
An Overview of Human-Computer CollaborationLoren G. TerveeenAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974terveen@research.att.comJuly 3, 1994AbstractThis paper introduces the special issue of Knowledge-Based Systems on Human-Computer Collaboration (HCC). It derives a set of fundamental issues froma de�nition of collaboration, introduces two major approaches to HCC, andsurveys each approach, showing how it formulates and addresses the issues. Itconcludes by proposing some themes that should characterize a uni�ed approachto human-computer collaboration.1 IntroductionCollaboration is a process in which two or more agents work together to achieveshared goals. Thirty researchers came together in Raleigh, North Carolina inOctober of 1993 for a AAAI Fall Symposium dedicated to this topic. The goalof the symposium was to achieve a better understanding of Human-ComputerCollaboration (HCC), collaboration involving at least one human and one com-putational agent. In particular, the symposium sought to explore the fundamen-tal nature of collaborative problem solving, understand the constraints broughtto bear by the di�ering characteristics of human and computational agents, ex-amine various approaches to modeling collaboration and designing collaborativesystems, and draw lessons from implemented systems.This special issue ofKnowledge-Based Systems contains revised and extendedversions of selected papers from the symposium. The last two issues of KBShave included Letters based on symposium papers. This overview paper surveysthe �eld of HCC and discusses the papers in the special issue and the recentLetters. Let us begin by revisiting our de�nition of collaboration { collaborationis a process in which two or more agents work together to achieve shared goals{ and considering a number of fundamental issues that arise directly from thede�nition. 1



1. Agreeing on the shared goal(s) to be achieved. Through direct discussionabout goals or inference from statements and actions, agents must deter-mine the shared goals they are trying to achieve. It is important to notethat agents usually do not achieve a complete and unambiguous de�nitionof their goals before beginning problem solving. Rather, problem solvingoften leads agents to further specify and even reformulate their goals.2. Planning, allocation of responsibility, and coordination. Agents must de-cide how to achieve their goals, determine what actions will be done byeach agent, and how to coordinate the actions of individual agents andintegrate their results.3. Shared context. Agents must be able to track progress toward their goals.They must keep track of what has been achieved and what remains to bedone. They must evaluate the e�ects of actions and determine whetheran acceptable solution has been achieved.4. Communication. Any collaboration requires communication, for example,to de�ne goals, negotiate over how to proceed and who will do what, andevaluate progress and results. Observation of other agents also plays arole.5. Adaptation and learning. Collaboration has a history, both short term{ within a single session { and long term { across many sessions. Truecollaboration over time seems to require partners to adapt themselves toeach other. Learning is one way to adapt. In a collaborative interaction,one can learn from one's partner both directly, e.g., by being told or showna new or better way of doing things, and indirectly, through the processof articulating, justifying, and explaining one's actions and attitudes to apartner.The study of Human-Computer Collaboration is highly interdisciplinary.Its two basic parent disciplines are Arti�cial Intelligence (AI) and Human-Computer Interaction (HCI). From AI, it draws knowledge representation andreasoning techniques and a commitment to formal computational modeling.From HCI, it draws interaction and information presentation techniques andan awareness of the asymmetry in the abilities of people and computers. Other�elds also have in
uenced HCC research, including philosophical studies of thenature of intention, goals, and beliefs [1, 2, 3, 4], and social science investi-gations of work practices, design, and the role of artifacts in human activity[5, 6, 7, 8, 9, 10, 11].Historically, there have been two major approaches to Human-ComputerCollaboration, one more closely allied to AI, the other to HCI. The two ap-proaches are not completely distinct, and, as we shall see, there are interestingconvergences between them. However, their historical roots and emphases are2



su�ciently distinct that it will be useful to organize our survey of HCC aroundthe two approaches.The �rst approach assumes that the way to get computers to collaboratewith humans is to endow them with human-like abilities, to enable them toact like humans. It thus looks �rst to develop formal models of human-humancollaboration, usually focusing on collaboration in language, then to apply themodels to human-computer collaboration. Let's refer to this as the HumanEmulation approach for short. The second approach assumes that the way toget computers to collaborate with humans is to exploit their unique abilities, tocomplement humans. It begins from the premise that computers and humanshave fundamentally asymmetric abilities; therefore, it focuses on developingdivisions of responsibility that assign each agent appropriate and distinct rolesand on utilizing interaction techniques to facilitate e�ective human-computercommunication. Let's refer to this as the Human Complementary approach forshort. Table 1 goes about hereTable 1 summarizes the set of issues derived from our de�nition of collabora-tion and lists some of the main topics and techniques from the two approachesthat address the issues. Most of the paper is devoted to presenting an overviewof each of the two approaches. The main focus is to show how each approachformulates the fundamental issues in collaboration and to identify the main tech-niques used to attack the issues. Along the way, we discuss the papers in thisissue and mention the recent Letters, thus situating them in the larger contextof human-computer collaboration research.Considering each major approach separately tends to emphasize their dif-ferences. However, we also shall see a number of signi�cant actual or potentialconvergences in how problems are formulated and what techniques are used toaddress them. Therefore, the paper concludes by suggesting the shape of auni�ed approach to human-computer collaboration that incorporates insightsshared by both approaches. To give a brief preview, I argue that the followingconcerns should characterize a uni�ed approach:� rei�cation { making knowledge, problem solving, and dialogue entitiesvisible in the interface, shared and manipulable by user and system,� balancing representation & reasoning and interaction { striking an e�ectivebalance between system reasoning and user-system interaction,� natural communication { understanding the underlying aspects of hu-man communication that make it successful and developing analogues3



for human-computer communication that exploit the unique propertiesof computational media,� collaborative adaptation { making the process of adapting system behaviorto an individual user a collaborative activity, with both user and systemplaying appropriate roles.2 The Human Emulation ApproachThis approach grew out of attempts to understand and model human commu-nication. It focuses on intentions, beliefs, knowledge, and other attributes ofagents' mental states. Humans are viewed as rational agents who form and ex-ecute plans for achieving their goals and infer other people's plans. Achievinggoals might require communication, e.g., when an agent does not know how toachieve a subgoal, does not know a fact necessary to carry out an action, or hasa goal concerning the mental state of another agent. Understanding requires in-ferring the goals and plans of other agents, and collaborative behavior consists ofhelping other agents to achieve their goals. The technical focus of this work hasbeen on designing formalisms for representing beliefs, goals, plans, and actions,using these formalisms to develop models of collaboration, and developing algo-rithms for communication planning and plan recognition. These representationand reasoning problems are among the hardest in AI and cognitive science.2.1 From Plan Recognition to Collaborative PlanningIn the late 1970s, James Allen, Philip Cohen, and C. Raymond Perrault werepioneers in developing models of language based on AI planning theory [12, 13,14, 15]. They drew on work in the philosophy of language [1, 2, 3, 4] that con-ceptualized language as goal-directed action and examined the intentions andbeliefs necessary for successful communication. Speech acts, such as informing,requesting, asserting, and promising, are produced through a planning process.Each speech act is formalized in terms of its preconditions (conditions that mustbe true for it to be applied) and e�ects (changes it makes to the world beingmodeled). Acts are chosen for their e�ect on the hearer's mental state (or,more subtly, on some type of structure representing the shared discourse con-text). Understanding is an inference process in which an agent attempts to inferplans and intentions of other agents from observations of their actions, includingspeech acts. People tend to be helpful; in particular, when they recognize ob-stacles in another agent's plans, they will take action (e.g., provide information)to help overcome the obstacles.A simple exchange from Allen[12] illustrates these points.patron: When does the Montreal train leave?clerk: 3:15 at gate 7 4



