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1. Motivation
The increasing complexity of embedded system design often requires the designers to model systems

with both continuous and discrete dynamics. Examples include mixed-signal systems that have both con-
tinuous and discrete parts and digital systems that interact with a continuous environment. Although each
individual model may be relatively well-understood, the integration of heterogeneous models brings addi-
tional difficulties and complexities to the design. 

This work focuses on the ordinary differential equation (ODE) based continuous time (CT) model and
two kinds of discrete models, a timed one − the discrete event (DE) model, and an untimed one − the finite
state machine (FSM) model. Following circuit design communities, we call the composition of CT and DE
the mixed-signal model; following control and computation communities, we call the composition of CT
and FSM the hybrid system model.

Mixing heterogeneous models to design complex systems is receiving more and more attention from
both academic and industrial perspectives. SPLICE [18], a mixed-signal circuit design tool, tries to speed
up the simulation by extending the SPICE-like ODE solver to embrace an event-driven simulation engine
for digital parts. Unfortunately, it does not accurately detect events, which makes the tight feedback
between analog and digital parts hard to handle. Simulink1, originally a continuous-time control system
design tool, has been enhanced to model sample-data systems and, to some extent, discrete-event systems
[23]. The hardware description language communities, like VHDL and Verilog, extend and standardize the
capability of modeling continuous dynamics in their previous discrete-event based languages [24, 25].
Both of these approaches attempt to come up with a unified model to capture semantically different com-
ponents, and lack hierarchy for managing the complexity of a design.

One of the most noticeable efforts in mixing continuous and discrete dynamics is the study of hybrid
systems [2]. A solid theoretical framework for modeling and analyzing hybrid systems is under rapid
development [1, 4, 8, 10, 15], with applications in air traffic management, transportation systems, automo-
tive, manufacturing systems, and electromechanical systems etc. [3, 6, 20, 21]. Nevertheless, a simulation
tool with clean semantics and composability that leverages the theory of hybrid system is still under high
demand [16]. 

Component-based models view the building blocks of a system to be components. As shown in Figure
1, components are “black boxes.” The interface of a component and the communication scheme among
components are specified, while the contents of a component can be implemented with a different model.
The component-based design provides a clean way to integrate different models by hierarchically compos-
ing heterogeneous components [5]. This hierarchical composition allows one to manage the complexity of
a design by information hiding, and to enhance the possibility of design reuse.

1. A software package from Mathworks Inc.
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My Thesis
I propose a component-based framework to model systems with both continuous and discrete
dynamics. The framework cleanly integrates heterogeneous models by using hierarchical compo-
sitions to hide the implementation details of one component from other components, and keeping
the components at the same level of hierarchy interacting in the same way. The signal conver-
sions at the boundaries and the execution control among continuous and discrete components are
studied. A correct and efficient simulation engine is built. I propose to scale up the framework in
order to support modeling of distributable systems. I also expect to contribute via a mathematical
understanding of the mixed-signal model.

2. Current Progress

2.1.Component-based model for continuous and discrete dynamics.
• Continuous Time Model

We consider an initial value problem of ODE for continuous time systems, and specify it using compo-
nents, as shown in Figure 2. In this model, components communicate via piecewise continuous waveforms.
And the components are continuous maps from input waveforms to output waveforms. The simulation of
this model is to solve the ODE numerically with respect to the inputs at a discrete set of time points, and
produce outputs at those points. The component-based model imposes no difficulty on numerical ODE
solving methods. In fact, the evaluation of the f and g functions can be achieved by executing the corre-
sponding components in their I/O topological order. 

• Discrete Event Model
In the discrete event model, components communicate by a set of events that have discrete locations on

the time line. An event has a time stamp and a value. A component, when executed, can consume input
events and produce output events. The output events are required to be no earlier in time than the input
events (this property is called causality). The simulation of this model utilizes a global event queue. When
a component generates an output event, the event is placed in the queue, which sorts events by their time
stamps. At each iteration of the simulation, events with the smallest time stamp will be dequeued, and their
destination components will be executed.
• Finite State Machine Model

In the FSM model, as shown in Figure 3, there is a finite set of states (the bubbles), a finite set of
events, an initial state, and transitions from states to states (the arcs). The set of events do not necessarily
have a notion of time. A transition is associated with a trigger condition and an action. A trigger condition
could be a predicate on input events, and an action might be producing output events. The execution of the
system starts from the initial state. For each input event, if the trigger condition on a transition starting
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Figure 2. A component-based model for continuous time systems.
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from the current state is true, then the transition is taken and the action associated will be performed. The
end state of the transition becomes the new current state. 

2.2.Signal Conversions and Breakpoint Handling.
A fundamental issue for composing heterogeneous models is how to make a component implemented

in one model to expose an interface of another model. Since the two kinds of dynamics have distinct types
of signals, the conversion of signals is essential.
• Event generation

Event generation is to generate discrete events from piecewise continuous waveforms. We classify two
types of events, time events and state events. The time stamps of time events are known beforehand, while
the time stamps of state events depend on the value of the state variables in the CT system. In general, the
time stamps of state events cannot be predicted accurately in advance. Special treatment has to be done in
the process of ODE solving.
• Waveform generation

Waveform generation is to generate piecewise-continuous waveforms from discrete-event signals.
This conversion is application dependent. In general, any extrapolations of previous events are reasonable.
• Breakpoint handling in CT Simulation

 In order to handle event generation and inputs generated from discrete events, we define breakpoints
in the continuous-time model. A breakpoint is a time point in the CT model when the right-hand side
(RHS) of the ODE is not sufficiently smooth, or the output map is not continuous. The numerical ODE
solver cannot cross breakpoints in one integration step since either the smooth-RHS assumption is violated
or an event need to be produced. According to whether a breakpoint can be predicted in advance, we clas-
sify two kinds of breakpoints, predictable ones and unpredictable ones. For example, time events and
unsmoothness in input signals are predictable, while state events and unsmoothness in state variables are
unpredictable. Predictable breakpoints can be stored in a table and handled more efficiently. The numerical
integration step sizes are now controlled  based on three factors: 

