE

B

ABD

C

ACE

G

CEG

H

GEH

A

ADEDEFADAEDEDEFDEF

A

ADEDE

Pcccccc

ccccccssscc

cs

==

==

=

∑

∑∑∑∑∑

∑

111111

11111123312

13

))()((

B.5 Evidence Propagation

Evidence propagation in junction trees is accomplished by setting to zero all values

in a clique potential which do not correspond to observed values and re-running the

message passing algorithm. We can denote this by introducing additional potentials

called evidence potentials. These can be set to:

1. all ones, for no evidence;

2. one for a particular node state and zero otherwise (hard evidence or

observation);

3. a set of values in the range [0, 1] (soft evidence).

Clique potentials are then multiplied by the evidence potentials before message

passing begins. A normalisation stage must be added after message passing

completes.

We will normally denote an evidence potential by an uppercase Greek letter,

indexed by the random variable that the evidence applies to. Thus, evidence in node C

in Figure B-1 might be denoted by ΛC. The clique potential cCEG then becomes:

C

C

G

C

ECEG PPc Λ=

Note that it is only necessary to update one of the cliques with an evidence potential

as the message passing algorithm will cause all other potentials to update as well. The

net effect of these manipulations is to mask off impossible values.

 205

Appendix C – AgenaRisk Scripting Language

Section 6.3 describes why a scripting facility needed to be added to the AgenaRisk

toolset [8]. This section describes this scripting language in detail.

Scripts consist of text files where each line of text begins a new command. Empty

lines are ignored. All other lines begin with a command keyword followed by a set of

command parameters.

Keywords, command parameters and syntactic punctuation are all separated by

space characters. Parameters which include spaces can be included in double quotes.

The case of keywords is not case sensitive. However they are shown in capitals in

the descriptions that follow. Command parameters are shown surrounded by angle

brackets: < >.

C.1 Risk Object Commands

These are commands which are used to load and manipulate Risk Objects (RO).

Each RO is a Bayesian Net in its own right. However, by defining input and output

nodes on ROs, they can be linked together to form large, complex networks.

C.1.1 NEW_MODEL

Creates a new model.

C.1.2 LOAD <Risk object filename>

Loads a RO into the model. When constructing a DBN, this command will often be

issued several times in order to create multiple instances (usually) of the same Risk

Object. It is the same as executing AgenaRisk’s File →→→→ Import Model menu

command.

When AgenaRisk imports a model it usually prompts the user to ask if the imported

model’s graph defaults should be extended to the whole model. This is undesirable

when a script is being executed. To prevent this, edit the file:

C:\Documents and Settings\<username>\AgenaRisk\minerva.properties.

 206

and add the line:

uk.co.agena.minerva.askAboutGraphSettings=false

Example

LOAD "C:\Local Data\XP_models\Effort\effort_only2.cmp"

C.1.3 MOVE_OBJECT <Object name> <x> <y>

Move the RiskObject to the specified position. Must be in the MDI view for this to

work (e.g. after an object load).

C.1.4 RENAME <Old object name> <New object name>

When a RO is loaded using the LOAD command, it has a default name as stored in

the file it was loaded from. DBNs often need multiple copies of the same Risk Object,

and scripts need a way to uniquely identify each copy. Typically, a piece of a script

will load a RO, link it to some other ROs, and then rename it.

Example

LOAD "C:\Local Data\XP_models\Effort\iteration.cmp"

RENAME Iteration Iteration1

C.1.5 LINK <Source object> <Source node>

<Destination object> <Destination node>

Links the output node of a source object to the corresponding input node in a

destination object. This command links Risk Objects together to form larger nets.

Linking an output with an input node effectively identifies the two nodes as being

the same node. The marginal probability distribution of the two will be identical after

evidence has been propagated.

 207

Example

LINK "Initial Velocity Guess" "Effective engineering factor" Iteration "proj vel

pre"

C.1.6 UNLINK <Source object> <Source node>

<Destination object> <Destination node>

Deletes the link between the output node of a source object and the corresponding

input node in a destination object. This command removes links between Risk

Objects.

Example

UNLINK "Initial Velocity Guess" "Effective engineering factor" Iteration "proj vel

pre"

C.1.7 INCLUDE <filename>

Runs the commands in the specified file (from the “current” directory”).

C.1.8 MACRO DEFINE|USE <macro_name> <macro contents>

Create or use a simple, un-paramaterised, macro.

C.1.9 PROPAGATE ALL

Propagate all ROs.

C.2 Node Commands

Node commands act on individual nodes rather than Risk Objects.

C.2.1 SET <Risk object name> <Node name> <Value>

 208

Sets evidence on a node. This is used to set an observed value for a node.

Example

SET Iteration "Accuracy Limit" 0.9

C.2.2 CLEAR <Risk object name> <Node name>

Clears evidence on a node.

Example

CLEAR Iteration "Accuracy Limit"

C.2.3 SET <Risk object name> <Node name>

WITH <$Var> FROM value1 value2 ...

Sets evidence on a node from within a FOR loop. This allows the for loop variable

to select a value from an array. The array index starts at one. Values must be included

for all possible array indexes from one to the maximum value of the loop control

variable.

Example

FOR $i = 2 to 4

 SET Diet y1$i WITH $i FROM 62 60 63 59

ENDFOR

C.2.4 CREATE_NODE <Risk object name> <Node name>

<type> <x> <y> [SIMULATION] [INPUT] [OUTPUT]

Creates a new node with the given node name in the given risk object. The location

in X, Y coordinates and the node type must both be specified. Optionally, the node

can be specified to be a simulation node, and an input or output node.

 209

The node type must be one of AgenaRisk’s fundamental node classes. These are:

• BooleanEN

• ContinuousEN

• ContinuousIntervalEN

• DiscreteRealEN

• IntegerIntervalEN

• LabelledEN

• NumericalEN

• RankedEN

These node types are case sensitive.

Example

CREATE_NODE ContinuousIntervalEN 300 100 INPUT

C.2.5 STATES <Risk object name> <Node name>

state1 [state2 ...]

Sets the valid states on a node. Multiple states can be included. For interval nodes,

interval boundaries must be separated by a tilde (“~”). The keywords –Infinity and

Infinity are both recognised. Multiple ranges are allowed. A Series of ranges can be

defined by adding an interval after a colon.

Example

STATES Iteration “proj vel pre” 0~5 5~45:1 45~Infinity

C.2.6 EXPR <Risk object name> <Node name>

Distribution parameter1 [parameter2 ...]

Sets the expression on a node. The distribution can be any of the standard

distributions allowed in AgenaRisk: arithmetic, uniform, normal etc.

 210

Example

EXPR Iteration "User Story Accuracy POST" Arithmetic

max(0,(min(Accuracy_Limit,User_Story_Accuracy_PRE+Process_Improvement)))

C.2.7 ADD_LINK <Risk object>

<Source node> <Destination node>

Adds a link between two nodes. This identifies a causal relationship between the

two nodes and causes the NPT of the destination node to change dimension.

Example

ADD_LINK Iteration1 "proj vel pre" "Total Effort"

C.2.8 COPY <Risk object> <Source node> <Destination node>

Creates a copy of a node in a risk object. It’s parents, states, and NPT will all be

identical.

Example

COPY Diet thetaA thetaB

C.2.9 DEL_LINK <Risk object>

<Source node> <Destination node>

Deletes a link between two nodes. This is often needed when copies of nodes are

being created and the links to the old parent nodes have to be deleted.

Example

DEL_LINK Diet thetaA y21

 211

C.2.10 CONSTANT ADD|SET <Risk object>

<Source node> <Constant name > <Constant value>

Creates or modifies a constant (expression variable) in a node.

C.3 Scenario Commands

C.3.1 ADD_SCENARIO <Scenario name>

Adds a new scenario.

C.3.2 RENAME_SCENARIO <Old name> <New name>

Renames a new scenario.

C.3.3 DEFAULT_SCENARIO < Scenario name>

Sets the default scenario for use with the CLEAR and SET commands.

C.4 Output Commands

The script language provides the ability to print values to a file. This is useful when

collecting values from a model after it has been run. It also allows graphs to be

displayed automatically.

C.4.1 OPEN_LOG <log file>

Opens a log file for printing.

Example

OPEN_LOG "C:\Local Data\XP_models\Effort\log.txt"

C.4.2 CLOSE_LOG

 212

Close the current log file.

C.4.3 PRINT <Risk object> <Node> MEAN | MEDIAN | SD

Prints a value to the current log file.

Example

PRINT Iteration1 "proj vel post" mean

C.4.4 GRAPH_DEFAULT <what> <value>

Sets default graph parameters. The only currently allowed values for <what> are:

Continuous X Axis

Treat min max x as percentile

min X

max X

Example

graph_default "Continuous X Axis" "True"

graph_default "Treat min max x as percentile" "True"

NOTE - numbers below MUST include a decimal point

graph_default "min X" 1.0

graph_default "max X" 99.0

C.4.5 GRAPH <Risk Object> <Node>

Opens a graph for the specified node in the risk graph panel.

Example

GRAPH Iteration1 "proj vel pre"

 213

C.5 Miscellaneous Commands

C.5.1 #

The # command introduces a comment. All remaining text following the # symbol,

on the same line, is ignored.

Example

A comment

C.5.2 DEFAULT NET <Risk object name>

Set the default Risk Object that further commands should act on. Once this

command has been issued, the first Risk Object name in all commands that follow

takes the default value. “DEFAULT NET none” removes the default network name.

Example

DEFAULT NET "Initial Velocity Guess"

The <Risk object> parameter can be omitted from commands that follow

GRAPH "proj vel pre"

C.5.3 DEFAULT NODE <Node name>

Set the default node that further commands should act on. Once this command has

been issued, the first node name in all commands that follow takes the default value.

“DEFAULT NODE none” removes the default node name.

