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Abstract—Random coding, along with various standard tech-
niques such as coded time-sharing, rate-splitting, superposition
coding, and binning, are traditionally used in obtaining achiev-
able rate regions for multi-terminal networks. The error analysis
of such an achievable scheme relies heavily on the properties of
strongly joint typical sequences and on bounds of the cardinality
of typical sets. In this work, we obtain an achievable rate
region for a general (i.e. an arbitrary set of messages shared
amongst encoding nodes, which transmit to arbitrary decoding
nodes) memoryless, single-hop, multi-terminal network without
feedback or cooperation by introducing a general framework
and notation, and carefully generalizing the derivation of the
error analysis. We show that this general inner bound may be
obtained from a graph representation that captures the statistical
relationship among codewords and allows one to readily obtain
the rate bounds that define the achievable rate region. The
proposed graph representation naturally leads to the derivation
of all the achievable schemes that can be generated by combining
classic random coding techniques for any memoryless network
used without feedback or cooperation.

Index Terms—achievable region, chain graph, multi-terminal
network, superposition, binning, rate-splitting, time-sharing.

I. I NTRODUCTION

In random coding, codewords are generated by drawing
symbols in an independent, identically distributed (iid) fashion
from a prescribed distribution; the performance of the ensem-
ble of codes is then analyzed as a function of the block-
length, which is eventually taken to infinity. Thanks to the
iid symbols, and a block-length which tends to infinity, it is
possible to derive the asymptotic performance of the ensemble
of codes using the properties of jointly typical sets [1]. This
proving technique was originally developed for the point-to-
point channel [2] but is easily extended to multi-user channels
by introducing multiple codebooks, one for each message to
be transmitted. Multiple codebooks can be further organized
in complex schemes that takes into account the structure of
the network and the distribution of the messages among the
users. Coded time-sharing, rate-spitting, superpositioncoding,
binning, Markov encoding, quantize and forward, are some
of the strategies that have been developed for multi-terminal
channels. Given that all achievability schemes tend to use a
combination of “standard” techniques applied in differentfash-
ions (leading to different dependencies amongst codewords),
one might expect to be able to derive a general achievability
scheme for a large class of networks. The key bounding tech-

niques to analyze the error probability of transmission schemes
are presented in an unified fashion by Csiszár and Körner [1,
Ch. 1.2] and, more recently, by Kramer [3, Ch. 1] and El
Gamal [4, Ch. 1]. In this paper we introduce an achievable
scheme involving superposition coding, binning, rate-splitting,
and coded time-sharing valid for a general one-hop channel
without feedback or cooperation. This achievable scheme is
defined by the random variables representing different code-
words and by the factorization of the joint distribution among
these random variables. We develop a graph representation
of the factorization of the joint distribution based on Markov
graphs [5], [6]: in particular we define a Markov chain graph
with two types of edges, one representing superposition coding
and one representing binning.

In information theory, a similar attempt to capture the
relationship between random variables is thefunctional depen-
dence graph[3, App. 8]. Despite fundamental similarities, the
functional dependence graph is used mainly to represent the
Markov relationship between random variables, while, in our
case, the Markov chain graph describes a transmission scheme
and the relationship between codewords of different users.
Another attempt to provide achievable regions for general
channels is hinted in [7], but the authors do not provide a
rigorous approach to the problem.

By building upon the fundamental results in random coding
theory and graph theory, we define a formal representation and
a standard notation for a general achievable scheme as well
as the derivation of the achievable region. Our ultimate goal
is to define a form of “automatic rate region generator” which
outputs the best known random coding achievable rate region
for any channel of choice.

Paper Organization

Section II presents the class of networks considered in
this work and revises the standard random coding techniques
that we employ in our general achievable scheme. Section III
introduces the novelchain graphrepresentation of the encod-
ing operations. Section IV describes the codebook generation,
encoding and decoding procedures of the achievable scheme
associated to a specific graph representation. Section V derives
the rate bounds that define the achievable rate region based on
the proposedchain graphrepresentation. Section VI concludes
the paper.

http://arxiv.org/abs/1107.4705v2


II. CHANNEL MODEL AND RANDOM CODING

TECHNIQUES FORACHIEVABILITY

A. Notation

In the following, bold letters indicate subsets of power sets
P, i.e.

i ⊂ PN = P ([1 . . .N ]) , (1)

• index k/z: transmitter/receiver index withXk, Yz being the
channel input/output at transmitterk and receiverz,
• index i/j: subset of transmitters/receivers. We also usel/m
andv/t,
• indexS: set of containing(i, j) pairs andS its complement.