•Error control. This reflects the trade-off between speed and accuracy of a simulation. In general, for a
given ODE solving method, a smaller step size means a more accurate result. But it also means more
function evaluations and long simulation time.
•Convergence. Implicit numerical methods use fixed-point iteration or Newton iteration to solve the
induced algebraic equations. Choosing smaller step size may help improve the initial guess.
•Breakpoints. Before each integration step, the breakpoint table is queried, and the intent step size
(adjusted from the first two factors) may be reduced so that it does not cross a predictable breakpoint.
Unpredictable breakpoints are handled by querying components after each integration step. An unpre-
dictable breakpoint is iteratively located within an error tolerance, before the integration continues.
These techniques allow discrete components to expose continuous interface, as shown in Figure 4, and

vice versa, as in Figure 5. The breakpoint handling mechanisms built in the continuous-time model sug-
gests that the simulation of discrete dynamics does not have to handle continuous signals.
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Figure 3. A finite state machine component.
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2.3.Executing Heterogeneous Components
The execution control of heterogeneous components is critical for a correct and efficient simulation

engine. Both CT and DE are timed models. There will be multiple time variables in different components.
In our hierarchical composition of models, we call the time at the highest level of hierarchy the “global
time,” and the time maintained within a component the “local time.” 
• DE inside CT

Since time advances monotonically in CT and events are generated chronologically, the DE compo-
nent will receive input events monotonically in time. In addition, a composition of causal DE components
is causal [11], so the time stamps of output events from a DE component are always greater than or equal to
those of the corresponding input events. Thus, from the CT system point of view, the events (breakpoints)
produced by a DE component are always predictable.
• CT inside DE

When a CT component is contained in a DE system, as shown in Figure 5, the CT component is
required to be causal, like all other components in the DE system. This suggests that the local time of the
CT component should be greater than or equal to the global time, whenever it is executed [13]. 

This ahead-of-time execution implies that the CT component should be able to remember its past states
and be ready to rollback if the input event is earlier than the local time. The state it needs to remember is
the state of the component after it has processed an input event. Consequently, the CT component should
not emit detected events to the outside DE system before the global time reaches the event time. Instead, it
should request an execution from the DE system at the event time, and wait until its safe to emit it. 
• CT-FSM-CT

A hierarchical composition of FSM and CT is shown in Figure 6. Although FSM is an untimed model,

its composition with a timed model requires it to transfer the notion of time from its external model to its
internal model. A CT component, by adopting the event generation technique, can have both continuous
and discrete signals as its outputs. The FSM may use predicates on them to build trigger conditions.
Actions associated with transitions are usually reset to the initial conditions of integrators in the destination
state.

During continuous evolution, the system is simulated as a CT system where the FSM is replaced by the
continuous component of its current state. After each time point of CT simulation, the triggers on the tran-
sitions starting from the current FSM state are evaluated. If a trigger is enabled, the FSM makes the corre-
sponding transition. The continuous dynamics of the destination state is initialized by the action on the
transition. The simulation continues with the transition time treated as a breakpoint.

Figure 5. A CT component in a DE model.
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Currently, the framework for component-based modeling of systems with continuous and discrete
dynamics has been built in the heterogeneous modeling and design environment, Ptolemy II [7]. The tech-
niques discussed in the previous sections have been implemented. Several examples have been built to
demonstrate the correct simulation results from using these techniques [27, 14]. 

3. Future Work
I intend to extend the current achievements in two directions, a denotational semantics for the mixed-

signal model and a distributable component framework for further scaling up the component model.

3.1.Denotational Semantics for the Mixed-signal Model
Compared to the relative maturity of hybrid system theory, the composition of CT and DE has not been

rigorously studied. A denotational semantics [19] defines the behavior of a model by the mathematical
relationship on the signals. The study of such semantics for mixed-signal systems may give a deep insight
on the properties like determinism and lack of Zeno phenomena (infinitely many events in a finite time
interval), as well as a theoretical guide on the implementation of simulators.

The mathematical framework I want to use is the tagged-signal model developed by Lee and Sangio-
vanni-Vincentelli [12]. The model has been shown to be effective in studying the denotational semantics of
DE models [11]. 

The first question I am trying to answer is related to determinism. Although both DE models and CT
models can individually be shown to have a unique behavior under simple conditions (using Cantor metric
and  space, respectively), the conditions for mixed-signal model may not be trivial. A reason is that the
Cantor metric is a metric on time while the  is a metric on values. I would like to come up with condi-
tions that make a composition of continuous-time components (together with event generation and wave-
form generation processes) to be causal as a discrete-event component, and conditions that make a
composition of discrete-event components (together with event generation and waveform generation pro-
cesses) to be Lipschitz as a continuous-time component. 

For the Zeno phenomena, I expect that conditions on the event generation, waveform generation, and
system dynamics may help avoid it. The study that Johansson et al. have done on Zeno hybrid automata [9]
might be helpful.

3.2.Distributable components
The component-based model has the advantage that there is no restrictions that the components be

physically related. It provides a way to protect intellectual property more effectively. In addition, complex
embedded systems usually have communication subsystems such that the components interact remotely. A
design environment that has the capability to model distributed components is highly desirable.

CORBA [22] and similar middleware techniques [17, 26] provide a promising framework to make the
distribution of components transparent to designers. To support them in a design environment, the key
questions to be answered are the granularity of distribution, the communication styles among components,
and the information to be shared. I intend to embrace the middleware concept in the component model,
explore different options of design choices, and provide a practical implementation of it. 

4. Conclusion
I expect to contribute a distributable component-based modeling technique for systems with continu-

ous and discrete dynamics, a mathematical framework for it, a correct and efficient simulation strategy, and
a practical implementation of it within a component-based multi-model design environment.

