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Abstract—A general framework is developed for networks with
flows that use all available congestion signals to regulate their
rates. It is conceptually a generalization of the existing network
utility maximization (NUM) theory for homogeneous congestion
control. Instead of a convex optimization characterization in
NUM, a game with multiple convex optimizations is formulated to
characterize equilibria in such a network. Examples are provided
to motivate the needs of this general theory. We also provide some
basic properties of the game and point out some possible future
directions along this line.

I. INTRODUCTION

Various proposals that use different congestion signals be-
sides packet loss have been proposed. However, the standard
theory which is based on network utility maximization (NUM),
e.g. [7], [10], [9], [11], relies critically on the assumption
that all flows use the same congestion signal and therefore no
longer works in a heterogeneous network. Recently, a system-
atic study has been carried out to analyze all major properties
of equilibrium in a heterogeneous network [20], [21] with the
assumption that each flow uses a single but could be different
congestion signal to adapt its rate. Conceivably, a more general
setting should allow flows to use all available congestion
signals, or any subset thereof, to regulate their rates. This not
only provides more information on congestion to sources but
also is a better model as some existing protocols [3], [8], [17],
[18], including the currently used descendants of standard TCP
Reno [5], [12], which actually respond to both packet loss and
delay and therefore use multiple congestion indications. This
paper is devoted to setting up such a framework and we will
show that instead of an optimization model in NUM, a game
is needed to characterize the equilibria of such networks. Both
the standard network utility maximization and the recent work
on heterogeneous congestion control then become special or
limiting cases of this general framework.

The paper is organized as follows. We start with a brief
review of the existing NUM theory with an emphasis on its
predictions (section II). This will be immediately followed
by motivating examples which show limitations of these
predictions (section III). In section IV, we then define network
equilibrium in networks with flows using multiple congestion
signals. This is done by including the physical relations among
various congestion signals. A general mathematical frame-
work is considered in section V by relaxing those physical
constraints. We concludes (section VI) by discussing some
possible important extensions.

II. EXISTING THEORY AND ITS PREDICTIONS

When each link has a unique price, and all sources respond
to the sum of the prices of links on their paths, then the
equilibrium is the unique solution of the following utility max-
imization problem defined in [7] and its Lagrange dual [10]:

max
x≥0

∑

i

Ui(xi) (1a)

subject to Rx ≤ c (1b)

where c is the capacity vector, x is the rate vector and R is
the routing matrix. the utility functions (Ui’s) are derived from
the equilibrium equations of the congestion control protocols,
and are typically increasing and strictly concave. The more
rigorous definitions of these notations will be provided in
section IV. In general, the compactness of the feasible set
and the strict concavity of Ui guarantees the existence and
uniqueness of the optimal solution of (1a)–(1b).

The basic idea to relate the utility maximization problem
(1a)–(1b) to the equilibrium of the flow control algorithm
is to examine the dual of the utility maximization problem,
and interpret the congestion signal pl generated by link l
as a Lagrange multiplier associated with each link capacity
constraint (see, e.g., [9], [10]). As long as the congestion
measure pl increases whenever a link is over-utilized and
decreases when pl > 0 and the link is underutilized, then the
only equilibrium values of pl will be the Lagrange multipliers,
regardless of the specific dynamics of the AQM mechanism.

The utility maximization problem provides a compact and
global characterization of the whole system. In particular, the
following two claims are frequently used as examples of its
corollaries.

• The equilibrium congestion signals (dual variable) and
therefore the equilibrium rates (primal variables) are
independent of the AQM settings.

• The system always admits a unique equilibrium.
In [20], [21], it was shown that, when different flows use

different types of congestion signals, the utility maximization
framework breaks down and the corollaries above do not hold.
In this paper, we proceed and allow all sources to use multiple
congestion signals simultaneously.

In the next section, we will use standard TCP New Reno
protocol and show that even for a network with only Reno
protocol, the two above corollaries do not apply.



Fig. 1. Topology used for Example 1. Two flows of different RTTs share a
link, with variable buffer size B.

III. MOTIVATING EXAMPLES

The following two examples demonstrate that, even with a
single congestion control algorithm, it is possible for the two
primary claims above to be false, if the algorithm responds to
two types of congestion indication. The examples will use an
idealized version of TCP Reno, whose window size,

Wi =

√

2

pi

(2)

depends purely on the long-term average packet loss rate it
experiences, pi. (This model is like that of [9], except that it
ignores a term only relevant when Wi is small.) Its equilibrium
rate is then

xi =
1

τi + di

√

2

pi

, (3)

where τi, is the total queueing delay it experiences, and di is
the round trip time (RTT) in the absence of queueing. Clearly,
xi depends on two separate congestion measures, pi and τi.

