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Henry Tirri, Kimmo Valtonen, and Hannes Wettig

Complex Systems Computation Group, Helsinki Institute for Information Technology,
University of Helsinki & Helsinki University of Technology, P.O.Box 9800, 02015 HUT, Finland.

ABSTRACT

In this survey-style paper we demonstrate the usefulness
of the probabilistic modelling framework in solving not only
the actual positioning problem, but also many related prob-
lems involving issues like calibration, active learning, error
estimation and tracking with history. We also point out some
interesting links between positioning research done in thearea
of robotics and in the area of wireless radio networks.

I INTRODUCTION

The location of a mobile terminal can be estimated using
radio signals transmitted or received by the terminal. The
problem is called with various names such as location estima-
tion, geolocation, location identification, location determina-
tion, localization, and positioning. The traditional, geometric
approach to location estimation is based on angle and dis-
tance estimates from which a location estimate is deduced us-
ing standard geometry. Instead of the geometric approach, we
consider the probabilistic approach which is based on proba-
bilistic models that describe the dependency of observed sig-
nal properties on the location of the terminal, and the motion
of the terminal. The models are used to estimate the termi-
nal’s location when signal measurements are available.

The feasibility of the probabilistic approach in the context
of wireless networks has already been demonstrated to some
extent in a number of recent papers [4, 9, 13, 14, 15, 20].
Probabilistic methods have also been extensively used in
robotics where they provide a natural way to handle uncer-
tainty and errors in sensor data [16, 17]. Many of the proba-
bilistic methods developed in the robotics community, in par-
ticular those related to map building, location estimationand
tracking, are also applicable in the context of wireless net-
works. In the following we discuss selected topics in prob-
abilistic location estimation, many of which are well-known
in probabilistic modeling, but have received relatively little
attention in the domain of wireless networks.

We focus primarily on wireless local area networks,
WLANs, but most of the ideas and concepts are applicable to
many other wireless networks as well, including those based
on GSM/GPRS, CDMA or UMTS standards. The rest of
the paper is organized as follows: In Section II we discuss
calibration, the process of obtaining a model of the signal
properties at various locations. The actual location estimation

and tracking phase following calibration is considered in Sec-
tions III and VI. Issues related to the optimal choice of cal-
ibration measurements are discussed in Section IV. In many
cases, it is useful to complement a location estimate with in-
formation on its accuracy; in Section V we describe methods
for error estimation and visualization. Conclusions are sum-
marized in Section VII.

II CALIBRATION

In order to obtain a positioning model, we need to estimate
the expected signal strengths as measured by the device to be
localized for the various locations in consideration. Thishas
traditionally been done using knowledge of radiowave propa-
gation. Several such propagation prediction orcell planning
tools are available for this purpose [1, 19].

We adopt an empirical approach, i.e. we estimate the sig-
nal strength densities fromcalibration datagathered at differ-
ent locations in consideration. Experimental studies suggest
that propagation methods are not competitive against empir-
ical models in terms of positioning accuracy due to insuffi-
ciently precise signal models [2, 13].

Consider a finite set of possible locationsl, which will play
the role of theclassfor our model to predict. For each such
location we gather calibration data, i.e. a number of obser-
vation vectorso to estimate the (true) distribution of signal
strengths from. For a discussion on how this can and should
be done for a given set of locations and observations see e.g.
[4, 14, 15, 20]. But how should we choose the locations of
the model and how should we collect calibration data?

An early version of our software simply used a grid, di-
viding the positioning space into cells of some size, e.g.
1m × 1m. At each location we collected a sufficient number,
say20, of training vectors. However, it seemed impractical
to remain at a given location for the time it takes to gather
enough data – and favorably move around in order to capture
variance due to orientation and within the area of the cell –
before moving on to the next cell.

A more convenient way is to gather data vectors contin-
uously just walking (or driving) around. We only need to
record the time label of each observation and the time la-
bels and coordinates of those locations at which the calibrator
changes direction and/or speed. This way we quickly obtain
a large number of observations equipped with their exact lo-
cation. However, we (usually) get only one observation per



location, which does not suffice to reliably estimate the dis-
tribution of signal strengths. Furthermore it is computation-
ally problematic to deal with such a large number of classes
in a model; note that when a device supplies us with an ob-
servation vector every500ms, a calibration round of an hour
already yields up to7200 locations.