B. Network Model

We consider a general multi-terminal network whereNTX

transmitting nodes want to communicate withNRX receiving
nodes. A given node may only be a transmitting or a receiving
node , that is, the network is single-hop and without feedback.
The transmitting nodek, k ∈ [1 . . . NTX], inputsXk to the
channel, while the receiving nodez, z ∈ [1 . . .NRX], has
access to the channel outputYz. The channel transition prob-
ability is indicated withPY1...YNRX

|X1...XNTX
and the channel

is assumed to be memoryless. The subset of transmitting nodes
i, i ∈ PNTX , is interested in sending the messageWi�j to the
subset of receiving nodesj ∈ PNRX overN channel uses. The
messageWi�j, (i, j) ∈ PNTX ×PNRX , uniformly distributed
in the interval[0 . . . 2NRi�j − 1], whereN is the block-length
andRi�j the transmission rate.

A rate vectorR = {Ri�j, ∀ (i, j) ∈ PNTX × PNRX} is
said to be achievable if there exists a sequence of encoding
functions

XN
k = XN

k , ({Wi�j, s.t. (i, j) ⊂ PNTX ×PNRX , k ∈ i}) ,

and a sequence of decoding functions

Ŵ z
i�j = Ŵ z

i�j

(
Y N
z

)
if z ∈ j, (2)

such that

lim
N→∞

max
i,j,z

P

[
Ŵ z

i�j 6= W z
i�j

]
= 0.

The capacity regionC(R) is the convex closure of the region
of all achievable rates in the vectorR-pairs. The general
network model we consider is a variation to the network model
in [8, Ch. 14], but we allow for messages to be distributed to
more than one user while not considering feedback.

Fig. 1 shows the channel model considered in this work.

C. Random Coding Techniques for Achievability

We now revise standard random coding techniques used
in the literature for achievability in single-hop networks
used without feedback/cooperation: coded-time-sharing,rate-
splitting, superposition coding, and binning.
• Coded Time-Sharing consists of using different transmis-
sion strategies according to a random schedule [9] and allows
one to achieve the convex closure of the set of achievable

Fig. 1. The general cognitive multi-terminal network.

points and, in some cases, an even larger region [1, pp. 288-
290]. LetqN denote denote the outcome ofN iid draws from
the distributionPQ and letqN be revealed to all the encoders
and decoders in the network. In coded time-sharing the users
generate multiple random codebooks conditioned on the value
of the sequenceqn and choose their transmission strategy
according to this random outcome.
• Rate-Splitting corresponds to dividing a messageWi�j into
a set of sub-messages{Wi′�j′} where j ⊂ j′ and i ⊃ i′,
that is, sub-messages that are encoded by a smaller subset
of transmitters and decoded at a larger set of receivers than
the original message. Rate splitting preserves the rate of the
transmitted messages but increases the number of messages to
be transmitted over the channel which, in terms, increases the
possible transmission strategies [9]. LetW

[i�j]
l�m indicate that

sub-messageWl�m obtained by splitting the messageWi�j,
then the messageWi�j can be split in a sequence of sub-
messagesW [i�j]

l�m for every (l,m) such thatj ⊂ m and i ⊃ l

so that

R′i�j =
∑

(l,m) j⊂m, i⊃l.

R
[i�j]
l�m =

∑

(l,m), j⊂m, i⊃l.

γ
[i�j]
l�mRi�j,

(3)

with γ
[i�j]
l�m =

R
[i�j]
l�m

Ri�j
and whereR′i�j is the rate of the RV

Wi�j in the original channel andRi�j in the rate of the RV
Wi�j in the channel after rate-splitting is applied.

Rate-splitting effectively transforms the problem of achiev-
ing a rate vectorR into the problem of achieving the rate
vectorR′ such thatR′ = ΓR with Γ(i,j)×(l,m) = γ

[i�j]
l�m .

• Superposition Coding can be intuitively thought of as
stacking codewords on top of each other [10]. The “base”
codewords are decoded first and stripped from the received
signal so as to reduce the interference when decoding the “top”
codewords. In superposition coding a different top codebook
is generated for each base codeword and the codewords in
the top codebook have a conditional distribution that depends
on the specific base codeword. LetUN

l�m be the codebook
with distributionPN

Ul�m
carrying the messageW ′l�v and the

codewordUN
i�j carrying the messageW ′i�j be superposed to

the codebookUN
l�m. A different top codebook is associated

to each base codewordUN
l�m = uN

l�m and the codewords



UN
i�j in each of these codebooks are generated according to

the distributionPN
Ui�j|Ul�m=ul�m

. Superposition ofUN
i�j over

UN
l�m can be performed when the following hold:
• l ⊆ i: that is the bottom message is encoded by a larger set
of encoders than the top message.
• m ⊆ j: that is the bottom message is decoded by a larger
set of decoders than the top message.
Note that, if UN

