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Fractional Factorial Designs in the Analysis of Categorical Data
abstract

In this article, first, fractional factorial designs are reviewed, with an emphasis on Box - Hunter

designs. Based on the Sparsity of Effects Principle, it is argued that, when higher order effects are

indeed unimportant in most hypotheses, fractional designs can be used without loss of information.

Fractional factorial designs can be specified such that the desired level of interactions can be

interpreted. Given a fixed amount of time and money, these designs allow one to include more

factors in a study than completely crossed designs, or to increase the sample. It is then shown that,

when the outcome variables are categorical, the same principles apply. It is also shown that higher

order effects need to be specified when the outcome variables are categorical. Parameter

interpretation is illustrated for a selection of fractional factorial designs.  The application of

fractional factorial designs is illustrated in both explanatory and exploratory contexts. In addition,

a data set is analyzed using the fractional and the complete information. It is shown that distortion

from only using the fractional information can be minimal.

Key words: fractional factorial design; categorical outcome variables; log-linear modeling;

Configural Frequency Analysis; parameter interpretability



It is important to note that interaction effects can still be used for a better error estimate.1

So, they are not a complete loss.

Fractional Factorial Designs in the Analysis of Categorical Data

Routine designs in experimental research with metric outcome data involve completely crossed

factors. Similarly, the analysis of categorical outcome data typically uses a complete cross-

classification of all factors or categorical independent variables. In either case, completely crossing

all factors can considerably limit the number of factors that can be analyzed simultaneously.

Consider, for example, 10 dichotomous factors. The complete crossing of these factors has 1,024

cells or treatment combinations. The analysis of these cells involves interactions up to the 10  order.th

There are three major issues with designs in which all factors or categorical variables are

completely crossed. The first issue involves cost and effort. Creating large numbers of treatment

combinations is complex and cost-intensive. The second issue concerns interpretation. Interactions

of very high order are hard to interpret. In addition, theories in the social and behavioral sciences

rarely imply hypotheses that can be tested only using interactions of high order. Third, interactions

of high order often fail to be significant and, even if they are significant, explain only small portions

of variance. Related to the third issue is the sparsity of effects principle that is discussed in the

contexts of linear models and design (e.g., Hamada & Wu, 1992; Kutner, Neter, Nachtsheim, & Li,

2004; Wu & Hamada, 2000). According to this principle, responses in most systems are driven

largely by a limited number of main effects and lower-order interactions. Higher-order interactions

are, therefore, usually relatively unimportant.

Because of the above issues and the sparsity of effects principle, full factorial designs are

often not only cost-intensive and wasteful when many factors are taken into account. They also yield

little information above and beyond designs that allow one to only consider main effects and lower

order interactions . Consider, for example, the cross-classification of six dichotomous factors. The1

analysis of this design comes with 1 df for the intercept, 6 df for the main effects, 15 df for the two-

way interactions, 20 df for the three-way interactions, 15 df for the four-way interactions, 6 df for

the five-way interactions, and 1 df for the six-way interaction. Now, suppose that only the intercept,

the main effects, and the first order interactions are of interest. In this case, two thirds of the degrees

of freedom in this design are used to estimate parameters that are not of interest and will not be
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interpreted.

Fractional factorial designs use only a subset of the treatment combinations, or cells, of a

completely crossed design. This subset can be chosen based on the sparsity of effects principle.

Specifically, fractional designs allow the data analyst to estimate the effects of interest. Based on the

sparsity of effects principle, these effects are assumed to be of low order. In fractional factorial

designs, higher order effects are either not estimable or confounded. More detail follows below.

In this article, we discuss the use of fractional factorial designs in the context of categorical

data analysis. Compared to the growing body of literature of fractional factorial designs for metric

outcome variables, the literature for such designs for categorical outcome variables is sparse, with

a focus on the two parameter single logistic regression model (cf. Salem, Rekab, & Whittaker, 2004).

In this article, we show how fractional factorial designs can be applied when the outcome variables

are categorical. We consider both explanatory and exploratory research. We argue that the selection

of a design is guided by (i) decisions concerning the effects that are of interest and (ii) the research

strategy. In the next section, we review concepts of fractional factorial designs. We focus on Box -

Hunter designs (Box, Hunter, & Hunter, 2005; Wu & Hamada, 2000), because they allow one to

specify designs based on the order of interactions that are of importance in a study. We discuss these

designs from the perspective of parameter interpretation. We then show that fractional factorial

designs can fruitfully be applied when the outcome variables are categorical, specifically using

explanatory log-linear modeling and exploratory Configural Frequency Analysis.

1. Fractional Factorial Designs

In this section, we first review the interpretation of parameters in the context of the Generalized

Linear Model. We then proceed to discussing fractional factorial designs.

1.1 Parameter Interpretation in the Context of the Generalized Linear Model

In this article, we focus on designs that can be analyzed using methods from the family of

Generalized Linear Models (Nelder & Wedderburn, 1972). The best known members of this family

are the General Linear Model (GLM; with members ANOVA and regression analysis; see Kutner

et al., 2004) and the General Log-Linear Model (GLLM; Bishop, Fienberg, & Holland, 1975; cf.
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Agresti, 2002; Vermunt, 2005).

The Generalized Linear Model contains three model components (cf., Agresti, 2002;

Skrondal & Rabe-Hesketh, 2004). The first component is a distribution function from the

exponential family. The second component is a linear predictor. Specifically, the Generalized Linear

Model relates, in its systematic component, a vector, ç, to the explanatory variables through a linear

relationship, or ç = X â, where X is the design matrix and â is the parameter vector. The third

element is the link function, g, such that the mean of the outcome variable, Y, E(Y) = ì, is linked to

ç by ç = g(ì). We obtain

In the GLM, the link function is the identity function, or g(ì) = ì. In the GLLM, the link function

is the natural logarithm, ln (ì). The mean in the GLM is typically a score on a metric scale. In the

GLLM, the mean is a probability. The design matrix, X, contains coding vectors that represent the

contrasts (effects) of interest. The design matrix can be created based on the same principles in both

models (Evers & Namboodiri, 1979; Mair & von Eye, 2007; von Eye, 1988).

In the remainder of this article, we focus on the design matrix, X. In the GLM, the OLS

estimator of the â vector is known to be â = (X’X) X’ì. In the GLLM, the relationship between the-1

parameters and the design matrix is ë = (X’X) X’ ln m, where we use ë instead of â only to indicate-1

that we are talking about the GLLM, and where ln m is the vector of the logarithms of the cell

frequencies. 

A first difference between the GLM and the GLLM is that, in the GLM, the â vector is

actually estimated using the above equation. In contrast, in the GLLM, this equation only represents

the relationship between the design matrix, the vector ln m, and the parameters (Bock, 1975; Mair

& von Eye, 2007; Rindskopf, 1990; von Eye, Schuster, & Rogers, 1998). Estimation is typically

performed using ML methods. A second difference between the two models is that, on the outcome

side, the GLM processes observed, metric scores, whereas the GLLM typically processes

frequencies. Still, parameter interpretation in the GLM is parallel to the interpretation in the GLLM.

A third difference between the GLM and the GLLM is related to the second, and important for the

application of fractional factorial designs in the analysis of categorical variables. Because the GLM

analyzes metric outcome variables, main effects already explain the relationships in pairs of
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variables. These are predictor and outcome variables. Two-way interactions qualify these main

effects with respect to a second predictor, and so forth. In contrast, main effects in the GLLM

describe the marginal frequencies of individual variables, regardless of whether they are predictor

or criterion variables. Two-way interactions describe relationships in pairs of variables. Therefore,

the GLLM needs two-way interactions to examine predictor-criterion relationships that are discussed

in the form of main effects in the GLM. This applies accordingly to higher order interactions. In

general, to discuss the same level of effect, the GLLM needs interactions of one order higher than

the GLM.

