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1 Introduction

In the real world, a face image or a micro-expression [7] video clip exists
in a high-dimensional space. In order to handle high-dimensional face image
adequately, its dimensionality needs to be reduced [26].

As one of the most widely used dimensionality reduction methods, prin-
cipal component analysis (PCA) [33] seeks the optimal projection directions
according to maximal variances. Linear discriminant analysis (LDA)[1] uses
discriminant information to search for the directions which are most effec-
tive for discrimination by maximizing the ratio between the between-class and
within-class scatters. Different to LDA, max-min distance analysis (MMDA)[2]
duly considers the separation of all classes pairs. To deal with the general case
of data distribution, Bian and Tao [2] also extended MMDA to kernel MM-
DA (KMMDA). To overcome the non-smooth max-min optimization problem
with orthogonal constraints which is introduced by MMDA/KMMDA, they
developed a sequential convex relaxation algorithm to solve it approximately.
Zhang et al. [45] proposed a patch alignment framework, which consists of two
stages: part optimization and whole alignment. The framework reveals that 1)
algorithms are intrinsically different in the patch optimization stage and 2) all
algorithms share an almost identical whole alignment stage. As an application
of this framework, they developed a new dimensionality reduction algorithm,
namely Discriminative Locality Alignment (DLA), by imposing discriminative
information into the part optimization stage. DLA can 1) attack the distribu-
tion nonlinearity of measurements; 2) preserve the discriminative ability; and
3) avoid the small-sample-size problem. Li and Tao[23] proposed the simple
exponential family PCA (SePCA) to employ exponential family distributions
to handle general types of observations. The method also automatically discov-
ers the number of essential principal components by using Bayesian inference.
Zhou et al. [46] used elastic net to find the optimal sparse solution of the
dimensionality reduction algorithm which is based on manifold learning.

Nonnegative matrix factorization (NMF) is a powerful matrix decompo-
sition technique that approximates a nonnegative matrix by the product of
two low-rank nonnegative matrix factors. In order to overcome occlusions and
noises, Guan et al. minimized the Manhattan distance between X and XTH in
NMF [10] and used manifold learning and discriminant information to improve
NMF [11]. They [12] also presented a non-negative patch alignment framework
to unify popular NMF related dimension reduction algorithms. Guan et al. [13]
used Nesterov’s optimal gradient method to solve NMF. NMF was also applied
to deal with streaming data [14].

On other hand, locality preserving projections (LPP)[16] aims to preserve
the local structure of the original space in the projective subspace. Discrim-
inant locality preserving projections (DLPP)[43] encodes discriminant infor-
mation into LPP to further improve the discriminant performance of LPP
for face recognition. Potential shortages of these methods are singularity of
within-class scatter matrices, limited available projection directions, high com-
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putational cost and a loss of the underlying spatial structure information of
the images.

To overcome the above problems, some researchers have attempted to treat
the image as a matrix instead of a vector. Yang et al.[41] proposed a 2D-PCA
algorithm to compute the image scatter matrix from the image matrix rep-
resentations directly. Li and Yuan[24] presented a 2D-LDA to extend LDA
using the idea of the image matrix representations. Chen et al.[4] developed
a 2D-LPP which directly extracts the proper features from image matrix rep-
resentations by preserving the local structure of samples. Xu et al.[38] used
discriminant information to construct the adjacency graph based on 2D-LPP,
and Yu further developed [42] 2D-DLPP, a variation of 2D-LPP which uses
discriminant information. These two-dimensional methods not only reduce the
complexities of time and space but also preserve spatial structure information
of the 2D images.

However, one disadvantage of two-dimensional methods (compared to one-
dimensional methods) is that more feature coefficients are needed to repre-
sent an image, due to the fact that two-dimensional methods only employ
single-sided transformations. Recently, tensor methods, which employ two-
sided transformation for a gray image, attract more attention in the field of
feature extraction and dimension reduction, since many objects can be repre-
sented by multidimensional arrays, i.e. tensors. The number of dimensions is
called the order of the tensor and each dimension defines one of the so-called
modes. For example, a gray image is a second-order tensor, then its rows are
called mode-1 of the tensor and its columns are called mode-2 of the tensor.