A natural way of dealing with this situation is to group the
locations into clusters [20]. Each cluster should consist of a
sufficient number of vectors to supply a good estimate of the
expected signal strengths in its area, and as its location we
may take – for example – the center of gravity of its measure-
ments’ positions. An interesting and theoretically appealing
way to produce such clustering is given by the principle of
Minimum Description Length(MDL) in its most recent form,
theNormalized Maximum Likelihood(NML) [12], for details
see [8]. Figure 1 shows such clustering of a calibration tour.
Note, that there is no need to decide on the number of clusters
in advance, the algorithm will choose as many as can reliably
be distinguished from the data collected.

Figure 1: NML clustering of signal data collected continu-
ously along a calibration tour. Each circle is represents one
vector of measurements gathered at its position, the different
clusters are colour-coded.

III LOCATION ESTIMATION

After the calibration phase we have, for any given location
l, a probability distributionp(o | l) that assigns a probability
(density) for each measured signal vectoro. By application
of the Bayes rule, we can then obtain the so calledposterior
distributionof the location:

p(l | o) =
p(o | l) p(l)

p(o)
=

p(o | l) p(l)∑
l′∈L

p(o | l′) p(l′)
, (1)

wherep(l) is theprior probability of being at locationl be-
fore knowing the value of the observation variable, and the
summation goes over the set of possible location values, de-
noted byL. If the location variable is continuous, the sum is
replaced by the corresponding integral.

The prior distributionp(l) gives a principled way to incor-
porate background information such as personal user profiles
and to implement tracking as described in Section VI. In case
neither user profiles nor a history of measured signal prop-
erties allowing tracking are available, one can simply use a
uniform prior which introduces no bias towards any particu-
lar location. As the denominatorp(o) does not depend on the
location variablel, it can be treated as a normalizing constant
whenever only relative probabilities or probability ratios are
required.

The posterior distributionp(l | o) can be used to choose
an optimal estimator of the location based on whatever loss
function is considered to express the desired behavior. For
instance, the squared error penalizes large errors more than
small ones which is often useful. If the squared error is used,
the estimator minimizing the expected loss is the expected
value of the location variable

E [ l | o ] =
∑

l′∈L

l′ p(l′ | o), (2)

assuming that the expectation of the location variable is well
defined, i.e., the location variable is numerical. Locationesti-
mates, such as the expectation, are much more useful if they
are complemented with some indication about their precision.
We discuss error estimates in Section V below.

The presented probabilistic approach can be contrasted
with the more traditional, geometric approach to location esti-
mation used in methods such as angle-of-arrival (AOA), time-
of-arrival (TOA), and time-difference-of-arrival (TDOA). In
the geometric approach the signal measurements are trans-
formed into angle and distance estimates from which a loca-
tion estimate is deduced using standard geometry. One of the
drawbacks of the geometric approach is that there is no prin-
cipled way to deal with the incompatibility of the angle and
distance estimates caused by measurement errors and noise.
On the other hand, the geometric approach is usually compu-
tationally very efficient.

IV ACTIVE LEARNING

In Section II we only considered the problem of obtaining
a model of the signal properties given training data collected
from known locations. The resulting model is strongly depen-
dent on where and how much training data is collected. Obvi-
ously, the training data should not leave large areas uncovered
or otherwise there would be no way to reliably infer the signal
properties in such areas. Also, for various reasons, for some
areas the signal model is required to be more accurate than
in general, in order to achieve accurate location estimation.
For instance, two distinct locations may be roughly similarin
terms of signal properties so that they can be told apart only
by a small margin. In such areas, more extensive calibration
is required.

In practice, if it is possible to collect a large amount of
training data, a reasonable calibration result is obtainedby
collecting training data roughly uniformly from each location.
Areas where the signal properties are expected to vary within



small distances due to, for instance, large obstacles, may be
better covered with relatively higher density, whereas large
open areas where the signal is likely to be constant, can be
left with less attention. In case extensive calibration is costly
or otherwise impossible, it becomes critical to choose the cal-
ibration points as well as possible. This procedure has been
studied in the robotics literature under the namerobotic explo-
ration. In general, optimal decision strategies are intractable
and various heuristics are used [3, 18].