Example

DEFAULT NET "Initial Velocity Guess"

DEFAULT NODE "Process Improvement"

Both the <Risk object> and <Node name> parameters are omitted below

EXPR Uniform -2 2

 214

C.5.4 LABEL <x> <y> <width> <height> <colour>

Creates a text label in the current view (either MDI view or BN view). The

transparency is always set to 60% and the newly created object is always set to be

behind all existing nodes and labels.

Example

LABEL 90 0 420 380 bbffbb “Process nodes”

C.5.5 FOR $<var> = <low> TO <high> ... ENDFOR

Executes all commands between the FOR and ENDFOR commands. Each

command is executed high-low+1 times. On each occasion, the loop variable $<var>

takes on one of the values from low to high inclusive.

There is no proper expression evaluator built into the scripting language. $<var>

simply defines a string substitution mechanism. Wherever $<var> appears in any of

the command between FOR and ENDFOR it is replaced with the current value of the

loop variable. One exception is the special symbol $<var>- which refers to one before

the current loop variable.

Example

FOR $i = 2 to 6

 LOAD "C:\Local Data\XP_models\Effort\simple_effort.cmp"

 SET Iteration "Process Improvement" 0.2

 # Link Iteration1 to Iteration2 etc.

 LINK Iteration$i- "proj vel post" Iteration "proj vel pre"

 RENAME Iteration Iteration$i

ENDFOR

C.5.6 EXIT

Exits the script immediately. All further commands are ignored.

 215

C.5.7 VAR <variable_name> <operator> <operand>

Creates or modifies a numeric script variable. The following operands are defined.

= Create a variable or assign a value. e.g. var x_posn = 20

+= Adds an amount to a variable. e.g. var x_posn += 10

-= Subtracts an amount to a variable. e.g. var x_posn -= 10

*= Multiples a variable. e.g. var x_posn *= 10

/= Divides a variable. e.g. var x_posn /= 10

Variables are held as Java double values. Most commands which accept an integer

or double value will also accept a variable name.

C.6 - Example Scripts

C.6.1 Example 1 – Creating a small net.

This example creates the following net.

rename "New Risk Object" Iteration
default net Iteration
 default node "proj vel pre"

 create_node ContinuousIntervalEN 300 100 input
 states 0~500
 expr Arithmetic 0
 default node none

 default node "Misdirected Effort PRE"

 216

 create_node ContinuousIntervalEN 500 200 input
 states 0~500
 expr Arithmetic 0
 default node none

 default node "Total Effort"
 create_node ContinuousIntervalEN 300 200 simulation
 states 0~500
 default node none

 add_link "proj vel pre" "Total Effort"
 add_link "Misdirected Effort PRE" "Total Effort"
 expr "Total Effort" Arithmetic proj_vel_pre+Misdirected_Effort_PRE

 default node "User Story Accuracy PRE"
 create_node ContinuousIntervalEN 100 500 input
 states 0~1
 expr Uniform 0 1
 default node none

 default node "Process Improvement"
 create_node ContinuousIntervalEN 300 500 simulation
 states -2~2
 expr Uniform -2 2
 default node none

 default node "Accuracy Limit"
 create_node ContinuousIntervalEN 300 400 simulation
 states -2~2
 expr Uniform -2 2
 default node none

 default node "User Story Accuracy POST"
 create_node ContinuousIntervalEN 100 400 simulation output
 states 0~1
 default node none

 add_link "User Story Accuracy PRE" "User Story Accuracy POST"
 add_link "Process Improvement" "User Story Accuracy POST"
 add_link "Accuracy Limit" "User Story Accuracy POST"
 expr "User Story Accuracy POST" Arithmetic max(0,(min(Accuracy_Limit,

 User_Story_Accuracy_PRE+Process_Improvement)))

 default node "Misdirected Effort"
 create_node ContinuousIntervalEN 100 300 simulation output
 states 0~500
 default node none

 add_link "Total Effort" "Misdirected Effort"
 add_link "User Story Accuracy POST" "Misdirected Effort"
 expr "Misdirected Effort" Normal Total_Effort*(1-User_Story_Accuracy_POST)

 Total_Effort*(1-User_Story_Accuracy_POST)/10

 default node "proj vel post"
 create_node ContinuousIntervalEN 100 200 simulation output
 states 0~500
 default node none

 add_link "Total Effort" "proj vel post"
 add_link "Misdirected Effort" "proj vel post"
 expr "proj vel post" Arithmetic max(0,Total_Effort-Misdirected_Effort)

default net none

C.6.2 Example 2 – linking several iterations of a net together

Set initial parameters
default net "Initial Velocity Guess"
 set "Number team members" 5
 set Productivity Medium
 set "Load Factor" 2
default net none

Setup Iteration1

 217

load "C:\Local Data\XP_models\Effort\simple_effort.cmp"
default net Iteration
 set "User Story Accuracy POST" 0.5
default net none
link "Initial Velocity Guess" "Effective engineering factor" Iteration "proj vel

pre"
link "Initial Velocity Guess" "Zero Defects" Iteration "Misdirected Effort PRE"
rename Iteration Iteration1

Setup Iteration2
for $i = 2 to 6
 load "C:\Local Data\XP_models\Effort\simple_effort.cmp"
 set Iteration "Process Improvement" 0.2
 set Iteration "Accuracy Limit" 0.9
 link Iteration$i- "proj vel post" Iteration "proj vel pre"
 link Iteration$i- "Misdirected Effort" Iteration "Misdirected Effort PRE"
 link Iteration$i- "User Story Accuracy POST" Iteration "User Story Accuracy PRE"
 rename Iteration Iteration$i
endfor

propagate all

open_log "C:\Local Data\XP_models\Effort\log.txt"
graph Iteration1 "proj vel pre"
for $i = 1 to 6
 default net Iteration$i
 graph "Total Effort"
 graph "Misdirected Effort"
 graph "proj vel post"
 print "proj vel post" mean
 default net node
endfor
close_log

 218

Appendix D - Noisy Or

Appendix H shows how simple truth tables can be used as CPDs to combine

multiple Boolean causal factors into a single Boolean outcome. We now consider an

extension of this where one of several multiple causes will probably cause an

outcome, but where it is sometimes inhibited. We can model this as a set of possible

boolean causes, Ai, each of which is a parent of a possible boolean inhibitor Ii. The

inhibitors are then the parents of an outcome, B, where B has the logical OR truth

table as its NPT.

Figure C-1 The Noisy OR model

B will definitely be false if all the Ai are false. It is only when some Ai are true that

B can be true. Each of the inhibitors has the NPT shown in Table D-1.

P(I | A)
AI = TRUE

Ai = false

II = TRUE ii qq =−1 0

Ii = false
iq

1

Table D-1 Node probability table for inhibitors

i.e. qi, is simply the probability of the inhibitor working. B can only be false if all of

the inhibitors of true Ai are working. As the inhibitors are all independent, the

probability of them all working, is simply the product of each one individually

working. If the probability of B being false is the product of the probabilities of all the

inhibitors working, then the probability of B being true is simply the complement of

this, as shown in Equation D-1.

 219

∏
=∈

−==
}{

1 1)|(
trueAi

in

i

qAAtrueBP K Equation D-1

We can therefore remove the inhibitors from our BN and create an equivalent BN

where the Ai are the direct parents of B and B has the NPT defined by Equation D-1.

We examine the simplest possible case, where we have two potential causes, A and

B, of an outcome C. There are inhibitors between the causes and the outcome. We will

label the inhibitors I and J. The BN corresponding to this situation is shown below.

For each Boolean variable, we list its states by a lower case letter and the same

letter with a bar. Thus A, has states {a, a }, B has states {b, b } and so forth.

PI
A

a

a

i aq 0

i
aa qq −= 1

1

PJ

B

b

b

j bq 0

j
bb qq −= 1

1

PC
IJ - Logical OR

i i

i i

 j j j j

c
1 1 1 0

c 0 0 0
1

 220

It is possible to represent this as a smaller BN involving only A, B and C. To see

this, we can explicitly calculate PC
AB as follows:

∑
∑

∑
∑

===

IJC

B

J

A

I

IJ

C

IJ

B

J

A

I

IJ

C

IJC

BA

B

J

A

I

IJ

C

IJ

BA

B

J

A

I

IJ

C

AB

ABCAB

C
PPP

PPP

PPPPP

PPPPP

P

P
P

We now evaluate this expression for each of the four possible combinations that

leads to C = true.

ab
ab

babababa

bababa

babababa

bababa

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

cab

c

qq
qq

qqqqqqqq

qqqqqq

qqqqqqqq

qqqqqq

PPPPPPPP

PPPPPP

PPPPPPPPPPPP

PPPPPPPPP
P

−=
−

=

+−+−+−−
−+−+−−

=
+++

++
=

+++

++
=

+++

++
=

1
1

1

)1()1()1)(1(

)1()1()1)(1(

b

bb

b

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

cba

c

q
qq

q

PPPPPPPP

PPPPPP

PPPPPPPPPPPP

PPPPPPPPP
P

−=
+

=
+++

++
=

+++

++
=

1

By symmetry: a

ba

c qP −= 1 .

0=
+++

++
=

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

c

b

j

a

i

ji

c

b

j

a

i

ji

c

b

j

a

i

ij

cba

c
PPPPPPPPPPPP

PPPPPPPPP
P

 221

Appendix E – Formal Description of Data Import and

Mapping

In this section I present a formal description of the data query, import and mapping

facilities developed in order to integrate agile BN models with appropriate

quantitative data sources.

A Data Source consists of a set of Connection Parameters C = {ci} , a set of

Query Classes Q = {κj} and a set of Mapping Functions M = {mk}:

DCQM = (C, Q, M).

A query class is a data source query string, s, expressed in the natural language of

that data source (e.g. SQL) and a set of zero or more Query Parameters, {pi}:

κ = (s , {pi})

The term query class should not be confused with an OO class. It is intended to

represent a class of queries, or a template for a query. A query class is not executable

in the sense that it cannot be used to query a data source. Only instances of a query

class can be used to query data sources.