As was discussed by Mair and von Eye (2007), parameter interpretation involves inspection

of the meaning and the magnitude of estimates. In the present article, we focus on the meaning of

parameters. Specifically, we use the ANOVA-like, formal representation of parameters (Bishop et

al., 1975), and we use effects coding (Evers & Namboodiri, 1979; for discussions of effects coding

in comparison to dummy coding, see, e.g., Mair & von Eye, 2007; Rindskopf, 1990).

To illustrate the interpretation of parameters in a completely crossed factorial design in the

context of the GLLM, consider the three dichotomous variables, A, B, and C. Crossed, these three

variables span a contingency table with eight cells. Table 1 displays the design matrix for the

saturated model for this cross-classification. This model is

where the first ë represents the intercept, the single-superscripted ës represent the main effects, the

doubly-superscripted ës represent the two-way interactions, and the triple-superscripted ë represents

the three-way interaction.

The design matrix given in Table 1 has three characteristics that are important for the

following discussion. First, the matrix contains the effects for a completely crossed factorial design.

In the following discussion, we will encounter fractional factorial designs. Second, this design matrix

represents a saturated model. The fractional factorial designs discussed in the following sections can

be more parsimonious. Third, this design matrix is orthogonal in the sense that the inner products

of each pair of column vectors are zero. If this is the case, the product X’X will be a diagonal matrix

in which the diagonal elements are all equal to the number of cells, and its inverse will exist. In
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addition, parameter interpretation will be easy because each parameter will reflect the strength of the

effect specified in the corresponding vector of the design matrix. In the following discussion, we will

encounter situations in which X’X cannot be inverted.

Table 1: Design Matrix for Saturated Model for the 2 x 2 x 2 Cross-classification of the

Variables A, B, and C

Intercept

Main Effects Interactions

A B C AB AC BC ABC

1 1 1 1 1 1 1 1

1 1 1 -1 1 -1 -1 -1

1 1 -1 1 -1 1 -1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 1 1 -1 -1 1 -1

1 -1 1 -1 -1 1 -1 1

1 -1 -1 1 1 -1 -1 1

1 -1 -1 -1 1 1 1 -1

For the design matrix in Table 1, parameter interpretation is illustrated in Table 2 which

displays the formal representations for the eight parameters from the column vectors in Table 1.

The parameters of the model in Table 1 can be interpreted as intended (for the interpretation

of log-linear model parameters in terms of odds ratios, see Agresti, 2002). The sign pattern of the

log-transformed frequencies are the same as indicated in the design matrix, the cells carry equal

weights, and none of the cells was excluded when the parameter estimators were calculated.
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Table 2: Formal Representation of the Eight Parameters of the Model in Table 1

Parameter Representation

Intercept

Main Effect A

Main Effect B

Main Effect C

A x B Interaction

A x C Interaction

B x C Interaction

A x B x C Interaction

1.2 Fractional Factorial Designs

Optimal designs are specified with the goal of obtaining efficient parameter estimates and maximum

power of statistical tests, while minimizing cost (Berger, 2005; cf. Dodge, Fedorov, & Wynn, 1988;

Liski, Mandal, Shah, & Sinha, 2002; Pukelsheim, 2006). For example, optimal designs have been

devised to estimate kinetic model parameters in pharmacological research (e.g., Reverte, Dirion, &

Cabassud, 2006), to improve the accuracy of parameter estimates in research on the brain physiology

of rats (e.g., Verotta, Petrillo, La Regina, Rocchetti, & Tavani, 1988), to maximize the information

content of measured data while observing safety and operability constraints in process control

research (e.g., Bruwer & MacGregor, 2005), to discriminate between two or more rival regression
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models in applied statistics (e.g., Atkinson & Fedorov, 1975), or to compare the probabilities from

binomial data with misclassifications (Zelen & Haitovsky, 1991).

In most instances, additional criteria are set for optimal designs. Most frequently, statistical

criteria are used (Pukelsheim, 2006; Stigler, 1971) as well as parsimony. Using these criteria,

researchers attempt to maximize the information content of data and the precision of parameter

estimates while minimizing the effort or pecuniary cost of an experiment. These criteria are

optimized when the number of treatment combinations (cells) of a design (in the context of fractional

factorial designs, this number is called the number of runs) is minimized without compromising the

interpretability of the parameters of interest. Clearly, here, the sparsity of effects principle comes into

play again. If higher order effects are unimportant, the damage done by designing experiments that

do not allow one to estimate or interpret higher order effects is minimal. Similarly, if effects that are

unimportant are confounded, the damage that is caused by the confounds is unimportant also.

Fractional factorial designs are sample cases of optimal designs. They include only a fraction

of the cells of a completely crossed design. That is, they contain only ½, 1/4, or an even smaller

portion of the cells of a completely crossed design. The earliest fractional factorial design discussed

in the literature is the well known Latin Square (Euler, 1782). This design allows one to estimate

only the main effects of the factors. The outcome variable has to be metrical. In the context of

categorical variables analysis, this type of design is of lesser importance, because, as was discussed

above, main effects in categorical variables designs (i) are rarely interesting, and (ii) do not allow

one to describe predictor - criterion relationships. Therefore, latin squares and other designs that

focus on main effects (see Kutner et al., 2004) will not be discussed in more detail in this article.

The theory of fractional designs was developed originally by Finney (1945, 1946) and

Kempthorne (1947). Recent treatments include the text by Mukerjee and Wu (2006). Statistical

software packages such as Minitab, Statistica, and SYSTAT contain modules that allow one to create

fractional factorial designs (see also Kessels, Goos, & Vandebroek, 2006).

Resolution. A key characteristic of a fractional factorial design is its resolution, that is, the degree

to which main effects and interactions can be independently estimated and interpreted. In different

words, the resolution of a design indicates the order of effects that can be estimated and are not

confounded with each other. Box, Hunter, and Hunter (2005) describe the hierarchy of resolution
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of designs for metric outcome variables as follows. For designs with Resolution I, no effect is

independently estimable. Therefore, designs with Resolution I are not interesting. Similarly,

Resolution II is largely useless. Main effects would be confounded with other main effects. In the

analysis of metric outcome variables, the most useful fractional factorial designs have Resolution

III, IV, and V. At Resolution III, main effects can be estimated, but they are confounded with two-

way interactions. More interesting is often Resolution IV. At this level, main effects can be

estimated, and they are not confounded with any of the two-way interactions. Two-way interactions,

however, are confounded with each other.

Thus, Resolution IV designs are of interest in particular when researchers seek to determine

whether 2-way interactions are important at all, without specifying which interaction in particular.

It is important to note that designs at Resolution level IV will leave some of two-factor interactions

unconfounded. If the researchers are interested in these interactions in particular, Resolution IV can

be viable.

Moving up the resolution ladder, designs with Resolution V allow one to estimate main

effects and two-way interactions independently, and neither will be confounded with each other, but

possibly with higher order interactions. Three-way interactions can be estimated also. However, they

are confounded. Designs with Resolution V are needed to guarantee that two-factor interactions are

not confounded. Accordingly, designs with Resolution VI allow one to estimate three-way

interactions such that they are unconfounded with each other, but four-way interactions are

confounded with each other.

When categorical dependent variables are analyzed, one has to take into account that, in order

to estimate the same effect, interactions of one order higher are needed than in the analysis of metric

outcome variables. Specifically, designs with

C Resolution I, II, and III are largely non-interesting;

C Resolution level IV allows one to estimate main effects (in the form of two-way interactions)

that are confounded with three-way associations;

C Resolution level V allows one to estimate main effects and two-way interactions such that

particular interactions are not confounded with each other;

In general, in the analysis of categorical outcome variables, beginning with Resolution level V,
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effects of increasingly higher order can be estimated without confounds. Therefore, designs with

resolution levels V or higher are needed for the analysis of fractional factorial designs with

categorical dependent variables when predictor - criterion relationships are of interest. Application

examples of such designs are given in the following sections.