For second-order tensor, He et al.[15] proposed an algorithm, tensor sub-
space analysis (TSA), which preserves the local structure of samples using
two-sided transformations. Inheriting the merits from TSA and 2D-DLPP,
Discriminant Tensor Subspace Analysis (DTSA) is proposed in our previous
work [37]. Its advantages include:

1. The discriminant information can further improve recognition performance.
2. More spatial information of the images are preserved by presenting the

image as a tensor and higher compression ratios are achieved with the use
of two-sided transformations.

3. Local structure of samples distribution is preserved.

For Nth-order tensor, Liu et al.[25] extended PCA from vector to tensor.
In order to encode the discriminant information into the tensor subspace,
GTDA[39] and DATER[31] extended LDA and MSD[29] from vector to tensor,
respectively. Tao et al.[32] also used Bayesian tensor to model 3-D face. For
more knowledge about tensor, please refer to [30]. Wang et al.[36] treated an
color facial images as a 3nd-order tensor and proposed Tensor Discriminant
Color Space (TDCS) model. They [35] also used elastic net to propose Sparse
Tensor Discriminant Color Space.

On the other hand, the choice of classifier plays an important role in solving
face recognition problems. In most face recognition research, nearest neighbor
classifier (NNC) and support vector machine (SVM) are perhaps amongst the
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most frequently employed techniques. NNC is a simple yet powerful classifier,
and it has been shown to be one of the most successful and robust classifiers
on many data sets. Compared with NNC, SVM is a much more sophisticat-
ed classifier which is based on the statistical learning theory [34], which has
found its application in a wide range of fields[5][28][22][3]. More recently, a
new learning algorithm for a single hidden layer feed-forward neural networks
(SLFNs) was proposed, called extreme learning machine (ELM) [20], which
has shown to have extremely fast learning speed and obtain excellent gen-
eralization capability as well as keeping parameter tuning-free. Owing to its
universal approximation capability, it has become more and more popular for
solving a large number of benchmark problems and applications from regres-
sion and classification areas [21][19][27][44]. In order to construct an effective
and efficient face recognition system, there is a pressing demand for more
computationally efficient and high-accuracy classification techniques. In this
paper we attempt to investigate the effectiveness of ELM approach in conduct-
ing face recognition and micro-expression recognition tasks. In order to deal
with micro-expression video data , we extend DTSA to a high-order tensor.

The proposed recognition method is comprised of two stages. The first stage
aims at constructing the discriminant features based on DTSA and high-order
DTSA. Later on, switching from feature extraction to model construction, in
the second stage, the obtained features are fed into the designed ELM classifier
to conduct face recognition tasks. The effectiveness of the proposed method has
been rigorously evaluated against the ORL and Yale face databases, which are
commonly used among researchers who use pattern recognition methods for
face recognition. We also conducted 3rd-order DTSA (DTSA3) and ELM on
the Chinese Academy of Sciences Micro-Expression (CASME) database. The
rest of this paper is organized as follows: in Section 2, we will introduce the
discriminant tensor subspace analysis and extend it to a high-order tensor;
in Section 3, we use extreme learning machine to classify the discriminant
features extracted by using DTSA; in Section 4, the experimental results are
reported and analyzed; finally in Section 5, conclusions are drawn and several
issues for future works are described.

2 Discriminant Tensor Subspace Analysis

2.1 DTSA

We have a set X consisting of N samples coming from C classes:

X =
{
X1

1,X
1
2, . . . ,X

1
N1

,X2
1,X

2
2, . . . ,X

2
N2

, . . . ,XC
1 ,X

C
2 , . . . ,X

C
NC

}
(1)

where Xc
i ∈ RI1×I2 means the ith sample in the cth class. Nc is the number

of samples in the cth class, and N1 +N2 + . . .+NC = N is satisfied. The task
is to learn the two matrices U and V which project those N samples to

Yc
i = UTXc

iV, i = 1, 2, . . . , Nc, c = 1, 2, . . . , C. (2)
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where Yc
i ∈ RL1×L2 .

If the two samples Xc
i and Xc

j in the same class are close, then the corre-
sponding projected points Yc

i and Yc
j are close as well. A reasonable criterion

for the projection is to minimize the following objective function:

min
C∑

c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij (3)

where Wc is the within-class similarity matrix of cth class, each entry W c
ij

is the similarity between the samples Xc
i and Xc

j , and it is defined as: W c
ij =

exp(−∥Xc
i −Xc

j∥2F /t), where ∥·∥ is the Frobenius norm of matrix, i.e. ∥A∥F =√∑
i

∑
j A

2
ij .

