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Abstract

The quay crane scheduling problem studied in this paper is to determine a handling sequence of holds for quay cranes
assigned to a container vessel considering interference between quay cranes. This paper provides a mixed integer program-
ming model for the considered quay crane scheduling problem that is NP-complete in nature. A genetic algorithm is pro-
posed to obtain near optimal solutions. Computational experiments are conducted to examine the proposed model and
solution algorithm. The computational results show that the proposed genetic algorithm is effective and efficient in solving
the considered quay crane scheduling problem.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays competition between port container terminals, especially between geographically close ones, is
rapidly increasing. How to improve the competitiveness of port container terminals is, therefore, an immediate
challenge, with which port operators are confronted. In terms of port competitiveness, the makespan of a con-
tainer vessel, which is the latest completion time among all handling tasks of the container vessel, is a critical
success factor (Steenken et al., 2004). In reality, quay crane scheduling significantly affects the makespan of a
container vessel since quay cranes are the interface between land side and water side in any port container
terminals. Thus, this paper aims to study quay crane scheduling problem to enhance the competitiveness of
port container terminals.

As illustrated in Fig. 1, container vessels are typically divided longitudinally into holds that open to the
deck through a hatch. Holds are about eight containers deep, and containers can also be stacked (about
six high) on deck (Daganzo, 1989). The interference between quay cranes is that quay cranes cannot cross over
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Fig. 1. The illustration of the QCSNIP.
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each other because they are on the same track. In practice, only one quay crane can work on a hold at any
time. Generally, a quay crane can move to another hold until it completes the current one. The average pro-
cessing time of a hold is about 2 h and the travel time of a quay crane between two holds is about 1 min. The
quay crane scheduling problem in port container terminals is to determine a handling sequence of holds for
quay cranes assigned to a container vessel in fulfilling pre-specified objectives and satisfying various con-
straints. For instance, there are 10 holds in a container vessel, and two quay cranes are allocated to handle
the container vessel. Table 1 illustrates a feasible quay crane schedule for this instance. It shows the handling
sequence of holds for every quay crane, the processing time of each hold and the time schedule for handling
every hold.

Daganzo (1989) studied the static and dynamic quay crane scheduling problems for multiple container ves-
sels. Daganzo (1989) assumed that container vessels were to divide into holds, and only one quay crane could
work on a hold at a time. Quay cranes could be moved freely and quickly from hold to hold, and container
vessels could not depart until all their holds had been handled. The objective was to serve all these container
vessels, while minimizing their aggregate cost of delay. Exact and approximate solution methods for quay
crane scheduling were presented in Daganzo (1989). Furthermore, Peterkofsky and Daganzo (1990) developed
a branch and bound solution method for the static quay crane scheduling problem. Nevertheless, both papers
did not consider the interference between quay cranes, which means the quay cranes could unrealistically cross
over each other.

Lim et al. (2004) augmented the static quay crane scheduling problem for multiple container vessels by tak-
ing into account non-interference constraints. They assumed that containers from a given area on a container
vessel were a job, and there was a profit value when a job was assigned to a quay crane. The objective was to
find a crane-to-job matching which maximized the total profit. Dynamic programming algorithms, a proba-
bilistic tabu search, and a squeaky wheel optimization heuristic were proposed in solving the problem.
Table 1
An illustration of a quay crane schedule

Quay Crane 1 Quay Crane 2

Operation
sequence

Hold
number

Processing time
of a hold (min)

Completion time of
the quay crane (min)

Operation
sequence

Hold
number

Processing time
of a hold (min)

Completion time of
the quay crane (min)

1 1 98 98 1 2 81 81
2 3 119 217 2 5 178 259
3 4 52 269 3 10 171 430
4 9 101 370 4 8 162 592
5 7 114 484
6 6 81 565
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However, it is difficult to define a profit value associated with a crane-to-job assignment in practice, and hence
this research cannot be applied in port container terminals easily.