i�j is superposed toUN
l�m and UN

v�t is
superposed toUN

l�m, thanUN
i�j is also superposed toUN

v�t. In
the followingUi�j<Ul�m indicates that the codewordUN

i�j is
superposed to the codewordUN

l�m.
• Binning allows a transmitter to “pre-cancel” (portions of)
the interference known to be experienced at a receiver [11].
This is done by generating a codebook that has a larger number
of codewords than the cardinality of the associated message
so that the transmitted codeword can be chosen according to
both the message and the specific value of the interference.
Although in the original setting of [11] the interference isa
random process, this technique can be extended to the case
where the interference is a different user’s codewords. Let
UN
l�m be the codeword with distributionPN

Ul�m
carrying the

messageW ′l�v and the codewordUN
i�j carrying the message

W ′i�j be binned againstUN
l�m. The codewordsUN

i�j are gener-
ated independently from the codewordsUN

l�m but chosen so to
look as if generated according to the distributionPN

Ui�j|Ul�m
.

The codewordUN
i�j can be binned againstUN

l�m when
• i ⊆ l: that is, the set of encoders performing binning has
knowledge of the interfering codeword
Note that ifUN

i�j can be binned againstUN
i�m, thenUN

i�j can
also be binned againstUN

i�m, : this is referred to as “joint
binning” [12]. In the followingUi�j⋖Ul�m indicates that the
codewordUN

i�j is binned against the codewordUN
l�m while

Ui�j ⋖⋗Ul�m indicates joint binning.

III. T HE CHAIN GRAPH REPRESENTATION OF AGENERAL

ACHIEVABLE SCHEMES

The elements included in the random coding construction of
Sec. II-C may be compactly represented using the following
graphG(V,E):
• every vertexv = (i, j) ∈ V ⊂ P(NTX) × P(NRX) is
associated to the RVUi�j carrying the messageW ′i�j at rate
R′i�j obtained through rate-splitting,
• the set of edgesE, connecting the vertices inV , contains
two subsetsS andB such thatE = S ∪ B andS ∩ B = ∅
• the vertexUi�j is connected withUl�m by a directed edge
of type S (for superposition), if Ul�m<Ui�j (solid line).
• the vertexUi�j is connected withUv�t by a directed edge
of type B (for binning), if Uv�t ⋖ Ui�j (dotted line).
Moreover, all the RVs are generated according to a marginal
distribution that depends onQ.

A schematic representation of the graphical Markov model
associated with the graphG(V,E) is presented in Fig. 2:
each vertex(i, j) is associated with the messageW ′i�j, a rate-
splitting equation and an auxiliary RVUi�j with distribution
PUi�j|Q according to which the codebook is generated. The

Fig. 2. A schematic representation of the graph in Sec. III .

vertex(i, j) can be connected to a vertex(l,m) by two types
of edges: a superposition edgeS and a binning edgeB; both
edges indicate the Markov dependency betweenUi�j and
Ul�m givenQ.

The graph representation of the achievable scheme is partic-
ularly useful in deriving the joint distribution of the codewords
UN
i�j in a general scheme in Sec. II. When trying to determine

this distribution, superposition coding and binning effectively
result in allowing for any joint distribution among the con-
nected RVs. In the following we detail how the graphG(V,E)
can be used to describe the dependency structure of the code-
words of an achievable scheme for a general multi-terminal
network. Graphs representing conditional dependencies among
RVs have been extensively studied in the literature in the
field of graphical Markov models [5]. In order for the graph
representation of achievable scheme to correspond to a feasible
distribution, it is necessary to impose certain restrictions on
its structure. Moreover, it is convenient to consider graph
representations where there exists a convenient factorization
of the joint distribution of the RVs in the graph. For this
reason we consider a decomposable chain graph: graph with
both directed and undirected edges that is equivalent to some
Asymmetric Directed Graphs (ADGs).

Assumption1. RVs that are jointly binned form fully con-
nected sets, that is

Ui�j ⋖⋗Ui�m, Ui�m ⋖⋗Ui�j ⇒ Ui�m ⋖⋗Ui�t. (4)

Assumption2. RVs that are jointly binned, have the same
parent nodes, that is, ifUi�j ⋖ ⋗Ui�t andUi�j ⋖ Ul�m or
Ui�j<Ul�m, thanUi�t ⋖ Ul�m or Ui�t<Ul�m.