Clearly, as the resolution level increases, a design becomes more complex and requires more

factors and more runs. However, designs with higher resolution levels carry more information.

Fractional factorial designs allow researchers to balance the need for parsimony and the desire for

information by making decisions concerning the point from which higher order interactions carry

no additional useful, important, variance-explaining information.

Examples of fractional factorial designs. As one can imagine, the number of fractional factorial

design types is large. Here, we list just a selection of design types (for more types, see, e.g., Box et

al., 2005; Wu & Hamada, 2000). Practically all of the following design types can be generated using

numerical algorithms. Therefore, they are also called computer-aided designs.

The first type listed here includes homogeneous fractional factorial designs. In these designs,

all factors have the same number of levels. Accordingly, mixed-level fractional factorial designs

include factors that can have different numbers of levels.

A subtype of homogeneous fractional factorial designs is known as Box - Hunter designs

(Box, et al., 2005). As was indicated above, these designs use only a fraction of the completely

crossed design, for example, ½, 1/4, or an even smaller fraction of the total number of runs. The

number of factor levels in Box - Hunter designs is 2, and the number of runs is a power of 2. If each

factor has three levels, Box - Behnken designs (Box & Behnken, 1960) can be considered. These

designs do not use those treatment combinations for which all factors assume extreme values (e.g.,

treatment combinations 3-3-3 or 1-1-1). Whereas Box - Hunter designs can be considered for

nominal-level factors, Box - Behnken designs require factors that are scaled at least at the ordinal

scale level. The number of runs in Box - Behnken designs is a multiple of 3.

Plackett - Burman designs (1946; Ledolter & Swersey, 2007), also called screening designs,

operate at resolution level III. They are very economical in that the number of runs can be very small,

when the dependent variable is metrical. For example, up to 11 dichotomous factors can be studied

using only 12 runs; up to 19 factors can be studied using 20 runs, and up to 23 factors can be studied
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using 24 runs. The number of runs in Plackett - Burman designs is a multiple of the number of factor

levels. These designs are used to estimate main effects. However, one has to assume that two-way

interactions are absent. These designs are also called saturated main effect designs, because all

available degrees of freedom go into the estimation of main effects. These designs are used to

determine the factors that may have effects on the outcome variable.

Plackett-Burman designs will simplify to two-level fractional factorial designs if the number

of runs is 2 . For example, for 8, 16, or 32 runs, they are the same as two-level fractional factorialk

designs. They are unique for 12, 20, 24, etc. runs.

To increase the resolution of Plackett - Burman designs, the use of foldover designs has been

proposed. These designs result from reversing the signs of all scores in the design matrix, and

appending the thus mirrored design to the original one. The resulting design allows one to estimate

all main effects such that they are no longer confounded with two-way interactions, at the expense

of doubling the number of runs.

As was noted above, a main effect model in the context of the GLM relates a predictor to a

criterion. In contrast, in the GLLM, main effects allow statements about the univariate marginal

distribution of a variable. To describe the relationship between a predictor and a criterion variable,

a two-way interaction is needed. Therefore, standard Plackett - Burman designs are of lesser

importance in the context of categorical variable analysis. To create a screening design for

categorical outcome variables, resolution at level IV is needed.

Taguchi designs (1987) are orthogonal. Thus, they yield independent estimates of effects and

minimized variances. Two-, three-, and mixed-level fractional factorial designs can be specified.

Standard Taguchi designs are often large screening designs that allow one to estimate a maximum

of main effects from a minimum number of runs, for metrical outcome variables. The number of

factor levels does not need to be a constant. More elaborate designs have been developed (see, e.g.,

Bisgaard & Steinberg, 1997).

Generating fractional designs. In this section, we present an algorithmic description of how fractional

factorial designs can be generated. We focus on Box - Hunter designs (see Box et al., 2005).

Consider the number of variables, p, and the number of runs, 2 , where p - k is the number of factorsp-k

whose main effects can be coded as usual, in a completely crossed design. The main effects of the
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remaining k factors have to be coded differently, because, in fractional factorial designs, the number

of rows in the design matrix is reduced by at least 50% when compared to a completely crossed

design. Then, a Box - Hunter design and the corresponding design matrix can be generated as

follows (remember that all factors have 2 levels):

1. For the first p - k factors, create a design matrix with main effects as in a completely crossed

design with 2  cells (= rows in the design matrix).p-k

2. For Factor p - k + i, create the main effect as if it were the interaction among the factors in

the first of the combinations of the first p - k factors. In different

words, the remaining k main effects are expressed in terms of the (p - k)-way interactions of

those factors that can be coded as in (p - k)-factorial design. Thus, confounds will exist at

least at the level of the (p - k)-way interactions.

3. Repeat Step 2 a total of k times, until main effects are created for all p factors.

4. Generate two-way interactions as in a standard ANOVA design, that is, by element-wise

multiplication of vector elements from two different factors.

5. Generate three-way interactions also as in a standard ANOVA design, that is, by element-

wise multiplication of vector elements from three different factors.

6. Repeat generating interactions until either the design is saturated or all unconfounded and

important interactions are included in the design matrix.

It is important to realize that the number of designs that can be created this way is p!/(p - k)!. This

number results from selecting different factors that are coded as in a completely crossed design with

p - k cells, and changing their order. This process is also called randomizing the runs. In different

words, for fractional designs, alternatives often exist at the same resolution level (this aspect will we

taken up again in the discussion).

1.3 Examples of Designs and Parameter Interpretation

In this section, we present a number of sample fractional factorial designs, with an emphasis on Box

- Hunter designs. For each of the designs, we discuss the savings in the number of runs, in
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comparison to the corresponding completely crossed design, the resolution, and, most importantly,

the interpretability of parameters. Two perspectives will be taken. In the first, we seek to create

parsimonious designs, mostly based on resolution levels (Examples 1 and 3). In the second, we seek

to create parsimonious designs with a specific method of analysis (logistic regression) in mind

(Example 4). We also show an example in which Box - Hunter and Plackett - Burman designs

coincide (Example 2).

Example 1: Box - Hunter Design with 8 Runs from 4 Factors; Resolution = III. We begin with a Box

- Hunter design in which we study the four dichotomous factors A, B, C, and D. The complete cross-

classification of these factors has 2  = 16 cells. We decide to create a design that has 50% fewer4

cells, that is, eight runs. This design appears in the Intercept and Main Effect panels of Table 3.

Table 3: Box - Hunter Design with 8 Runs from 4 Factors; Resolution = III; All Interactions

Included

Int. Main Effects 2-Way Interactions 3-Way Interactions 4-Way

I A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1

1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1

1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1

1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1

1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The matrix in Table 3 has eight rows (runs) and 16 columns. Thus, it is bound to be non-orthogonal.

The main effect vectors are pairwise orthogonal. However, the following confounds are in the

matrix:

C Interaction AD is confounded with Interaction BC: AD = BC
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C Interaction AC is confounded with Interaction BD: AC = BD

C Interaction AB is confounded with Interaction CD: AB = CD

C Main effect D is confounded with Interaction ABC: D = ABC

C Main effect C is confounded with Interaction ABD: C = ABD

C Main effect B is confounded with Interaction ACD: B = ACD

C Main effect A is confounded with Interaction BCD: A = BCD; and

C The Intercept is confounded with Interaction ABCD: I = ABCD.

Because of these confounds, the application of this design requires the assumption that all

three- and four-way interactions are zero. In addition, the model cannot be fitted when all two-way

interactions are included because X would not be orthogonal, and X’X would have no inverse. There

would be more unknowns (parameters) than equations (rows in X). This design has a resolution of

III, that is, two-way interactions are confounded with each other. When estimating parameters, only

up to three of the six two-way interactions can be included. When the outcome variable is

categorical, this design is saturated. The above list of confounds shows which of the two-way

interactions can be estimated so that they are not confounded. If any of the two-way interactions

turns out significant, all one knows is that either this or the corresponding confounded interaction,

or both, are important. Which of the two-way interactions exists, remains unknown until a design

with higher resolution is used.