Query parameters are not the same as SQL prepared statement or callable statement

parameters. Prepared statement parameters are usually limited in scope. Query

parameters by contrast may parameterise any aspect of a query string.

A Query Object, q, is an instance of a query class where the query parameters have

been defined:

q = (s, {pi = vi})

A query object is a Fully Instantiated Query if all its parameters have been set to

explicit values such that the resulting query is an executable query, e. Setting the

query parameters is not necessarily sufficient to make a query fully instantiated since

query parameters can be set to express dependencies between queries.

 222

The results of an executable query, e, are denoted by R(e). They are assumed to be

tabular in form (possibly degenerate in either the rows or columns dimension) and can

be expressed using a row/column notation:

R(e) = {rij}

Where rij is the data element in row i, column j. We denote the n’th row of R by

ROWn(R) = {rnj} and the n’th column of R by COLn(R) = {rin}.

A query object is a Dependent Query if its parameters are instantiated in such a

way that it cannot be executed unless one or more Parent Queries are executed in

advance. We define a syntax for query parameters which express query dependencies

as follows:

Syntax Meaning

? <o> <row> column_names :

<start_column_name> - <end_column_name>

The selected column names

from the results of o.

? < o > * <n> COLn(R(o))

? < o > <n> * ROWn(R(o))

? < o > ? <n> vn, where o = (s, pn = vn)

As shown, dependent query parameters usually take a range of values from their

parents. This allows multiple Child Queries to be spawned: one for each result value

of the parent.

For example, suppose we have three data sources: a project plan data source

which defines a “phases” table, a source code data source which defines a

“modules” table, and a bugs database which defines a “defects” table.

Let e be a fully instantiated query defined as:

e = (“SELECT * FROM phases”, φ),

where φ indicates no parameters, and let d be a dependent query defined by:

 223

d = (“SELECT * FROM modules WHERE phase_name = ?”, p1 = “? e * 2”).

This assumes that column 2 of the “phases” table has values which make

sense when compared to the phase_name column of the “modules” table. If R(e)

has m rows, then “? e * 2” will select:

COL2(R(e)) = {ri2}, i = 1..m.

This will create m fully instantiated child queries of d:

ci = (“SELECT * FROM modules WHERE phase_name = ?”, p1 = ri2)

where each query selects a different set of modules depending on a different

phase name. This is more than a simple sub-select since the child queries are

taking place on a different database from the parent (dependent) query.

A dependent query may also depend on a Bayesian Network node’s value after

model execution.

Syntax Meaning

? result mean | median | sd The mean, median and standard deviation of the

“selected” node’s marginal probability distribution.

Parameters to a parent query can be either a fully instantiated query or another

dependent query. Where a parent query creates multiple child queries (as d did by

generating the ci above), any query that is dependent on their common parent inherits

its dependency from the children, not the parent. This allows query trees to be

instantiated.

Continuing the previous example, let d2 be a dependent query defined by:

d2 = (“SELECT COUNT(*) FROM bugs WHERE module_name = ?”,

 224

p1 = “? d * 3”).

d already has m children ci. The above expression will therefore select:

COL3(R(ci))

If each R(ci) has k rows, then d2 will spawn k * m child queries:

qij = (“SELECT COUNT(*) FROM bugs WHERE module_name = ?”,

p1 = [COL3[R(ci)]]).

Mapping Functions define the mappings between the data representations in one

data source and those in another. Let DCQM be a data source, and let Σ be the set of all

fully instantiated queries descended from the set of query classes, Q. Let

()()

Σ∈∀∈ UU
i

i

e

eeRn ,COL

i.e. n is one of the columns that can be returned by a query in DCQM. Let DOM(n) be

the set of all possible values in column n. Let E be a second data source with a query

class with parameter p. Let DOM(p) be the set of valid fully instantiated values of p.

We define a mapping function

M(n, p) : DOM(n) → DOM(p).

As p may represent the same column in multiple queries, the same mapping

function may be used by multiple queries.

In the version of this functionality implemented in AgenaRisk, the column n was

identified by its name. This mechanism relies on the uniqueness of DOM(n) in D. If D

contains multiple columns with the same name as n but with distinct domains then it

is possible that a single Mapping Function will be impossible to construct. Similar

mapping functions were created to map query results to BN node states.

 225

Appendix F – Model Scripts

This appendix contains the scripts used to create the models described in Chapter 7.

We begin with the script that creates the main timeslice.

 new_model
rename "New Risk Object" Iteration

graph_default "Continuous X Axis" "True"
graph_default "Treat min max x as percentile" "True"
NOTE - numbers below MUST include a decimal point
graph_default "min X" 0.1
graph_default "max X" 99.9

default net Iteration
include common_states.txt

 default node "Effectiveness Limit PRE"
 create_node ContinuousIntervalEN 100 100 input
 macro use effectiveness_limit_states
 expr Normal 0.8 0.1
 default node none

 default node "Process Improvement PRE"
 create_node ContinuousIntervalEN 100 200 input
 macro use process_improvement_states
 expr Normal 0.2 0.1
 default node none

 default node "Process Effectiveness PRE"
 create_node ContinuousIntervalEN 250 300 input
 macro use process_effectiveness_states

 expr Normal 0.3 0.1
 default node none

 default node "Effectiveness Limit POST"
 create_node ContinuousIntervalEN 250 100 output
 macro use effectiveness_limit_states
 add_link "Effectiveness Limit PRE"
 expr Arithmetic Effectiveness_Limit_PRE
 default node none

 default node "Process Improvement POST"
 create_node ContinuousIntervalEN 250 200 output
 macro use process_improvement_states
 add_link "Process Improvement PRE"
 expr Arithmetic Process_Improvement_PRE
 default node none

 default node "Process Effectiveness POST"

 create_node ContinuousIntervalEN 400 200 output
 macro use process_effectiveness_states
 add_link "Process Effectiveness PRE"
 add_link "Process Improvement POST"
 add_link "Effectiveness Limit POST"
 expr Arithmetic min(1,Process_Effectiveness_PRE+Process_Improvement_POST*(Effectiveness_Limit_POST-Process_Effectiveness_PRE))
 default node none

 default node "Iteration Effort"
 create_node ContinuousIntervalEN 250 400
 states 0~150:1
 expr Uniform 0 150
 default node none

 default node "Productive Effort"
 create_node ContinuousIntervalEN 400 400
 states -100~300:5
 add_link "Iteration Effort"
 add_link "Process Effectiveness POST"
 expr Arithmetic Iteration_Effort*max(-1,Process_Effectiveness_POST)
 default node none

 default node "Bias PRE"
 create_node ContinuousIntervalEN 100 500 input
 macro use bias_states
 expr "Log Normal" 0 0.3
 default node none

 default node "User Stories Completed PRE"
 create_node ContinuousIntervalEN 100 600 input
 macro use user_stories_completed_states
 expr TNormal 0 0.1 0 1
 default node none

 default node "Bias POST"
 create_node ContinuousIntervalEN 250 500 output
 macro use bias_states
 add_link "Bias PRE"
 expr Arithmetic Bias_PRE
 default node none

 default node "Observed Velocity"
 create_node ContinuousIntervalEN 400 500
 states -100~0:10 0~100:5 100~300:10 300~1000:100
 add_link "Bias POST"
 add_link "Productive Effort"
 expr Arithmetic Bias_POST*Productive_Effort
 default node none

 default net none

The above script relies on some common state definitions shared between different

nodes. These are defined in a separate script called common_states.txt. This script is

shown below.

macro define effectiveness_limit_states states 0~1:0.1
macro define process_improvement_states states -1~1:0.1
macro define process_effectiveness_states states -1~1:0.05
macro define bias_states states 0~5:0.2 5~10
macro define user_stories_completed_states states 0~20:2 20~400:20 400~1000:100

Another script is used to read in the single timeslices and connect them together.

 226

Setup Iteration 1 through 6

new_model

graph_default "Continuous X Axis" "True"
graph_default "Treat min max x as percentile" "True"
NOTE - numbers below MUST include a decimal point
graph_default "min X" 1.0
graph_default "max X" 99.0

Set up the "Prior" iteration
load "C:\Local Data\XP_models\Effort\Motorola\initial_iteration.cmp"
set Iteration0 "User Stories Completed POST" 0

Load iterations 1 and 8
var x_posn = 300
var y_posn = 100
for $i = 1 to 8
 load "C:\Local Data\XP_models\Effort\Motorola\simple_effort.cmp"
 move_object Iteration x_posn y_posn
 var x_posn += 200
 var y_posn += 100
 link Iteration$i- "Process Effectiveness POST" Iteration "Process Effectiveness PRE"
 link Iteration$i- "Effectiveness Limit POST" Iteration "Effectiveness Limit PRE"
 link Iteration$i- "Process Improvement POST" Iteration "Process Improvement PRE"
 link Iteration$i- "User Stories Completed POST" Iteration "User Stories Completed PRE"
 link Iteration$i- "Bias POST" Iteration "Bias PRE"
 set Iteration "Iteration Effort" with $i from 45 45 90 96 84 70 72 40
 rename Iteration Iteration$i
endfor

The initial conditions for the model are created by another script which creates

“initial_iteration.cmp” model above. This script is shown below.

new_model
rename "New Risk Object" "Iteration0"
include common_states.txt

default net "Iteration0"

 default node "Effectiveness Limit POST"
 create_node ContinuousIntervalEN 150 0 output
 macro use effectiveness_limit_states
 expr Normal 0.8 0.1
 default node none

 default node "Process Improvement POST"
 create_node ContinuousIntervalEN 150 100 output
 macro use process_improvement_states
 expr Normal 0.2 0.1
 default node none

 default node "Process Effectiveness POST"
 create_node ContinuousIntervalEN 150 200 output
 macro use process_effectiveness_states
 expr Normal 0.3 0.1
 default node none

 default node "Bias POST"
 create_node ContinuousIntervalEN 150 300 output
 macro use bias_states
 expr "Log Normal" 0 0.3
 default node none

 propagate all

default net none

 227

Appendix G - Software Complexity Revisited: An

Approach for Use in Causal Models

The notion of “complexity” has played an important role both in the traditional

software process models described in chapter 2 and in the BN causal models

described in chapter 4. In this appendix, we give a more detailed description of

software complexity.