Additionally, a reasonable criterion for the projection is to maximize the
following objective function:

max
C∑

i,j=1

∥Yi −Yj∥2FBij (4)

where B is the between-class similarity matrix, each entry Bij is the sim-
ilarity between the mean samples Xi and Xj , and it is defined as: Bij =

exp(−∥Xi −Xj∥2F /t), where Xi =
1
Ni

∑Ni

k=1 X
i
k. A reasonable criterion func-

tion is as follows:

max
U,V

C∑
i,j=1

∥Yi −Yj∥2FBij

C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij

(5)
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Since ∥A∥2F = tr(ATA), the denominator of Eq. (5) can be simplified as:

1

2

C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij

=
1

2

C∑
c=1

Nc∑
i,j=1

tr
[
(Yc

i −Yc
j)

T (Yc
i −Yc

j)
]
W c

ij

= tr

1

2

C∑
c=1

Nc∑
i,j=1

(UTXc
iV −UTXc

jV)T (UTXc
iV −UTXc

jV)W c
ij


= tr

VT

1

2

C∑
c=1

Nc∑
i,j=1

(UTXc
i −UTXc

j)
T (UTXc

i −UTXc
j)W

c
ij

V


= tr

VT


C∑

c=1

Nc∑
i,j=1

[
(UTXc

i )
T
UTXc

i − (UTXc
i )

T
UTXc

j

]
W c

ij

V


= tr

VT


C∑

c=1

 Nc∑
i=1

(UTXc
i )

T
UTXc

i

Nc∑
j=1

W c
ij −

Nc∑
i,j=1

(UTXc
i )

T
UTXc

jW
c
ij

V


= tr

{
VT

{
C∑

c=1

[
(Pc

U )
T
(Dc ⊗ IL1

)Pc
U − (Pc

U )
T
(Wc ⊗ IL1

)Pc
U

]}
V

}
= tr

{
VTPT

U [(D−W)⊗ IL1 ]PUV
}

= tr
[
VTPT

U (L⊗ IL1)PUV
]

= tr
(
VTSU

LV
)

(6)

where,

L =



L1

. . .

Lc

. . .

LC

 (7)

Lc = Dc −Wc is a Laplacian matrix, where Dc is a corresponding diagonal
matrix and its entry Dc

ii =
∑

j W
c
ij .

Pc
U =


UTXc

1

UTXc
2

...
UTXc

Nc

 (8)
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PU =


P1

U

P2
U
...

PNc

U

 (9)

and SU
L = PT

U (L⊗ IL1)PU .
Similarly, the numerator of Eq. (5) can be simplified as:

1

2

C∑
i,j=1

∥Yi −Yj∥2FBij

=
1

2

C∑
i,j=1

tr
[
(Yi −Yj)

T (Yi −Yj)
]
Bij

=
1

2

C∑
i,j=1

tr
[
(UTXiV −UTXjV)T (UTXiV −UTXjV)

]
Bij

=
1

2

C∑
i,j=1

tr
[
VT (UTXi −UTXj)

T (UTXi −UTXj)V
]
Bij

= tr


C∑

i,j=1

VT
[
(UTXi)

TUTXi − (UTXi)
TUTXj

]
VBij


= tr


C∑
i=1

VT

(UTXi)
TUTXi

C∑
j=1

Bij

V −
C∑

i,j=1

VT (UTXi)
TBijU

TXjV


= tr

{
VTQT

U [(E−B)⊗ IL1 ]QUV
}

= tr
[
VTQT

U (H⊗ IL1)QUV
]

= tr
(
VTSU

HV
)

(10)

where H = E − B. E is a diagonal matrix, and its entries are column (or
row, since B is symmetric) sum of B, Eii =

∑
j Bij . Here, H is also a real

symmetric matrix. For the mean value of each class Xc (c = 1, 2, . . . , C),

QU =


UTX1

UTX2

...
UTXNc

 (11)

And SU
H = QT

U (H⊗ IL1)QU . Therefore, for a given U, the solution to Eq. (5)
can be converted into the following optimal problem about a variable V:

max
V

tr(VTSU
HV)

tr(VTSU
LV)

(12)
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It is easy to see that the optimal V should be the generalized eigenvalues
problem:

SU
Hv = λSU

Lv (13)

the matrix V = [v1,v2, . . . ,vL2 ] consists of the L2 generalized eigenvectors
corresponding to the largest L2 generalized eigenvalues of the matrix pencil
(SU

H ,SU
L ).