The patron wants to get on the Montreal train and constructs a plan to achievethis goal. However, he does not know the departure time. One way of �ndingout a piece of information is to have someone else inform you about it. Andrequesting someone to inform you often leads to them informing you. Using aformalization of these relationships, a planning process can lead the patron toask the clerk when the Montreal train leaves. To respond to the request, the clerkessentially goes through the patron's planning process in reverse, attemptingto reconstruct the plan that could have led him to make the request. Theclerk �nds that boarding the Montreal train is a plausible plan. In addition tothe patron's speci�c request for the time of the train, the clerk �nds another(potential) obstacle to carrying out the plan, namely that the patron may notknow the departure gate. Therefore, the clerk plans to inform the patron of thegate. Thus, the clerk's answer both directly responds to the patron's question(\3:15") and includes additional information to overcome an inferred obstacle(\at gate 7").It is important to note several assumptions of this work. First, one of theoriginalmotivationswas to develop better (more human-like) question answeringsystems. This led to a focus on single exchanges, where one agent (the planningagent) asked a question, and the other agent (the inferring agent) provided ahelpful answer.Second, the planning agent and the inferring agent were viewed asymmetri-cally. The planning agent \owned" the plan (and the goal it was directed at)and was trying to execute it, while the inferring agent's job was to guess the planand give some sort of help in executing it. In the context of a human-computerinteraction, researchers naturally cast the human user as the planning agent andthe computer system as the inferring agent. Is is important to realize, however,that this notion of asymmetry is not the same as the Human Complementaryapproach's assumption that computers and people have asymmetric abilities. Infact, the Human Emulation approach assumes a fundamental similarity betweenthe agents it models, namely, that they are rational agents who plan to achievetheir goals and infer other agents' plans.Third, both the planning agent and inferring agent are assumed to haveaccess to the same complete and correct set of domain plans.Partly in response to problems with these assumptions of early plan recog-nition work, Barbara Grosz, Candace Sidner, and Karen Lochbaum [16, 17, 18]have been developing a model of collaborative planning. Their work begins fromthe premise that agents collaborate to achieve a goal. That is, they explicitlyreject the asymmetry between a planning and an inferring agent. Further, theirmodel provides ways to represent and distinguish between agents' beliefs. Thisis important since agents have di�erent beliefs about ways to achieve a goal andthe actions necessary to do so, and each agent's beliefs, including beliefs aboutthe other agent, may be incorrect or incomplete.Their model takes \having a plan" to be central; this consists of \being ina certain mental state, namely, holding certain beliefs and intentions regarding5



acts and their executability" [18]. A fundamental di�erence of this work fromearlier plan recognition work is that it allows for collaboration in the planningprocess itself. This means that there is no a priori plan (belonging to one agent)to be recognized (by the other agent). Rather, they seek to model how agents'beliefs about actions and intentions are augmented through communication.This also means that their model cannot focus on single exchanges; rather,it describes how extended discourse gradually leads to the mental state thatconstitutes having a SharedPlan.The central technical accomplishments of this work have been to providea formal de�nition of a SharedPlan and to develop algorithms for augmentingbeliefs through communication, leading to the construction of a SharedPlan.Following Pollack [19], the SharedPlan model also distinguishes two notions ofa plan that often had been con
ated: a course-of-action to be carried out (oftenreferred to as a \domain plan") and a set of beliefs and intentions. SharedPlanscover the latter, and the former are referred to as \recipes".A KBS Letter by Sidner analyzes a natural occurring dialogue usingthe SharedPlan model and an arti�cial language that represents theimpact of utterances on the ongoing dialogue. A KBS Letter byRich describes an experiment in applying the SharedPlan model tothe design of a direct manipulation system, yielding bene�ts such astask suspension and resumption, mixed initiative, and clari�cationsub-dialogues.McRoy (this issue) describes a model of collaborative discourse thattreats misunderstanding and repair as intrinsic parts of communi-cation processing. When a misunderstanding is detected, the inter-pretation of the conversation must be revised; therefore, discourseprocessing must be nonmonotonic. In McRoy's model, interpreta-tion is a process of abductive reasoning. Given a set of observationsand a background theory, abduction generates a set of facts that areconsistent with the theory and imply the set of observations. Forthe interpretation of an utterance, the hearer's current beliefs andassumptions are the background theory, and the identi�cation of ei-ther the discourse role of the utterance or a misunderstanding thatcould have led to it being produced is the result. Thus, one impor-tant contribution of this work is the use of a single type of reasoningto account for both trouble free interpretation and the detectionand repair of misunderstandings. Constraining inference is a majorproblem with models of language that require inferring beliefs andgoals. The problem gets worse when prior interpretations may haveto be revised. McRoy's method of addressing this problem leads toher second major contribution: integrating conventions and expecta-tions derived from sociological analyses of language with the beliefs6