A. Dependence of equilibrium on AQM parameters

In traditional queueing networks, increasing the buffer size
reduces the packet loss rate. The addition of utility maximiza-
tion flow control makes the loss rate less sensitive to AQM
parameters, but not entirely independent.

This is easily seen by considering a bottleneck link with
capacity C and buffer size B packets, carrying two flows,
one with d1 and one with d2 = kd1, as shown in Figure 1.
With AQM parameter B � Cd1, the rates are approximately
in the ratio x1/x2 = k/1, and the packet loss rate is p ≈
2/(2 + (kd1C/(k + 1))2), regardless of the precise value of
B. However, for large changes in the AQM settings this no
longer holds. As B → ∞, the secondary congestion indictator
τ (delay) increases causing both the primal and dual variables
to change, with x1, x2 → C/2 and p → 0.

This is illustrated in Figures 2 for the case of d1 = 30 ms,
d2 = 100ms and C = 8333pk/s (100 Mbit/s with 1500 byte
packets). The solid lines show the rates (primal variables)
achieved by the two flows as the buffer size increases. For
small buffers, doubling the buffer size has negligible impact,
but when the buffering becomes large enough to affect the
RTT, the short-RTT flow reduces its rate in response to the
congestion. The packet loss rate (dual variable) is also almost
independent of the buffer size when the buffer is small, but
depends strongly on in when it becomes larger.

10
0

10
1

10
2

10
3

10
4

1000

2000

3000

4000

5000

6000

7000

Buffer size (pks)

ra
te

10
0

10
1

10
2

10
3

10
4
0

1

2

3

4

5

6
x 10

−5

lo
ss

Fig. 2. Example 1. Solid lines: Rates of two flows with different propagation
delays sharing a bottleneck, as a function of buffer size. Dashed line:
Corresponding packet loss probability.

Fig. 3. Topology used for Example 2. If the two-hop flows have high rate,
link 2 is a bottleneck. If the three-hop flows have high rate, links 1 and 3 are
bottlenecks.

B. Multiple equilibria

The following construction is analogous to that for hetero-
geneous congestion control presented in [19].

Consider the network shown in Figure 3, consisting of
three links, with capacities C1 = C3 = 8333packets/second
(100 Mbit/s) and with buffer sizes B1 = B3 = 1000packets
and B2 = 0 packets. Consider also two-hop TCP flows with
d1 = d3 = 3 ms, traversing links 1 and 2 and links 2 and 3
respectively, and two three-hop TCP flows traversing all links,
each with τ2 = 100 ms. By symmetry, the two three-hop flows
have equal rate x2, and the two two-hop flows have equal rate
x1.

For certain C2, this network can have two equilibria, one in
which there is a bottleneck only at link 2, and one in which
there are bottlenecks at links 1 and 3, but not at link 2. This
will be explained with the help of Figure 4, which shows the
fraction of unused capacity on the non-bottleneck link as C2

varies. Specifically, the dashed line shows (C1−x1−2x2)/C1

when link 2 is a bottleneck (2x1 + 2x2 = C2), and the solid
line shows (C2 − 2x1 − 2x2)/C2 when link 1 is a bottleneck
(x1 + 2x2 = C1).

When C2 = C1, link 2 must be a bottleneck because it
carries more traffic. Thus there is only the dashed line at that
point in the graph. In this case, the RTT of the two-hop flows
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Fig. 4. Example 2: The equilibrium proportion of unused capacity on the
non-bottleneck link(s) as the ratio of capacities varies, for C1 = 8333 pk/s,
d1 = 3 ms, d2 = 100 ms and B = 1000 packets. For ratios between about
1.45 and 1.9, two equilibria exist: one with link 2 as a bottleneck and one
with links 1 and 3 as bottlenecks.

is only d1 since there is no buffer at link 2. As C2 increases,
the rates all increase reducing the spare capacity on link 1,
but maintaining the small RTTs. Similarly, when C2 = 2C1,
links 1 and 3 must be bottlenecks, since they carry over half
as much traffic as link 2. In this case, the bottleneck buffers
are full, and the two-hop flows have RTT significantly above
d1.

For C2/C1 between about 1.45 and 1.9, both situations are
possible. If links 1 and 3 are initially bottlenecked, the large
queueing delay will cause x1 to remain small and so they
will remain bottlenecked. The queueing delay has less effect
on x2 because d2 � d1. Conversely, if link 2 is initially
bottlenecked, the high loss rate will cause x2 to remain small
and link 2 will remain bottlenecked.