For a given V, similarly, the solution to Eq. (5) can be converted into the
following generalized eigenvalues problem:

SV
Hu = λSV

Lu (14)

the matrix U = [u1,u2, . . . ,uL1 ] consists of the L1 generalized eigenvec-
tors corresponding to the largest L1 generalized eigenvalues of the matrix
pencil (SV

H ,SV
L ). SV

H = QT
V (H ⊗ IL2)QV , SV

L = PT
V (L ⊗ IL2)PV , Pc

V =[
Xc

1V,Xc
2V, . . . ,Xc

Nc
V
]
,PV =

[
P1

V ,P
2
V , . . . ,P

Nc

V

]
andQV =

[
X1V,X2V, . . . ,XNc

V
]
.

From the above analysis, we see that the optimizations of U and V depend
on each other. So, an iterative procedure can be utilized to solve Eq. (5).

2.2 Extend DTSA to high-order tensor

DTSA only deals with 2-order tensor. In this section, we extended DTSA
to high-order tensor in order to deal with high-order data such as micro-
expression. The task of N -order DTSA thus becomes learning N projection
matrices Un of size In × Ln (Ln < In) which map those M points to a set of
new points

Yc
i = X c

i ×1 U
T
1 ×2 U

T
2 . . .×N UT

N ,

i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C.
(15)

Eq. (15) can be n-mode unfolded as follows:

Yc
i(n) = UT

nX
c
i(n)(UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1) = UT

nX
c
i(n)Ũn (16)

where Ũn = UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1.

Similarly, we can define as follows:

Pc
n =

[
Xc

1(n)Ũn,X
c
2(n)Ũn, . . . ,X

c
Mc(n)

Ũn

]
, (17)

Pn =
[
P1

n,P
2
n, . . . ,P

C
n

]
(18)

and

Qn =
[
X

1

(n)Ũn,X
2

(n)Ũn, . . . ,X
C

(n)Ũn

]
(19)
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So, the denominator of Eq. (5) can be reduced to:

1

2

C∑
c=1

Mc∑
i,j=1

∥Yc
i − Yc

j ∥2FW c
ij

= tr
{
UT

nPn [(D−W)⊗ I]PT
nUn

}
= tr

[
UT

nPn (L⊗ I)PT
nUn

]
= tr

(
UT

nS
(n)
L Un

)

where, S
(n)
L = PT

(n)(L ⊗ I)P(n) and I is an identity matrix. Similarly, the

numerator of Eq. (5) can be reduced to:

1

2

C∑
i,j=1

∥Yi − Yj∥2FBij

= tr
{
UT

nQn[(E−B)⊗ I]QT
nUn

}
= tr

[
UT

nQn(H⊗ I)QT
nUn

]
= tr

(
UT

nS
(n)
H Un

)

where, S
(n)
H = QT

(n)(H⊗ I)Q(n).
So, given all the other projection matrices U1, . . . ,Un−1,Un+1, . . . ,UN ,

the criterion (5) can be written as follow:

max
tr

(
UT

nS
(n)
H Un

)
tr

(
UT

nS
(n)
L Un

) (20)

According to Rayleigh quotient, Eq. (20) is maximized if and only if the matrix
Un consists of the Ln generalized eigenvectors corresponding to the largest Ln

generalized eigenvalues of the matrix pencil (S
(n)
H ,S

(n)
L ).

Since the S
(n)
H and S

(n)
L depends on U1, . . . ,Un−1,Un+1, . . . ,UN , we can

see that the optimization of Un depends on the projections in other modes.
An iterative procedure can be constructed to maximize Eq. (20).