and goals of AI processing models. Expectations constrain the set ofpossible interpretations the model must consider, and conventionalrepair patterns are implemented as interpretation rules.2.2 DiscourseA second major line of research has addressed phenomena that arise in extendeddiscourse. Central issues include what constitutes coherent discourse, how ini-tiative is managed, the role of context, and the management of trouble.Studies of coherence have attempted to characterize discourse in terms ofstructures and various types of relations that hold between structures [20, 21, 22]Based on empirical analysis of texts and dialogues, researchers identi�ed rela-tions such as elaboration, justi�cation, and exempli�cation. Other work analyzedthe issue of focus of attention { i.e., what entities were being discussed at anygiven point { and how focus shifted throughout the course of a task-oriented dia-logue [23]. Grosz & Sidner [24] presented an in
uential model that uni�ed workon focus of attention, discourse or linguistic structure, and discourse intentions.Litman [25, 26] extended plan recognition models to handle dialogue and alsointegrated the use of linguistic information. Work on what makes a discoursecoherent is important in designing e�ective human-computer interactions.Until the mid 1980s, the primary emphasis of AI work on language was onlanguage interpretation. However, since then the issue of language generationhas received signi�cant attention. The basic model again is classical AI planning;McKeown's TEXT system[27] is a good early example. A system tries to achievecommunicative goals, such as to de�ne or describe an object or to persuadesomeone to carry out an action. These goals are achieved through the useof plans or strategies. Strategies bundle a set of communicative acts, oftenrelated to each other by rhetorical relations (the type of relations identi�ed bystudies of coherence). A planning algorithm controls how strategies are selected,instantiated, and combined.A major motivation for work in this area has been to improve the expla-nations generated by expert advisory systems. Researchers have explored waysto use modern direct manipulation interface techniques to move from one-wayexplanation to mixed initiative interaction. This work also has sought ways toexploit the unique capabilities of direct manipulation interfaces to give usersthe bene�ts of human-human interaction { particularly its contextual, mixed-initiative nature { without solving the extremely di�cult representation andreasoning problems posed by human language use. This move has brought dis-course planning work square into the arena of human-computer collaboration.Johanna Moore's research [28, 29, 30, 31] explores ways to use discourse con-text and the resources of direct manipulation interface to improve explanation.Her work has included algorithms for allowing a system to refer back to the dis-course context in constructing its explanations. She also has looked at interfacetechniques for reifying the discourse context, making it a visible, manipulable7



text object. This means that when users do not understand a system explana-tion, it is easy for them to follow up using menus that o�er relevant followups forparticular clauses. It also facilitates users referring back to previous discoursein constructing new questions. The fundamental prerequisite for this is that thesystem must understand its own explanations. This is done by recording theintentional structure produced by the discourse planner in the system's inter-nal discourse context. This structure records how each clause contributes toachieving communicative goals and how the clauses relate to each other. Pos-sible followup questions for particular intentions, common ways to form newquestions based on previous explanations, and heuristics for selecting relevantfollowup optionsall help users in asking questions that use previous context.Enabling mixed initiative dialogues, in which both user and system can in-
uence the direction of the interaction, is another fundamental research issue.Alison Cawsey [32] has worked to make the explanation process interactive byinterleaving explanation planning with execution, i.e., the production of textualoutput. To do this, she designed an architecture in which communicative goalsare placed in an agenda in a priority order. Goals on the agenda are expandedto produce system output. However, the user can interrupt at any point to ask aclari�cation question. This can lead to new goals being added to the agenda andthus to clari�cation sub-dialogues. User interruptions also can lead to revisedassumptions about user knowledge, which will in
uence how goals remainingon the agenda are realized. When a sub-dialogue is completed, the system canreturn to carrying out any original goals still on the agenda.Another important line of work extends text planning to multimedia plan-ning. In addition to planning the content of the communication, the systemmust select media for realizing each piece of information and must determinehow to coordinate the presentation of information in di�erent media. Researchin this area has raised interesting representation and architecture issues. InFeiner & McKeown's COMET system [33], a content planner produces a repre-sentation of the information to be communicated in a media independent logicalform (LF). A media coordinator annotates the LF to specify which informationshould be in text, which in graphics, and how text and graphics should be co-ordinated. Text and graphics generators can communicate with each other byfurther annotating the LF. Maybury [34] presents a framework for representingthree types of communicative acts in a media independent manner, then usinga planner to produce coordinated text and map displays. Hovy & Arens [35]have argued that traditional top-down hierarchical planners are inadequate formultimedia presentations, and that several interacting reactive planners (similarto Pengi [36]) are required.Finally, innovative work has been done in integrating natural language anddirect manipulation for user input[37, 38, 39, 40, 41]. Each of these modalitieshas its own strengths and weaknesses. Attempts to integrate the modalities arebased on combining them synergistically to exploit the advantages and counterthe disadvantages of each. Direct manipulation and form-based input structure8



the interaction, give users direct access to objects, make options apparent, andprovide means of easy feedback. Language is appropriate for constructing de-scriptions of objects that are not visible, do not yet exist, or are hard to indicateby pointing. Contextual referring techniques lead to more e�cient communica-tion. This work also has investigated how di�cult representation and reasoningissues, e.g., involving the interpretation of anaphora and the use of context,can be avoided through the judicious use of direct manipulation and graphicalinterface techniques.Like McRoy, Brennan & Hulteen (this issue) are concerned withproblems in communication. Where McRoy focuses on how misun-derstandings can be repaired, Brennan & Hulteen deal with a pre-requisite to repair { how a system can generate feedback that can beused to recognize that repair is necessary. Their model was devel-oped in the context of a system that responds to spoken commandsfrom a user to perform tasks like placing a telephone call. It is basedon the process of grounding [42, 43, 44], the continuous seeking andproviding of evidence about what has been said and understood thatcharacterizes human conversation. The model speci�es a sequenceof states that a system goes through in interpreting and respondingto a user command. If the system fails to reach the �nal state (ofsuccessfully carrying out the user's command), it generates negativefeedback based on the last state it did reach, thus initiating repair.If the system generates positive feedback (i.e., it thinks it under-stood) that indicates to the user that it actually misunderstood, theuser can initiate repair. Generating appropriate positive feedback isan important issue { it would be tedious for the user if the systemalways gave feedback for each processing state it passed through suc-cessfully. Therefore, the system uses a grounding criterion to controlwhen and how much feedback it gives. The grounding criterion isdynamically updated based on the dialogue history, task model, andphysical environment. The model was tested in a Wizard of Ozstudy and user studies with a prototype Lisp implementation, andparts of the model were implemented in an Apple speech interface.Stein & Maier (this issue) present a framework for describing, orga-nizing, and producing multimedia discourse. They apply ideas fromthe study of human communication, most notably speech act theoryand Mann & Thompson's [22] Rhetorical Structure Theory to user-system multimedia communication. All user and system actionsare interpreted as communicative acts, categorized based on theirpurpose. These atomic, domain-independent acts can be arrangedinto \dialogue scripts" that capture coherent, empirically attestedinteraction patterns for a particular kind of task. Dialogue scripts9



