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In this note we show that two finite dimensional algebras have the same
representation type if they are stably equivalent of Morita type.

Stable equivalences of Morita type were introduced for blocks of group
algebras by Bro@ [2], see also [7]. The concept is motivated by a result
of Rickard. In [10], he proved that any derived equivalence between finite
dimensional self-injective algebralsandl” induces a stable equivalence of
a particulary nice form. More precisely, he constructs bimodyles and
rC4 such that the corresponding tensor functors induce mutually inverse
equivalences between the stable categaried A andmod I" of finite di-
mensional modules fot andI”. Stable equivalences of this form are said to
be of Morita type. They occur frequently, for instance in the theory of blocks
of group algebras. Other examples are obtained from two finite dimensional
algebrast andI” which are tilted from each other. The corresponding triv-
ial extensiong"A andT'I" are derived equivalent self-injective algebras [9],
and therefore stably equivalent of Morita type. In fact, Assem and ddila Pe
proved in [1] thatl"'A andT'I" have the same representation type. It seems
to be an interesting project to understand the precise relation between the
geometric approach of de laie[8] which is used in [1], and the approach
presented in this paper.

The representation type of a finite dimensional algebistraditionally
defined using the concept of a continuous one-parameter family in the cat-
egorymod A of finite dimensionald-modules. For instancel is of tame
representation type if for every € N only finitely many such families are
needed to parametrize all indecomposatmodules of dimension. An
alternative approach uses so-called generic modules. This was suggested by
Crawley-Boevey and he established for tame algebras a correspondence be-
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tween continuous one-parameter families and generic modules [3]. In [6], we
used generic modules to show that a stable equivaiendel — mod I"in-
duces a bijection between continuous one-parameter familiesdnA and
mod I'. However, without any extra assumption on the stable equivalence
it remains an open question how the dimensions of the modutesihA
andmod I" are related. In this paper we settle the problem for stable equiv-
alences which are induced by an appropriate funaiod A — mod I'.
Stable equivalences of Morita type are of this form, and therefore we can
prove that two finite dimensional algebras have the same representation type
if they are stably equivalent of Morita type.

I would like to thank Thorsten Holm for drawing my attention to the
representation type problem for derived equivalent algebras.

We now begin with some notation and recall briefly the definitions which
are needed in this paper. Létbe an associative ring with identity. Denote
by Mod A the category of (rightyl-modules and letnod A be the full
subcategory of finitely presenteétmodules. A sequence of morphisms
0—L—> M — N — 0inMod A is pure-exacif the induced sequence
0 — Homy(X,L) — Homa(X, M) — Hom, (X, N) — 0 is exact for
every X in mod A. In this case the morphisth — M is called apure
monomorphismandL is pure-injectivef every pure monomorphismh —
M splits. We shall always assume that every finitely presentetbdule is
pure-injective. For example, every artin algebra has this property. We denote
by Pinj A the full subcategory of pure-injectivé-modules and th&iegler
spectruniZsp A is the set of isomorphism classes of indecomposable pure-
injective A-modules. AA-module)M is endofiniteif the lengthl.,q (M) of
M, when regarded in the natural way askmd 4 (A )°P-module, is finite.
Note that every endofinite module is pure-injective. An endofinite module is
calledgenericif it is indecomposable but not finitely presented [3]. Given a
A-moduleX we denote byAdd X the smallest full subcategory dfod A
which containsX and is closed under taking arbitrary coproducts and direct
summands. Thstable categoryMod y A has the same objects &fd A
but Hom y (M, N) is the group of allA-morphismsM — N modulo the
subgroup of those which factor through an objechitd X . For example,
one obtains the usual stable module categdry A by taking X = A.
Analogously, the categorid&inj, A andmod y A are defined.

We shall need the following lemma.

Lemma. Let X be endofinite. Then every-moduleM has a decomposition
M = Mx [] X such thatX, is @ maximal direct summand af which
belongs taAdd X.

Proof. The union of a chain of pure submodules is again a pure submodule.
Also, Add X is closed under taking direct limits and every modula i X
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is pure-injective [5, Corollary 9.8]. Thus, by Zorn’s lemmathere is a maximal
pure submodul&; of M contained iMAdd X which is a direct summand.
O

The next proposition collects the essential properties of a stable equiv-
alencemod y A4 — mody- I" which is induced by some functddod A —
Mod I

Proposition. Letf: Mod A — Mod I" be a functor commuting with direct
limits and products. Suppose there are endofinite modyil@smod A and
Y inmod I" such thatf induces an equivalenegod y A4 — mod,- I". Then
the following holds:

(1) f induces an equivalendeinj . A — Pinj,. I".

(2) f induces a bijectiofZsp A\ Add X — Zsp '\ Add Y, M — My,
suchthatfM = M; [[ Yy andYy )y is a maximal direct summand giv/
in AddY.

(3) There existg € N such thatle,q(fM) < ¢ Leng(M) for all M in
Mod A.

(4) If M is a genericA-module, then/; is generic.

Proof. (1) The functorf induces the following commutative diagram of
functors:

mod A i> mod I"

| |

mod y A — mody I’

The canonical functomod A — mody A extends uniquely to a functor
pa: ModA — limmody A which commutes with direct limits. Here,
lim mod y A denotes the categotylat((mod x 4)°, Ab) of flat functors
(mod y A)°? — Abwhichis characterized by the following three properties
[6]:

@ ligmodx /A contains, up to equivalenceyod y /A as a full subcate-
gory.