G.1 The Problem

The Philips model in section 4.4 used KLOC instead of Function Points (FPs) to

measure problem size. FPs already include a measure of problem complexity, so by

moving to KLOC, this aspect of the problem description was being lost. The

challenge, therefore, was to produce a new technical complexity measure (which

would effectively act as an 'adjustment' factor to the estimated KLOC).

This technical complexity measure had to be based on information that was readily

available, and easily input, by project managers right at the start of any new code

development. This rules out the many design-level and code-level complexity metrics

that are catalogued in [61] as the primary observed values. Similarly, it ruled out

measures of software complexity based on entropy definitions of its CVS repository

[81][80], as well as data complexity metrics [143][220].

G.2 Factors excluded from Technical Complexity

Williams [216], for example, subdivides complexity into structural complexity and

uncertainty. Xia and Lee [221] use this same split as the basis for one of the

dimensions of their Information Systems Development Project (ISDP) complexity.

We have no need to do this. With the causal modelling Bayesian approach uncertainty

is modelled everywhere; every node in the model represents an uncertain value. Until

a direct observation is made about the value of any node, its value is given by a

probability distribution that quantifies our uncertainty about it.

As in Baccarini [17], we make a clear distinction between technical and

management complexity. This is also the second dimension of Xia and Lee’s [221]

ISDP complexity model. The following management complexity factors are already

 228

incorporated in the Philips model (as part of the various subcomponents relating to

processes), and are therefore excluded from our approach to technical complexity:

• Project requirements stability

• Cost and schedule constraints

• Project infrastructure complexity (including Geographical team dispersal).

• Development team and managerial team experience.

• Process Maturity

In addition to the above 'process-type' management complexity factors, there are

two key product factors, namely reliability and novelty, that we explicitly exclude

from our definition of technical complexity because they are also modelled elsewhere

in the model. However, the rationale for their exclusion needs to be explained.

Reliability is normally a requirement for the delivered product. It can be defined in

terms of such measures as: number of defects discovered post-release, seriousness of

defects, mean time between failures etc. [61]. Reliability is determined by software

complexity and process maturity and is therefore a consequence, rather than a cause

of, complexity.

Novelty: All computer programs are novel to some extent. It is this novelty that

makes their development such a skilled task and clearly novelty has an impact on the

potential for defect insertion. However, it is the way novelty is managed that

determines this. Hence in our model novelty and its management are bound up in the

requirements and specification process component of the model. Highly novel

requirements that are poorly managed will result in low probability of avoiding

defects.

A high degree of novelty, either technological or problematic, does not imply a high

degree of complexity. We are just as likely to overestimate as to underestimate the

complexity of the solution. This suggests that novelty and complexity should not be

highly correlated. Tatikonda and Rosenthal [202] have indeed shown that novelty, at

least in the technological sense, and technical complexity are largely independent.

It seems justifiable therefore to conclude that novelty is not a valid component of

technical complexity. This would seem to be confirmed by regression based models,

such as COCOMO II [47]. For example, the COCOMO II formula for effort

estimation includes Product Complexity (CPLX) as an effort multiplier, whereas

 229

Precendentedness (PREC) appears as a scaling factor in the exponent. This suggests

that complexity and novelty are different in kind and should therefore be treated

separately.

G.3 Technical Complexity Factors

Technical Complexity

Performance

Responsiveness
Throughput
Scalability

Data

Structure
Dynamic
Impedance
Statefulness
Transactional
Concurrency
Security

Characteristic

Modularity
Algorithmic

Robustness

Testability
Exception &
invariant
handing
Reusability
Portability

Figure G-1. Technical complexity broken down into four groups, each consisting of various

complexity factors.

The main component of this approach is to identify a set of complexity factors,

collected into a set of complexity groups. The aim in grouping the factors are to:

1. Create a stable set of technology factors, and

2. Create a smaller, more manageable set of factors.

The four complexity groups and their associated factors are summarised in Figure

G-1. Complexity groups should possess the following qualities.

a) As technology evolves the set of complexity groups should remain relatively

static. Note, however, that the factors that form any given complexity group

will almost certainly change over time.

b) There should be sufficiently few of them that they can be practically modelled.

c) They should be sufficiently comprehensive that any future technical complexity

factors can be included in one group.

 230

d) The groups should be independent of one another. i.e. it should be possible for

complexity in one group to vary without necessarily varying complexity in any

other group. A corollary of this is that each technical complexity factor should

belong to only one group. It may not be possible to meet the aim of

independence between complexity groups in full; instead the aim is that any

correlations between them should be small enough not to distort the assessed

complexity in practice.

A description of the complexity factors in each of the complexity groups is given in

the following sections.

G.3.1 Performance Complexity

This group is characterised by technical complexity factors related to speed; where

operations must be performed at a given rate or within a given time interval. In each

case a higher value for the factor implies higher complexity.

Responsiveness

This is the requirement for a task to respond within a given period of time.

Throughput

This is the need to perform a certain number of operations in a given time

interval.

Scalability

This is the requirement that system performance must scale well, without

excessive cost or resource usage.

G.3.2 Data Complexity

The Data Complexity group includes all factors that are determined by the size,

integrity or persistence of data. In each case a higher value for the factor implies

higher complexity. Note that database complexity is not included as a separate factor

within this group. Many of the factors listed apply equally well to both databases and

to a program's internal memory.

Data Structure Complexity

 231

This is the extent to which the problem mandates the maintenance of large

amounts of interdependent data.

Transactional

This is the extent to which the system must maintain transactional integrity

across groups of related operations.

Dynamic Data

This is the extent to which the system is required to create and destroy data at

runtime. Note that dynamic data problems do not disappear simply by using

garbage collection [100].

Impedance Mismatch

An impedance mismatch occurs where the system is required to interface two

technologies whose natural data representations are difficult to translate. E.g.

where an OO language must save object states in a relational database. This

factor is the extent to which the problem creates such mismatches.

Statefulness

This factor measures the extent to which the system must maintain a state

which is dependent on the history of the system. A system that must maintain

an internal state is more complex than one which is transient. If the state must

be maintained across system instantiations then further complexities arise due

to the need to maintain consistency whilst copying the state to non-volatile

storage.

Concurrency

This is the extent to which the system must maintain multiple, concurrent states

which must also share a common context. Guaranteeing the integrity of this

shared context is dependent on the use of appropriate synchronisation

techniques [177].

Security

This is the extent to which data must remain confidential.

 232

G.3.3 Robustness Complexity

The complexity factors in this group all relate to requirements for design techniques

or constraints to make the software robust to failure or change. Where these attributes

are required this generally implies higher technical complexity.

Testability

This is the extent to which the system must be testable. The requirements may

specify the thoroughness of the testing, the extent to which it must be

automated, the level of instrumentation and the testing environment.

Exception Handling

The extent to which the system must recover from errors. Successful exception

handling depends on the extent to which it makes sense for a system to try to

recover from a failed operation and the language and/or operating system

facilities available to assist in this.

Reusability/Portability

This is the extent to which the requirements specify the need for the software

to be reusable once completed.

It takes more effort to create reusable components. Interfaces and algorithms

must generally be more complex in order to handle a wider variety of

situations than might be necessary within a single application. There is also

some evidence to suggest that code reuse via class inheritance can even make

maintainability more, rather than less, difficult [36][166].

As Mooney [138] points out, portability is a specialised form of reuse.

G.3.4 Characteristic Complexity

This group includes complexity factors that are characteristic of the problem being

solved.

Specialist Algorithms

This is the extent to which the software is dependent on specialist algorithms.

Examples include mathematical, compression or audio visual algorithms.

 233

Modular Decomposition Uniqueness

This is the extent to which a problem admits a unique decomposition. Some

problems have an "obvious" modular decomposition, others are less tractable.

 234

Appendix H - Automated Data Import, Example XML

Configuration

<config>
 <datasource name="Bugzilla">
 <driver>com.mysql.jdbc.Driver</driver>
 <url>jdbc:mysql://localhost/agena</url>
 <type>Database</type>
 <query name="versions" update="false">
 <querystring>select value,min(creation_ts) from versions,bugs where value=version AND
 value LIKE '3.12%' group by value order by 2</querystring>
 <parameterCount>0</parameterCount>
 <description></description>
 <queryinstance name="all_versions">
 </queryinstance>
 </query>
 <query name="bugs_for_version" update="false">
 <querystring>SELECT count(*) FROM bugs WHERE version LIKE '?'</querystring>
 <parameterCount>1</parameterCount>
 <description></description>
 <queryinstance name="bug_count_for_version">
 <parameter>? all_versions * 0</parameter>
 </queryinstance>
 </query>
 <query name="closed_bugs_for_version" update="false">
 <querystring>SELECT count(*) FROM bugs WHERE version LIKE '?' AND
 bug_status='CLOSED'</querystring>
 <parameterCount>1</parameterCount>
 <description></description>
 </query>
 [...other queries not shown...]
 </datasource>
 <datasource name="Philips">
 <driver>sun.jdbc.odbc.JdbcOdbcDriver</driver>
 <url>jdbc:odbc:Driver={Microsoft Excel Driver (*.xls)}; DBQ=C:/Local Data
 /EclipseWorkspaces/Agena 3.15/AgenaRaw.xls;DriverID=22;READONLY=false</url>
 <type>Excel</type>
 <query name="single_project_data_template" update="false">
 <querystring>SELECT * FROM [Raw Transposed$] WHERE F1='?'</querystring>
 <parameterCount>1</parameterCount>
 <description>null</description>
 <queryinstance name="philips_single_project">
 <parameter>? philips_project_names * 0</parameter>
 </queryinstance>
 </query>
 [...other queries not shown...]
 </datasource>
 <evidencemapping>
 <nodename>Relevant experience of spec & doc staff</nodename>
 <query>philips_single_project</query>
 <column>3</column>
 <row>0</row>
 </evidencemapping>
 <evidencemapping>
 <nodename>Quality of any previous documentation</nodename>
 <query>philips_single_project</query>