These two examples clearly show that even in the case
when there is only one type of protocol (TCP Reno in these
examples), the standard utility maximization framework still
may not apply if the protocol uses multiple congestion signals.
In the following sections, we provide an alternative framework
to understand such networks.

IV. NETWORK EQUILIBRIUM

A network consists of a set L of links indexed by l ∈ L, a set
I of flows indexed by i ∈ I and a set J of types of congestion
signals, indexed by j ∈ J . Let R be the L× I routing matrix:
Rli = 1 if source i uses link l and 0 otherwise. Each link l
has congestion signals pj

l , and for each j ∈ J , each flow is
notified of the sum of the type j congestion signals of flows
on its path.

Each link emits multiple congestion signals, such as packet
loss and queueing delay, to which algorithms may respond.
However, the congestion signals produced by a single link are
closely related. As in [20], we model this relationship through
a price mapping function that maps a common price (e.g.,
queue length) at a link to different prices (e.g., loss probability

and queueing delay) observed by different sources. Formally,
every link l has a price pl. The type j congestion signal is
the sum of the “effective prices” mj

l (pl) on a path, where mj
l

is a price mapping function, which can depend on both the
link and the congestion signal type. The exact form of mj

l

depends on the AQM algorithm used at the link; see [19] for
links with RED.1 Let mj(p) = (mj

l (pl), l = 1, . . . L). The
aggregate type j price for source i is defined as

qj
i =

∑

l

Rlim
j
l (pl) (4)

Let qj = (qj
i , i = 1, . . . , N j). Then qj = RT mj(p).

Let x be a vector of source rates, xi. In general, if zk are de-
fined, then z denotes the (column) vector z = (zk, ∀k). Other
notations will be introduced later when they are encountered.

Each flow i ∈ I sets its rate xi in response to all of the
congestion signals. At equilibrium,

xi = f0
i (q1

i , q2
i , . . . , qJ

i ) (5)

Here, f0
i only depends on the TCP algorithm of flow i.

As usual, we use x(q) = x
(

q1, q2, . . . qJ
)

to denote the
vector-valued functions composed of xi. Since q = RT m(p),
we often abuse notation and write xi(p) and x(p).

Define the aggregate source rates y(p) = (yl(p), l =
1, . . . , L) at links l as:

y(p) = Rx(p) (6)

In equilibrium, the aggregate rate at each link is no more
than the link capacity, and the link price can be strictly
positive only when the aggregate rate equals the capacity at
that link. Formally, we call p an equilibrium price, a network
equilibrium, or just an equilibrium if it satisfies (from (4)–(6))

P (y(p) − c) = 0, y(p) ≤ c, p ≥ 0 (7)

where P := diag(pl) is a diagonal matrix. The network
equilibrium is specified by (4)–(7). Let E be the network
equilibrium set, we have:

E = {p ∈ <L
+| P (y(p) − c) = 0, y(p) ≤ c} (8)

Throughout this paper, we also adopt some standard as-
sumptions.
A1: Price mapping functions mj

l are continuously differ-
entiable in their domains and non-decreasing with
mj

l (0) = 0 for all j, l. For each pl, at least one mj
l

is strictly increasing.
A2: The demand function f 0

i is differentiable and strictly
decreasing in each variable. Moreover, assume that for
any q−j with qk

i > 0 for all k, lim
q

j

i
→∞

f(q) = 0.

These are mild assumptions. The first assumption on mj
l

preserves the relative order of prices and maps zero price to
zero effective price. Assumption A2 says that, if one kind of
price is large enough, provided others are not zero, then the
rate can be constrained to be arbitrarily small.

1One can also take one particular type of price p
j

l
, e.g., queueing delay, as

the common price pl. In this case the corresponding price mapping function
is the identity function, m

j

l
(pl) = pl.



V. A GAME THEORETICAL CHARACTERIZATION

In this section, we will show that the network equilibrium
which was defined in last section is a subset of the set of
Nash equilibrium of a J-persons convex game. The basic idea
is the same as in the homogeneous case where we ignore the
physical constraints that are imposed by link AQMs and focus
on the mathematical optimization problem that is determined
by the equilibrium of end to end TCPs.

Let q−j
i = (q1

i , . . . , qj−1

i , qj+1

i , . . . , qJ
i ). By the implicit

function theorem, (5) may be rearranged as

qj
i = f−j

i (xi, q
−j
i ), (9)

where f−j
i is decreasing in xi.

Define partial utility functions

U j
i (xi, q

−j
i ) =

∫

f−j
i (xi, q

−j
i ) dx. (10)

Note that U i
j is strictly concave increasing, because f−j

i is
decreasing.