Assumption3. RVs known at same set of decodersi do not
form directed cycles in the graph representation. If a cycle
exists it must be undirected.

Given any achievable scheme, one can always obtain an
achievable scheme that satisfies Assumptions 1, 2 and 3 by
adding an additional binning steps to the original scheme.
These additional encoding operations can only enlarge the
achievable region, since the original scheme can be reobtained
with the appropriate choice of distribution imposed by the
binning step.



Theorem III.1. If Assumptions 1, 3, and 2, hold, the graph
representation of a general achievable scheme correspondsto
chain graph which is equivalent to some ADG for which the
joint distribution can be written as

P (V ) =
∏

Uk∈V

PUk|pa(Uk), (5)

wherepa(Uk) indicates the parent nodes ofUk, that is the set
of all the nodes connected toUk by a direct edge.

Proof: The complete proof is provided in [13].
We refer to a graph representation of an achievable scheme

in Th. III.1 as a Chain Graph Representation of an Achievable
Scheme (CGRAS).

The edges of the equivalent ADG are generated by orienting
undirected edge and therefore the equivalent ADG can be
written asG(V,B- ∪ S) for someB- ⊂ B. The notation←−⋖
is used in the following to indicate the edges inB-. With
this notation, the joint distribution of a CGRAS can then be
factorized as:

P{Ui�j, ∀ (i,j)} =
∏

(i,j)

P
Ui�j|{Ul�m, Ui�j<Ul�m, Ui�j

←−
⋖Ul�m}

.

(6)

IV. CODEBOOK GENERATION, ENCODING AND DECODING

PROCEDURES FOR ACGRAS

We now outline the codebook generation, encoding, and
decoding operations for a general transmission scheme asso-
ciated with a CGRAS.

Codebook Generation: The codebook of a CGRAS is
generated according to the distribution imposed by the super-
position coding edges. Consider the nodeUi�j and assume that
the codebook of the parent nodes has already been generated
and indexed byll�m ∈ [1 . . . 2Ll�m ], then, for each possible
set

{ ll�m, ∀ (l,m) Ui�j<Ul�m},

repeat the following:
• generate 2NLi�j codewords, for Li�j = R′i�j +

Ri�j with iid symbols drawn from the distribution
PUi�j|{Ul�m, Ul�m<Ui�j}.

• Place the codewords in2NR′

i�j bins of size2NR
′

i�j each.
• Index each codebook of size2NLi�j using the set
{ ll�m, ∀ (l,m) Ui�j<Ul�m} so that

UN
i�j(li�j) = UN

i�j

(
w′i�j, bi�j, { ll�m, ∀ (l,m) Ui�j<Ul�m}

)
,

(7)

wherew′i�j is chosen according to the transmitted message.
Since graphG(V, S) is an ADG, we can apply the above step
starting from the nodes that have no parents to all the nodes
in the graph.

Encoding Procedure: The binning indexbi�j in each
codeword is chosen so that the codewords in (7) appear to have
been generated with iid symbols drawn from the distributionin
(6). If a codeword cannot be determined, then a value ofbi�j

is chosen randomly. We may find a jointly typical codeword if

the number of binsbi�j is sufficiently large, that is, ifRi�j is
sufficiently large. Finally the encoderk produces the channel
input XN

k as a deterministic function of its codebook(s).
Decoding ProcedureReceiverz looks for a set of bin

indices w′i�j and bi�j for z ∈ j, such that the set{
Y N
z ,

{
UN
i�j : z ∈ j

}}
looks as if it generated an iid ac-

cording to the distribution in (6). If the decoder cannot find
such codeword or it finds more than one, it picks one tuple at
random.

V. DERIVATION OF THE RATE BOUNDS

In this section we derive the achievable rate region of the
transmission strategy described in Sec. IV by bounding the
encoding and decoding error probability.

A. Encoding Errors

For the probability of encoding error to vanish as the block-
length increases it is necessary to choose a large enough
binning rateRi�j so the encoders can jointly find a set of
bin index bi�j for which the codewordUN

i�j appears to be
generated according to the distribution imposed by binning
although it is generated according to the distribution imposed
by superposition coding. Define

SB = {(i, j), Ui�j ⋖ Ul�m for some (l,m)} , (8)

i.e. SB is the set of all the indexes whose codeword possess a
bin index; we intuitively expect the condition for a successful
encoding to depend on the distance between the codewords’
distribution at generation and after encoding:

I
encoding
codebook = E[logPencoding]− E[logPcodebook] = (9)∑

(i,j)∈SB

I(Ui�j; {Ul�m, Ui�j
←−
⋖Ul�m}|{Ul�m, Ui�j<Ul�m}|Q).