 235

 <column>4</column>
 <row>0</row>
 </evidencemapping>
 <evidencemapping>
 <nodename>Regularity of spec and doc reviews</nodename>
 <query>philips_single_project</query>
 <column>5</column>
 <row>0</row>
 </evidencemapping>
 <evidencemapping>
 <nodename>Standard procedures followed</nodename>
 <query>philips_single_project</query>
 <column>6</column>
 <row>0</row>
 </evidencemapping>
 [...other evidence mappings not shown...]
</config>

 236

References

[1] Abdel-Hamid T, Madnick S, Software Project Dynamics: An Integrated
Approach: Prentice Hall, 1991

[2] Abdel-Hamid T, "The Dynamics of Software Projects Staffing: A System
Dynamics Based Simulation Approach," IEEE Transactions on Software
Engineering, vol. 15, no. 2, pp. 109-119, 1989

[3] Abrahamsson P, Koskela J, Extreme Programming: A Survey of Empirical
Data from a Controlled Case Study, 2004 International Symposium on
Empirical Software Engineering (ISESE'04), pp. 73-82

[4] Abrahamsson P, Warsta J, Siponen MT, Ronkainen J, New directions on agile
methods: a comparative analysis Software Engineering, Proceedings 25th
International Conference on Software Engineering 2003, 244-254

[5] Agile management message board, Is FDD agile?, http://tech.groups.yahoo
.com/group/agilemanagement/message/3322, accessed 5th Mar 2008

[6] Ahmed A, Fraz MM, Zahid FA, Some results of experimentation with extreme
programming paradigm, 7th International Multi Topic Conference, INMIC
2003. Page(s): 387- 390

[7] Agena Ltd, Software Project Risks Models Manual, Version 01.01, 17 Nov
2004

[8] AgenaRisk, http://www.agena.co.uk/products/desktop.shtml, accessed 9th Aug
2007, Bayesian Network modelling toolset

[9] Agile Manifesto, http://www.agilemanifesto.org/. Accessed 22 Mar 2007.
[10] Akiyama F, An Example of Software System Debugging, Information

Processing, vol. 71, pp. 353-379, 1971
[11] Albrecht A.J., “Measuring Application Development Productivity,” Proc. Joint

SHARE/GUIDE/IBM Application Development Symp.,pp. 83-92, 1979
[12] Ambler S, Survey Says: Agile Works in Practice, Dr. Dobb's Journal, Issue no.

388, Sep 2006, pp. 62-64, http://www.ddj.com/architect/191800169?cid
=Ambysoft, accessed 5 Mar 2008

[13] http://www.ambysoft.com/unifiedprocess/agileUP.html, accessed 6th Mar
2008

[14] Antoniol G, Lokan C, Caldiera G, Fiutem R, A Function Point-Like Measure
for Object-Oriented Software, Empirical Software Engineering, 4 (3): 263-
287, September 1999.

[15] Arnborg S, Corneil DG, Proskurowski A, Complexity of finding embeddings
in a k-tree, SIAM Journal of Algebraic and Discrete Methods, 8(2), 277{284,
1987

[16] Aveling B, XP Lite considered harmful? Fifth International Conference on
Extreme Programming and Agile Processes in Software Engineering,
Garmisch–Partenkirchenm, Germany, June 2004

[17] Baccarini D, The concept of project complexity - a review, International
Journal of Project Management, Vol. 14, No. 4, pp. 201-204, 1996.

[18] Beck K, Extreme Programming Explained, Embrace Change, Addison-Wesley
Professional; 1st edition (2000)

[19] Beck K, Andres C, Extreme Programming Explained, Embrace Change,
Addison-Wesley Professional; 2nd edition (November 16, 2004)

[20] Beck K, Fowler M, Planning Extreme Programming, Addison-Wesley, 2001
[21] Becker F, Sims W, Offices that Work: Balancing Cost, Flexibility, and

Communication, Cornell University International Workplace Studies Program,

 237

October 2001. Available online at
http://iwsp.human.cornell.edu/pubs/pdf/IWS_0002.PDF.

[22] Bibi S, Stamelos I, Software Process modeling with Bayesian belief Networks,
10th International Software Metrics Symposium Chicago, September 2004

[23] Boas ML, Mathematical Methods in the Physical Sciences, 2nd edition, Wiley.
[24] Boehm B, Software engineering economics, Englewood Cliffs, NJ, Prentice-

Hall, 1981
[25] Boehm BW, Clark B, Horowitz E, Westland JC, Madachy RJ, Selby RW, Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0, Ann.
Software Eng, 1995, 1, pp. 57-94

[26] Boyen X, Koller D, Tractable inference for complex stochastic processes,
Proc. of the Conf. on Uncertainty in AI, 1998

[27] Breiman L, Friedman J, Olshen R, Stone C, Classification and Regression
Trees, Belmont, CA, Wadsworth International, 1984.

[28] Briand LC, El Emam K, Surmann D, Wieczorek I, Maxwell KD, An
Assessment and Comparison of Common Software Cost Estimation Modeling
Techniques, ICSE 1999: 313-322

[29] Briand LC, Wieczorek I, Resource Estimation in Software Engineering,
Encyclopedia of Software Engineering, 2nd Edition, Wiley, 2001

[30] Broemeling L, Broemeling A, Studies in the history of probability and
statistics XLVIII The Bayesian contributions of Ernest Lhoste, Biometrika,
2003, 90, 728-731

[31] Brooks FP, The Mythical Man-Month: essays on software engineering, 2nd
edition, Addison Wesley, 1995

[32] Brown WJ, Malveau RC, McCormick HW, Mowbray TJ, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, Wiley Computer
publishing, 1998

[33] Brown WJ, McCormick HW, Thomas SW, AntiPatterns in Project
Management, Wiley Computer publishing, 2000

[34] Canfora G, Cimitile A, Visaggio CA, "Empirical Study on the Productivity of
the Pair Programming", XP 2005 Conference, June, Sheffield, UK, LNCS
Springer- Verlag.

[35] Cao L, Mohan K, Peng Xu, Balasubramaniam R, How Extreme does Extreme
Programming Have to be? Adapting XP Practices to Large-scale Projects,
Proceedings of the 37th Hawaii International Conference on System Sciences,
2004

[36] Cartwright M, 1998. An empirical view of inheritance. Inform Soft Technol
40 (4), 795-799, http://dec.bournemouth.ac.uk/ESERG

[37] Cau A, Concas G, Melis M, Turnu I, Evaluate XP Effectiveness Using
Simulation Modeling, Proceedings 6th International Conference Extreme
Programming and Agile Processes in Software Engineering, XP 2005,
Sheffield, UK, June 18-23, 2005

[38] Chen R, Sivakumar K, Khargupta H, Learning Bayesian Network Structure
from Distributed Data, SIAM 2003

[39] Cheng, J., 1998, ”PowerConstructor System”, http://www.cs.ualberta.ca/
~jcheng/bnpc.htm (accessed 17 July 2007)

[40] Chidamber SR, Kemerer CF, A metrics suite for object-oriented design, IEEE
Transactions on Software Engineering 1994, 20(6):476–493

[41] Chickering DM, Geiger D, Heckerman D, Learning Bayesian Networks is NP-
Hard, Microsoft Technical Report, MSR-TR-94-17, Nov 1994

 238

[42] Christie AM, Simulation: An Enabling Technology in Software Engineering,
CROSSTALK The Journal of Defense Software Engineering, April 1999, pp.
25-30.

[43] Chulani S, Boehm B, Steece B, Bayesian analysis of empirical software
engineering cost models, IEEE Transactions on Software Engineering, Special
Issue on Empirical Methods in Software Engineering, Vol. 25, No. 4,
July/August 1999

[44] CMMI for Development, Version 1.2, August 2006, Carnegie Mellon
Software Engineering Institute

[45] Coad P, Lefebvre E, De Luca J, Java Modeling in Color With UML:
Enterprise Components and Process, Prentice Hall International, 1999, ISBN
0-13-011510-X

[46] Cockburn A, Williams L, The Costs and Benefits of Pair Programming,
Proceedings of the First International Conference on Extreme Programming
and Flexible Processes in Software Engineering, XP2000, June 2000 Cagliari,
Sardinia, Italy

[47] COCOMO II Model Definition Manual, 5 Feb 1999,
http://sunset.usc.edu/research/COCOMOII/index.html

[48] Cohn M, "Agile Estimating and Planning’, Prentice Hall, 2005
[49] Coolen FP, Goldstein M, Wooff DA, Using Bayesian statistics to support

testing of software systems. Proceedings of the 16th Advances in Reliability
Technology Symposium, ed. J. Andrews, pp 109-121.

[50] Coolen FPA, Goldstein M, Wooff DA, Project viability assessment for support
of software testing via Bayesian graphical modelling. In Safety and
Reliability. Bedford & van Gelder Lisse: Swets & Zeitlinger. 417-422.