Parameter interpretation seems straightforward if, for instance, only the first three of the six

two-way interactions are included in the model (any combination of mutually unconfounded two-

way interactions can be used). The formal representation of the seven effect parameters appears in

Table 4 (intercept omitted).

Although parameter interpretation seems straightforward, it must not be forgotten that the

three two-way interactions that are included in the design matrix are confounded with the remaining

three two-way interactions, and that analysis requires the assumption that all higher-order

interactions explain only unimportant portions of the distribution in the 8-run table.
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Table 4: Formal Representation of the First Seven Effect Parameters of the Model in Table

3 (Intercept Omitted)

Parameter Representation

Main Effect A

Main Effect B

Main Effect C

Main Effect D

AB Interaction

AC Interaction

AD Interaction

Example 2: Plackett - Burman Design with 4 Runs from 3 Factors; Resolution = III. In many cases,

in particular when the number of runs is small and the resolution level is the same, designs that were

created using different models coincide. Consider the Plackett - Burman design with 4 factors and

4 runs (Resolution = III) in the Intercept and Main Effect panels of Table 5. This design is identical

to a Box - Hunter design with 3 factors and 4 runs.
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Table 5: Plackett - Burman design with 4 Runs from 3 Factors; Resolution = III; All

Interactions Included

Intercept Main Effects 2-Way Interactions 3-Way

I A B C AB AC BC ABC

1 1 1 -1 1 -1 -1 -1

1 1 -1 1 -1 1 -1 -1

1 -1 1 1 -1 -1 1 -1

1 -1 -1 -1 1 1 1 -1

Here again, the savings, measured in the number of runs, over the completely crossed design is 50%.

The main effect vectors are mutually orthogonal. However, there are confounds with the 2- and the

3-way interactions. Specifically,

C A = -BC

C B = -AC

C C = -AB, and

C Intercept = -ABC.

Parameters for this model cannot be estimated unless confounded vectors are eliminated from

the design matrix. Typically, the vectors for the interactions are taken out, reflecting the assumption

that only the main effects are of interest (which is rarely the case in categorical data analysis). One

has to make the assumption that none of the interactions explains important aspects of the data.

Example 3: Box - Hunter Design with 16 Runs from 5 Factors; Resolution = V. Naturally, higher

levels of resolution can be achieved only with more factors. The following example presents a Box -

Hunter design in which 16 runs are realized for 5 factors. This design has a resolution level of V.

Table 6 displays the design matrix for the main effects.



fractional designs, categorical variables; p. 18

Table 6: Main Effects in Box - Hunter Design with 16 Runs from 5 Factors; Resolution = V;

Intercept Omitted

Factor

A B C D E

-1 -1 -1 -1 1

-1 -1 -1 1 -1

-1 -1 1 -1 -1

-1 -1 1 1 1

-1 1 -1 -1 -1

-1 1 -1 1 1

-1 1 1 -1 1

-1 1 1 1 -1

1 -1 -1 -1 -1

1 -1 -1 1 1

1 -1 1 -1 1

1 -1 1 1 -1

1 1 -1 -1 1

1 1 -1 1 -1

1 1 1 -1 -1

1 1 1 1 1

The confounds in this design are:

C A = BCDE

C C = ABDE

C D = ABCE

C E = ABCD

C AB = CDE
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C AC = BDE

C AD = BCE

C AE = BCD

C BC = ADE

C BD = ACE

C BE = ACE

C CD = ABD

C CE = ABE

C DE = ABC, and

C Intercept = ABCDE.

This confound pattern shows again how the sparsity of effects principle can be translated into

a parsimonious design. If indeed three- and four-way effects are unimportant, then this design allows

one to estimate main effects and two-way interactions that are mutually independent. In addition to

the vector for the intercept, the design matrix will then include only the five vectors for the main

effects and the 10 vectors for the two-way interactions. When the outcome variable is categorical,

this model is saturated. Only if interactions are either set equal or taken out of the model, a non-

saturated model will result.

Models with a resolution level of V are of interest, when the relationships between pairs of

variables are targeted. Methods of factor analysis, latent variables analysis, multidimensional scaling,

cluster analysis, or correspondence analysis often start from similarity matrices that only reflect the

relationships in pairs of variables. Models with a resolution level of V can also be of interest in

logistic regression. This is illustrated in Example 4, below.

To illustrate the confounds, consider the researcher who first estimates the model for the

current design that includes all 10 two-way interactions. This model can be estimated, and the

parameters can be interpreted as indicated in the design matrix. For example, the interaction between

variables D and E is estimated using the vector {-1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1}. The

resulting parameter has the interpretation
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In this equation, a subscript of 1 corresponds to a score of 1 in the design matrix. A subscript of 2

corresponds to a score of -1. Now, in a follow-up step, the same researcher decides to estimate the

hierarchical model that only includes the two-way interactions AB, AC, AD, AE, BC, BD, and BE.

The interactions CD, CE, and DE are replaced by the three-way interactions ABC, ABD, and ABE.

This model can also be estimated. However, because of DE = ABC, the three-way interaction, ABC,

comes with exactly the same interpretation as the substituted two-way interaction DE, and ë  = ë .ABC DE

This applies accordingly to ë  and ë  because ë  = ë  and ë  = ë . Thus, because of theseCD DE DE ABE CD ABD

confounds, nothing is gained by replacing the two-way interactions by three-way interactions. In

different words, substituting, in this type of design, a two-way interaction by its confounded three-

way interaction makes sense only if the assumption is entertained that the two-way interaction is

zero.

Designs with resolution level V are positioned, in the analysis of categorical outcome

variables, one resolution level above Plackett - Burman designs in the analysis of metric variables.

Therefore, higher order interactions can be examined than with screening designs. Specifically, at

resolution level V, one is able to examine all pairwise predictor - criterion relationships.

Interestingly, when the categorical variables in such a design are grouped into predictors and criteria,

the model is not necessarily saturated. If one assumes that the p predictors are independent of each

other and the q criterion variables are also independent of each other, the number of interactions that

need to be part of the model is pq. This number is always less than or equal to the number

of interactions for the model in which the distinction between predictors and criteria is not

made, and all pairwise interactions are estimated. The remaining degrees of freedom can be used to

make statements about model fit, or to include covariates.

Example 4: Box - Hunter Designs for Logistic Regression. Instead of creating designs based on

resolution, we now create a design based on goal of analysis. This goal determines the required
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resolution. Consider a logistic regression model (Agresti, 2002; von Eye, Mair, & Bogat, 2005).

Standard logistic regression models make no assumptions about predictor interactions. Therefore,

these models are typically saturated in the predictors, and the standard design is completely crossed

(if all predictors are categorical). The models typically focus on bivariate predictor - criterion

relationships. To examine these relationships, two - way interactions are estimated. Higher order

interactions are often deemed unimportant. In these cases, a fractional factorial design as the one

shown in Example 3 will do the job, at a savings of 50% of the cells.

To illustrate, suppose that Variable A in Example 3 is the criterion variable in a logistic

regression model, and variables B, C, D, and E are the predictors. If only the predictive power of

individual predictors is of interest, the logistic regression model can be cast in the form of the

following hierarchical log-linear model,

where m is the array of model frequencies, the ë are the model parameters, and the superscripts

indicate the interacting variables. All lower order terms are implied. If the three-way interactions

among pairs of predictors and the criterion are also of interest, the model becomes

and if the four-way interactions among predictors and the criterion are of interest, the model becomes

If the five-way interaction is included, the model becomes saturated. Based on the sparsity of effects

principle, interactions become less and less interesting as their order increases. If this applies to the

interactions among the predictors also, the first of these logistic regression models can be made more

parsimonious by setting the four- and the three-way interactions among the predictors to zero. If (1)

only the two-way interactions between predictors and the criterion are considered, and (2) the three

and the four-way interactions among predictors are set to zero, we obtain the hierarchical model

If (1) only the two-way interactions among predictors and the criterion are considered, and (2) only

the four-way interaction is set to zero, we obtain the hierarchical model
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Other models can be specified in which both the order of interactions that involve predictors and

criteria and the interactions among predictors are varied.