are used to organize the interaction. For example, after respondingto a user request, the system generates icons and buttons for eachof the possible next actions de�ned by the script. Other optionsgenerally available to the user, such as \help", \history", or \infor-mation on next step" are treated as initiations of a sub-dialogue ormeta-dialogue. The attraction of Stein & Maier's approach is thatit o�ers a theoretically motivated, modality independent frameworkfor organizing human-computer interaction.Walker (this issue) describes a method for testing theories of human-computer collaboration and presents the results of tests she has per-formed. She begins by analyzing a corpus of human dialogues toidentify collaborative strategies. One interesting phenomenon is theabundance of utterances in which agents communicate facts thatare mutually believed or that follow from mutual beliefs. To under-stand why redundant information might be communicated (whichincurs extra communicative e�ort), Walker turns to cognitive theo-ries, which suggest, for example, that this is an e�cient way to makeinformation accessible in working memory. However, testing suchhypotheses in human-human collaboration is extremely di�cult orimpossible. Thus, Walker developed Design World, a computationalsimulation environment in which two computational agents carryout a dialogue about a simple design task. Agents' performance iscontrolled by a set of cognitive parameters that measure the costof retrieving information from memory, making an inference, andcommunicating a fact. Performance is measured by the quality ofthe design the agents create. Di�erent communicative strategies arede�ned and tested as cognitive and task parameters are varied. Theresults shed light on how the cognitive properties of agents a�ectcollaborative behavior. This work o�ers a rigorous methodology fordeveloping computational models from analysis of human data andtesting the models in a computational simulation environment.A KBS Letter by Haller discusses the use of di�erent collaborationmodes { assignments of roles and responsibilities { in a plan-basedexplanation system. A KBS Letter by Smith presents a theory ofdialogue based on problem-solving, identi�es several levels of sharedinitiative, and describes an empirical study that evaluates the resultsof using di�erent levels. A KBS Letter by Guinn, building on thesame dialogue theory, presents an algorithm for controlling initiativethat lets an agent decide between its preferred problem solving stepand that recommend by its partner.10



2.3 User Modeling and Adaptive SystemsA major premise of AI language work has been that human participants in aninteraction model their partners and tailor their contributions based on thesemodels. For example, in an instructional dialogue, an expert might chooseshorter or longer object descriptions and select or omit certain informationbased on assumptions about the learner's knowledge. Research on user model-ing originated in the natural language community but has expanded to includethe general problem of endowing interactive computer systems with the abil-ity to model individual users and adapt their behavior based on these models[45, 46, 47, 48, 49].Three fundamental issues in an adaptive system (derived from [49]) are:� Use { How does the system use information about users? That is, whatuseful adaptations in its behavior can it make based on a model of a user?� Representation and Reasoning { What information about a user is re-quired? How should that information be represented? What sorts ofreasoning facilities are appropriate for user information?� Acquisition { How can the necessary information about a user be obtained?1. Use.The classic use of and original motivation for user model information was innatural language dialogue. Researchers showed how a system could tailor de-scriptions of objects [50], volunteer additional information [51], and correct usermisconceptions [51, 52, 53], among other bene�ts. Recently, researchers alsohave explored ways that user models can be used in direct manipulation in-terfaces. For example, Goodman and Litman [54], focusing on plan-based usermodels, list uses that include (1) constraining user choices, e.g., by dimming outirrelevant menu items, (2) automatic task completion, e.g., to �ll in plan stepsknown to follow from the plan attributed to the user, and (3) error prevention,e.g., to prevent users from taking actions that are not on the path to their goal.Other researchers have used user models to aid in hypertext navigation [55],adapt hypertext to a user's level of expertise [56], and �lter email to peoplelikely to be interested in it [57].For most of the history of user modeling research, bene�ts of adapting systembehavior based on a user model were claimed rather than demonstrated empir-ically. However, Kobsa [47] cites several recent empirical evaluations, includingresults that show that adapting hypertext can improve user comprehension andsearch speed [56] and that navigational assistance for hypertext also can improvesearch speed [55].2. Representation and Reasoning.Kobsa [47] identi�es three major types of knowledge about users that could11



be useful to a system, (1) stereotypes { subgroups of a user population likelyto possess \homogeneous application-relevant characteristics", (2) users' plans,goals, and other intentional attributes, and (3) users' preferences, e.g., concern-ing types of email messages they are likely to be interested in.The stereotype approach [49, 58, 59, 60] is popular and fairly easy to im-plement. A designer must de�ne appropriate subgroups of the user population(the stereotypes), identify user behaviors that enable a system to categorizeusers into a subgroup, and represent the set of features that characterizes eachstereotype and arrange the stereotypes into a hierarchy. Plan-based user mod-els have the advantages and drawbacks of plan recognition, as discussed above.Work on modeling user preferences has a somewhat di�erent 
avor, for example,in exploring connectionist, learning, or statistical techniques.A wide variety of representational formalisms have been used, includingframes, attribute-value pairs, Prolog, and �rst order logic. Information about auser rarely can be guaranteed to be correct. Since one assumption about a useroften leads a system to make other inferences, when an assumption is revised,the validity of other conclusions the system has drawn must be examined. Thismakes truth maintenance reasoning important.3. Acquisition.Information about users may be acquired explicitly { by engaging a user in aninteraction expressly designed to acquire information { or implicitly { inferringinformation based on user actions [49]. Both methods have drawbacks. If usersmust answer system questions or �ll out a form, they may �nd this obtrusiveand may have a di�cult time characterizing themselves accurately. On theother hand, implicit acquisition can be a di�cult computational task, dependingon the type of user model being constructed. Plan recognition, as previouslymentioned, is a very di�cult computational problem. Among other things, it isdi�cult to know when a user is starting a new plan (as opposed to continuing thecurrent one), users may suspend and resume plans, actions may be part of morethan one plan, and there may be multiple plans for a single goal [47]. Stereotypescan be easier to recognize { each stereotype generally has a triggering conditionthat, when satis�ed, leads the system to categorize the user as a member of thatstereotype. And some representations of user preferences are fairly simple, andthus can be computed easily. For example, simple statistics on what messages auser reads in Net News may allow a system to �lter the messages the user seesin the future [61].3 The Human Complementary ApproachThe advent of direct manipulation interfaces, the growing usage and complexityof personal computer application software, and the coalescence of the Human-Computer Interaction research community in the early 1980s led to another12