The encoding error analysis is obtained using Markov
inequality and the mutual covering lemma [3], [4].

Theorem V.1. Encoding Errors Analysis using the Mutual
Covering Lemma For any CGRAS, encoding is successful
with high probability asN → ∞ if, for any subsetS ⊂ SB

such that

(i, j) ∈ S⇒ (l,m) ∈ S, ∀ (l,m) s.t. Ul�m<Ui�j, (10)

for SB defined in(8), the following holds:

∑

(i,j) ∈ S

Ri�j ≥ I
encoding
codebook − IM.C.L.

S , (11)

whereIM.C.L.
S if defined in(12) ( M.C.L. standing for “Mutual

Covering Lemma”).

Proof: The complete proof is provided in [13].



IM.C.L.
S =

∑

(i,j) ∈ S

I(Ui�j; {Ul�m, Ui�j
←−
⋖Ul�m, (l,m) ∈ S}|{Ul�m, Ui�j<Ul�m, Ul�m ⋖ Ui�j, (l,m) ∈ S}, Q), (12)

I
z,P.L.
S = I(Yz ; {Ui�j, (i, j) ∈ S}|{Ul�m, (l,m) ∈ S}, Q) (13)

+
∑

(i,j) ∈ S

I(Ui�j; {Ul�m, Ui�j
←−
⋖Ul�m, (l,m) ∈ S}|{Ul�m, Ui�j<Ul�m ∈ S}, Q),

B. Decoding Errors

For the decoding error probability to vanish as the block-
length increases, it is necessary to choose a small enough
codebook rateLi�j so that the codewordsUN

i�j are sufficiently
“spaced apart” in the typical set to allow successful decoding.
The bounds on the codebook rates are obtained using the
packing lemma [3], [4] which bounds the maximum number of
codewords that can be employed at transmission and still allow
the decoder to recover the transmitted codeword. Decoding
relies on the conditional typicality of the channel output given
the transmitted codeword and on the typicality relationship
imposed on the codewords by the encoding procedure. The
probability of error at each decoder is linked to the specific
codewords that the receiver is attempting to decode; for this
reason it is convenient to define the setSz

D as:

Sz
D = {(i, j) s.t. z ∈ j} , (14)

that is,Sz
D is the set of indexes whose codeword is decoded at

receiverz. Intuitively we expect the condition for successful
decoding to depend on the distance between the joint distribu-
tion of the codewords and the channel output at the encoding
and the distribution after an incorrect decoding, that is:

I
decoding
encoding = E[logPYz ,encodingz ]− E[logPYz

P z
codebook]

= I(Yz ; {Ui�j, (i, j) ∈ Sz
D}|Q)+∑

(i,j)∈Sz

D

I(Ui�j; {Ul�m, Ui�j
←−
⋖Ul�m}|{Ul�m, Ui�j<Ul�m}, Q),

where

PYz ,encodingz = PYz |{Ui�j∈Sz

D
},QP

z
encoding (15a)

P z
encoding =

∑

(i,j) 6∈Sz

D

Pencoding (15b)

P z
codebook =

∑

(i,j) 6∈Sz

D

Pcodebook, (15c)

that is, P z
encoding and P z

codebook are the encoding and the
codebook distribution, for the set of codewords decoded at
receiverz, {Ui�j, (i, j) ∈ Sz

D}.

Theorem V.2. Decoding error analysis using the Packing
Lemma

For any CGRAS, decoding is successful with high proba-
bility as N → ∞ if , for any receiverz and for any subset
S ⊂ Sz

D such that condition(10) , for Sz
D defined in(14), the

following holds:
∑

(i,j)∈S

Li�j ≤ IJ.DS , (16)

where I
z, P.L.
S is defined in (13). (where P.L stands for

packing lemma).

Proof: The complete proof is provided in [13].

VI. CONCLUSION

In this paper we present a new general achievable rate
region valid for a general class of multi-terminal networks.
This achievable scheme employs rate-splitting, superposition
coding, and binning, and generalizes a number of inner bounds
and techniques that have been proposed in the literature.
This achievable scheme may be represented using a graph
representation that allows for a quick comparison between
transmission strategies and simplifies the derivation of the
corresponding achievable rate regions. This paper attempts to
establish a general tool to derive achievable rate regions for
multi-terminal networks which contains all standard random
coding techniques. A subject of ongoing research is whether
there exists a combination of encoding strategies that yields
the largest achievable region among all possible transmission
strategies (within the proposed framework).
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