[51] Costagliola G, Ferrucci F, Tortora G, Vitiello G, Class Point: An Approach for
the Size Estimation of Object-Oriented Systems, IEEE Transactions On
Software Engineering, Vol. 31, No. 1, pp. 52-74, January 2005

[52] Cozman F, Krotkov E, Truncated Gaussians as Tolerance Sets, Robotics
Institute, Carnegie Mellon University, Technical Report CMU-RI-TR-94-35,
Sep. 1994

[53] Cusumano M, MacCormack A, Kemerer CF, Crandall B, Software
Development Worldwide: The State of the Practice, IEEE Software,
November/December 2003 (Vol. 20, No. 6) pp. 28-34

[54] Dale C, Data requirements for software reliability prediction, Software
Reliability: Assessment and Achievement, B. Littlewood editor, Blackwell,
London, pp. 144-153, 198

[55] Danielson DA, Vectors and tensors in engineering and physics, Addison-
Wesley, 1997

[56] DeMarco T, Lister T, Peopleware: productive projects and teams, Dorset
House Publishing Co. Inc., 1987

[57] Denton AD, Accurate Software Reliability Estimation, Master of Science
Thesis, Colorado State University, Fort Collins, Colorado, Fall 1999

[58] Deursen, A, (Ed). Proceedings of the XP Workshop on Customer Involvement
in Extreme Programming, Sardinia, Italy, 2001.

[59] Elssamadisy A, "XP On A Large Project – A Developer’s View," in
Proceedings of XP/Agile Universe, Raleigh, NC, 2001

[60] Erdogmus H, Morisio M, Torchiano M, On the Effectiveness of the Test-First
Approach to Programming, IEEE Transactions On Software Engineering, Vol.
31, no. 3, march 2005

 239

[61] Fenton & Pfleeger, Software Metrics, A Rigorous and Practical Approach,
PWS publishing 1997

[62] Fenton NE, Krause P, Neil M, "Software Measurement: Uncertainty and
Causal Modelling", IEEE Software 10(4), 116-122, 2002

[63] Fenton NE, Marsh W, Neil M, Cates P, Forey S, Tailor T, Making Resource
Decisions for Software Projects. In Proceedings of 26th International
Conference on Software Engineering (ICSE 2004), (Edinburgh, United
Kingdom, May 2004) IEEE Computer Society 2004, ISBN 0-7695-2163-0,
397-406

[64] Fenton NE, Neil M, "A Critique of Software Defect Prediction Models," IEEE
Transactions on Software Engineering, 25(4):675-689, September 1999

[65] Fenton NE, Neil M, and Caballero JG, Using Ranked nodes to model
qualitative judgements in Bayesian Networks, to appear IEEE TKDE, 2007

[66] Fenton N, Neil M, Marsh W, Hearty P, Marquez D, Krause P, Mishra R,
Predicting software defects in varying development lifecycles using Bayesian
nets. Inf Softw Technol 2007;49(1):32-43

[67] Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause P, Project Data
Incorporating Qualitative Facts for Improved Software Defect Prediction,
PROMISE '07: Proceedings of the Third International Workshop on Predictor
Models in Software Engineering

[68] Finnie GR, Wittig GE, Desharnais JM, A Comparison of Software Effort
Estimation Techniques: Using Function Points with Neural Networks, Case-
Based Reasoning and Regression Models. Journal of Systems and Software,
vol. 39, no. 3, 281-289, (December, 1997)

[69] Gelman A, Carlin J, Stern H, Rubin D, (2003), Bayesian Data Analysis,
Second Edition. Chapman & Hall/CRC

[70] George B, Williams L, A structured experiment of test-driven development.
Information and Software Technology, 46(5):337–342, 2004.

[71] Geras A, Smith M, Miller J, A Prototype Empirical Evaluation of Test Driven
Development, Proceedings of the 10th International Symposium on Software
Metrics (METRICS’04)

[72] Gittens M, Lutfiyya H, Bauer M, An Extended Operational Profile Model,
Proceedings of the 15th International Symposium on Software Reliability
Engineering (ISSRE’04)

[73] Glass RL, The Standish report: does it really describe a software crisis?
Commun. ACM, ACM Press, 2006, 49, 15-16

[74] Glass RL, IEEE Software, May/June 2005, Vol. 22 number 3, IT Failure Rates
– 70% or 10-15%.

[75] Goel AL, Okumoto K, (1979), Time dependent error detection rate model for
software reliability and other performance measures. IEEE Transactions in
Reliability R-28 , 206-211

[76] Gras JJ, End-to-End Defect Modeling, IEEE SOFTWARE, Vol 21, no 5, pp
98-100, Sep/Oct 2004

[77] Gulezian R, Utilizing COCOMO Inputs as a Basis for Developing Generalized
Software Development Cost Estimation Model, May 1986,
COCOMO/WICOMO Users’ Group Meeting, Wang Institute Tyngsboro, MA.

[78] Halstead M, Elements of Software Science, Elsevier, North Holland, 1977
[79] Hamer PG, Frewin GD, M.H. Halstead's Software Science - a critical

examination, Proceedings of the 6th international conference on Software
engineering, Tokyo, Japan, 1982, Pages: 197 – 206

 240

[80] Harrison W, An Entropy-Based Measure of Software Complexity. IEEE
Transactions on Software Engineering, 18(11):1025–1029, Nov. 1992.

[81] Hassan AE, Holt RC. The chaos of software development. (Conference Paper)
Proceedings. Sixth International Workshop on Principles of Software
Evolution. IEEE Comput. Soc. 2003, pp.84-94. Los Alamitos, CA, USA.

[82] Hay D, Healy K, Defining business rules - what are they really? Guide
business rule project report, 1996

[83] Hearty P, Fenton N, Neil M, Cates P, Automated population of causal models
for improved software risk assessment. ASE 2005: 433-434

[84] Heckerman D, A Tutorial on Learning With Bayesian Networks, Technical
Report, Microsoft Research, November 1996

[85] Heiberg S, Puus U, Salumaa P, Seeba A, Pair-Programming Effect on
Developers Productivity, Proceedings of XP2003 (Springer LNCS 2675),
pages 215 - 224, 2003

[86] Hotle M, Understanding and Improving the AD Estimating Process,
Applications Development and Management System Strategies, The Gartner
Group, Stamford, Conn., November, 1996, pp. 25

[87] Huang C, Darwiche A, Inference in belief networks: A procedural guide,
International Journal of Approximate Reasoning, vol. 15, num. 3, 1996

[88] Hulkko H, Abrahamsson P, A Multiple Case Study on the Impact of Pair
Programming on Product Quality, 27th International Conference on Software
Engineering, ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA

[89] IFPUG, Function Point Counting Practices Manual , Release 4.1, International
Function Points Users Group (IFPUG), Mequon, Wisconsin, USA, 1999

[90] ISBSG, Worldwide Software Development - the Benchmark . International
Software Benchmarking Standards Group - ISBSG, from www.isbsg.org
(accessed 7 Feb 2007).

[91] Jaeger RM, 1997, Complementary methods for research in education. 2nd
Edition, pp. 589-608, Washington DC: American Educational Research
Association

[92] 589-608, Washington DC: American Educational Research Association
[93] Jenson F, Bayesian Networks and Decision Graphs, Springer-Verlag, New

York, 2001
[94] Jensen FV, Olesen KG, Andersen SK, An algebra of Bayesian belief universes

for knowledge based systems, Networks, 20(5), 637–659.
[95] Jensen FV, Lauritzen SL, Olesen KG, Bayesian updating in causal

probabilistic networks by local computation, Computational Statistics
Quarterly, 4, 269–282.

[96] Jones, C. Programmer Productivity, McGraw Hill, 1986.
[97] Jones, C. Software sizing, IEE Review 45(4), 165-167, 1999.
[98] Jones, C. Variations in Software Development Practices, IEEE Software, Vol.

20, No. 6, pp. 22-27
[99] Jones CG, Test-Driven Development Goes To School, Consortium for

Computing Sciences in Colleges, 2004
[100] Jones R, Garbage Collection, John Wiley & Sons, Ltd, ISBN 0-471-94148-4
[101] Jørgensen M, A review of studies on expert estimation of software

development effort, Journal of Systems and Software, Volume 70, Issues 1-2,
February 2004, Pages 37-60

 241

[102] Jørgensen M, Shepperd MJ, A Systematic Review of Software Development
Cost Estimation Studies, IEEE Transactions on Software Engineering, 33(1),
pp. 33-53, 2007

[103] Jørgensen M, Sjøberg DIK, An effort prediction interval approach based on
the empirical distribution of previous estimation accuracy, Information &
Software Technology, 45(3), pp. 123-136, 2003

[104] Kalman RE, A New Approach to Linear Filtering and Prediction Problems,
Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March
1960)

[105] Karlsson J, Software requirements prioritizing, Proc Int Conf Req Eng
Colorado Springs, Colorado, USA, (1996), pp. 110–116

[106] Karlsson L, Thelin T, Regnell B, Berander P, Wohlin C, Pair-wise
comparisons versus planning game partitioning—experiments on requirements
prioritisation techniques, Empirical Software Engineering, Volume 12,
Number 1, pp. 3-33, February 2007

[107] Keirsey D, Bates M. Please Understand Me: Character and Temperament
Types: Prometheus Nemesis Book Company, 1998

[108] Kellner MI, Madachy RJ, Raffo DM,"Software process simulation modeling:
why? what? how?," Journal of System and Software, vol. 46, pp. 91-105, 1999
(Vol 46, issues 2-3 is a special issue on software process simulation)

[109] Kemerer CF, An empirical validation of software cost estimation models,
Communications of the ACM vol. 30, no. 5 (May 1987) 416-429

[110] Kemerer CF, Reliability of Function Points Measurement. A Field
Experiment, Communications of the ACM, Vol.36, No.2, pp.85-97, February
1993

[111] Kitchenham BA, Pickard LM, and Linkman SJ, An Evaluation of Some
Design Metrics, Software Eng J., vol. 5, no. 1, pp. 50-58,1990

[112] Korkala M, Abrahamsson P, Kyllönen P, A Case Study on the Impact of
Customer Communication on Defects in Agile Software Development,
Proceedings of AGILE 2006 Conference (AGILE'06)

[113] Kozlov AV, Koller D, Nonuniform dynamic discretization in hybrid networks,
in Geiger D, Shenoy PP (eds.), Uncertainty in Artificial Intelligence, 13: 314–
325, 1997

[114] Kim JO, Mueller CW, Factor analysis:Statistical methods and practical issues,
Sage University Paper Series on Quantitative Applications in the Social
Sciences, series no. 07-014, 1978, Newbury Park, CA:Sage

[115] Kjaerulff U, Triangulation of graphs - algorithms giving small total state
space, Technical Report R-90-09, Dept. of Math. and Comp. Sci., Aalborg
University, Denmark, 1990

[116] Krause PJ, Learning probabilistic networks, The Knowledge Engineering
Review, Volume 13, Issue 04, pp. 321-351

[117] Kuppuswami, S., Vivekanandan K., and Paul Rodrigues (2003): A System
Dynamics Simulation Model to Find the Effects of XP on Cost of Change
Curve. In proceedings of Fourth International Conference on Extreme
Programming and Agile process in Software Engineering, (XP2003), May 25-
-29, 2003, Genova, Italy

[118] Lay D, Linear Algebra and It’s Applications, Addison-Wesley, New York,
2000.