Kim et al. (2004) studied the load-sequencing problem for outbound containers in port container terminals
which was to determine the pick up sequence by transfer cranes in the yard and the loading sequence of slots in
the container vessel by quay cranes simultaneously. A beam search algorithm was proposed to solve this prob-
lem. Kim and Park (2004) discussed the quay crane scheduling problem with non-interference constraints in
which only single container vessel was considered. Kim and Park (2004) defined a task as an unloading or
loading operation for a collection of adjacent slots on one single container vessel. The objective was to min-
imize the weighted sum of the makespan of the container vessel and the total completion time of all quay
cranes. Kim and Park (2004) proposed a branch and bound method and a heuristic algorithm called ‘greedy
randomized adaptive search procedure (GRASP)’ for the solution of the quay crane scheduling problem.
Nonetheless, Kim and Park (2004) did not discuss computational complexity of the studied problem to justify
why the heuristic algorithm was adopted.

This paper focuses on the Quay Crane Scheduling with Non-Interference constraints Problem (QCSNIP)
for any one single container vessel. This work was stimulated from Kim and Park (2004). Section 2 provides
a more concise mathematical model than Kim and Park (2004) for the QCSNIP. Moreover, Kim and Park
(2004) did not discuss computational complexity of the QCSNIP, but this paper discusses it and proves that
the QCSNIP is NP-complete in Section 3. Because there exists no polynomial time algorithm for the exact
solution of the QCSNIP, Section 4 proposes a genetic algorithm rather than GRASP of Kim and Park
(2004) to obtain its near optimal solutions. The results of computational experiments in Section 5 show that
the proposed genetic algorithm is effective and efficient in solving the QCSNIP.
2. Model formulation

This section proposes a mixed integer programming model for the QCSNIP. According to configuration of
container vessels, one single container vessel is divided into holds. Fig. 1 illustrates the QCSNIP and shows
that both quay cranes and holds are arranged in an increasing order from the front to the tail of the container
vessel. The following assumptions are imposed in formulating the QCSNIP:

1. Quay cranes are on the same track and thus cannot cross over each other.
2. Only one quay crane can work on a hold at a time until it completes the hold.
3. Compared with processing time of a hold by a quay crane, travel time of a quay crane between two holds is

small and hence it is ignored.

In order to formulate the QCSNIP, the following parameters and decision variables are introduced:

Parameters

K the number of quay cranes;
H the number of holds;
ph the processing time of hold h by a quay crane (1 6 h 6 H);
M a sufficiently large positive constant number;
Decision variables

Xh,k 1, if hold h is handled by quay crane k; 0, otherwise (1 6 h 6 H,1 6 k 6 K);
Yh,h0 1, if hold h finishes no later than hold h 0 starts; 0, otherwise (1 6 h,h 0 6 H);
Ch the completion time of hold h (1 6 h 6 H).

The QCSNIP can be formulated as follows:
Minimize:
max
h

Ch ð1Þ
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Subject to:
Ch � ph P 0 81 6 h 6 H ð2Þ
XK

k¼1

X h;k ¼ 1 81 6 h 6 H ð3Þ

Ch � ðCh0 � ph0 Þ þ Y h;h0M > 0 81 6 h; h0 6 H ð4Þ
Ch � ðCh0 � ph0 Þ � ð1� Y h;h0 ÞM 6 0 81 6 h; h0 6 H ð5Þ

MðY h;h0 þ Y h0 ;hÞP
XK

k¼1

kX h;k �
XK

l¼1

lX h0 ;l þ 1 81 6 h < h0 6 H ð6Þ

X h;k; Y h;h0 ¼ 0 or 1 81 6 h; h0 6 H ; 81 6 k 6 K ð7Þ
The objective function (1) minimizes the makespan of handling one single container vessel, which is the latest
completion time among all holds. Constraints (2) define the property of the decision variable Ch. Constraints
(3) ensure that every hold must be performed only by one quay crane. Constraints (4) and (5) define the prop-
erties of decision variables Y h;h0 : Constraints (4) indicate that Y h;h0 ¼ 1 if Ch 6 Ch0 � ph0 , which means Y h;h0 ¼ 1
when hold h finishes no later than hold h 0 starts; Constraints (5) indicate that Y h;h0 ¼ 0 if Ch > Ch0 � ph0 , which
means Y h;h0 ¼ 0 when hold h finishes after hold h 0 starts. Finally, the interference between quay cranes can be
avoided by imposing Constraints (6). Suppose that holds h and h 0 are performed simultaneously and h < h 0,
then this means that Y h;h0 þ Y h0 ;h ¼ 0. Note that both quay cranes and holds are arranged in an increasing or-
der from the front to the tail of the container vessel. Thus, if quay crane k handles hold h and quay crane l

handles hold h 0, then k + 1 6 l.