From the perspective of creating parsimonious designs, we now ask whether logistic

regression parameters can be estimated using fractional factorial designs. The model in Table 6

operates at resolution level V. It thus allows one to estimate main effects and all two-way

interactions such that they are not confounded with each other. Thus, if we set all three-, four-, and

five-way interactions to zero, the second last of the above logistic regression models, that is, the one

with only two-way interactions can be estimated using the Box - Hunter design in Table 6. To

estimate the logistic regression model that includes three-way interactions, a resolution level of VI

is needed. A Box - Hunter design that allows one to estimate such a model requires 6 variables and

32 runs. The completely crossed factorial design for the same six variables would require 64 runs.

For this number of runs, a Box - Hunter design for seven variables with a resolution level of VII can

be created, or a screening design with 11 factors with a resolution level of IV. This last design would

represent a savings of 96.88% over the completely crossed design which has 2028 cells.

2. Fractional Factorial Designs in Explanatory and Exploratory Research

Explanatory and exploratory research differ in the degree to which explicit hypotheses exist. These

two research strategies can be seen as the two poles of a spectrum. In purely explanatory research,

hypotheses are derived from theory or prior results. In the multivariate case, these hypotheses

typically link variables in the form of associations, predictions, or cause - effect relationships.

Similarly, hypotheses may exist that group variables, occasions, or individuals. On the other pole,

no hypotheses are specified that link variables, occasions, or individuals. The implications of these

two research strategies for the selection of designs are quite different.

In explanatory research, a solid knowledge base exists that allows researchers to precisely

specify the hypotheses under study. These hypotheses concern parameters that can be estimated using

a particular study design. By implication, the remaining parameters are either not interesting, not
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Meehl’s paradox is the term for the phenomenon that the information in a table is2

entirely carried by the highest possible interaction. For examples, see von Eye (2002).

important, or part of the exploratory component of the study. To cover the explanatory component,

fractional factorial designs can be specified that allow the researchers to estimate the parameters of

interest. In the typical case, interactions are interesting up to a pre-specified order. This order

corresponds to a resolution level J for metric outcome variables, and J + 1 for categorical outcome

variables.

The first benefit from specifying designs based on resolution is that the data collection part

of the study becomes less costly, financially as well as in units of effort and time. The second benefit

is that more complex studies can be undertaken, studies that include far more factors, at costs that

are at the level of far simpler studies that use completely crossed designs instead of fractional

factorial designs. A third benefit is that the precision of parameter estimation will not suffer.

In exploratory research, various scenarios are conceivable. If researchers seek to determine

whether factors have, from a bivariate perspective, effects on some outcome variable at all, screening

designs can be considered. These designs require resolution levels III for metric and IV for

categorical outcome variables. In different contexts, researchers aim at determining where, in a table

the action is, or which variables interact. In these cases, the sparsity of effects principle is less

capable of guiding the decision concerning the resolution of a design. Therefore, researchers will

strive for the highest possible resolution which still may exclude the interactions of the highest order,

if they are deemed unimportant a priori. However, if phenomena such as Meehl’s paradox  (1950)2

cannot be excluded, fractional designs cannot be recommended. In these cases, setting higher order

interactions to zero would make one miss the action in a table.

3. Data Examples

In this section, we present two data examples. In the first example, a model is estimated in which

a cross-time association structure of Medicaid reception is estimated, and it is asked whether

Medicaid reception is related to depression (see von Eye & Bogat, 2006). In the second example, an

exploratory analysis is performed on the same data. In each example, we compare results from
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fractional and from completely crossed designs.

Example 1: Medicaid and Depression. In a study on the effects of social welfare on mental health

in battered women, von Eye and Bogat (2006; cf. Levendosky, Bogat, Davidson, & von Eye, 2000)

asked whether, longitudinally, depression is linked to social welfare as measured by food stamp and

Medicaid reception. Data from 6 observation points are available. The first observation point was

in the last trimester of the women’s pregnancy, and the second was 3 months after birth. The second

observation was performed to collect information about the child. In the following analyses, we

focus on the data from the third and the following three observation points. For the following

illustration of the application of fractional factorial designs in the analysis of categorical outcome

variables, we use the following measures:

C Medicaid received at observation points 3, 4, 5, and 6 (M3, M4, M5, and M6; all scored as

1 = did not receive and 2 = did receive); and

C Depression at observation point 6 (D6; scored as 1 = below the cutoff for clinical-level

depression and 2 = above cutoff; depression was measured using the BDI; Beck, Ward,

Mendelson, Mock, & Erbaugh, 1961).

The data were collected in one-year intervals. Crossed, these 5 variables span a contingency

table with 2  = 32 cells. For the following analyses, we hypothesize that5

(1) Medicaid reception predicts itself over time; and

(2) At Time 6, Medicaid reception predicts depression.

This model is depicted in Figure 1.

Figure 1: Medicaid and Depression
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The model in Figure 1 shows that only two-way interactions are needed to test the hypothesized

relationships. The hierarchical log-linear model that corresponds to this graphical model is

This model can be enriched by also testing whether Medicaid reception at observation points 3, 4,

and 5 are predictive of depression at Time 6. The enriched model is

where the new interactions are listed in the second row of the equation. The interactions tested in the

enriched model will also be of an order not higher than two-way. An analysis of this model based

on all 32 cells of the complete cross-classification comes with 32 degrees of freedom. Of these, 16,

that is, 50%, are needed for the 3-, 5-, and 5-way interactions that are not of interest when the model

depicted in Figure 1 or the enriched model are estimated. Therefore, there is no need to screen the

women in all 64 cells of the design. Instead, a more parsimonious model will allow us to make a

decision concerning the parameters in these models as well as about overall model fit.

A fractional factorial model that allows one to estimate all 2-way interactions so that they are

not confounded with main effects or each other requires level V resolution. The Box - Hunter design

given in Table 6 has these characteristics. Therefore, we employ, for the following analyses, this

design. Table 7 shows the design matrix with all bivariate interactions that are part of the model in

Figure 1 and the enriched model. The design has 16 runs. This represents a savings of 50% over the

completely crossed design.

Based on the design matrix in Table 7, we now estimate three models. The first is the main

effect model. We call it Model 1. It is used as a reference. The second, called Model 2, is the model

depicted in Figure 1, and the third, called Model 3, is the enriched model. Table 8 shows the overall

goodness-of-fit LR-X  values for these models, and the results of the model comparisons.2
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Table 7: Box - Hunter Design with 16 Runs from 5 Factors; Resolution = V; Intercept

Omitted; Interactions Included for the Model in Figure 1 and the Enriched Model;

Cell Frequencies in Last Column

Main Effects Two-Way Interactions

M 3 M 4 M 5 M 6 D6 M 3 x

M 4

M 4 x

M 5

M 5 x

M 6

M 6 x

D6

M 3 x

D6

M 4 x

D6

M 5 x

D6

Freq.