L
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1. Motivation
The increasing complexity of embedded system design often requires the designers to model systems

with both continuous and discrete dynamics. Examples include mixed-signal systems that have both con-
tinuous and discrete parts and digital systems that interact with a continuous environment. Although each
individual model may be relatively well-understood, the integration of heterogeneous models brings addi-
tional difficulties and complexities to the design. 

This work focuses on the ordinary differential equation (ODE) based continuous time (CT) model and
two kinds of discrete models, a timed one − the discrete event (DE) model, and an untimed one − the finite
state machine (FSM) model. Following circuit design communities, we call the composition of CT and DE
the mixed-signal model; following control and computation communities, we call the composition of CT
and FSM the hybrid system model.

Mixing heterogeneous models to design complex systems is receiving more and more attention from
both academic and industrial perspectives. SPLICE [18], a mixed-signal circuit design tool, tries to speed
up the simulation by extending the SPICE-like ODE solver to embrace an event-driven simulation engine
for digital parts. Unfortunately, it does not accurately detect events, which makes the tight feedback
between analog and digital parts hard to handle. Simulink1, originally a continuous-time control system
design tool, has been enhanced to model sample-data systems and, to some extent, discrete-event systems
[23]. The hardware description language communities, like VHDL and Verilog, extend and standardize the
capability of modeling continuous dynamics in their previous discrete-event based languages [24, 25].
Both of these approaches attempt to come up with a unified model to capture semantically different com-
ponents, and lack hierarchy for managing the complexity of a design.

One of the most noticeable efforts in mixing continuous and discrete dynamics is the study of hybrid
systems [2]. A solid theoretical framework for modeling and analyzing hybrid systems is under rapid
development [1, 4, 8, 10, 15], with applications in air traffic management, transportation systems, automo-
tive, manufacturing systems, and electromechanical systems etc. [3, 6, 20, 21]. Nevertheless, a simulation
tool with clean semantics and composability that leverages the theory of hybrid system is still under high
demand [16]. 

Component-based models view the building blocks of a system to be components. As shown in Figure
1, components are “black boxes.” The interface of a component and the communication scheme among
components are specified, while the contents of a component can be implemented with a different model.
The component-based design provides a clean way to integrate different models by hierarchically compos-
ing heterogeneous components [5]. This hierarchical composition allows one to manage the complexity of
a design by information hiding, and to enhance the possibility of design reuse.

1. A software package from Mathworks Inc.
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My Thesis
I propose a component-based framework to model systems with both continuous and discrete
dynamics. The framework cleanly integrates heterogeneous models by using hierarchical compo-
sitions to hide the implementation details of one component from other components, and keeping
the components at the same level of hierarchy interacting in the same way. The signal conver-
sions at the boundaries and the execution control among continuous and discrete components are
studied. A correct and efficient simulation engine is built. I propose to scale up the framework in
order to support modeling of distributable systems. I also expect to contribute via a mathematical
understanding of the mixed-signal model.

2. Current Progress

2.1.Component-based model for continuous and discrete dynamics.
• Continuous Time Model

We consider an initial value problem of ODE for continuous time systems, and specify it using compo-
nents, as shown in Figure 2. In this model, components communicate via piecewise continuous waveforms.
And the components are continuous maps from input waveforms to output waveforms. The simulation of
this model is to solve the ODE numerically with respect to the inputs at a discrete set of time points, and
produce outputs at those points. The component-based model imposes no difficulty on numerical ODE
solving methods. In fact, the evaluation of the f and g functions can be achieved by executing the corre-
sponding components in their I/O topological order. 

• Discrete Event Model
In the discrete event model, components communicate by a set of events that have discrete locations on

the time line. An event has a time stamp and a value. A component, when executed, can consume input
events and produce output events. The output events are required to be no earlier in time than the input
events (this property is called causality). The simulation of this model utilizes a global event queue. When
a component generates an output event, the event is placed in the queue, which sorts events by their time
stamps. At each iteration of the simulation, events with the smallest time stamp will be dequeued, and their
destination components will be executed.
• Finite State Machine Model

In the FSM model, as shown in Figure 3, there is a finite set of states (the bubbles), a finite set of
events, an initial state, and transitions from states to states (the arcs). The set of events do not necessarily
have a notion of time. A transition is associated with a trigger condition and an action. A trigger condition
could be a predicate on input events, and an action might be producing output events. The execution of the
system starts from the initial state. For each input event, if the trigger condition on a transition starting
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Figure 2. A component-based model for continuous time systems.
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from the current state is true, then the transition is taken and the action associated will be performed. The
end state of the transition becomes the new current state. 

2.2.Signal Conversions and Breakpoint Handling.
A fundamental issue for composing heterogeneous models is how to make a component implemented

in one model to expose an interface of another model. Since the two kinds of dynamics have distinct types
of signals, the conversion of signals is essential.
• Event generation

Event generation is to generate discrete events from piecewise continuous waveforms. We classify two
types of events, time events and state events. The time stamps of time events are known beforehand, while
the time stamps of state events depend on the value of the state variables in the CT system. In general, the
time stamps of state events cannot be predicted accurately in advance. Special treatment has to be done in
the process of ODE solving.
• Waveform generation

Waveform generation is to generate piecewise-continuous waveforms from discrete-event signals.
This conversion is application dependent. In general, any extrapolations of previous events are reasonable.
• Breakpoint handling in CT Simulation

 In order to handle event generation and inputs generated from discrete events, we define breakpoints
in the continuous-time model. A breakpoint is a time point in the CT model when the right-hand side
(RHS) of the ODE is not sufficiently smooth, or the output map is not continuous. The numerical ODE
solver cannot cross breakpoints in one integration step since either the smooth-RHS assumption is violated
or an event need to be produced. According to whether a breakpoint can be predicted in advance, we clas-
sify two kinds of breakpoints, predictable ones and unpredictable ones. For example, time events and
unsmoothness in input signals are predictable, while state events and unsmoothness in state variables are
unpredictable. Predictable breakpoints can be stored in a table and handled more efficiently. The numerical
integration step sizes are now controlled  based on three factors: 