3. Proof of NP-completeness

This section discusses computational complexity of the QCSNIP to justify why heuristic algorithms are
adopted. As well known, if a problem is proved to be NP-complete, then there exists no polynomial time algo-
rithm for its exact solution. Hence, heuristic algorithms are needed to obtain near optimal solutions for the
problem. In this section, the proposed QCSNIP is proved to be NP-complete.

With respect to computational complexity, the decision version of a problem is as hard as the correspond-
ing optimization version; the decision version of a problem has a natural and formal counterpart, which is a
suitable object to be studied in a mathematically precise theory of computation. Consequently the theory of
NP-completeness is designed to be applied only to the decision version (Garey and Johnson, 1979). The opti-
mization version of the QCSNIP is presented in Section 2, and the decision version is defined as follows:

Parameter:
Z+ the set of positive integer.
Instance: There are H holds and K quay cranes. The processing time of hold h by a quay crane is ph 2 Z+

(1 6 h 6 H). There is a given number C 2 Z+.
Question: Is there a quay crane schedule for these K quay cranes handling these H holds such that no inter-

ference between quay cranes exists and the makespan of the quay crane schedule 6 C ?
The decision version of the QCSNIP is proved to be NP-complete as the following four steps:

Theorem. QCSNIP is NP-complete.

Proof

Step 1: Showing that the QCSNIP is in NP.
If a quay crane schedule for the QCSNIP is given, its feasibility can be checked in polynomial time.

Checking whether the quay crane schedule satisfies the non-interference constraints can be done in O(H2)
time. Checking whether the makespan of the quay crane schedule 6 C can be done in O(H) time. Therefore,
the QCSNIP is in NP.

Step 2: Selecting a known NP-complete problem.
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PARTITION is a known NP-complete problem (Garey and Johnson, 1979). The decision version of the
PARTITION is defined as follows:

Instance: There are H elements in a finite set S = {s1, s2, . . ., sH}. For each element sh 2 S, sh 2 Z+ and the
sum of all elements

P
sh2Ssh ¼ D.

Question: Can the set S be partitioned into two disjoint subsets S1 and S2 such that
P

sh2S1
sh ¼P

sh2S2
sh ¼ D=2?

A numerical example of the PARTITION is provided as follows. There is a finite set S = {95,71,
136,114,192,75,123} and the sum of all elements

P
sh2Ssh ¼ D ¼ 806. The answer to Question is Yes because

the set S can be partitioned into two disjoint subsets S1 = {95,123,71,114} and S2 = {75,136,192} such thatP
sh2S1

sh ¼
P

sh2S2
sh ¼ D=2 ¼ 403.

Step 3: Constructing a transformation from the PARTITION to the QCSNIP.
The PARTITION is transformed to the QCSNIP as follows. A QCSNIP instance corresponding to an

arbitrary PARTITION instance has K quay cranes and H + K holds; the given number C is set as D; the
following Eqs. (8)–(10) indicate the processing time of each hold which means the processing time of Hold 1
and Hold H + 2 is set as D/2, the processing time of Hold 2 to Hold H + 1 is set as s1 to sH, respectively, and
the processing time of Hold H + 3 to Hold H + K is set as D. Fig. 2 illustrates this transformation. It shows K

quay cranes, H + K holds and the processing time of each hold.
p1 ¼ pHþ2 ¼ D=2 ð8Þ
phþ1 ¼ sh 81 6 h 6 H ð9Þ
ph ¼ D 8H þ 3 6 h 6 H þ K ð10Þ
Then, it must be proved that the set S can be partitioned into two disjoint subsets S1 and S2 such thatP
sh2S1

sh ¼
P

sh2S2
sh ¼ D=2 if and only if all the H + K holds can be completed by K quay cranes in D time

without interference between quay cranes.
First, suppose that the set S can be partitioned into two disjoint subsets S1 and S2 such thatP
sh2S1

sh ¼
P

sh2S2
sh ¼ D=2. Then K quay cranes can be scheduled without interference as follows: Quay