3 Classification using extreme learning machine

Extreme learning machine (ELM) as a new learning algorithm for single layer
feed forward neural networks (SLFNs) as shown in Fig. 2, was first intro-
duced by Huang el al. [20][21]. ELM seeks to overcome the challenging issues
faced with the traditional SLFNs learning algorithms such as slow learning
speed, trivial parameter tuning and poor generalization capability. ELM has
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demonstrated great potential in handling classification and regression tasks
with excellent generalization performance. The learning speed of ELM is much
faster than conventional gradient based iterative learning algorithms of SLFNs
like back propagation algorithm while obtaining better generalization perfor-
mance. ELM has several significant features [21] which distinguish itself from
the traditional learning algorithms of SLFNs:

1. ELM is easily and effectively used by avoiding tedious and time-consuming
parameter tuning.

2. ELM has extremely fast learning speed.
3. ELM has much better generalization performance than the gradient based

iterative learning algorithms in most cases.
4. ELM is much simpler and without being involved in local minima and

over-fitting.
5. ELM can be used to train SLFNs with many non-differentiable activation

functions.

Given a training set X = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N},
where xi is the n × 1 input feature vector and ti is a m × 1 target vector.
The standard SLFNs which has an activation function g(x), and the number
of hidden neurons Ñ can be mathematically modeled as follows:

Ñ∑
i=1

βig(wi · xj + bi) = oj , j = 1, 2, . . . , N (21)

where wi is the weight vector between the ith neuron in the hidden layer and
the input layer, bi means the bias of the ith neuron in the hidden layer; βi is
the weight vector between the ith hidden neuron and the output layer; and
oj is the target vector of the jth input data. Here, wi · xj denotes the inner
product of wi and xi.

If SLFNs can approximate these N samples with zero error, we will have∑N
j=1 ||oj − tj || = 0, i.e., there exist βi, wi, bi such that

Ñ∑
i=1

βig(wi · xj + bi) =

tj , j = 1, 2, . . . , N . The above equation can be reformulated compactly as:

Hβ = T (22)

where

H(w1, · · · ,wÑ ,b1, · · · ,bÑ ,x1, · · · ,xN ) =

 g(w1 · x1 + b1) . . . g(wÑ · x1 + bÑ )
...

. . .
...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )


N×Ñ

(23)

β =

β
T
1
...

βT
Ñ


Ñ×m

(24)
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β

⋯

⋯

⋯

Face features Input layer

Hidden layer

Face class output layer

Fig. 1 The structure of ELM model.

and

T =

t
T
1
...
tTN


N×m

(25)

As named by Huang et al. [18], H is called the hidden layer output matrix
of the neural network, with the ith column of H being the ith hidden neuron
output with respect to inputs x1, x2, . . . , xN . Huang [17][19] has shown that
the input weights and the hidden layer biases of SLFNs need not be adjusted
at all and can be arbitrarily given. Under this assumption, the output weights
can be analytically determined by finding the least square solution β̂ of the
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linear system Hβ = T:

||H(w1, · · · , wÑ , b1, · · · , bÑ )β̂−T|| = min
β

||H(w1, · · · , wÑ , b1, · · · , bÑ )β−T||

(26)
Eq. (26) can be easily accomplished using a linear method, such as the

Moor-Penrose (MP) generalized inverse of H, as is shown in Eq. (27)

Hβ = T =⇒ β̂ = H†T (27)

where H† is the MP generalized inverse of the matrix H. The use of the
MP generalized inverse method has led to the minimum norm least-squares
(LS) solution, which is unique and has the smallest norm among all the LS
solutions. As analyzed by Huang et al. [20], by using such MP inverse method,
ELM tends to obtain a good generalization performance with a dramatically
increased learning speed.

In summary, the learning steps of the ELM algorithm can be summarized
by the following three steps:

Given a training set ℵ = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N}, an
activation function g(x), and the number of hidden neurons Ñ ,

1. Randomly assign the input weights wi and bias bi, i = 1, 2, . . . , Ñ .
2. Calculate the hidden layer output matrix H.
3. Calculate the output weight β = H†T, T = [t1, t2, . . . , tn]

T
.

4 Experiments and results

4.1 ELM parameter selection

One of the advantages of ELM over other methods is that the only parameter
required to be determined is the number of hidden neurons. In this work,
ELM1 models are built via the stratified 5-fold cross validation procedure on
the two face databases through gradually increasing the number of hidden
neurons from 1 to 5000 in interval of 10. Namely the data were divided into
ten subsets. Each time, one of the ten subsets is used as the test set and the
other nine subsets are put together to form a training set. Then the average
validation accuracy across all ten trials is computed. The advantage of this
method is that all of the test sets are independent and the reliability of the
results could be obtained.