•Error control. This reflects the trade-off between speed and accuracy of a simulation. In general, for a
given ODE solving method, a smaller step size means a more accurate result. But it also means more
function evaluations and long simulation time.
•Convergence. Implicit numerical methods use fixed-point iteration or Newton iteration to solve the
induced algebraic equations. Choosing smaller step size may help improve the initial guess.
•Breakpoints. Before each integration step, the breakpoint table is queried, and the intent step size
(adjusted from the first two factors) may be reduced so that it does not cross a predictable breakpoint.
Unpredictable breakpoints are handled by querying components after each integration step. An unpre-
dictable breakpoint is iteratively located within an error tolerance, before the integration continues.
These techniques allow discrete components to expose continuous interface, as shown in Figure 4, and

vice versa, as in Figure 5. The breakpoint handling mechanisms built in the continuous-time model sug-
gests that the simulation of discrete dynamics does not have to handle continuous signals.
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Figure 3. A finite state machine component.
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2.3.Executing Heterogeneous Components
The execution control of heterogeneous components is critical for a correct and efficient simulation

engine. Both CT and DE are timed models. There will be multiple time variables in different components.
In our hierarchical composition of models, we call the time at the highest level of hierarchy the “global
time,” and the time maintained within a component the “local time.” 
• DE inside CT

Since time advances monotonically in CT and events are generated chronologically, the DE compo-
nent will receive input events monotonically in time. In addition, a composition of causal DE components
is causal [11], so the time stamps of output events from a DE component are always greater than or equal to
those of the corresponding input events. Thus, from the CT system point of view, the events (breakpoints)
produced by a DE component are always predictable.
• CT inside DE

When a CT component is contained in a DE system, as shown in Figure 5, the CT component is
required to be causal, like all other components in the DE system. This suggests that the local time of the
CT component should be greater than or equal to the global time, whenever it is executed [13]. 

This ahead-of-time execution implies that the CT component should be able to remember its past states
and be ready to rollback if the input event is earlier than the local time. The state it needs to remember is
the state of the component after it has processed an input event. Consequently, the CT component should
not emit detected events to the outside DE system before the global time reaches the event time. Instead, it
should request an execution from the DE system at the event time, and wait until its safe to emit it. 
• CT-FSM-CT

A hierarchical composition of FSM and CT is shown in Figure 6. Although FSM is an untimed model,

its composition with a timed model requires it to transfer the notion of time from its external model to its
internal model. A CT component, by adopting the event generation technique, can have both continuous
and discrete signals as its outputs. The FSM may use predicates on them to build trigger conditions.
Actions associated with transitions are usually reset to the initial conditions of integrators in the destination
state.

During continuous evolution, the system is simulated as a CT system where the FSM is replaced by the
continuous component of its current state. After each time point of CT simulation, the triggers on the tran-
sitions starting from the current FSM state are evaluated. If a trigger is enabled, the FSM makes the corre-
sponding transition. The continuous dynamics of the destination state is initialized by the action on the
transition. The simulation continues with the transition time treated as a breakpoint.

Figure 5. A CT component in a DE model.
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Currently, the framework for component-based modeling of systems with continuous and discrete
dynamics has been built in the heterogeneous modeling and design environment, Ptolemy II [7]. The tech-
niques discussed in the previous sections have been implemented. Several examples have been built to
demonstrate the correct simulation results from using these techniques [27, 14]. 

3. Future Work
I intend to extend the current achievements in two directions, a denotational semantics for the mixed-

signal model and a distributable component framework for further scaling up the component model.

3.1.Denotational Semantics for the Mixed-signal Model
Compared to the relative maturity of hybrid system theory, the composition of CT and DE has not been

rigorously studied. A denotational semantics [19] defines the behavior of a model by the mathematical
relationship on the signals. The study of such semantics for mixed-signal systems may give a deep insight
on the properties like determinism and lack of Zeno phenomena (infinitely many events in a finite time
interval), as well as a theoretical guide on the implementation of simulators.

The mathematical framework I want to use is the tagged-signal model developed by Lee and Sangio-
vanni-Vincentelli [12]. The model has been shown to be effective in studying the denotational semantics of
DE models [11]. 

The first question I am trying to answer is related to determinism. Although both DE models and CT
models can individually be shown to have a unique behavior under simple conditions (using Cantor metric
and  space, respectively), the conditions for mixed-signal model may not be trivial. A reason is that the
Cantor metric is a metric on time while the  is a metric on values. I would like to come up with condi-
tions that make a composition of continuous-time components (together with event generation and wave-
form generation processes) to be causal as a discrete-event component, and conditions that make a
composition of discrete-event components (together with event generation and waveform generation pro-
cesses) to be Lipschitz as a continuous-time component. 

For the Zeno phenomena, I expect that conditions on the event generation, waveform generation, and
system dynamics may help avoid it. The study that Johansson et al. have done on Zeno hybrid automata [9]
might be helpful.

3.2.Distributable components
The component-based model has the advantage that there is no restrictions that the components be

physically related. It provides a way to protect intellectual property more effectively. In addition, complex
embedded systems usually have communication subsystems such that the components interact remotely. A
design environment that has the capability to model distributed components is highly desirable.

CORBA [22] and similar middleware techniques [17, 26] provide a promising framework to make the
distribution of components transparent to designers. To support them in a design environment, the key
questions to be answered are the granularity of distribution, the communication styles among components,
and the information to be shared. I intend to embrace the middleware concept in the component model,
explore different options of design choices, and provide a practical implementation of it. 

4. Conclusion
I expect to contribute a distributable component-based modeling technique for systems with continu-

ous and discrete dynamics, a mathematical framework for it, a correct and efficient simulation strategy, and
a practical implementation of it within a component-based multi-model design environment.
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1. Motivation
The increasing complexity of embedded system design often requires the designers to model systems

with both continuous and discrete dynamics. Examples include mixed-signal systems that have both con-
tinuous and discrete parts and digital systems that interact with a continuous environment. Although each
individual model may be relatively well-understood, the integration of heterogeneous models brings addi-
tional difficulties and complexities to the design. 