A practical method for locating potentially useful candi-
dates for new calibration points is based on the estimate of
the future expected error. This estimate is calculated by sum-
ming over all possible future observationso:

Eerr[ l ] =
∑

o

Eerr[ l | o ] p(o), (3)

wherel is the calibration point candidate, andEerr[ l | o ] is
the expected error

Eerr[ l | o ] =
∑

l′

p(l′ | o) d(l′, l), (4)

for the preferred distance functiond.
The candidate pointsl can be chosen by using a tight grid.

For example, the grid spacing could be approximately one
meter. One or more grid points with a high expected error, or
points surrounded by several such grid points, are then used
as new calibration points. If the dimensionality of the ob-
servation vectoro is so high that the summing according to
Equation (3) is not feasible, the sum can be approximated by
sampling. An ever simpler approach is to use the calibration
data as the set over which the sampling is performed, in which
case one only needs to sum over the calibrated observations.

To implement the method based on Equation (3), one
needs to determine the probability distribution or densityover
the future observations. In practice, it has to be approxi-
mated from the calibration data. One possible approximation
method is as follows. When computingEerr[ l ] for some loca-
tion l, one replacesp(o) in (3) by the probability distribution
based on the past observations made at the calibration point
closest tol. The efficiency of the method can be improved by
approximatingEerr[ l | o ] by d(l∗, l), wherel∗ is the point
estimate produced by the positioning system after seeing ob-
servationo.

V ERROR ESTIMATION AND VISUALIZATION

In order to visualize the uncertainty associated with the lo-
cation, we assume that we have a probability distributionp,
either a probability mass function or a density, that describes
the uncertainty about the actual location. In addition to report-
ing a point estimate—here taken to be the expected value—
we can visualize the uncertainty related to distributionp. This
can be done, for instance, by drawing an ellipse centered at
the expected location such that the orientation and size of the
ellipse describes the uncertainty of the location estimateas
well as possible.

Figure 2: Uncertainty ellipse. Probabilities at a discreteset
of locations are denoted by circles; dark shading implies high
probability. The ellipse centered at the expected locationhas
axes parallel to eigenvectors of the variance-covariance ma-
trix and lengths proportional to eigenvalues.

As a first step of obtaining such an “uncertainty ellipse” one
first needs to obtain certain summary statistics from the dis-
tributionp. These statistics are, in addition to the expectation,
contained in thevariance-covariance matrix. The variance-
covariance matrix describes the variance of the location in
bothx andy coordinates together with the covariance of the
two coordinates which is equivalent to reporting the correla-
tion coefficient of the two coordinates.

The second step is to evaluate the two eigenvectors of the
variance-covariance matrix. This is a simple exercise in lin-
ear algebra. In case the two coordinatesx andy happen to be
independent in the distributionp, i.e., there is no correlation,
the eigenvectors are parallel to the two coordinate axes. Fi-
nally, one displays an ellipse whose axes are parallel to those
given by the two eigenvectors of the variance-covariance ma-
trix. The lengths of the axes are given by the eigenvalues
multiplied by a scaling constant. We give a rule for determin-
ing the value of the scaling constant below, after we have first
discussed the interpretation of the ellipse.

One interpretation for the uncertainty ellipse is that assum-
ing (pretending) that the estimated density of the locationis
bivariate Gaussian, the ellipse is the smallest area that con-
tains a fixed probability mass. Given the probability mass
to be covered by the ellipse, one can obtain the aforemen-
tioned scaling constant by taking the square root of the Chi-
squared value with two degrees of freedom. For instance,
if 95 % coverage is required, the scaling constant becomes√

5.991 = 2.448. An illustration of the error ellipse is shown
in Fig. 2.

Whereas the ellipse approach shows the uncertainty about
location in two orthogonal directions with respect to the point
estimate, a generalization to an arbitrary number of directions
can be obtained by mappingp(x, y) to a polar coordinate sys-
tem centered on the point estimate. In this method, the ori-



Figure 3: Uncertainty about the estimate represented by a
polar coordinate system placed at the point estimate. Cali-
bration points are marked by circles, colored depending on
p(x, y). The relative amount of uncertainty in each direction
away from the point estimate is visualized by the curve.

gin is placed at the point estimate and each calibration point
mapped to the polar coordinate systema(x, y), d(x, y), where
a(x, y) is the angle w.r.t. the point estimate andd(x, y) is
the distance. It is convenient to discretize botha(x, y) and
d(x, y), resulting in the case of two–dimensional space in a
set of segments that partition the space disjointly and exhaus-
tively.