-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 45

-1 -1 -1 1 -1 1 1 -1 -1 1 1 1 0

-1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 0

-1 -1 1 1 1 1 -1 1 1 -1 -1 1 2

-1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 0

-1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 0

-1 1 1 -1 1 -1 1 -1 -1 -1 1 1 1

-1 1 1 1 -1 -1 1 1 -1 1 -1 -1 1

1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 0

1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1

1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 2

1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1

1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 7

1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 0

1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 1

1 1 1 1 1 1 1 1 1 1 1 1 55

The results in Table 8 suggest that the main effect model (Model 1) does a poor job

describing the data. In contrast, the model depicted in Figure 1 (Model 2) is not only significantly

better than Model 1, it also describes the data very well. In fact, its LR-X  is so small that it is2

impossible to improve this model significantly. This is reflected by the results for the enriched model

(Model 3). We thus retain Model 2. In Model 3, none of the additional parameters is significant.
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These effects would have suggested that depression at Time 6 can also be predicted from Medicaid

reception at the earlier years.

Table 8: Estimation and Comparison of Three Models of the Effects of Medicaid Reception

on Depression; Results Based on the Fractional Factorial Design in Table 7

1 2Model LR-X ; df; p Ä  LR-X ; df; p Ä  LR-X ; df; p2 2 2

1 218.16; 10; < 0.01

2 2.37; 6; 0.88 215.79; 4; < 0.01

3 0.08; 3; 0.99 218.08; 7; < 0.01 2.29; 3; 0.51

Table 9: Main Effect and Interaction Parameters for the Model in Figure 1 (Model 2)

Parameter Estimate z CI

M3 -1.87 -3.23 -3.01 to -0.73

M3 x M4 0.97 2.40  0.18 to  1.77

M4 1.13 2.28  0.16 to  2.11

M4 x M5 1.30 6.29  0.89 to 1.70

M5 -1.65 -2.45 -2.97 to -0.33

M5 x M6 1.03 2.79  0.31 to  1.75

M6 0.16 0.21 -1.33 to 1.65

M6 x D6 -1.00 -2.44 -1.81 to -0.20

D6 1.33 3.88  0.66 to  2.00

Table 9 shows that each of the interaction parameters is significant. We conclude that the model in

Figure 1 describes the data well, both overall and in its individual parameters.

This conclusion is based on a fractional factorial design. Clearly, there is the temptation to

check whether this design has led to a distortion of the relationships in the data. In the present

example, we are unable resist this temptation because we possess the complete data matrix. This
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matrix is given in the Appendix. We now perform the same analyses as in Table 8 with the complete

cross-classification. Table 10 shows the overall goodness-of-fit LR-X  and the results of the model2

comparisons.

Table 10: Estimation and Comparison of Three Models of the Effects of Medicaid Reception

on Depression; Results Based on Completely Crossed Factors

1 2Model LR-X ; df; p Ä  LR-X ; df; p Ä  LR-X ; df; p2 2 2

1 292.16; 26; < 0.01

2 34.81; 22; 0.04 257.35; 4; < 0.01

3 29.96; 19; 0.05 262.20; 7; < 0.01 4.85; 3; 0.43

The results in Table 10 are similar to the ones in Table 8. The main effect model does not describe

the data well. The model depicted in Figure 1 is a significant improvement, and Model 3 does not

improve Model 2 significantly. There is one notable difference between the solutions. Model 2 is not

as close to the data when the complete cross-classification is used as when the fractional design is

used. However, as before, all interaction parameters in Model 2 are significant (not shown here). In

addition, the parameters for the associations between Medicaid Reception during the earlier years

and depression at Time 6 are, again, not significant in Model 3. We thus conclude that the fractional

design reflects the data structure well. There are no interactions higher than first order. Specifically,

the null hypothesis that the three-way effects in the completely crossed table are zero comes with a

LR-X  = 6.84 (df = 10; p = 0.74). For the four-way effects, we calculate LR-X  = 2.06 (df = 5; p =2 2

0.84), and for the five-way effect, we calculate LR-X  = 0.001 (df = 1; p = 0.99). These results can2

be viewed as a sample case of the sparsity of effects principle.

Example 2: Configural Frequency Analysis of the Medicaid Data. Configural Frequency Analysis

(CFA; Lienert & Krauth, 1975; von Eye, 2002; von Eye & Gutiérrez Peña, 2004) allows researchers

to ask whether patterns of categorical variables, also called configurations, were observed more often

than, less often than, or as often as expected with reference to some chance model, also called base

imodel. In brief, consider the observed frequency of Cell i, m , and the corresponding expected
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frequency  estimated under some chance model where i goes over all cells in the table. Then,

iCFA tests, for each cell, the null hypothesis that E[m ] = . If Cell i constitutes a CFA type, this null

ihypothesis is rejected because E[m ] > . If Cell i constitutes a CFA antitype, the null hypothesis

i iis rejected because E[m ] < . If E[m ] =  , the null hypothesis prevails, and Cell i is said to

constitute neither a type nor an antitype. In different words, types occur more frequently than

expected by chance, and antitypes occur less frequently than expected by chance.

CFA types and antitypes can occur only if the base model is rejected. Only then,

discrepancies between observed and estimated expected cell frequencies can be large enough to be

significant even when the significance threshold á is protected. CFA examines either all or a

selection of individuals cells in a table. It is the goal of CFA to identify and interpret those cells that

contradict the base model. Therefore, model fit is not aimed at. However, the selection of a base

model is of importance, because types and antitypes are interpreted with reference to a particular

base model. Different base models lead to different interpretations of types and antitypes.

Several groups of base models have been described (von Eye, 2004). Examples include base

models that reflect distributional assumptions, models that use a priori probabilities, and log-linear

base models. In the present context, we use log-linear base models. These models reflect all effects

that a researcher is not interested in. If types and antitypes emerge, those effects that the researcher

is interested in, must exist. For example, if the base model takes only main effects into account (first

order CFA), types and antitypes reflect interactions. Specifically, types and antitypes indicate where,

in the table, interactions lead to the observation of more or fewer cases than expected. Another

example is Prediction CFA. The base model for this variant of CFA is (1) saturated in the predictors,

(2) saturated in the criteria, but (3) proposes independence of the predictors from the criteria. If,

under this base model, types and antitypes emerge, they reflect, by necessity, predictor - criteria

relationships.

In the following paragraphs, we report four applications of CFA to the Medicaid data. These

include the first applications of CFA to fractional factorial designs reported in the literature.

1. First order CFA of the Medicaid data created for the fractional factorial design application

in Table 7. Only main effects are included in the base model. If types and antitypes emerge,
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they must be caused by two-way interactions. The model is

2. First order CFA of the Medicaid data created for the completely crossed design in the

appendix. Again, only main effects are included in the model. However, because higher order

effects can, in principle exist, types and antitypes can be caused by interactions of any order.

From the results in Table 10, we concluded that there are no higher order interactions in this

data set. Therefore, the type/antitype patterns are expected to be very similar in both analyses.

The base model for this analysis is the same as the base model for the first analysis.

3. The first two applications use straight main effect base models. None of the interactions is

included. Therefore, in principle, types and antitypes can emerge from those two-way

interactions that link earlier Medicaid reception with depression at Time 6, or from those

two-way interactions among the Medicaid scores that were not included in the model.

Specifically, these are the interactions M3 x M5, M3 x M6, M4 x M6, M3 x D6, M4 x D6,

and M5 x D6. The good fit of Model 2 in Table 8 suggests that none of these terms is needed

to explain the Medicaid data in the fractional design. Here, we focus on the long-term

prediction of depression, and we ask whether including the interactions M3 x D6, M4 x D6,

and M5 x D6 in the base model alters the pattern of types and antitypes that may result from

the first CFA. Therefore, we now include these interactions in the base model. If types and

antitypes still emerge, they indicate the relationships among the variables that are depicted

in Figure 1, and, possibly, additional cross-time relationships among the Medicaid scores (cf.

von Eye & Mair’s, 2008, approach to explaining types and antitypes). The model thus

becomes

4. Same as CFA 3, just from the completely crossed design.

CFA 1: First Order CFA from Fractional Factorial Design. For the base model in this application,

we use the design matrix that is displayed in the main effects panel of Table 7. To perform the cell-

wise tests, we use the z-test, and we protect á using the Holland-Copenhaver procedure (1987). Table

11 displays the results of this CFA.
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Table 11: First Order CFA of Fractional Factorial Design for Medicaid Data

  Configurationa

    M3M4M5M6D6     m               z         p       Type/Antitype?