The validation accuracy against the number of hidden neurons for ELM on
the Yale database, ORL database and YaleB database are shown in Fig. 2(a),
Fig. 2(b) and Fig. 2(c) respectively. It is interesting to find that with the
increasing of the number of hidden neurons, ELM first reaches local peak val-
idation accuracy, and then increases gradually and finds the global optimal
validation accuracy on the Yale database and ORL database. The highest val-
idation accuracy has been achieved when the number of hidden neurons is

1 The matlab code can be downloaded from http://www3.ntu.edu.sg/home/egbhuang/
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Fig. 2 Validation accuracy vs. number of hidden neurons for ELM

Fig. 3 Sample images of one individual from the ORL database.

equal to 2751 and 4091 for the Yale database and ORL database, respective-
ly. The phenomena is opposite for the YaleB database, ELM finds the global
optimal validation accuracy when the number of hidden neurons is equal to
661, after then the validation accuracy decreases gradually. Although after
1900 hidden neurons the validation accuracy increase gradually, ELM can not
find the higher validation accuracy than the one at the 661 hidden neurons.
Therefore, 2751, 4091 and 661 hidden neurons are chosen to create the training
model for Yale database, ORL database and YaleB database in our implemen-
tations, respectively. The sigmoid activation function is used to compute the
hidden layer output matrix.

4.2 Experiments on Face Recognition

Three well-known face database ORL2, Yale3 and the Extended Yale Face
Database B[9] (denoted by YaleB hereafter) were used in our experiments.

The ORL database collects images from 40 individuals with 10 different
images captured for each individual. For each individual, the images with dif-
ferent facial expressions and details are obtained at different times. Therefore,
the face in the images may be rotated, scaled or tilted to a certain degree.
Sample images of one individual from the ORL database are shown in Fig. 3.

There are a total of 165 gray-scale images for 15 individuals where each
individual has 11 images in the Yale face database. The images demonstrate
variations in lighting condition, facial expression (normal, happy, sad, sleep-
y, surprised, and wink). The sample images of one individual from the Yale
database are shown in Figure 4.

The YaleB database contains 21888 images of 38 individuals under 9 poses
and 64 illumination conditions. A subset containing 2414 frontal pose images of

2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3 http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Fig. 4 Sample images of one individual in the YALE database.

Fig. 5 Sample images of one individual from the YaleB database.

38 individuals under different illuminations per individual is extracted. Sample
images of one individual from the YaleB database are shown in Figure 5.

From each of the face database mentioned above, the image set is par-
titioned into the different gallery and probe sets. In this paper, the Gm/Pn
indicates that m images per individual are randomly selected for training and
the remaining n images are used for testing. For each partition, we use 50 ran-
dom splits (20 random splits for YaleB) for cross-validation tests. All images
are manually cropped and resized to 32×32 pixels. These cropped images and
random splits can be downloaded from the Web4.

We investigate the performance of DTSA + ELM for face recognition.
Two steps are adopted in face recognition: 1) dimensionality reduction; 2)
classifier design. In this experiment, for dimensionality reduction, we apply
the two algorithms TSA5 and DTSA, which represent a 2D gray face image

4 http://www.zjucadcg.cn/dengcai/Data/FaceData.html
5 The matlab code can be downloaded from http://www.zjucadcg.cn/dengcai/Data/

data.html
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as a tensor. For classifier, we utilized the two classifiers Nearest Neighbor
Classifier and Extreme Learning Machine. For TSA and DTSA, the heat kernel
exp(−∥x− y∥2/t) is used and t is set as 1000. There are 10 iterations in both
TSA and DTSA.

The first experiment is implemented on the ORL face database as described
in Section 4.2. The maximum average recognition accuracy and the standard
deviation across 50 runs of tests of each algorithm are shown in Table 1. The
recognition accuracy curve versus the variation in size of training set is shown
in Fig. 6. As we can see in Table 1, in every partition, the performance of DTSA
+ ELM are the highest, and the standard deviation of DTSA + ELM is the
smallest. In situations where larger size of training set (G6/P4,G7/P3 and
G8/P2 ) are used, the recognition accuracy of DTSA + ELM may reach more
than 99 percent. As shown in Figure 6, the two curves of DTSA are better
than those of TSA. The results are constant with the theoretical analysis
that the PCA subspace without discriminant information is not ideal for face
recognition compared to LDA with discriminant information[43].