Crane 1 handles all the Holds h + 1, where sh 2 S1 and then Hold 1; Quay Crane 2 handles Hold H + 2, and
then all the Holds h + 1, where sh 2 S2; Quay Cranes 3 to Quay Crane K handle Hold H + 3 to Hold H + K,
respectively. Obviously, there is no interference in this schedule and the latest completion time among all holds
is D. Hence, if the set S can be partitioned into two disjoint subsets S1 and S2 such thatP

sh2S1
sh ¼

P
sh2S2

sh ¼ D=2, all the H + K holds can be completed by K quay cranes in D time without
interference between quay cranes.

Conversely, suppose all the H + K holds can be completed by K quay cranes in D time without interference
between quay cranes, then all the K quay cranes are fully utilized as the sum of the processing time of all the
holds is KD. Thus, the completion time of each quay crane must be D. Furthermore, there is no interference in
the above mentioned quay crane schedule. According to it, the sum of the processing time of all the holds
except Hold 1 handled by Quay Crane 1 must be D/2 and the sum of the processing time of all the holds except
Hold H + 2 handled by Quay Crane 2 must be D/2 as well, which means that the set S can be partitioned into
two disjoint subsets S1 and S2 such that

P
sh2S1

sh ¼
P

sh2S2
sh ¼ D=2. Hence, if all the H + K holds can be

completed by K quay cranes in D time without interference between quay cranes, the set S can be partitioned
into two disjoint subsets S1 and S2 such that

P
sh2S1

sh ¼
P

sh2S2
sh ¼ D=2.

Step 4: Proving that the above mentioned transformation is a polynomial transformation.
The above mentioned transformation can be done in O(H + K) time.
Therefore, PARTITION / QCSNIP, and the theorem is proved. h
……Processing time of each hold

Hold number 1 2 3 … H H+1 H+2 H+3 H+4 … H+K

2

D 1s 2s 1Hs − Hs

2
D D DD

1 2 3 4 … KQuay crane 

Fig. 2. The illustration of the transformation from the PARTITION to the QCSNIP.
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4. A genetic algorithm

As proved in the previous section, QCSNIP is NP-complete, and thus there exists no polynomial time algo-
rithm for the exact solution of QCSNIP. This paper employs a genetic algorithm (GA) to obtain near optimal
solutions. GA is a search algorithm based on the mechanics of natural selection and natural genetics. In
Start

Generate initial population

If quay crane scheduling satisfies  
non-interference constraints

Calculate objective function value and
transform it to fitness value

Yes

If current generation is final

Let fitness of dissatisfied 
chromosome be zero

No

Selection

Crossover

Mutation

No

End

Yes

Fig. 3. The flowchart of the proposed GA.
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general, there are three common genetic operators in a GA: selection, crossover, and mutation. The procedure
of the proposed GA is illustrated in Fig. 3 and the details of the proposed GA are elaborated as follows.

4.1. Chromosome representation

Parameter:
DH the largest integer 6H/K.
In this paper, the position of each quay crane is measured in terms of the hold number. For example, Quay

Crane 1 is on Hold 1. The initial position of Quay Crane k is on Hold 1 + (k � 1)DH (1 6 k 6 K).
A chromosome of the GA represents a sequence of holds. Fig. 4 provides a sample chromosome, in which a

gene is a hold number. Based on the sequence of holds represented by the chromosome, a quay crane schedule
can be constructed using the following procedure.

Step 1: Based on the current position of each quay crane, determine which quay cranes can handle the first
unassigned hold in the chromosome without interference with the other quay cranes. If there is only
one quay crane available, this hold is assigned to this quay crane. Then, this hold is deleted from the
chromosome, and the position and the completion time of the assigned quay crane are updated. If
there are two quay cranes available, go to Step 2.

Step 2: Compare the completion time of the two available quay cranes to finish their assigned holds, and
assign this hold to the quay crane with earlier completion time. Then, this hold is deleted from
the chromosome, and the position and the completion time of the assigned quay crane are updated.
If their completion time is equal, go to Step 3.