[119] Lauritzen SL, Jensen F, Stable local computation with conditional Gaussian
Distributions, Statistics and Computing, 11, 2001, 191–203

 242

[120] Lauritzen SL, Spiegelhalter DJ, Local computations with probabilities on
graphical structures and their application to expert systems (with discussion).
J.R. Statistical Soc. Series B, 50, no. 2, pp. 157-224, 1988

[121] Levendel Y, 1989, Defects and Reliability Analysis of Large Software
Systems: Field Experience, Proc. 19th IEEE International Symposium on
Fault-Tolerant Computing, Chicago, June 1989, pp. 238-244

[122] Lepar V, Shenoy PP, A Comparison of Lauritzen-Spiegelhalter, Hugin, and
Shenoy-Shafer Architectures for Computing Marginals of Probability
Distributions, in Cooper GF, Moral S. (eds.), Uncertainty in Artificial
Intelligence, Vol. 14, 1999, pp. 328--337, Morgan Kaufmann, San Francisco,
CA

[123] Lethbridge TC, Laganiere R, Object-Oriented Software Engineering: Practical
Software Development Using UML and Java, McGraw-Hill, 2Rev Ed edition
(31 Dec 2004)

[124] Li W, Another metric suite for object-oriented programming, The Journal of
Systems and Software 1998; 44(2):155–162

[125] Little T, Value creation and capture: a model of the software development
process, IEEE Software, Vol 21, issue 3, pp 48-53

[126] Little T, Schedule Estimation and Uncertainty Surrounding the Cone of
Uncertainty, IEEE SOFTWARE May/June 2006

[127] Littlewood B, The problems of assessing software reliability…when you
really need to depend on it. In Proceedings of the 8th Safety Critical Systems
Symposium (SCSS'00), Southampton, UK, 2000.

[128] Lui KM, Chan KCC, “When Does a Pair Outperform Two Individuals?”
XP2003, Italy, 2003

[129] Lyu, M. (ed.), Handbook of Software Reliability Engineering, IEEE Computer
Society Press 1996

[130] McCabe T, “A software complexity measure”, IEEE Transactions on Software
Engineering, SE-2(4), pp. 308-20, 1976

[131] MacCormack A, Kemerer CF, Cusumano M, Crandall B, Trade-offs between
Productivity and Quality in Selecting Software Development Practices, IEEE
Software, September/October 2003 (Vol. 20, No. 5), pp. 78-85

[132] Martin A, Biddle R, Noble J, The XP Customer Role in Practice: Three
Studies, Proceedings of the Agile Development Conference (ADC’04)

[133] Maximilien EM, Williams L, “Assessing Test-Driven Development at IBM,”
Proc. Int’l Conf. Software Eng. (ICSE), 2003

[134] Melnik G, Maurer F, Introducing agile methods: three years of experience,
Proceedings 30th Euromicro Conference, 2004, pp. 334-341

[135] Minana EP, Gras JJ, Improving fault prediction using Bayesian networks for
the development of embedded software applications, Software Testing,
Verification And Reliability 2006, 16:157–174

[136] Misic, V., Gevaert, H., Rennie M. (2002) “Extreme dynamics: modelling the
extreme programming software development process ”. Workshop on
empirical evaluation of agile processes, XP/Agile Universe 2002

[137] Molokken K, Jorgensen M, A review of software surveys on software effort
estimation, 2003 International Symposium on, Empirical Software
Engineering, ISESE 2003 223-230

[138] Mooney JD, Portability and reusability: common issues and differences,
February 1995, Proceedings of the 1995 ACM 23rd annual conference on
Computer science

 243

[139] Moore R, Reff K, Graham J, Hackerson B, Scrum at a Fortune 500
Manufacturing Company, AGILE 2007, pp. 175-180

[140] Muller M. Are Reviews an Alternative to Pair Programming? Empirical
Software Engineering 2004;9(4):335-51

[141] Mulzer W, Rote G, Minimum weight triangulation is NP-hard. In Proceedings
of the Twenty-Second Annual Symposium on Computational Geometry
(Sedona, Arizona, USA, June 05 - 07, 2006), SCG '06.

[142] Munson JC, Khoshgoftaar TM, Regression Modelling of Software Quality: An
Empirical Investigation, Information and Software Technology, vol. 32, no. 2,
pp. 106-114, 1990

[143] Munson JC, Kahshgoftaar TM, Measuring data structure complexity, J.
Systems & Software, vol. 20, 217-225, 1993

[144] Murphy KP, Dynamic Bayesian Networks: Representation, Inference and
Learning, PhD thesis, UC Berkeley, 2002

[145] Musa JD, Software Reliability Data, Data & Analysis Center for Software,
January 1980. http://www.dacs.dtic.mil/databases/sled/swrel.shtml

[146] Musa JD, Iannino A, Okumoto K, Software Reliability: Measurement,
Prediction, Application, Mcgraw-Hill College, ISBN 007044093X

[147] Myers I, Manual: The Myers-Briggs Type Indicator, Palo Alto, California:
Consulting Psychologists Press, 1975.

[148] Nawrocki J, Wojciechowski A, Experimental Evaluation of Pair
Programming, Proceedings of the 12th European Software Control and
Metrics Conference, pp. 269-276, 2001

[149] Neapolitan RE, Learning Bayesian networks, Pearson Prentice Hall, 2004
[150] Neil M, Statistical Modelling of Software Metrics, Ph.D. dissertation, South

Bank University, December 1992
[151] Neil M, Fenton N, Improved Software Defect Prediction. 10th European

SEPG, London, 2005
[152] Neil M, Krause P, Fenton NE, Software Quality Prediction Using Bayesian

Networks in Software Engineering with Computational Intelligence, (Ed
Khoshgoftaar TM), Kluwer, ISBN 1-4020-7427-1, Chapter 6, 2003

[153] Neil M, Tailor M, Marquez D, Inference in hybrid Bayesian Networks using
dynamic discretisation, accepted for publication in Statistics and Computing.

[154] Nosek JT, The case for collaborative programming, Communications of the
ACM, Volume 41, Issue 3 (March 1998) Pages: 105 – 108

[155] Object Management Group, Business Semantics of Business Rules Request
For Proposal, OMG Document: br/2003-06-03

[156] Padberg F, Muller M, Analyzing the Cost and Benefit of Pair Programming,
Proceedings of the Ninth International Software Metrics Symposium
(METRICS’03)

[157] Pancur M, Ciglaric M, Trampus M, Vidmar T, Towards empirical evaluation
of test-driven development in a university environment, presented at
EUROCON 2003. Computer as a Tool. The IEEE Region 8, 2003

[158] Parrish A, Smith R, Hale D, Hale J, A Field Study of Developer Pairs:
Productivity Impacts and Implications, Sep/Oct 2004 IEEE SOFTWARE

[159] Pearl J, Fusion, Propagation, and Structuring in Belief Networks, Artificial
Intelligence, Vol. 29, No. (3), pages 241-288

[160] Pearl J, Causality: Models, Reasoning, and Inference, Cambridge University
Press, 2000

 244

[161] Pearl J, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference Morgan Kauffman, 1988. (Revised in 1997)

[162] Pelrine J, Modelling infection scenarios – a fixed-price eXtreme Programming
success story, OOPSLA 2000 Minneapolis, Addendum, pp. 23-24

[163] phpMyAdmin Project, http://www.phpmyadmin.net/home_page/ index.php,
accessed 9th Aug 2007

[164] Piwoworski P, A nesting level complexity measure, Sigplan Notices, 17(9),
Sept. 1981, pp. 44-50.

[165] Prechelt L, The 28:1 Grant/Sackman legend is misleading, or: How large is
interpersonal variation really? Technical Report 1999-18, 25 pages,
Universität Karlsruhe, Fakultät für Informatik, Germany, December 1999

[166] Prechelt L, Unger B, Philippsen M, Tichy WF, A controlled experiment on
inheritance depth as a cost factor for code maintenance, Journal of Systems
and Software 65(2) p. 115-126, 2003

[167] Rabiner L, Juang B, An introduction to hidden Markov models, ASSP
Magazine, IEEE [see also IEEE Signal Processing Magazine] 3, no. 1: 16, 4

[168] Ratcliff B, Rollo AL, Adapting function point analysis to Jackson system
development, Software Engineering Journal, v.5 n.1, p.79-84, Jan. 1990

[169] Rees K, Coolen FPA, Goldstein M, Wooff DA, Managing the uncertainties of
software testing: a Bayesian approach. Quality and Reliability Engineering
International 17: 191-203.