We gain a discrete two–dimensional distribution
pp(a(x, y), d(x, y)) over the location space. The curve
visualizing a wanted contiguous portion of the total mass can
then be derived frompp(a(x, y), d(x, y)). Relative distances
from the origin are first determined for each sector based on
expected distances. The resulting shape describes relative
probability mass in each “direction” (sector). To represent
the spread of uncertainty as well, the curve can be scaled so
that it covers a desired fraction ofpp(a(x, y), d(x, y)). For a
screen shot of an implementation, see Fig. 3.

VI TRACKING

Location estimation accuracy can be greatly improved if
instead of a single signal measurement, a series of measure-
ments is available. Such a series of measurements allows
keeping track of the device’s location as a function of time,
also calledtracking. It is convenient to model the situation as
ahidden Markov model[11] illustrated in Fig. 4.

In a hidden Markov model, the variablesl1, l2, . . . corre-
spond to a sequence of states indexed by timet. In our loca-
tion estimation domain, the state correspond to location and
hence, the state sequence constitutes a trajectory of the lo-
cated device. The model also has a set of corresponding ob-
servation variables, denoted byo1, o2, . . .. Each observation
variable,ot, is assumed to be dependent only on the current
location, lt. In the model in Fig. 4 the location at timet is
dependent on the earlier locations only through the previous
location lt−1. Generalizations to higher order dependencies

are easily expressed in the general framework of graphical
probabilistic models [5, 10].

The power of the hidden Markov model stems from the
fact that inference in the model is effective. Given a series
of observations,o1, . . . , on, the probability distribution of the
location at any given time can be computed in orderO(n) op-
erations using the standard probabilistic machinery developed
for graphical models. Furthermore, maintaining the distribu-
tion of the current location, as observations are made one by
one, can be done iteratively such that for each new obser-
vation, only constant,O(1), time is needed. Other possible
inferences include tracking with ak steplag, i.e., maintain-
ing the distribution of the location variablelt−k instead of the
most recent location,lt. This is calledsmoothingas the evo-
lution of the location variablelt−k as a function of timet is
smoother than the evolution of the current locationlt. The
Viterbi algorithm gives the most likely trajectory given a se-
quence of observations, see [11].

In order to apply the hidden Markov model, one needs to
specify two kinds of probabilities. First, one needs to deter-
mine the conditional probability distribution of the observa-
tion variable given the state variable. This is exactly the aim
of calibration as discussed in Section II. Second, the con-
ditional distribution of each statest given the previous state
st−1, called the transition probability, has to be determined. A
continuous linear-Gaussian model for both transitions andob-
servations yields the well-knownKalman filterandsmoothing
equations [7].

In the discrete case, the probability distributions are repre-
sented as probability tables, which for transition probabilities
constitute anN × N matrix whereN equals the number of
possible locations. In the general case, the multiplicative fac-
tor in theO(n) andO(1) notation above for the computational
complexity of inference is at least as large asN2. Meth-
ods to reduce the computational complexity of tracking and
smoothing when using discrete-valued location include the
aforementioned clustering approach that reduces the number
of locationsN . In addition, a large proportion of state transi-
tion probabilities are usually extremely small or zero. In such
a case the transition probability matrix is sparse which can
be exploited to essentially reduce computational complexity.
One can also resort to approximative inference using, for in-
stance,particle filteringtechniques that try to focus computa-
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Figure 4: Hidden Markov model. State variables (white
nodes) are hidden (not observed). Observed variables are de-
noted by shaded nodes. Horizontal arrows correspond to tran-
sition probabilities between successive states. Verticalarrows
correspond to observation probabilities given state.



tion on areas of the state space where most of the probability
mass lies [6].

VII CONCLUSIONS

We showed how the probabilistic modelling approach gives
a unifying framework offering not only a theoretically solid
solution to the actual positioning problem, but also to many
related problems involving issues like calibration, active
learning, error estimation and tracking with history. Nev-
ertheless, having said that, it must be acknowledged that
in the real world things are always more complicated than
in the textbook examples, so that developing these theoret-
ically elegant solutions to a robust, off-the-shelf software
package like for example the Ekahau Positioning Engine (see
www.ekahau.com), requires several minor but practically im-
portant technical tricks the details of which are outside the
scope of this paper. However, we strongly believe that the
best way to build a working positioning system is to start with
a theoretically correct, “ideal” solution, and then approximate
that solution as accurately as possible given the pragmatic
constraints defined by the real-world environment.
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