Step 3: Compare the distance between this hold and these two available quay cranes, and assign this hold to
the quay crane with the shorter distance. Then, this hold is deleted from the chromosome, and the
position and the completion time of the assigned quay crane are updated. If their distance is equal,
go to Step 4.

Step 4: Assign this hold to the quay crane with the smaller number. Then, this hold is deleted from the chro-
mosome, and the position and the completion time of the assigned quay crane are updated.

Step 5: Steps 1–4 are repeated until all the holds in the chromosome are assigned.
7 2 3 8 6 4 1 9 5Chromosome

Gene: hold number 1-9

1 2 3 4 5 6 7 8 9Sequence

Fig. 4. An illustration of the chromosome representation.

Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 0 
Quay Crane 2 5 0 
Quay Crane 3 9 0 

Position of Quay Crane Completion Time of Quay Crane 
Quay Crane 1 1 0 
Quay Crane 2 7 114 
Quay Crane 3 9 0 

7 12 5 3 6 1 10 8 11 2 4 9Chromosome

12 5 3 6 1 10 8 11 2 4 9Chromosome

Fig. 5. An illustration of constructing a quay crane schedule from a chromosome.
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Fig. 5 shows a numerical example of the above mentioned quay crane scheduling procedure. There are three
quay cranes and 12 holds. The initial position of Quay Crane 1, Quay Crane 2 and Quay Crane 3 are on Hold
1, Hold 5, and Hold 9, respectively. The initial completion time of three quay cranes is all 0. The first unas-
signed hold in the chromosome is Hold 7, of which the processing time is 114.

Step 1: Quay Crane 2 and Quay Crane 3 can handle Hold 7 without interference with the other quay cranes.
Since there are two quay cranes available, go to Step 2.

Step 2: Since the completion time of Quay Crane 2 and Quay Crane 3 is both 0, go to Step 3.
Step 3: Since the distance between Hold 7 and Quay Crane 2, Quay Crane 3 is both 1 hold, go to Step 4.
Step 4: Assign Hold 7 to Quay Crane 2. Then, Hold 7 is deleted from the chromosome, the position of Quay

Crane 2 is on Hold 7 and the completion time of Quay Crane 2 is 114.
Step 5: Hold 12 is the first unassigned hold in the chromosome. Repeat Steps 1–4 until all the holds in the

chromosome are assigned.

4.2. Fitness evaluation and selection

Most of the quay crane schedules obtained from the above mentioned procedure do not violate the
non-interference constraints. However, every quay crane schedule must be checked whether it satisfies the
non-interference constraints as follows. According to a quay crane schedule constructed from a chromosome,
Constraints (4) and (5), Y h;h0 ; 81 6 h; h0 6 H can be obtained and then the quay crane schedule can be checked
whether it satisfies Constraints (6). If it satisfies Constraints (6), the fitness value of its corresponding chromo-
some is set to be the reciprocal of its objective function value, as shown in Eq. (11); otherwise, the fitness value
of its corresponding chromosome is zero.
Fitness ¼ 1=max
h

Ch ð11Þ
In this paper, a roulette wheel approach is adopted as the selection procedure. It belongs to the fitness-pro-
portional selection and can select a new population with respect to the probability distribution based on fitness
values (Gen and Cheng, 1996).

4.3. Crossover

Generally, the above mentioned chromosome representation will yield illegal offspring by one-point, two-
point or multipoint crossover in the sense of that some holds may be missed while some holds may be dupli-
cated in the offspring. Therefore, this paper adopts ‘order crossover’ (Gen and Cheng, 1996), in which repair-
ing procedure is embedded to resolve the illegitimacy of offspring. ‘Order crossover’ works as follows:

Step 1: Select a substring from one parent randomly.
Step 2: Produce a proto-child by copying the substring into its corresponding positions.
Step 3: Delete the holds which are already in the substring from the second parent. The resulted sequence of

holds contains the holds that the proto-child needs.
Step 4: Place the holds into the unfixed positions of the proto-child from left to right according to the order

of the sequence to produce an offspring.