This work focuses on the ordinary differential equation (ODE) based continuous time (CT) model and
two kinds of discrete models, a timed one − the discrete event (DE) model, and an untimed one − the finite
state machine (FSM) model. Following circuit design communities, we call the composition of CT and DE
the mixed-signal model; following control and computation communities, we call the composition of CT
and FSM the hybrid system model.

Mixing heterogeneous models to design complex systems is receiving more and more attention from
both academic and industrial perspectives. SPLICE [18], a mixed-signal circuit design tool, tries to speed
up the simulation by extending the SPICE-like ODE solver to embrace an event-driven simulation engine
for digital parts. Unfortunately, it does not accurately detect events, which makes the tight feedback
between analog and digital parts hard to handle. Simulink1, originally a continuous-time control system
design tool, has been enhanced to model sample-data systems and, to some extent, discrete-event systems
[23]. The hardware description language communities, like VHDL and Verilog, extend and standardize the
capability of modeling continuous dynamics in their previous discrete-event based languages [24, 25].
Both of these approaches attempt to come up with a unified model to capture semantically different com-
ponents, and lack hierarchy for managing the complexity of a design.

One of the most noticeable efforts in mixing continuous and discrete dynamics is the study of hybrid
systems [2]. A solid theoretical framework for modeling and analyzing hybrid systems is under rapid
development [1, 4, 8, 10, 15], with applications in air traffic management, transportation systems, automo-
tive, manufacturing systems, and electromechanical systems etc. [3, 6, 20, 21]. Nevertheless, a simulation
tool with clean semantics and composability that leverages the theory of hybrid system is still under high
demand [16]. 

Component-based models view the building blocks of a system to be components. As shown in Figure
1, components are “black boxes.” The interface of a component and the communication scheme among
components are specified, while the contents of a component can be implemented with a different model.
The component-based design provides a clean way to integrate different models by hierarchically compos-
ing heterogeneous components [5]. This hierarchical composition allows one to manage the complexity of
a design by information hiding, and to enhance the possibility of design reuse.

1. A software package from Mathworks Inc.
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My Thesis
I propose a component-based framework to model systems with both continuous and discrete
dynamics. The framework cleanly integrates heterogeneous models by using hierarchical compo-
sitions to hide the implementation details of one component from other components, and keeping
the components at the same level of hierarchy interacting in the same way. The signal conver-
sions at the boundaries and the execution control among continuous and discrete components are
studied. A correct and efficient simulation engine is built. I propose to scale up the framework in
order to support modeling of distributable systems. I also expect to contribute via a mathematical
understanding of the mixed-signal model.

2. Current Progress

2.1.Component-based model for continuous and discrete dynamics.
• Continuous Time Model

We consider an initial value problem of ODE for continuous time systems, and specify it using compo-
nents, as shown in Figure 2. In this model, components communicate via piecewise continuous waveforms.
And the components are continuous maps from input waveforms to output waveforms. The simulation of
this model is to solve the ODE numerically with respect to the inputs at a discrete set of time points, and
produce outputs at those points. The component-based model imposes no difficulty on numerical ODE
solving methods. In fact, the evaluation of the f and g functions can be achieved by executing the corre-
sponding components in their I/O topological order. 

• Discrete Event Model
In the discrete event model, components communicate by a set of events that have discrete locations on

the time line. An event has a time stamp and a value. A component, when executed, can consume input
events and produce output events. The output events are required to be no earlier in time than the input
events (this property is called causality). The simulation of this model utilizes a global event queue. When
a component generates an output event, the event is placed in the queue, which sorts events by their time
stamps. At each iteration of the simulation, events with the smallest time stamp will be dequeued, and their
destination components will be executed.
• Finite State Machine Model

In the FSM model, as shown in Figure 3, there is a finite set of states (the bubbles), a finite set of
events, an initial state, and transitions from states to states (the arcs). The set of events do not necessarily
have a notion of time. A transition is associated with a trigger condition and an action. A trigger condition
could be a predicate on input events, and an action might be producing output events. The execution of the
system starts from the initial state. For each input event, if the trigger condition on a transition starting
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Figure 2. A component-based model for continuous time systems.
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from the current state is true, then the transition is taken and the action associated will be performed. The
end state of the transition becomes the new current state. 

2.2.Signal Conversions and Breakpoint Handling.
A fundamental issue for composing heterogeneous models is how to make a component implemented

in one model to expose an interface of another model. Since the two kinds of dynamics have distinct types
of signals, the conversion of signals is essential.
• Event generation

Event generation is to generate discrete events from piecewise continuous waveforms. We classify two
types of events, time events and state events. The time stamps of time events are known beforehand, while
the time stamps of state events depend on the value of the state variables in the CT system. In general, the
time stamps of state events cannot be predicted accurately in advance. Special treatment has to be done in
the process of ODE solving.
• Waveform generation

Waveform generation is to generate piecewise-continuous waveforms from discrete-event signals.
This conversion is application dependent. In general, any extrapolations of previous events are reasonable.
• Breakpoint handling in CT Simulation

 In order to handle event generation and inputs generated from discrete events, we define breakpoints
in the continuous-time model. A breakpoint is a time point in the CT model when the right-hand side
(RHS) of the ODE is not sufficiently smooth, or the output map is not continuous. The numerical ODE
solver cannot cross breakpoints in one integration step since either the smooth-RHS assumption is violated
or an event need to be produced. According to whether a breakpoint can be predicted in advance, we clas-
sify two kinds of breakpoints, predictable ones and unpredictable ones. For example, time events and
unsmoothness in input signals are predictable, while state events and unsmoothness in state variables are
unpredictable. Predictable breakpoints can be stored in a table and handled more efficiently. The numerical
integration step sizes are now controlled  based on three factors: 

•Error control. This reflects the trade-off between speed and accuracy of a simulation. In general, for a
given ODE solving method, a smaller step size means a more accurate result. But it also means more
function evaluations and long simulation time.
•Convergence. Implicit numerical methods use fixed-point iteration or Newton iteration to solve the
induced algebraic equations. Choosing smaller step size may help improve the initial guess.
•Breakpoints. Before each integration step, the breakpoint table is queried, and the intent step size
(adjusted from the first two factors) may be reduced so that it does not cross a predictable breakpoint.
Unpredictable breakpoints are handled by querying components after each integration step. An unpre-
dictable breakpoint is iteratively located within an error tolerance, before the integration continues.
These techniques allow discrete components to expose continuous interface, as shown in Figure 4, and

vice versa, as in Figure 5. The breakpoint handling mechanisms built in the continuous-time model sug-
gests that the simulation of discrete dynamics does not have to handle continuous signals.

q1 q2

Trigger1/Action1

Trigger2/Action2

Figure 3. A finite state machine component.