      11111       45     9.285   11.7205    .000000    Type

      11122        0      .263    -.5132    .303913

      11212        0      .293    -.5410    .294242

      11221        2    11.776   -2.8489    .002194    Antitype

      12112        0      .314    -.5603    .287631

      12121        0    12.631   -3.5540    .000190    Antitype

      12211        1    14.039   -3.4800    .000251    Antitype

      12222        1      .398     .9537    .170110

      21112        0      .337    -.5804    .280815

      21121        1    13.553   -3.4099    .000325    Antitype

      21211        2    15.065   -3.3660    .000381    Antitype

      21222        1      .427     .8762    .190459

      22111        7    16.158   -2.2782    .011356

      22122        0      .458    -.6770    .249217

      22212        1      .509     .6875    .245899

      22221       55    20.492    7.6229    .000000    Type

A 1 in the configuration labels corresponds to a 1 in the design matrix; a 2 corresponds to a -1.
a

The results in Table 11 show that CFA identified 2 types and 5 antitypes. The first type, constituted

by Configuration 11111 indicates that more women than expected with reference to the base model

exhibit below-threshold depression when they never received Medicaid, over the entire observation

period. The second type, constituted by Configuration 22221, shows that more women than expected

who did receive Medicaid over the entire observation period show also below-threshold depression.

These two types seem to suggest that Medicaid reception is unrelated to depression (cf. von Eye &

Bogat, 2006).

However, the 5 antitypes show that there is a relationship. The first antitype, constituted by

Configuration 11221, suggests that fewer women than expected show below-threshold, subclinical
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depression when they were placed on Medicaid reception between Time 4 and Time 5. Similarly,

fewer women than expected show subclinical level depression when they received Medicaid only

at Times 4 and 6 (Antitype 12121). The same applies when Medicaid was received only at Times

4 and 5 (Antitype 12211). The remaining antitypes (21121 and21211) also show that fewer than

expected women who experience an unstable pattern of Medicaid reception are able to remain at

below-threshold depression. We thus conclude that stability in Medicaid reception seems to be

linked to subclinical levels of depression. In contrast, unstable patterns of Medicaid reception tend

to be linked to a reduced probability of subclinical depression.

CFA 2: First Order CFA from Completely Crossed Design. First order CFA of the table from the

completely crossed factors of the Medicaid data also used the z-test and the Holland-Copenhaver

procedure. In addition, the log-linear base model was the same as before. However, the design matrix

was that of a completely crossed design instead of a fractional design. If the fractional design does

not lead to a distortion of the relationships in the table, results of the two analyses should be largely

the same, even at the level of individual cells. Indeed, the results (not shown here) show strong

overlap with the results from the fractional design. Specifically, Types 11111 and 22221 surfaced

again. In addition, each of the configurations that constituted antitypes in the first analysis was,

again, observed less frequently than expected.

However, the results from the fully crossed design differ from the ones for the fractional

design in interesting ways. Specifically, none of the configurations that constituted antitypes differed

from expectation strongly enough to constitute antitypes again, under the stricter levels of á

protection which result for the larger table. Therefore, we asked whether they constitute a composite

antitype (see von Eye, 2002). The Stouffer Z = -3.59 (p = 0.0002) suggests that this is the case. We,

therefore, conclude that this difference between the two analyses may be due to the stricter á levels

that result from á protection in larger tables. More important is that a new type emerged. It is

constituted by Configuration 11112, indicating that more women than expected show clinical level

depression in the absence of Medicaid reception over the entire observation period.

Types 11111 and 11112 differ only in the last digit. Therefore, they can be aggregated by

11111

11112
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1111.,

to form the aggregated type 1111., where the dot indicates the variable aggregated over. The

aggregated type suggests that more women than expected under the assumption of variable

independence did not receive Medicaid at all. Interestingly, this pattern seems to contradict the

conclusion that Pattern 1111 is associated with sub-threshold depression. Clearly, this result is an

example that shows that CFA can lead to a more detailed and differing description of the

relationships in data than log-linear modeling.

The same result was not found for Type 22221. Thus, the statement concerning this

relationship does not need to be qualified based on the results from the completely crossed design.

CFA 3: Long-term Prediction of Depression: CFA from Fractional Factorial Design. In the following

sample application, we ask whether those of the six interactions that would suggest long-term

predictability of depression from Medicaid reception play indeed no role in the detection of types

and antitypes in the Medicaid data. These are the interactions M3 x D6, M4 x D6, and M5 x D6.

None of these are the interactions that were needed to explain the data (see Model 2 in Table 8).

Another way of presenting this analysis is that we ask which types and antitypes emerge when we

no longer consider the associations among the Medicaid scores M3, M4, and M5 and depression at

Time 6. The log-linear base model for this CFA is, as was indicated above,

Considering that (1) the design for this analysis is fractional factorial with resolution at level V

(three- and higher-way interactions can either not be estimated or are confounded), and (2), the two-

way interactions M3 x M4, M4 x M5, M5 x M6, and M6 x D6 are not part of the base model, types

and antitypes from this CFA base model reflect, by necessity, the cross time associations among the

Medicaid reception variables, and the association between Medicaid reception and depression, at

Time 6. If the three interactions M3 x D6, M4 x D6, and M5 x D6 play indeed no role in the

detection of types and antitypes in the Medicaid data, the same types and antitypes will emerge from

this analysis as in the first data example. The design matrix for this design appears in the first and

the third panels of  Table 7. For the CFA that uses this design matrix in its base model, we again

employ the z-test and the Holland - Copenhaver procedure. The overall goodness-of-fit LR-X  for2
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this model is 213.3 (df = 7; p < 0.01). This indicates major discrepancies between model and data.

We thus can expect types and antitypes to emerge. Table 12 displays the results of this CFA.

Table 12: CFA of Fractional Factorial Design for Medicaid Data; Design Matrix Given in the

First and Third Panels of Table 7

 Configurationa

   M3M4M5M6D6      m               z         p       Type/Antitype?

      11111       45     9.544   11.4765    .000000    Type

      11122        0     0         .0000    .499996

      11212        0      .330    -.5748    .282716

      11221        2    13.542   -3.1364    .000855    Antitype

      12112        0     0         .0000    .499995

      12121        0    11.211   -3.3483    .000407    Antitype

      12211        1    13.702   -3.4315    .000300    Antitype

      12222        1      .670     .4037    .343199

      21112        0     0         .0000    .499995

      21121        1    13.844   -3.4520    .000278    Antitype

      21211        2    12.881   -3.0317    .001216    Antitype

      21222        1      .859     .1525    .439396

      22111        7    18.400   -2.6577    .003934    Antitype

      22122        0     0         .0000    .499994

      22212        1     1.141    -.1323    .447382

       22221       55    19.875    7.8789    .000000    Type

The CFA types and antitypes in Table 13 are, with only one exception, identical to the ones in Table

11. The exception is that one additional antitype emerged. It is constituted by Configuration 22111

and suggests that fewer women than expected under the base model that was used for this run show

subclinical depression when Medicaid is revoked between Time 4 and Time 5. We thus conclude

that the long-term associations between Medicaid reception and depression have no effect on the

pattern of types and antitypes. The types and antitypes in Tables 11 and 13 thus result solely from
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the cross time associations among the Medicaid scores and the association of Medicaid reception and

depression at Time 6.

Additional base models are conceivable. For example, instead of asking which effects do not

cause the types and antitypes in Table 11, one can ask which effects do cause these types and

antitypes. To answer this question, a base model is needed that includes the cross-time associations

among the Medicaid scores and the association between Medicaid and depression at T6. This is the

base model

If the interactions in this model are the causes for the types and antitypes in Table 11, they all will

disappear under this base model (they do).