The procedure is illustrated in Fig. 6. It gives an example of making two offspring from the same parents.

4.4. Mutation

Mutation forces the GA to search new areas, and helps the GA avoid premature convergence and find the
global optimal solution. Generally, in the mutation all individuals in the population are checked bit by bit and
the bit values are randomly reversed according to a pre-specified rate. However, in this paper the mutation



Selected substring 

1 2 3 4 5 6 7 8 9Parent 1 

Offspring 1 7 4 5 1 2 89 63

Parent 2 5 9 1 6 2 87 34

1 2 3 4 5 6 7 8 9Parent 1 

Offspring 2 2 9 1 6 7 85 34

Selected substring 

Parent 2 5 9 1 6 2 87 34

Fig. 6. An illustration of the order crossover.

7 2 1 8 6 4 3 9 5

Swap the relative holds 

Select two positions at random 

87 2 6 4 1 9 53

Fig. 7. An illustration of the mutation.
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selects chromosomes randomly in terms of the probability of mutation and chooses two positions of the
selected chromosome at random then swaps the holds on these positions as illustrated in Fig. 7.

5. Computational experiments

A series of computational experiments are conducted to examine the performance of the proposed model
and GA. The GA is coded in C++ and executed in a Pentium IV 1.7 GHz PC with 256MB RAM. As a com-
parison, CPLEX (a commercial software for exactly solving integer programming) is employed to exactly
solve random instances with small sizes and executed in the same PC.

5.1. Random instances with small sizes

Six random instances with small sizes are created, and the processing time of a hold is randomly generated
from a uniform distribution of U(30,180). Based on the preliminary tests, the population size, the probability
of crossover, the probability of mutation, and the limit of generations of the GA are set as 150, 0.25, 0.1, and
100, respectively, in these computational experiments. As shown in Table 2, the computational time of
CPLEX grows exponentially as the instance size increases since the QCSNIP is NP-complete. Moreover, it
is obvious that the proposed GA can obtain the optimal solution in short time (for example, the computa-
tional time of these six instances is all around 5 s) when the instance size is small.



Table 2
Results of random instances with small sizes

Experiment No. Size (holds · cranes) CPLEX GA

Value CPU (s) Value CPU (s)

1 6 · 2 341 10.87 341 5.41
2 6 · 3 282 128.20 282 5.28
3 7 · 2 436 437.39 436 5.33
4 7 · 3 299 8014.58 299 5.53
5 8 · 2 448 11889.95 448 5.79
6 8 · 3 330 344951.97 330 5.48
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5.2. Random instances with large sizes

There are forty random instances with large sizes generated. The processing time of a hold is randomly gen-
erated from a uniform distribution of U(30,180). According to the preliminary tests, the population size, the
probability of crossover, the probability of mutation, and the limit of generations of the GA are set as 300,
0.25, 0.2, and 1000, respectively, in these computational experiments.

In order to evaluate the performance of the proposed GA in solving the instance with large size, the lower
bound corresponding to the instance can be calculated firstly by relaxing the non-interference constrains. The
mathematical model of the relaxed problem is formulated as follows:

Decision variable:
ck the completion time of quay crane k (1 6 k 6 K).
Minimize:
max
k

ck ð12Þ
Subject to:
XK

k¼1

X h;k ¼ 1 81 6 h 6 H ð13Þ

ck P
XH

h¼1

X h;kph 81 6 k 6 K ð14Þ
The objective function (12) minimizes the makespan of handling one single container vessel without
considering interference between quay cranes. Constraints (13) ensure that every hold must be performed
only by one quay crane. Constraints (14) define the property of the decision variable ck. Then, the mathe-
matical model of the relaxed problem can be exactly solved by CPLEX. The objective function value of
the optimal solution to the relaxed problem obtained from CPLEX is the lower bound to the original
problem.

As observed in Table 3, the gaps between solutions obtained from the proposed GA and lower bounds
are all small (for example, the maximum gap among the forty instances is merely 2.66%, the minimum
gap is 0, and the average gap is 0.41%), and all the computational time of these forty instances is
short (for example, the computational time of these forty instances is all around 120 s). Based on these
40 computational experiments, it is clear that near optimal solutions obtained from the proposed
GA are of high quality. The performance of the proposed GA is thus satisfactory in solving large size
instances.