Take the standard TCP Reno as an example. Recall from (3)
that its equilibrium rate can be modeled as

xi = f0
i (pi, τi) =

1

τi + di

√

2

pi

(11)

where di is the fixed “propagation” delay and the congestion
signals are τi, the total queueing delay experienced, and pi,
the packet loss probability. Identifying (q1, q2) ≡ (pi, τi), its
equilibrium satisfies

q1
i = pi = f−1

i (xi, τi) =
2

x2
i (τi + di)2

(12)

U1
i (xi, τi) = −

2

xi(τi + di)2
(13)

q2
i = τi = f−2

i (xi, pi) =
1

xi

√

2

pi

− di (14)

U2
i (xi, pi) =

√

2

pi

log(xi) − xidi. (15)

We now define the following game. There are J players,
with the jth player able to choose pj

l for each link l, subject
to the feasibility constraint

Rf0
i (qi) ≤ c. (16a)

The payoff for the jth player is the sum of the type j utility
functions for all flows under pj :

∑

i

U j
i (f0

i (qi), q
−j
i ) (16b)

In other words, for each j ∈ {1, 2, . . . , J}, the jth player
tries to solve

max
x≥0

∑

i

U j
i (xi; q

−j
i ) subject to Rx ≤ c (17)

Given that this is a convex optimization with Slater’s
condition [1] satisfied, strong duality holds and we can also
equivalently look at its dual [10]:

min
pj≥0

∑

i

max
xi≥0

(

U j
i (xi; q

−j
i ) − xi

∑

l

Rlip
j
l

)

+
∑

l

clp
j
l .

(18)
Equation (17), or equivalently (18), defines the noncooper-

ative game we are studying in this paper. The remainder of
this section is devoted to setting up some basic results of this
game.

Theorem 1. All network equilibria are Nash equilibria of the
corresponding game defined by (17) or (18).

Proof: By the construction of U j
i and the optimality con-

dition of (17), equations (5) to (7) define the nash equilibria of
the game. Thus any network equilibrium, which by definition
satisfies (4)–(7), is a nash equilibrium of the game.

Theorem 2. The game always admits at least one pure Nash
equilibrium.

Proof: The joint strategy set2 is nonempty, convex and
compact subset of a Euclidian space. The utility of each player
is continues and concave on its action set. By the theorem of
Rosen [14], the game has a pure Nash equilibrium.

Remark: In the standard flow control where there is only
one type of congestion signal, a convex optimization problem
characterizes the equilibrium. It provides a unique equilibrium
and the corresponding congestion signals. If the congestion
signal pl is within the dynamic range which can be physically
generated by the network AQM, then it is also the network
equilibrium.3 This is illustrated in Figure 5.

Now, we have J convex optimization problems that are
tangled together and their Nash equilibrium set includes all the
possible network equilibria. Again like the single congestion
measure case, we need to check the AQM conditions (4) to
find the final network equilibria. This relationship is illustrated
in Figure 6.

VI. CONCLUSION

This paper sets up a general framework for network conges-
tion control where each flow decides its rate based on possibly
more than one congestion signal. It is shown that unlike in
the single congestion signal case where a convex optimization
fully characterizes the possible equilibrium, a game involves
multiple convex optimizations is needed and the saddle points
of the game include the set of network equilibria.

The study is still preliminary and many problems remain
open. It is of particular interest to find equilibria of the game

2Here, individual strategy set may depend on strategies of other players.
Therefore the standard Nash existence theorem [13] does not apply.

3This need not be the case; algorithms such as Vegas [2] and FAST [22]
which respond to delay have an upper bound placed on pl by the size of their
buffers, while algorithms such as Reno which respond to loss may have a
lower bound placed on pl by physical-layer packet corruption, or by infrequent
but intense bursts of cross traffic.



Fig. 5. The optimization formulation (1) has an equilibrium regardless of
the AQM. Only a subset of AQM settings actually support the equilibrium in
a network

Fig. 6. The game formulation (16) has an equilibrium regardless of the AQM.
Only a subset of equilibria actually have prices which can be implemented
by the AQM, satisfying p

j

l
= mj(pl) for all l and j for some pl.

described by (17) or (18) and of the network itself. This
requires investigation about the global dynamical behaviors
of such systems. It is challenging given the possibility of
having multiple equilibria. We expect such studies, if fruitful,
will interest networking community as well as several other
communities such as dynamical systems, microeconomics and
theoretical computer science. Existing closely related work
such as monotone dynamical systems [16], global Newton
method [15], S-modular games [6] and general Nash equi-
librium computation [4] may help find the right tools. Special
structures of the problem, e.g., the relations among different
U j

i ’s which are all derived from the same equilibrium condi-
tion, are likely to be critical for obtaining stronger than usual
general results.
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