Input Output

FSM

Figure 4. A DE component in a CT model.
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2.3.Executing Heterogeneous Components
The execution control of heterogeneous components is critical for a correct and efficient simulation

engine. Both CT and DE are timed models. There will be multiple time variables in different components.
In our hierarchical composition of models, we call the time at the highest level of hierarchy the “global
time,” and the time maintained within a component the “local time.” 
• DE inside CT

Since time advances monotonically in CT and events are generated chronologically, the DE compo-
nent will receive input events monotonically in time. In addition, a composition of causal DE components
is causal [11], so the time stamps of output events from a DE component are always greater than or equal to
those of the corresponding input events. Thus, from the CT system point of view, the events (breakpoints)
produced by a DE component are always predictable.
• CT inside DE

When a CT component is contained in a DE system, as shown in Figure 5, the CT component is
required to be causal, like all other components in the DE system. This suggests that the local time of the
CT component should be greater than or equal to the global time, whenever it is executed [13]. 

This ahead-of-time execution implies that the CT component should be able to remember its past states
and be ready to rollback if the input event is earlier than the local time. The state it needs to remember is
the state of the component after it has processed an input event. Consequently, the CT component should
not emit detected events to the outside DE system before the global time reaches the event time. Instead, it
should request an execution from the DE system at the event time, and wait until its safe to emit it. 
• CT-FSM-CT

A hierarchical composition of FSM and CT is shown in Figure 6. Although FSM is an untimed model,

its composition with a timed model requires it to transfer the notion of time from its external model to its
internal model. A CT component, by adopting the event generation technique, can have both continuous
and discrete signals as its outputs. The FSM may use predicates on them to build trigger conditions.
Actions associated with transitions are usually reset to the initial conditions of integrators in the destination
state.

During continuous evolution, the system is simulated as a CT system where the FSM is replaced by the
continuous component of its current state. After each time point of CT simulation, the triggers on the tran-
sitions starting from the current FSM state are evaluated. If a trigger is enabled, the FSM makes the corre-
sponding transition. The continuous dynamics of the destination state is initialized by the action on the
transition. The simulation continues with the transition time treated as a breakpoint.

Figure 5. A CT component in a DE model.

g(x,u )f(x,u)
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Figure 6. A hierarchical hybrid system.
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Currently, the framework for component-based modeling of systems with continuous and discrete
dynamics has been built in the heterogeneous modeling and design environment, Ptolemy II [7]. The tech-
niques discussed in the previous sections have been implemented. Several examples have been built to
demonstrate the correct simulation results from using these techniques [27, 14]. 

3. Future Work
I intend to extend the current achievements in two directions, a denotational semantics for the mixed-

signal model and a distributable component framework for further scaling up the component model.

3.1.Denotational Semantics for the Mixed-signal Model
Compared to the relative maturity of hybrid system theory, the composition of CT and DE has not been

rigorously studied. A denotational semantics [19] defines the behavior of a model by the mathematical
relationship on the signals. The study of such semantics for mixed-signal systems may give a deep insight
on the properties like determinism and lack of Zeno phenomena (infinitely many events in a finite time
interval), as well as a theoretical guide on the implementation of simulators.

The mathematical framework I want to use is the tagged-signal model developed by Lee and Sangio-
vanni-Vincentelli [12]. The model has been shown to be effective in studying the denotational semantics of
DE models [11]. 

The first question I am trying to answer is related to determinism. Although both DE models and CT
models can individually be shown to have a unique behavior under simple conditions (using Cantor metric
and  space, respectively), the conditions for mixed-signal model may not be trivial. A reason is that the
Cantor metric is a metric on time while the  is a metric on values. I would like to come up with condi-
tions that make a composition of continuous-time components (together with event generation and wave-
form generation processes) to be causal as a discrete-event component, and conditions that make a
composition of discrete-event components (together with event generation and waveform generation pro-
cesses) to be Lipschitz as a continuous-time component. 

For the Zeno phenomena, I expect that conditions on the event generation, waveform generation, and
system dynamics may help avoid it. The study that Johansson et al. have done on Zeno hybrid automata [9]
might be helpful.

3.2.Distributable components
The component-based model has the advantage that there is no restrictions that the components be

physically related. It provides a way to protect intellectual property more effectively. In addition, complex
embedded systems usually have communication subsystems such that the components interact remotely. A
design environment that has the capability to model distributed components is highly desirable.

CORBA [22] and similar middleware techniques [17, 26] provide a promising framework to make the
distribution of components transparent to designers. To support them in a design environment, the key
questions to be answered are the granularity of distribution, the communication styles among components,
and the information to be shared. I intend to embrace the middleware concept in the component model,
explore different options of design choices, and provide a practical implementation of it. 

4. Conclusion
I expect to contribute a distributable component-based modeling technique for systems with continu-

ous and discrete dynamics, a mathematical framework for it, a correct and efficient simulation strategy, and
a practical implementation of it within a component-based multi-model design environment.
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1. Motivation
The increasing complexity of embedded system design often requires the designers to model systems

with both continuous and discrete dynamics. Examples include mixed-signal systems that have both con-
tinuous and discrete parts and digital systems that interact with a continuous environment. Although each
individual model may be relatively well-understood, the integration of heterogeneous models brings addi-
tional difficulties and complexities to the design. 