The obtained lower bound may come from an infeasible solution to the original problem, because it is the
objective function value of the optimal solution to the relaxed problem. In Table 3, the gaps of twelve
instances are zero, which means the lower bound is, by chance, equal to the objective function value of the
optimal solution to the original problem in these twelve instances. Therefore, the proposed GA achieves
the optimal solution to the original problem for these 12 instances.



Table 3
Results of random instances with large sizes

Experiment No. Size (holds · cranes) Lower bound GA Gapa (%)

Value CPU (s)

1 16 · 3 650 653 105.91 0.46
2 16 · 4 488 501 110.29 2.66
3 17 · 3 617 621 122.79 0.65
4 17 · 4 463 469 106.60 1.30
5 18 · 3 599 602 109.72 0.50
6 18 · 4 450 454 107.63 0.89
7 19 · 3 740 741 108.35 0.14
8 19 · 4 555 559 109.79 0.72
9 20 · 3 672 674 109.98 0.30

10 20 · 4 504 511 111.73 1.39
11 21 · 3 793 793 107.03 0
12 21 · 4 595 597 107.83 0.34
13 22 · 3 796 796 108.33 0
14 22 · 4 597 599 109.70 0.34
15 23 · 3 794 794 112.56 0
16 23 · 4 595 603 111.68 1.34
17 24 · 3 786 786 117.46 0
18 24 · 4 590 591 111.31 0.17
19 25 · 3 942 943 109.91 0.11
20 25 · 4 707 712 112.45 0.71
21 26 · 3 819 820 111.03 0.12
22 26 · 4 615 617 115.07 0.33
23 27 · 3 985 986 115.78 0.10
24 27 · 4 739 742 123.96 0.41
25 28 · 3 908 908 125.01 0
26 28 · 4 681 683 125.15 0.29
27 29 · 3 1065 1065 122.36 0
28 29 · 4 799 802 129.11 0.38
29 30 · 3 996 996 117.48 0
30 30 · 4 747 749 118.79 0.27
31 31 · 3 1141 1141 119.19 0
32 31 · 4 856 861 120.97 0.58
33 32 · 3 1041 1041 116.93 0
34 32 · 4 781 783 117.28 0.26
35 33 · 3 1213 1213 122.07 0
36 33 · 4 910 917 122.93 0.77
37 34 · 3 1009 1009 126.84 0
38 34 · 4 757 761 126.72 0.53
39 35 · 3 1288 1288 122.49 0
40 35 · 4 966 968 122.35 0.21

a Gap = (solution obtained from the proposed GA—lower bound) · 100/lower bound.
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The lower bound is the objective function value of the optimal solution to the relaxed problem, which does
not consider interference between quay cranes. The proposed GA obtains the near optimal solution to the ori-
ginal problem. As shown in Table 3, the larger gaps are observed for smaller container vessels with fewer holds
handled by more quay cranes. The reason for it can be that interference between quay cranes more signifi-
cantly affects scheduling more quay cranes for smaller container vessels with fewer holds.

Furthermore, in practical quay crane scheduling, the number of quay cranes ranges from 2 to 4, and the
number of holds ranges from 10 to 25. The proposed GA can be considered as an appropriate approach to
scheduling quay cranes in port container terminals.

According to the computational experiments with small and large sizes, the proposed GA is concluded to be
effective and efficient in solving the proposed QCSNIP and can be capable in solving practical quay crane
scheduling problem for port container terminals.
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6. Conclusions

The contributions of this paper to the literature are that it has provided a mixed integer programming
model for the proposed QCSNIP, proved that the QCSNIP is NP-complete and proposed a genetic algorithm
to obtain near optimal solutions for the QCSNIP. In addition, computational experiments have been per-
formed to examine the proposed model and GA. The results showed that the proposed GA has been effective
and efficient in solving the QCSNIP.

In this paper, factors such as the travel time of a quay crane between two holds and the handling priority of
every hold were not taken into account. The incorporation of these factors into the QCSNIP can be a topic for
future research.
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