CFA 4: Long-Term Prediction of Depression: CFA from Completely Crossed Design. Using the

table from the completely crossed variables and the hierarchical log-linear base model that includes

the three interactions M3 x D6, M4 x D6, and M5 x D6, we obtain CFA results that mirror the ones

from the second CFA, above (details not shown here). Configurations 11111 and 22221 constitute

types. Also as before, each of the configurations that constituted antitypes in the first analysis was

observed less frequently than expected, and the composite antitype exists. The additional type was

not observed again. Thus, these results are even closer to the ones from Example 3 than the results

from Example 2 were to the ones from Example 1. 

We conclude again that, using the fractional factorial design can lead to appraisals of data

structures that differ only minimally from those found using the complete design.

4. Discussion

It was the goal of this article to show that fractional factorial designs can fruitfully be applied when

the outcome variables are categorical. Examples were given using explanatory log-linear modeling

and exploratory Configural Frequency Analysis. One of the main arguments used in this article

concerns the resolution of a design. Resolution is defined as the order of interactions that can be

estimated so that they are not confounded with each other. Box - Hunter designs are particularly
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useful because they allow one, for an a priori determined desired resolution, to specify a design that

has exactly this resolution.

It was also shown in this article, that the application of fractional factorial designs in the

analysis of categorical outcome variables mirrors the application in the analysis of metric outcome

variables only in part. Specifically, when categorical outcome variables are analyzed, resolution has

to be selected one level higher than for metric outcome variables. The reason for this difference is

that main effects in the context of the GLM already describe the relationships between one

independent and one outcome variable. In contrast, two-way interactions are needed to do the same

when the outcome variable is categorical. Therefore, fractional designs can be more parsimonious

when metric outcome variables than when categorical outcome variables are analyzed.

Implications of this methodology are major. First, designs and data collection become far

more parsimonious than when routinely completely crossed designs are used. Second, data analysis

and interpretation of results are simplified because only those interactions are discussed that were

of interest based on theory and prior results. Third, all this can be conducted within the context of

methods of analysis from the Generalized Linear Model. Thus, methods of ANOVA, the GLLM, and

CFA can be used without significant adaptation. The popular general purpose statistical software

packages, for example, R, SAS, SYSTAT, or Minitab can be used for data analysis. In addition,

some of these packages, for example, SYSTAT, Statistica or Minitab offer modules that allow the

researcher to specify the design.

The data examples given in this article showed first that fractional factorial designs can be

applied without any problems when log-linear and configural methods are used for analysis. In

addition, the examples showed that the loss of information can be minimal when fractional designs

are used. Loss will always be minimal when the sparsity of effects principle applies. In different

words, loss will be minimal when the assumptions that researchers make about the existence of

effects are correct. For example, when researchers assume that three- and higher-way interactions

do not exist, there is no need to increase the resolution of a design beyond IV, when metric, and

beyond V, when categorical outcome variables are observed.

An interesting characteristic of fractional factorial designs is that, in most cases, for the same

resolution, more than one design exists. These alternative designs, called fractions, result from
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reversing the signs of those factors that are not coded as in a completely crossed design. Let the

number of factors included in the design be p. Then, the completely crossed design will have 2  runsp

(cells). The number of runs in a fractional design of the Box - Hunter type is 2  where k is the(p - k)

number of factors whose main effects are not coded as in a completely crossed design. Then, the

number of fractions is 2 . Consider, for example, the design given in Table 5. The last of the maink

effect vector, the one for Variable C, is  = {-1, 1, 1, -1}. The second fraction for this design comes

with = {1, -1, -1, 1}. To give another example, consider the Box - Hunter design with 7 factors

and 16 runs. For 16 runs, 4 factors can be coded as in a completely crossed design. The remaining

3 are coded in analogy to interactions. Thus, the number of fractions is 8. This number can be

increased by changing the order of variables in the table. Thus, the researchers have considerable

flexibility as to how to set up their experiments or data collection.

One important application of log-linear modeling involves the examination of the association

structure of manifest variables (Goodman, 1984). In these applications, all variables have the same

status. That is, variables are not considered dependent or independent. Here, fractional factorial

designs are still applicable. Decisions about the complexity of designs can be made based on cost

and effort considerations, the sparsity of effects principle, and knowledge concerning the order of

interactions that were observed in prior studies. Similarly, screening studies can be designed in

which researchers explore whether interactions of typically low order exist. In studies with no

distinction of dependent and independent variables, the concept of resolution can be applied with

no change from studies in which this distinction is made. For example, resolution level V is needed

for the interpretation of two-way associations that are unconfounded with each other.

Designs with resolution V can also be of importance when such latent variable models are

considered as correspondence analysis or structural modeling based on categorical variables. As was

mentioned above, these methods typically start estimation from a matrix of bivariate relationships.

To create such a matrix from a completely crossed design implies collecting and paying for

information that is not used. Therefore, fractional factorial designs should be considered. These

designs are not only far more parsimonious, they also allow one to include far more categorical

variables (or factors). For example, 10 categorical variables can be observed at a resolution level of
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V in 128 runs. The completely crossed design would require 1024 runs. The fractional design thus

comes with a savings of 87.5%.

Another interesting option in the analysis of categorical outcome variables is that multiple

outcome variables can be studied simultaneously, with the dependency structure of the outcome

variables being part of the model. Here again, for a given number of runs that can realistically be

conducted, designs with a resolution level of V or higher will allow the researchers to include far

more variables than a completely crossed design. For example, for 8 categorical variables, only 128

runs are needed to obtain a resolution level of VIII, a savings of 50%. To obtain a resolution level

of V with 8 variables, only 64 runs are needed, a savings of 75%.

Now, to turn the arguments around, suppose cost, effort, and time are not issues of concern.

Would one always run the fully crossed design? Interestingly, the answer is no and, thus, counter the

current common practice in Psychological research. The argument concerning interpretability raised

at the beginning of this article holds even if one is flush. This argument involves the statement that

interaction of very high order are virtually impossible to interpret. Consider a design with only eight

fully crossed, binary factors. This is a design with 2  = 256 treatment combinations (cells).8

Interpreting the interaction among all eight factors is close to impossible. The Box - Hunter design

with 128 runs for these eight factors has a resolution of VIII. That is, at a savings of 50%, we can

create a design that allows us to estimate up to five-way interactions. This is sufficient for the testing

of a very large percentage of social science theory-driven hypotheses. In addition, this will be hard

enough.

Where, then, in the process of research, will fractional factorial designs be discussed? The

answer is clear: in the planning phase. When data are collected under a design that is completely

crossed, it does not make much sense to exclude data from analysis just because fractional designs

are attractive. Similarly, when sampling is multinomial or Poisson, fractional factorial designs may

lead to the exclusion of too many cases. A third case is the above-mentioned Meehl paradox. When

a hypothesis states that an interaction of a particular order carries the action in a table, the resolution

must be selected accordingly. In contrast, when sampling proceeds after some screening is performed

to select possible respondents, that is when the focus is on respondents with particular profiles, or

when the experimenter screens and, based on screening results, assigns cases to treatments, fractional
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factorial designs can be very helpful.
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Appendix: Complete Cross-Classification for the Medicaid Data Example

T3Medicaid T4Medicaid T5Medicaid T6Medicaid
T6 Depression

0 1 2

1 1 1 1 55.000 9.000

   -1 9.000 1.000

  1 4.000 0.000

   -1 7.000 0.000

 -1 1 1 4.000 1.000

   -1 2.000 1.000

  -1 1 1.000 0.000

   -1 7.000 0.000

-1 1 1 1 5.000 1.000

   -1 1.000 0.000

  -1 1 0.000 0.000

   -1 2.000 0.000

 -1 1 1 2.000 0.000

   -1 4.000 0.000

  -1 1 5.000 0.000

   -1 45.000 2.000