Table 1 Recognition accuracy (%) on ORL database (mean±std)

Partitions TSA+NNC DTSA+NNC TSA+ELM DTSA+ELM

G2/P8 73.14±3.06 83.76±3.39 76.19±2.77 86.85±2.76
G3/P7 80.49±2.59 91.61±1.73 83.49±2.13 93.89±1.50
G4/P6 86.83±1.84 94.55±1.52 88.74±1.59 96.76±1.15
G5/P5 90.33±1.80 96.68±1.37 92.12±1.66 98.35±0.82
G6/P4 92.40±1.75 97.46±1.09 94.30±1.78 99.19±0.71
G7/P3 94.47±2.10 98.03±1.16 96.32±1.66 99.47±0.58
G8/P2 96.45±1.70 98.60±1.25 97.83±1.53 99.78±0.49

Compared to the ORL database, the Yale face database has different illu-
minations. The experimental setting is the same as that of the ORL database.
The comparison results on the two databases are illustrated in Table 2. Fig. 7
shows the recognition accuracy curves versus the variations of the size of train-
ing set. From Fig. 7, we can see that with smaller sizes of training set, the
performance of DTSA is slightly worse than that of TSA. However, as the size
of the training set increases, the performance of DTSA becomes better than
those of TSA. This phenomenon occurs because as the size of the training set
increases, there are more discriminant information in the training set. There-
fore, the larger the size of the training set is, the better DTSA’s performance
is. As shown in Fig. 7, it can also be observed that as the size of the training
set increases, the performance of ELM over NNC is becomes more and more
obvious. The reason may lie in the fact that more discriminant information
are needed for ELM in constructing an effective prediction model.

Furthermore, we implemented DTSA+ELM and DTSA+NNC on the more
complex facial database Yale B. The results are illustrated in Table 3. Figure 8
shows that the performance of DTSA+ELM is superior to the ones of DT-
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Fig. 6 Recognition accuracy (%) on ORL database (mean).

Table 2 Recognition accuracy (%) on Yale database (mean)

Partitions TSA+NNC DTSA+NNC TSA+ELM DTSA+ELM

G2/P9 55.24±4.03 52.00±5.60 62.99±3.95 58.07±5.19
G3/P8 61.48±4.12 63.47±3.98 72.47±3.46 71.58±4.02
G4/P7 63.58±3.49 68.69±3.81 77.41±3.28 78.90±3.96
G5/P6 67.22±3.42 71.09±4.31 81.02±2.23 83.36±3.07
G6/P5 68.32±3.63 74.21±4.12 83.23±2.72 85.68±3.18
G7/P4 70.33±3.79 76.47±3.73 86.63±2.58 88.53±3.29
G8/P3 72.31±4.76 80.00±4.11 88.36±3.22 91.56±3.08

SA+NNC on this complex database. Moreover, we can see that the standard
deviation of DTSA+ELM is smaller than that of DTSA+NNC from Table 3
(except for G5/P55 ).

Table 3 Recognition accuracy (%) on YaleB database (mean±std)

Partitions DTSA+NNC DTSA+ELM

G5/P55 72.06±1.54 83.38±1.58
G10/P50 82.97±1.37 92.00±1.16
G20/P40 90.22±0.80 96.60±0.52
G30/P30 93.19±0.53 98.26±0.33
G40/P20 94.97±0.71 98.93±0.35
G50/P10 95.92±0.79 99.21±0.34
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Fig. 7 Recognition accuracy (%) on Yale database (mean).
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Fig. 8 Recognition accuracy (%) on YaleB database (mean±std).

4.3 Experiments on Micro-expression Recognition

The Chinese Academy of Sciences Micro-Expression (CASME) database [40]
includes 195 spontaneous facial micro-expressions recorded by two 60 fps cam-
eras. These samples were selected from more than 1500 facial expressions. The
selected micro-expressions either had a total duration less than 500 ms or an
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(a) (b) (c) (d) (e)

Fig. 9 An example of part of the frame sequence. The action unit is 15, which stands for
lip corner depressor. (a) onset frame; (b) a frame between (a) and (c); (c) apex frame; (d)
a frame between (c) and (e); (e) offset frame.

onset duration (time from onset frame to apex frame6)less than 250 ms. These
samples are coded with the onset, apex and offset frames, furthermore tagged
with action units (AUs) [8] and emotions (besides the six basic emotions ac-
cording to Ekman [6], we also added other classes such as: attention, repression
and tense, for the undefined AU combinations).