This work focuses on the ordinary differential equation (ODE) based continuous time (CT) model and
two kinds of discrete models, a timed one − the discrete event (DE) model, and an untimed one − the finite
state machine (FSM) model. Following circuit design communities, we call the composition of CT and DE
the mixed-signal model; following control and computation communities, we call the composition of CT
and FSM the hybrid system model.

Mixing heterogeneous models to design complex systems is receiving more and more attention from
both academic and industrial perspectives. SPLICE [18], a mixed-signal circuit design tool, tries to speed
up the simulation by extending the SPICE-like ODE solver to embrace an event-driven simulation engine
for digital parts. Unfortunately, it does not accurately detect events, which makes the tight feedback
between analog and digital parts hard to handle. Simulink1, originally a continuous-time control system
design tool, has been enhanced to model sample-data systems and, to some extent, discrete-event systems
[23]. The hardware description language communities, like VHDL and Verilog, extend and standardize the
capability of modeling continuous dynamics in their previous discrete-event based languages [24, 25].
Both of these approaches attempt to come up with a unified model to capture semantically different com-
ponents, and lack hierarchy for managing the complexity of a design.

One of the most noticeable efforts in mixing continuous and discrete dynamics is the study of hybrid
systems [2]. A solid theoretical framework for modeling and analyzing hybrid systems is under rapid
development [1, 4, 8, 10, 15], with applications in air traffic management, transportation systems, automo-
tive, manufacturing systems, and electromechanical systems etc. [3, 6, 20, 21]. Nevertheless, a simulation
tool with clean semantics and composability that leverages the theory of hybrid system is still under high
demand [16]. 

Component-based models view the building blocks of a system to be components. As shown in Figure
1, components are “black boxes.” The interface of a component and the communication scheme among
components are specified, while the contents of a component can be implemented with a different model.
The component-based design provides a clean way to integrate different models by hierarchically compos-
ing heterogeneous components [5]. This hierarchical composition allows one to manage the complexity of
a design by information hiding, and to enhance the possibility of design reuse.

1. A software package from Mathworks Inc.
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My Thesis
I propose a component-based framework to model systems with both continuous and discrete
dynamics. The framework cleanly integrates heterogeneous models by using hierarchical compo-
sitions to hide the implementation details of one component from other components, and keeping
the components at the same level of hierarchy interacting in the same way. The signal conver-
sions at the boundaries and the execution control among continuous and discrete components are
studied. A correct and efficient simulation engine is built. I propose to scale up the framework in
order to support modeling of distributable systems. I also expect to contribute via a mathematical
understanding of the mixed-signal model.

2. Current Progress

2.1.Component-based model for continuous and discrete dynamics.
• Continuous Time Model

We consider an initial value problem of ODE for continuous time systems, and specify it using compo-
nents, as shown in Figure 2. In this model, components communicate via piecewise continuous waveforms.
And the components are continuous maps from input waveforms to output waveforms. The simulation of
this model is to solve the ODE numerically with respect to the inputs at a discrete set of time points, and
produce outputs at those points. The component-based model imposes no difficulty on numerical ODE
solving methods. In fact, the evaluation of the f and g functions can be achieved by executing the corre-
sponding components in their I/O topological order. 

• Discrete Event Model
In the discrete event model, components communicate by a set of events that have discrete locations on

the time line. An event has a time stamp and a value. A component, when executed, can consume input
events and produce output events. The output events are required to be no earlier in time than the input
events (this property is called causality). The simulation of this model utilizes a global event queue. When
a component generates an output event, the event is placed in the queue, which sorts events by their time
stamps. At each iteration of the simulation, events with the smallest time stamp will be dequeued, and their
destination components will be executed.
• Finite State Machine Model

In the FSM model, as shown in Figure 3, there is a finite set of states (the bubbles), a finite set of
events, an initial state, and transitions from states to states (the arcs). The set of events do not necessarily
have a notion of time. A transition is associated with a trigger condition and an action. A trigger condition
could be a predicate on input events, and an action might be producing output events. The execution of the
system starts from the initial state. For each input event, if the trigger condition on a transition starting
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Figure 2. A component-based model for continuous time systems.
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from the current state is true, then the transition is taken and the action associated will be performed. The
end state of the transition becomes the new current state. 

2.2.Signal Conversions and Breakpoint Handling.
A fundamental issue for composing heterogeneous models is how to make a component implemented

in one model to expose an interface of another model. Since the two kinds of dynamics have distinct types
of signals, the conversion of signals is essential.
• Event generation

Event generation is to generate discrete events from piecewise continuous waveforms. We classify two
types of events, time events and state events. The time stamps of time events are known beforehand, while
the time stamps of state events depend on the value of the state variables in the CT system. In general, the
time stamps of state events cannot be predicted accurately in advance. Special treatment has to be done in
the process of ODE solving.
• Waveform generation

Waveform generation is to generate piecewise-continuous waveforms from discrete-event signals.
This conversion is application dependent. In general, any extrapolations of previous events are reasonable.
• Breakpoint handling in CT Simulation

 In order to handle event generation and inputs generated from discrete events, we define breakpoints
in the continuous-time model. A breakpoint is a time point in the CT model when the right-hand side
(RHS) of the ODE is not sufficiently smooth, or the output map is not continuous. The numerical ODE
solver cannot cross breakpoints in one integration step since either the smooth-RHS assumption is violated
or an event need to be produced. According to whether a breakpoint can be predicted in advance, we clas-
sify two kinds of breakpoints, predictable ones and unpredictable ones. For example, time events and
unsmoothness in input signals are predictable, while state events and unsmoothness in state variables are
unpredictable. Predictable breakpoints can be stored in a table and handled more efficiently. The numerical
integration step sizes are now controlled  based on three factors: 