perspective on human-computer collaboration. The Human Complementary ap-proach seeks to improve human-computer interaction by making the computera more intelligent partner. This is a very pragmatic goal, in contrast with themore philosophical goals that motivate the Human Emulation approach. How-ever, achieving this pragmatic goal requires fundamental research into people'scognitive and perceptual abilities, how people work as individuals and in groups,and computational representation, reasoning, interaction, and information pre-sentation techniques. This research assumes that humans and computers havefundamentally asymmetric abilities. To create systems that are intelligent part-ners, researchers invent interaction paradigms that divide responsibility betweenhuman users and computer systems in ways that exploit the strengths and over-come the weaknesses of both partners. Researchers also explore ways to usemodern interface technology to design communicationmethods that are naturalfor both partners.A KBS Letter by Stolze discusses the importance of general perspec-tives for system design, describes the information processing andsituated action perspectives, and advocates that designers integrateinsights from multiple perspectives.3.1 Direct, Incremental Speci�cation of Goals and PlansMany researchers have looked for ways to bypass the di�cult problem of intentrecognition, which requires making inferences about a user's mental state basedon observed actions. We have encountered plan recognition and user modelingas instances of this problem. In the Intelligent Tutoring Systems (ITS) �eld, theproblem of student modeling is very similar to user modeling. As traditionallyformulated, it too involves di�cult issues in intent recognition as well as thediagnosis of misconceptions.However, ITS researchers have been active in designing interaction tech-niques that allow users to express their intent directly, rather than requiringthe system to guess it [62, 63, 64].1 By analyzing how a class of users workswithin a particular task domain, say symbolic integration, �nancial analysis,or medical diagnosis, researchers develop a set of goals and plans for achievingthese goals. These goals and plans are represented formally in a knowledgerepresentation language and also represented graphically as objects in a di-rect manipulation interface [40]. Users then directly specify their goals andplans. This bene�ts both user and system. The user is given a medium formaking problem-solving explicit, rather than having to do it mentally or using1Within the �eld of ITS, there is a distinction between systems that teach students a �xedcurriculumand those that provide a learning environment in which students choose their owntasks to work on, and the system provides assistance as appropriate. The former type ofsystem can �x the goals that a student works on; we are interested here in the latter type ofsystem, where determining a student's goal becomes an important issue.13



non-computational aids like paper and pencil. The system gains access to ahigh-level speci�cation of what it is that the user is trying to accomplish, thussimplifying the computations required to play a useful role in the interaction.For example, computations to track and display �nished and un�nished stepsin the plan, to �ll in low-level details required in executing a plan, and to de-termine whether a plan is inappropriate are very useful and much simpler thanplan recognition. Checklists [65, 66], computerized versions of the everyday to-do list, are a speci�c interaction resource used for organizing interaction andtracking and displaying progress toward a goal.Systems by Self for logic tutoring [63] and Singley for algebra rate of changeproblems [67] explored the use of \goal posting". For example, in Singley'ssystem, a user selects a goal such as \�nd dp/dt in terms of t". She nextchooses a plan operator for achieving the goal, such as using the chain rule.Several subgoals might have to be satis�ed before the operator can be applied.At all times, the system keeps track of which goals have and have not beensatis�ed, visually di�erentiating the current goal, satis�ed goals, and unsatis�edgoals. Empirical studies showed that the goal posting technique improved userperformance and facilitated learning.The goals and plans in this type of system generally are very domain speci�c.The power of domain-speci�city comes at a cost { each new domain requires adi�erent set of goals and plans and often a di�erent set of visual representations.Researchers have attacked the cost of developing domain-speci�c systems inseveral ways.One approach is to take a multi-level or \layered" approach in which plansare arranged in hierarchies. For example, in Bonar & Li�ck's BRIDGE tutor[62], the highest level is a set of English phrases derived from studies of hownovice programmers conceive of procedures. A second level consists of program-ming plans represented graphically as icons, which can be arranged into variouswell-de�ned con�gurations. The third level is the Pascal programming language.In such an approach, lower levels are more general purpose, and higher levelsare more specialized, encapsulate domain and task knowledge, and are easierto use. Entities at one level are built from entities and operations of the nextlowest level.A second approach is found in the work of Bonnie Nardi and colleagues atHewlett-Packard [68, 69]. They carried out empirical studies that illustratedthe power of domain-speci�c programming systems such as spreadsheet formulalanguages and CAD extension languages. They then de�ned a set of commonvisual formalisms, such as tables, charts, graphs, and control panels, and cre-ated a toolkit for building domain-speci�c systems that apply and combine theappropriate components.In addition to techniques for directly specifying goals, another importantnotion is the incremental speci�cation of goals. People typically do not formprecise de�nitions of goals to accomplish, then plan to achieve their goals, thencarry out their plans. Rather, acting, planning, and forming and pursuing14



goals are interleaved. A number of interaction techniques have been exploredthat support incremental speci�cation of goals in exploratory activity. Theretrieval by reformulation [70, 71, 72] information retrieval technique interleavesquery de�nition, querying, and evaluation of results. Experiments with critics(discussed in detail in the next section) have shown that users may re�ne theirgoals based on the delivery of advice from a system about user actions. Theybegin by specifying information they know and care about, then gradually re�neand elaborate it in response to system advice.3.2 Dividing Responsibility: The Critic ParadigmDetermining an e�ective division of responsibility between a user and an intelli-gent computer system is a fundamental issue in human-computer collaboration.In the systems we have just discussed, a user is responsible for selecting high-level plans, and the system is responsible for performing low-level details andtracking and displaying progress. Critiquing [73, 74, 75, 76, 77, 78, 79, 80] isanother well known paradigm for collaboration that addresses the division ofresponsibility issue. Intuitively, a critic is a program that \looks over the shoul-der" of users as they perform tasks in a computational environment and o�erscritiques (advice) from time to time. Critics compute their advice by using adomain knowledge base to examine the actions users perform and the productsthey create.Critics exploit the asymmetry in human and computer abilities. Humanshave common sense knowledge and know the tasks they are trying to accomplishusing a computer system. Computers can be given much specialized domainknowledge and excel at maintaining consistency and in bookkeeping operations.Therefore, in a critiquing interaction, humans select goals to pursue, attempt toachieve the goals, and retain control of the interaction. Critics detect potentialproblems in user's problem solving and suggest solutions, propose additionalrelevant issues to consider, and automatically perform routine or low-level as-pects of the problem solving.2 Users then evaluate system critiques and decidehow to respond, based again on their knowledge of the task.It is important to realize that critics do not necessarily solve problemsfor users. Rather, their role is to stimulate and inform user problem solving[74, 79, 81]. As Fischer and colleagues put it [74](pp 124, 126), they mustpresent a \reasoned opinion about a user's product or action" and must \rec-ognize and communicate debatable issues concerning a product". Critics alsohave access to a user's (partial) solutions in computing their assistance. That2Relying on the strict de�nition of a critic as a system that critiques user actions, onemight questionwhether a system that does problem solving should be called a critic. However,the problem solving of critics such as those described in [81, 79, 80] is done in response touser actions and is presented to users for judgement and possible modi�cation. Therefore,I believe that it does not violate the spirit of the critiquing approach to allow critics somelimited problem solving ability. 15