(ii) lim mod - A is an additive category with direct limits.

(iii) Every object inliﬂ mod y A is a direct limit of objects imod y A.
We obtain therefore the following commutative diagram of functors which
commute with direct limits:

ModA -1 Modr

I Jo

It follows from Proposition 2.2 and Proposition 3.2 in [6] that induces
an equivalenceinj, A — Pinj(@ mod y A) where the notion of pu-
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rity in lim mod x A is defined as foMod A. The assertion in (1) is now a
consequence sinden mod y A — ligmody I’ is an equivalence.

(2) Every indecomposable pure-injective module has a local endomor-
phism ring. Therefore the canonical functdiod A — Mod y A induces
an injective map fronZsp A \ Add X into the set of isomorphism classes
of indecomposable objects @X A. The map is surjective by the pre-
ceding lemma. Keeping the notation from this lemma, it follows from (1)
that M — M; = (fM)y induces a bijection betweéfsp A \ Add X and
ZspI'\ AddY.

(3) This has been shown in [4]. However, we sketch the argument for
the convenience of the reader. The compositton= Homp (I, —)of:
Mod A — Abhas apresentatidfiom 4 (B, —) — Homy(A,—) - F — 0
with A and B in mod A, and there is a homomorphispt I" — End(F)
such that thel"-action on fM coincides with thel-action onF'M via
@ [4, Corollary 12.2]. Choose an epimorphistfi — A in mod A. Then
¢ - Lena (M) bounds the length of thEnd 4 (M )°P-module F M and there-
fore also the endolength ¢giM since theind 4 (M )°P-module structure on
F M is induced by that oEnd - (f M)°P via the canonical homomorphism
Endj(M) — Endp(fM).

(4) It follows from the decompositiofiM = M, [[ Yy and part (3)
that M is endofinite. We claim thal/; is not finitely presented. Otherwise
we find afinitely presented-moduleL suchthatf L and)M are isomorphic
in mod,- I" sincef induces an equivalenegod y A — mody- I'. Therefore
fM andfL are isomorphic iPinj,, I" since we assume that every finitely
presented module is pure-injective. Using (1) it follows thatand L are
isomorphic inPinj . A. Thus there are morphisms M — Landy: L —

M in Mod A such thatid,; — o factors through an object iAdd X.
Thereforeid; — ¥op € rad End, (M) andg is a split monomorphism, a
contradiction. We conclude thaf ; is generic. 0

Given a ringA andn € N, we denote by (n) the number of iso-
morphism classes of generit-modules of endolength, and~ys(n) =

> i1 94(1).

Corollary. Suppose there is an equivalenaed y A — mod, I" which is
induced by a functoMod A — Mod I" commuting with direct limits and
products. Then there existse N such thaty,(n) < vyr(cn) for all n. In
particular, the following holds:

(1) If I"is generically tame, i.eyr(n) < oo for all n, thenA is generi-
cally tame.

(2)If I is generically of polynomial growth, i.e. there exists a polynomial
p such thatyr(n) < p(n) for all n, thenA is generically of polynomial
growth.
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(3)If I"is generically domestic, i.e. there exidfse Nsuchthaty,(n) <
N for all n, thenA is generically domestic.

Proof. The formulays(n) < vr(cn) is an immediate consequence of the
proposition, and (1) — (3) follow from this formula. O

Suppose thatl is a finite dimensional algebra over an algebraically
closed field and denote hy,(n) the minimal number of continuous one-
parameter families which is needed to parametrize all but finitely many
indecomposablel-modules of dimension. In [3, Theorem 4.4 and 5.6],
Crawley-Boevey has shown thaf (n) is finite for alln iff A is generically
tame; moreover in this cage; (n) = _,,, g(i). Therefore the ‘generical’
definition of the representation type coincides with the ‘classical’ one. More
precisely:

(i) A is of tame representation type (i/e4(n) < oo for all n) iff A is
generically tame.

(i) Ais of polynomial growth (i.e. there exists a polynompaduch that
ua(n) < p(n) for all n) iff Ais generically of polynomial growth.

(iii) A is of domestic representation type (i.e. there exiéte N such
thatua(n) < N for all n) iff A is generically domestic.

We now obtain our promised result. To this end we call two finite di-
mensional algebras over a figldstably equivalent of Morita typié there
are bimodulesB in mod A°P? ®;, I" andC in mod I'°P ®; A such that the
functors

—®4B: modA — modI" and —®prC: mod ' — mod A

induce mutually inverse equivalences betweernl A andmod I

Corollary. LetAand!” be finite dimensional algebras over an algebraically
closed field. Suppose thatand ! are stably equivalent of Morita type. Then
there exists: € N such thatys(n) < vr(en) andyr(n) < v4(cn) for all
n. In particular, the following holds:

(1) Ais of tame representation type if and olys of tame representation
type.

(2) A is of polynomial growth if and only’ is of polynomial growth.

(3) A is of domestic representation type if and oidlyis of domestic
representation type.

Proof. Denote by 4B, and rC, the bimodules which induce the sta-
ble equivalence of Morita type. The corresponding tensor functogs,

B: ModA — Mod I'and— ®, C: Mod I" — Mod A commute with di-
rect limits and products sindg is finitely presented ovet andC is finitely
presented ovel". The assertion therefore follows from the preceding corol-
lary and Crawley-Boevey’s result. O
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