22 subjects (8 females, 14 males) participated in the study and had a
mean age of 22.75 years (standard deviation: 2.01). The procedure of eliciting
spontaneous micro-expressions is guided by psychologists. 17 video episodes
were downloaded from the Internet, which were evaluated as highly positive
or negative in valence. Since micro-expressions are presented when individuals
try to conceal their emotions, we attempted to enhance their motivation of
concealing emotions. The participants were firstly instructed that the purpose
of the experiment was to test their ability to control emotions, which was
highly related to their social success. The participants were also told that
their payment was directly related to their performance. If they revealed any
facial expressions during the experiment, 5 Chinese Yuan (RMB) was deducted
from their total payment each time as a punishment. In addition, they were
not allowed to turn their eyes or head away from the screen while watching
the video episodes.

From the CASME database, we selected 5 types of micro-expressions at-
tention, disgust, repression, surprise, and tense. The micro-expression video
set is partitioned into the different gallery and probe sets. Gm indicates that
m samples per micro-expression are randomly selected for training and the
remaining samples are used for testing. For each partition, we use 20 ran-
dom splits for cross-validation tests. The CASME database provides color
video clips of micro-expressions, in this paper we converted these color video
clips into grey video clips. All samples are manually cropped and resized to
64× 64× 64 pixels.

6 The onset is the first frame which changes from the baseline (usually neutral facial
expressions). The apex is the one that reaches highest intensity of the facial expression. The
offset is the last frame of the expression (before turning back to a neutral facial expression).
Sometimes the facial expressions faded very slowly, and the changes between frames were
very difficult to detect by eyes. For such offset frames, the coders only coded the last obvious
frame as the offset frame while ignore the nearly imperceptible changing frames.
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Table 4 Experimental results on micro-expression database with various optimal dimen-
sionality.

G3 G6 G9 G12 G15

20× 20× 20
DTSA3+NNC 28.82 32.95 35.09 38.43 40.18
DTSA3+ELM 30.17 34.69 38.60 40.76 43.33

30× 30× 30
DTSA3+NNC 30.35 34.34 36.71 41.11 41.07
DTSA3+ELM 31.28 37.02 41.10 44.09 46.55

40× 40× 40
DTSA3+NNC 30.90 35.58 38.60 42.47 42.44
DTSA3+ELM 30.21 37.48 40.92 43.64 46.90

50× 50× 50
DTSA3+NNC 30.21 35.50 39.96 42.42 42.44
DTSA3+ELM 30.14 36.20 39.91 43.94 45.60

60× 60× 60
DTSA3+NNC 29.83 33.33 36.71 39.29 39.46
DTSA3+ELM 29.79 33.80 38.55 42.32 43.93
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Fig. 10 Recognition accuracy (%) on CASME database (mean).

Micro-expression grey video clips can be treated as 3rd-order tensor. In
this section, we investigate the performance of DTSA3 + ELM for micro-
expression recognition. The optimal dimensionality are 20×20×20, 30×30×30,
40×40×40, 50×50×50 and 60×60×60. Table 4 shows mean performances on
these optimal dimensionality. The solid lines denote the performance of DTSA3
+ ELM, and the dotted lines denote the performance of DTSA3 + NNC in
Figure 10. From the figure, we can see that the performance of DTSA3+ELM
is superior to those of DTSA3+NNC on the CASME database.
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5 Conclusion

In this paper, we proposed an efficient recognition technique based on discrim-
inant tensor subspace reduction dimensionality and extreme learning machine
classifier. The 2D face images are first dimensionally reduced using DTSA to
generate discriminant features, then the reduced features are fed into the ELM
classifier to analytically learn an optimal model for recognition. In order to
deal with micro-expression video clips, we extend DTSA to a high-order ten-
sor. Experimental results on the ORL, Yale, YaleB face database and CASME
micro-expression database show the efficiency of the proposed method. In ad-
dition, we also find that as the size of the training set increases, more discrim-
inant information are obtained from the training set. Therefore, by increasing
size of the training set, more benefits can be gained by both DTSA dimen-
sionality reduction and ELM classification, especially on a complicated face
database with various light variations.
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