critics have access to user solutions and do not need to solve complete problemsautomatically distinguishes them from expert systems [77].The notions of presenting a reasoned opinion and of issues being debatableemphasize that in many interesting domains there is no \right answer". Expertsmay disagree, evaluation criteria may be somewhat subjective, and di�erentfactors may trade o� against each other. In such cases, a critic's role is toengage the user in a reasoned \argument" in which issues are made explicit andalternative solutions and their pros and cons are considered [82]. Ideally, an\argumentation" interaction such as this should lead to learning on the part ofboth the human and computer partners; this issue is discussed below.Critics have been widely used in design applications. For example, in Janus[74], users design a kitchen 
oor plan by selecting and positioning appliances.Critics use expert knowledge about kitchen design to detect potential problemswith the 
oor plan such as the stove and refrigerator being too far apart. BothSilverman[77] and Terveen[78, 79, 80] discuss critics that aid users in knowledge-base construction. Rules that ensure knowledge structures are unambiguous,consistent, and complete are used to critique a user's partial speci�cations.One of the advantages of the critiquing approach is that it is fairly simple toimplement. The minimum requirements are product analysis and presentationcomponents to compute and deliver the critiques [77]. Of course, more com-plexity may be added: for example, Fischer et al's [74] process model includesgoal recognition, user modeling, and user modi�cation capabilities. However,these capabilities can be added incrementally to the basic approach to ensurea favorable ratio of cost (of knowledge engineering and runtime computation)to bene�t (enhanced user performance). In addition, both more and less com-plicated versions of these capabilities exist and can be applied. For example,goal recognition can be done the hard way, i.e., using AI plan recognition tech-niques. However, a very simple technique is to hard-wire in one or more domaingoals. As discussed above, a third approach (of intermediate complexity) is torepresent domain goals and plans in the interface and allow users to specifythem explicitly. Fischer and colleagues [75, 76] discuss how combining a goalspeci�cation component with a critiquing system improves the quality of sys-tem advice.3 For another example, product analysis may be done analytically{ checking products with respect to prede�ned features and consequences { orvia di�erential analysis { comparing the user's solution to one generated by thesystem using an expert module. The second approach is more complicated andworks only when the domain can be formalized su�ciently to allow the systemto compute full solutions.Nakakoji & Fischer (this issue) present a model of human-computercollaboration in design that integrates speci�cation of design require-3This approach is a form of explicit user model acquisition. Users respond to a set ofdomain-speci�c questions, then rate the importance of each factor. The system tailors itsadvice based on the user answers and ratings.16



ments, construction of design artifacts, critiquing, and knowledgeacquisition. Designers work by specifying requirements that theirdesigns must satisfy and building artifacts in the construction area.The system uses the requirements and (partial) design artifacts todeliver three types of assistance: (1) messages indicating potentialproblems, (2) indices into an argumentation base that explains issuesraised by the current design, and (3) a set of examples of previousdesigns, retrieved from a catalog by their relevance to the currentdesign. When critics have access to user requirements, they can de-liver advice more tailored to the particular design situation, allow-ing a designer to focus on its distinctive features. Empirical studiesshowed that system assistance is useful even if designers disagree:for example, they may articulate reasons to disagree or conditionsthat de�ne more precisely when the system's advice is valid. Whendesigners do articulate new knowledge, they can add it to the systemby modifying the argumentation, adding new items to the require-ments component, modifying items in the design palette, or addingnew design analysis rules. Criticism thus leads to the growth of userand system knowledge (see [83, 84] for other perspectives on thegrowth of knowledge through system use).Rogers (this issue) presents a model and implemented system ofhuman-computer collaboration in visual problem solving { tasks in-volving the understanding and interpretation of visual images. Herwork began with extensive empirical study of how radiologists usechest x-rays in diagnosis, and she developed a general methodologyfor analyzing cognitive data to guide system design. The studiesidenti�ed types of visual objects radiologists looked for, visual fea-tures used to detect objects, the role of attention and expectations,types of reasoning performed, evidence used in reasoning, and com-mon errors. These results served as the basis for a cognitive modelof visual problem solving and a system architecture. A blackboardarchitecture was judged appropriate because of the diverse sourcesof knowledge and types of reasoning involved and the need for 
exi-ble, opportunistic problem solving. The blackboard approach allowsboth user and system to o�er interpretations, hypotheses, and sug-gestions and to query each other. An important role for the systemis to present suggestions that help avoid common types of over-sights and errors. Empirical studies showed that using the systemincreased solution quality. As in Walker's paper, Rogers develops acomputational model based on close analysis of human collaborativebehavior; however, where Walker tested her model through compu-tational simulation, Rogers tested hers by performing user studies.17



3.3 Visual Objects as Communication Medium and Con-textOne of the key goals of the Human Complementary approach has been to exploreways to use new interface technology for e�ective human-computer communi-cation. The direct manipulation interface paradigm stimulated much interestwith its ability to constitute a model world for a particular domain, in whichobjects and relationships are represented graphically, and actions are performedby manipulating the objects.In Don Norman's work on cognitive artifacts [11], he showed how artifactssuch as simple to-do lists expand human cognitive capacities by serving as exter-nal memories. Artifacts can store more information than can be stored in shortterm memory, they store it permanently, and the spatial arrangement of itemscan represent conceptual relationships. The use of interface representations asexternal memories is exploited to some degree by all direct manipulation inter-faces. For example, the desk top metaphor for �le systems makes it unnecessaryfor users to remember the names of their directories and �les or issue a com-mand to list them before they can perform an operation. Intelligent systemsthat dynamically compute information to communicate to the user present op-portunities for a more sophisticated type of external memory. An additionalmotivation for exploring the communicative potential of direct manipulationtechniques has been to avoid some of the problems in language interaction, suchas constructing references and instructions, deciding whether and when a usershould be interrupted, managing initiative, and ordering the information to becommunicated.Several researchers have explored ways to deliver information that exploitthe interactive potential of computational media and avoid the problems facedby language-based communication [79, 80, 85, 86, 87, 88]. The basic idea isto communicate as much information as possible by modifying the display ofgraphical objects rather than generating text. For example, the HKE system[78, 79, 80] computes various types of critiques as a user adds and links ob-jects in a knowledge diagram, including troubles { inconsistencies that must beaddressed { and suggestions { optional issues to consider. Color, shading, andfonts are used to modify the display of objects in the diagram to communicatethis information. DETENTE [85] partially automates task management anduses a similar set of display techniques to communicate task status. In HKEand DETENTE, the work objects on the user's screen were transformed intoan implicit agenda, from which users could \read o�" work they needed to do.The PetriNED system [87] detects problems as a user constructs a Petri net. Inaddition to modifying the visual properties of objects, it also changes the shapeof the cursor and uses lines to indicate potentially problematic relationshipsbetween objects.The bene�ts of visual information delivery include (1) reducing the needfor language generation, (2) leaving initiative with users { they can deal with18