•Error control. This reflects the trade-off between speed and accuracy of a simulation. In general, for a
given ODE solving method, a smaller step size means a more accurate result. But it also means more
function evaluations and long simulation time.
•Convergence. Implicit numerical methods use fixed-point iteration or Newton iteration to solve the
induced algebraic equations. Choosing smaller step size may help improve the initial guess.
•Breakpoints. Before each integration step, the breakpoint table is queried, and the intent step size
(adjusted from the first two factors) may be reduced so that it does not cross a predictable breakpoint.
Unpredictable breakpoints are handled by querying components after each integration step. An unpre-
dictable breakpoint is iteratively located within an error tolerance, before the integration continues.
These techniques allow discrete components to expose continuous interface, as shown in Figure 4, and

vice versa, as in Figure 5. The breakpoint handling mechanisms built in the continuous-time model sug-
gests that the simulation of discrete dynamics does not have to handle continuous signals.

q1 q2

Trigger1/Action1

Trigger2/Action2

Figure 3. A finite state machine component.

Input Output

FSM

Figure 4. A DE component in a CT model.
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2.3.Executing Heterogeneous Components
The execution control of heterogeneous components is critical for a correct and efficient simulation

engine. Both CT and DE are timed models. There will be multiple time variables in different components.
In our hierarchical composition of models, we call the time at the highest level of hierarchy the “global
time,” and the time maintained within a component the “local time.” 
• DE inside CT

Since time advances monotonically in CT and events are generated chronologically, the DE compo-
nent will receive input events monotonically in time. In addition, a composition of causal DE components
is causal [11], so the time stamps of output events from a DE component are always greater than or equal to
those of the corresponding input events. Thus, from the CT system point of view, the events (breakpoints)
produced by a DE component are always predictable.
• CT inside DE

When a CT component is contained in a DE system, as shown in Figure 5, the CT component is
required to be causal, like all other components in the DE system. This suggests that the local time of the
CT component should be greater than or equal to the global time, whenever it is executed [13]. 

This ahead-of-time execution implies that the CT component should be able to remember its past states
and be ready to rollback if the input event is earlier than the local time. The state it needs to remember is
the state of the component after it has processed an input event. Consequently, the CT component should
not emit detected events to the outside DE system before the global time reaches the event time. Instead, it
should request an execution from the DE system at the event time, and wait until its safe to emit it. 
• CT-FSM-CT

A hierarchical composition of FSM and CT is shown in Figure 6. Although FSM is an untimed model,

its composition with a timed model requires it to transfer the notion of time from its external model to its
internal model. A CT component, by adopting the event generation technique, can have both continuous
and discrete signals as its outputs. The FSM may use predicates on them to build trigger conditions.
Actions associated with transitions are usually reset to the initial conditions of integrators in the destination
state.

During continuous evolution, the system is simulated as a CT system where the FSM is replaced by the
continuous component of its current state. After each time point of CT simulation, the triggers on the tran-
sitions starting from the current FSM state are evaluated. If a trigger is enabled, the FSM makes the corre-
sponding transition. The continuous dynamics of the destination state is initialized by the action on the
transition. The simulation continues with the transition time treated as a breakpoint.

Figure 5. A CT component in a DE model.

g(x,u )f(x,u)
xx

.Wave.
Gen.

Event
Gen.

Figure 6. A hierarchical hybrid system.
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Currently, the framework for component-based modeling of systems with continuous and discrete
dynamics has been built in the heterogeneous modeling and design environment, Ptolemy II [7]. The tech-
niques discussed in the previous sections have been implemented. Several examples have been built to
demonstrate the correct simulation results from using these techniques [27, 14]. 

3. Future Work
I intend to extend the current achievements in two directions, a denotational semantics for the mixed-

signal model and a distributable component framework for further scaling up the component model.

3.1.Denotational Semantics for the Mixed-signal Model
Compared to the relative maturity of hybrid system theory, the composition of CT and DE has not been

rigorously studied. A denotational semantics [19] defines the behavior of a model by the mathematical
relationship on the signals. The study of such semantics for mixed-signal systems may give a deep insight
on the properties like determinism and lack of Zeno phenomena (infinitely many events in a finite time
interval), as well as a theoretical guide on the implementation of simulators.

The mathematical framework I want to use is the tagged-signal model developed by Lee and Sangio-
vanni-Vincentelli [12]. The model has been shown to be effective in studying the denotational semantics of
DE models [11]. 

The first question I am trying to answer is related to determinism. Although both DE models and CT
models can individually be shown to have a unique behavior under simple conditions (using Cantor metric
and  space, respectively), the conditions for mixed-signal model may not be trivial. A reason is that the
Cantor metric is a metric on time while the  is a metric on values. I would like to come up with condi-
tions that make a composition of continuous-time components (together with event generation and wave-
form generation processes) to be causal as a discrete-event component, and conditions that make a
composition of discrete-event components (together with event generation and waveform generation pro-
cesses) to be Lipschitz as a continuous-time component. 

For the Zeno phenomena, I expect that conditions on the event generation, waveform generation, and
system dynamics may help avoid it. The study that Johansson et al. have done on Zeno hybrid automata [9]
might be helpful.

3.2.Distributable components
The component-based model has the advantage that there is no restrictions that the components be

physically related. It provides a way to protect intellectual property more effectively. In addition, complex
embedded systems usually have communication subsystems such that the components interact remotely. A
design environment that has the capability to model distributed components is highly desirable.

CORBA [22] and similar middleware techniques [17, 26] provide a promising framework to make the
distribution of components transparent to designers. To support them in a design environment, the key
questions to be answered are the granularity of distribution, the communication styles among components,
and the information to be shared. I intend to embrace the middleware concept in the component model,
explore different options of design choices, and provide a practical implementation of it. 

4. Conclusion
I expect to contribute a distributable component-based modeling technique for systems with continu-

ous and discrete dynamics, a mathematical framework for it, a correct and efficient simulation strategy, and
a practical implementation of it within a component-based multi-model design environment.

L
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