[170] Riggelsen C, Learning Bayesian Networks from Incomplete Data: An
Efficient Method for Generating Approximate Predictive Distributions, SIAM
2006

[171] Rising L, Janoff NS, The Scrum Software Development Process for Small
Teams, IEEE Software Vol 17/4, pp. 26-32, 2002

[172] Ross SA, Fundamentals of Corporate Finance, Irwin/McGraw-Hill, 1996
[173] Royce W, Managing the Development of Large Software Systems, Proc. IEEE

Wescon, 1970, pp. 1-9
[174] Ruiz M, Ramos I, Toro M, A simplified model of software project dynamics,

Journal of Systems and Software, vol. 59, no. pp. 299-309, 2001
[175] Sackman H, Erikson WJ, Grant EE, Exploratory experimental studies

comparing online and offline programming performance, Communications of
the ACM, 11(1):3–11, January 1968

[176] Schalliol G, "Challenges for Analysts on a Large XP Project," in Proceedings
of XP/Agile Universe, Raleigh, NC, 2001

[177] Schneider S, Concurrent and Real Time Systems: The CSP Approach
(Worldwide Series in Computer Science), Wiley 1999

[178] Schwaber K, Advanced Development Methods. SCRUM Development
Process, http://jeffsutherland.com/oopsla/schwapub.pdf, accessed 28 Feb 2008

[179] Schwaber K, Beedle M, Agile Software Development with SCRUM, Prentice
Hall, 18 Feb 2002

[180] Schwaber K, Agile software development with scrum, scrum faq,
http://www.scrum-master.com/resources/conchango%20scrum%20faq%20by
%20ken%20schwaber.pdf, accessed 29 Feb 2008

[181] Settas D, Bibi S, Sfetsos P, Stamelos I, Gerogiannis VC, Using Bayesian
Belief Networks to Model Software Project Management Antipatterns. SERA
2006: 117-124

[182] Sfetsos P, Stamelos I, Angelis L, Deligiannis I, Investigating the Impact of
Personality Types on Communication and Collaboration-Viability in Pair

 245

Programming - An Empirical Study, 7th International Conference on eXtreme
Programming and Agile Processes in Software Engineering (XP2006). June
2006, Oulu, Finland.

[183] Sfetsos P, Angelis L, Stamelos I, Investigating the extreme programming
system—An empirical study, Empirical Software Engineering Vol 11(2):269-
301, 2006

[184] Sfetsos P, Stamelos I, Angelis L, Deligiannis I. Investigating the Impact of
Personality Types on Communication and Collaboration-Viability in Pair
Programming - An Empirical Study. Extreme Programming and Agile
Processes in Software Engineering, 2006;43-52

[185] Shen VY, Conte SD, Dunsmore H, “Software Science Revisited: A Critical
Analysis of the Theory and Its Empirical Support”, IEEE Transactions on
Software Engineering, Vol. SE-9.,No. 2, pp. 155-165, March 1983

[186] Shenoy PP, Shafer G, Axioms for probability and belief-function
propagation,” in R. D. Shachter, T. S. Levitt, Lemmer JF, Kanal LN (eds),
Uncertainty in Artificial Intelligence, 4, 169–198, North-Holland, Amsterdam.

[187] Shepperd MJ, A critique of cyclomatic complexity as a software metric,
Software Engineering Journal, March 1988, pp. 30-36

[188] Shepperd M, Schofield C, Estimating Software Project Effort Using
Analogies. IEEE Transactions on Software Engineering, vol. 23, no 12, 736-
743, (1997)

[189] Software Process Change, Proceedings of the International Software Process
Workshop and International Workshop on Software Process Simulation and
Modeling, SPW/ProSim 2006, Shanghai, China, May 20-21, 2006. Springer
Lecture Notes in Computer Science, Volume 3966/2006, DOI
10.1007/11754305

[190] Sommerville, Software Engineering, Addison-Wesley 1992
[191] Srinivasan B, Is nested control more complex? Sigplan Notices, 18(12), Dec.

1983, pp., 120-121
[192] Srinivasan K, Fisher D. Machine Learning Approaches to Estimating Software

Development Effort. IEEE Transactions on Software Engineering, vol. 21, no.
2, (1995)

[193] Stamelos, L. Angelis, P. Dimou, and E. Sakellaris. On the use of bayesian
belief networks for the prediction of software productivity. Information &
Software Technology, 45(1):51–60, 2003

[194] Standish Group, The Chaos Report. 1994, The Standish Group
[195] Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/bayes-

theorem/supplement.html, accessed 14 Nov 2007
[196] Stephens M, Rosenberg D, Extreme Programming Refactored: The Case

Against XP, Apress; 1 edition (August 5, 2003)
[197] Stroud JM, "The Fine Structure of Psychological Tlme", Annals of New York

Academy of Science, Vol. 138, No. 2, pp 623 -631, 1967
[198] Sulaiman T, Barton B, Blackburn T, AgileEVM - Earned Value Management

in Scrum Projects, agile, pp. 7-16, AGILE 2006 (AGILE'06), 2006
[199] Sutherland J, Agile Development: Lessons learned from the first scrum,

October 2004, http://jeffsutherland.com/Scrum/FirstScrum2004.pdf, accessed
28 Feb 2008

[200] Symons CR, Function Point Analysis: Difficulties and Improvements, IEEE
Transactions on Software Engineering, 1985

 246

[201] Takeuchi H, Nonaka I, The New New Product Development Game, Harvard
Business Review, Jan-Feb 1986

[202] Tatikonda MV, Rosenthal SR, Technology Novelty, Project Complexity, and
Product Development Project Execution Success: A Deeper Look at Task
Uncertainty in Product Innovation, IEEE Transactions on Engineering
Management, vol. 47, no. 1, february 2000

[203] Vanhanen J, Lassenius C, Effects of Pair Programming at the Development
Team Level: An Experiment, Proceedings of International Symposium on
Empirical Software Engineering (ISESE 2005)

[204] Verner J, Tate G, Estimating Size and Effort in Fourth-Generation
Development, IEEE Software, v.5 n.4, p.15-22, July 1988

[205] Walston CE, Felix CP, A Method of Programming Measurement and
Estimation. IBM Systems Journal, Vol. 16, No. 1, pp. 54-73, 1977. Also in:
Tutorial on Programming Productivity: Issues for the Eighties, IEEE
Computer Society, Second Edition, 1986

[206] Wang H, Peng F, Zhang C, Pietschker A, Software Project Level Estimation
Model Framework based on Bayesian Belief Networks, Sixth International
Conference on Quality Software (QSIC'06)

[207] Wang X, Sun J, Yang X, He Z, Maddineni SR, Human factors in extracting
business rules from legacy systems, 2004 IEEE International Conference on
Systems, Man and Cybernetics, Volume 1, 10-13 Oct. 2004 Page(s):200 - 205
vol.1

[208] Watson H, McCabe T, NIST Special Publication 500-235*, Structured
Testing: A Testing Methodology Using the Cyclomatic Complexity Metric,
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm

[209] Welch G, Bishop G, An Introduction to the Kalman Filter, SIGGRAPH 2001
Course

[210] Whittaker JA, Toward a More Reliable Theory of Software Reliability, IEEE
Computer, December 2000

[211] Williams, L. and Erdogmus, H., On the Economic Feasibility of Pair
Programming, International Workshop on Economics-Driven Software
Engineering in conjunction with the International Conference on Software
Engineering, May 2002.

[212] Williams L, Kessler R, Pair Programming Illuminated, Addison-Wesley, 2003
[213] Williams L, Kessler RR, Cunningham W, Jeffries R, Strengthening the Case

for Pair Programming, IEEE Software, July/August 2000 (Vol. 17, No. 4) pp.
19-25

[214] Williams L, McDowell C, Nagappan N, Fernald J, Werner L, Building Pair
Programming Knowledge through a Family of Experiments, Proceedings of
the 2003 International Symposium on Empirical Software Engineering
(ISESE’03)

[215] Williams L, Shukla A, Antón AI, An Initial Exploration of the Relationship
Between Pair Programming and Brooks’ Law, Proceedings of the Agile
Development Conference (ADC’04)

[216] Williams TM, The need for new paradigms for complex projects, International
Journal of Project Management, Vol. 17, No. 5, pp. 269-273, 1999.

[217] Wolverton RW, The Cost of Developing Large-Scale Software. IEEE
Transactions on Computer, Volume C-23, No. 6, pp. 615-636, June 1974. Also
in: Tutorial on Programming Productivity: Issues for the Eighties, IEEE
Computer Society, Second Edition, 1986

 247

[218] Wood WA, Kleb WL, “Exploring XP for Scientific Research,” IEEE
Software, vol. 20, pp. 30 - 36, 2003.

[219] Wooff DA, Goldstein M, Coolen FPA, Bayesian Graphical Models for
Software Testing, IEEE Transactions on Software Engineering, Vol 28, Issue
5, pp. 510-525

[220] Xia F, An Information Coding Based Data Complexity Model, 3rd
International Software Metrics Symposium (METRICS '96) From
Measurement to Empirical Results, 1996

[221] Xia W, Lee G, Complexity of Information Systems Development Projects:
Conceptualization and Measurement Development J. Manage. Inf. Syst., M. E.
Sharpe, Inc., 2005, 22, 45-83

[222] Yang D, Wan Y, Tang Z, Wu S, He M, Li M, COCOMO-U: An Extension of
COCOMO II for Cost Estimation with Uncertainty. Software Process Change,
2006;132-41

[223] Zhang H, Kitchenham B, Semi-quantitative Simulation Modeling of Software
Engineering Process, pp. 242-253, in Software Process Change, Proceedings
of the International Software Process Workshop and International Workshop
on Software Process Simulation and Modeling, SPW/ProSim 2006, Shanghai,
China, May 20-21, 2006. Springer Lecture Notes in Computer Science,
Volume 3966/2006, DOI 10.1007/11754305

[224] Zweig G, A forward-backward algorithm for inference in Bayesian networks
and an empirical comparison with HMMs, Master’s thesis, Dept. Comp. Sci.,
U.C. Berkeley, 1996.