advice whenever they want by interacting with the appropriate display object4,(3) avoiding unnecessary sequentiality { a system can display many critiquesat once, and users can respond to them in whatever order they want, and (4)avoiding memory errors { it is much less likely that users will forget about anissue when it is encoded persistently as a visible property of a display object.Of course, not all interaction can be managed around objects. For example,in HKE, users can interact with a visually distinguished object to get a repairresource that further explains the issue(s) involving the object, encapsulates aset of methods for resolving the issue, and guides the user through the processof selecting and applying a resolution method. These resources are rei�ed dia-logues. They are associated with graphical objects, and users can return to themand re-interact with them whenever they desire, e.g., to change their responsesand take an alternative path through the dialogue.3.4 Adaptation through CollaborationWhen two people work together to solve a problem, adaptation and learningoccur naturally. For example, if two children are working together to solve analgebra word problem, one might o�er a solution. In response to the other'squestions, she would be forced to articulate how she reached the solution, jus-tify the steps, state assumptions, etc. A similar dynamic occurs when severalprofessionals work together. Each might o�er a solution. They then would haveto identify the rules and principles they used to reach their solutions, determinehow the two solutions related to each other, and identify exceptions to rulesand tradeo�s between principles. Notice how both partners bene�t from thisprocess, one from clarifying and elaborating her own knowledge, the other fromaccess to a much richer knowledge structure.Researchers have explored ways to bring comparable adaptation and learningto human-computer collaboration, for both the human and computer partner.The critiquing paradigm naturally o�ers a form of learning to users [78, 89, 90,91]. That is, a well-designed critic o�ers an alternative perspective on what auser has done by pointing out potential problems, suggesting additional relevantissues to consider, and making reasonable guesses to �ll in low-level details. Thisbrings not just the immediate bene�t of improving the current problem solvingprocess; it also exposes users to (potentially) new knowledge that they can applythemselves in the future without need for system critiquing.Intelligent Tutoring Systems researchers have explored the notion of collabo-rative learning [92, 93]. They have extended the traditional two agent model ofITS { a learner and automated tutor { by adding a simulated peer or co-learner.This work draws on pedagogical and psychological research that details the4Of course, when it truly is necessary, e.g., a dangerous situation has been detected thatthe user must deal with, a system still can take the initiative and force the user to respond.However, visual information delivery makes this an option that the system designer (or thesystem itself) can select, rather than the default behavior.19



bene�t of social interaction for individual learning. In Vygotskian [94, 95, 96]terms, a dialogue or argument is internalized, leading to enhanced knowledgefor the individual. The technical challenge for producing a co-learner is thatit must learn to keep the level of its knowledge relatively close to that of thehuman learner. Both machine learning techniques and \simulated" learning, inwhich the co-learner advances through a pre-programmed sequence of knowledgestates, have been explored.Other researchers have investigated additional techniques that enable sys-tems to adapt and learn from the collaboration process, including:� Extending argumentation dialogues to allow users to modify the system'sargument base.The IBIS method and derivatives [97, 98] are commonly used to organizeargumentation. Information is represented as hypertext, with a specializedset of nodes such as issues, answers to the issues, arguments pro and confor the answers, and relationships between the nodes. As users interactwith such an argument structure, it is easy to allow them to add newissues, answers, and arguments and to create new links. Subsequent usersthen receive the bene�t of interacting with the enhanced argumentationstructure.� Providing end-user modi�cation facilities that allow users to modify sys-tem knowledge structures.The limit of the type of argumentation structure just described is thatis largely up to users to traverse it. If a system, say a critic, is to auto-matically direct users to relevant arguments, it needs rules that map fromuser actions and situational features to the argument base. In general,any knowledge representation that a system uses to drive its interactionwith the user may have to be modi�ed. The Information Lens/ObjectLens/Oval line of research by Malone and colleagues [99, 100, 101] ex-plored techniques for end users to edit and modify objects in frame-basedknowledge bases and to write and modify rules that used a domain-speci�cvocabulary of conditions and actions. Fischer & Girgensohn [102] andCandy, O'Brien & Edmonds [89] also explored techniques for letting usersmodify object hierarchies, properties, and rules.� Using machine learning techniques to infer patterns in users' activities.People are better at modifying existing artifacts than creating new ones.Therefore, rather than requiring users to create new rules and objectsfrom scratch, it would be better for a system to infer rules, then presentthem to users for approval or any necessary modi�cation. Bailin [103]describes a software design system in which designers demonstrate faultydesign patterns and the system uses failure-based learning to learn detec-tion and repair rules. Crow & Smith [104] describe a system that monitorsuser actions in a command language interface and uses pattern recogni-20



tion techniques and simple domain knowledge to recognize patterns ofcommands. The system then engages the user in a dialogue, allowing himor her to verify and modify the patterns, after which they are available tothe user as new \meta" commands. Maes and colleagues [105, 106] alsohave explored machine learning techniques for letting agents learn aboutusers' personal preferences, e.g., for scheduling meetings.Eisenberg (this issue) explores solutions to the tension between short-term and long-term goals of a user of an interactive system. Inthe short term, performing the task at hand quickly and easilyis paramount. In the long term, however, mastering the tool andlearning the domain may be more important. Thus, from one per-spective, learnability, ease of use, and e�cient problem solving arecentral, while from the other perspective, expressiveness, 
exibility,and learning are key. Eisenberg addresses this dilemma with the no-tion of programmable design environments (PDES). PDEs combinethe domain-oriented design environment [107, 108] and critiquingparadigms with a \domain-enriched" programming language. TheSchemeChart PDE integrates direct manipulation tools for creatingcharts and graphs with a version of Scheme enriched with drawingprimitives. Example charts and \query-able objects" index Schemecode used to produce them, thus providing entry points for learningprogramming concepts as users' needs or curiosity lead them in thisdirection. Critics also help users to design better charts and to learnScheme. The most important aspect of the SchemeChart PDE ishow it integrates mechanisms that facilitate ease of use and e�ectiveproblem solving with support for learning the Scheme programminglanguage. Users learn as they are motivated, in the context of con-crete problems they care about [69].4 Toward a Uni�ed Approach to Human-ComputerCollaborationThe goal of this section is to sketch the shape of a uni�ed approach to human-computer collaboration Our discussion highlighted di�erences between the Hu-man Emulation and Human Complementary approaches, but also revealed po-tential convergences. Table 2 summarizes four themes from the the HumanEmulation approach, four themes from the Human Complementary approach,and four themes from the proposed uni�ed approach.Table 2 goes about here21



The �rst two lines of the table show two unresolved di�erences between theapproaches:� intent recognition vs. intent speci�cation,� symmetric agents vs. asymmetric agents.The third and fourth lines show di�erences that have been reconciled into uni-fying themes:� natural language vs. direct manipulation ) natural communication,� adaptive systems vs. adaptable systems ) collaborative adaptation.Finally, the last two items in the table show two unifying themes that cut acrosspreviously discussed issues and distinctions:� rei�cation,� balancing representation and reasoning with interaction.Let's �rst consider the two unresolved di�erences, then discuss the four unifyingthemes.Intent recognition vs. intent speci�cation.Human Emulation models have presumed that agents must infer each other'sintent; thus, the development of algorithms and heuristics for inferring mentalstate based on observed actions is central. While these algorithms and heuristicsare domain independent, they require much rich domain-speci�c knowledge towork. Human Complementary work has attempted to avoid the problem ofintent recognition by developing domain-speci�c languages and interfaces thatallow users to specify their goals and plans directly.Symmetric vs. Asymmetric agents.Human Emulation models presume rational agents with symmetric abilities,in particular, to form goals, to plan to achieve goals, and to infer the plansof their partners. Human Complementary work assumes that computer andhuman agents have asymmetric abilities. Responsibility for accomplishing atask is divided to maximize the strengths of each agent, with computer agentsdesigned to complement humans.Theme 1 { Rei�cation.A great power of graphical interfaces is to reify, making previously invisibleentities visible and providing a concrete representation of abstractions. Userand system share access to entities in the interface and can manipulate theseentities. Our interest is in reifying the models and processing of a collaborativesystem. We have seen examples of the following objects being rei�ed:22



� goals, plans, and tasks [40, 62, 63, 64, 66, 67, 85, 91] { Users can directlyexamine and select goals, plans, and tasks, reducing the need for systeminference. Once selected, these structures become a visible context usefulfor tracking and displaying the state of problem solving and giving userscontrol over the problem solving process.� inference steps [78, 79, 80] { Users are made aware of and can respond tosystem inferences by accepting, modifying, or rejecting them.� dialogue and dialogue context [28, 29, 30, 31, 37, 38, 40, 78, 79] { Thisaids users in constructing followup questions or new questions that referto previous context. Users can return to a previous topic or explore adi�erent path through the dialogue.� user models [63, 104] { Reifying user models enables collaborative adapta-tion, a theme considered separately below.Theme 2 { Balancing representation & reasoning and interaction.Representation and reasoning are necessary for a collaborative system. How-ever, some models of collaboration subsume many of the hardest and mostfundamental problems in AI and cognitive science. For example, Self [63] de-scribes how the \student modeling problem" for Intelligent Tutoring Systemscan expand to encompass control of reasoning, representation of commonsenseknowledge, plan recognition, mental models, episodic memory, and individualdi�erences. Similar remarks could be made about work in user modeling andnatural language discourse.If collaboration inherently involves solving these hard problems, then wehave no choice but to make the attempt. However, I think there is a way out{ to exploit the power of interaction to overcome limits on reasoning. We haveencountered this approach in various guises. For example, Johanna Moore'swork illustrates this point with respect to user models. Her systems exploituser model information when available; however, she notes the practical di�-culties in obtaining reliable information about users and reasoning with suchinformation. Therefore, rather than concentrating solely on developing reason-ing techniques that produce just the right explanation given just the right usermodel, she has explored ways to use interaction and feedback to make commu-nication successful.The power of interaction also is seen in an emphasis on incremental process-ing. For example, Grosz, Sidner, & Lochbaum's SharedPlan model explicitlyrejects the notion that one agent must recognize a previously existing and com-plete plan of another agent (a di�cult inferential task). Rather, plans are con-structed incrementally through interaction. Within a very di�erent tradition,critics have been shown to stimulate users to re�ne their plans incrementally.Users begin by specifying information they know and care about, then gradually�ll in details and re�ne their original speci�cations in response to system advice.23



Finally, the retrieval by reformulation paradigm is an incremental method forspecifying a query (which embodies the user's goal of retrieving certain infor-mation) that also depends on reifying intermediate formulations of the query.Theme 3 { Natural communication.Once upon a time, natural language and direct manipulation were seen as twodistinct and often competing interaction paradigms. However, investigationsof what makes natural communication [109] e�ective have helped to shape anemerging synthesis. Studies of human conversation revealed the importance ofproperties such as shared context, mixed initiative, clari�cation sub-dialogues,and mechanisms for the management of trouble { all properties that are indepen-dent of the communication medium. We have discussed research that appliedthese properties to create multimedia dialogues, integrating the strengths ofnatural language and direct manipulation and reifying discourse context in adirect manipulation interface. We also have seen how these insights have beenexploited by explorations in the use of modern interface techniques to organizeinteraction, e.g, structuring dialogue around the graphical objects that comprisethe shared work context and reifying dialogues as interface objects. The com-mon goal is to combine the best of natural language communication and moderninterface technology to create interactions that are natural for both people andcomputers.Theme 4 { Collaborative adaptation.Within the Human Emulation approach, there has been a heavy focus on tech-niques for systems to model their users and automatically adapt their behaviorto the individual user. Within the Human Complementary approach, the em-phasis has been more on methods for allowing users to adapt systems. However,there is work that points the way toward synthesizing these two perspectives[110]. Adapting system behavior to an individual user should itself become acollaborative activity, with user and system playing appropriate roles.The modeling process may begin with the system observing the user anddoing its best to create a model. This might result in categorizing the user asbelonging to some stereotype, inferring the user's plans, generating a patternthat summarizes the user's actions, or producing an email or Net News �lter [61].This model then should be rei�ed, making it available for the user to inspectand edit as necessary. Further, it may be possible for the user to request a\simulation" of system behavior to understand better how the user model drivessystem adaptation. Thus, adaptation is an incremental, collaborative activity,in which the user model becomes more re�ned and accurate over time.To summarize and conclude, we have taken a critical look at the �eld of human-computer collaboration. After deriving a set of fundamental issues from a def-inition of collaboration, we considered how two major, historically distinct ap-proaches addressed the issues. Finally, we sketched out a set of themes that wesuggest should be central to a uni�ed approach to HCC.24
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Collaboration Issue Human Emulation Human Complementary1. Determining shared goals goal/plan recognition goal speci�cation languagesexploratory environments2. Allocating responsibility,planning, and coordination goal/plan recognition �xed, appropriate divisions ofresponsibility(collaborative) planningsystem as advisor system as criticsystem as problem solving partner3. Shared context (rei�ed) discourse context model worldexternal memoryimplicit agenda4. Communication natural language visual information deliveryNL & DM integration rei�ed dialoguesdiscourse planningmultimodal dialogue5. Adaptation and learning adaptive { user modeling adaptable { end user mod.argumentationlearning on demandcollaborative learningmachine learningTable 1: Collaboration Issues and Approaches
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Human Emulation Human Complementary Uni�edintent recognition intent speci�cationsymmetric agents asymmetric agentsnatural language direct manipulation natural communicationadaptive systems adaptable systems collaborative adaptationrei�cationrepresentation & reason-ing vs. interactionTable 2: Toward a Uni�ed Approach to Human-Computer Collaboration
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