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1 Introduction

It has long been recognized that optimization problems with strong interactions between problem
variables are often more difficult for genetic and evolutionary algorithms (GEAs) than problems
where variables are nearly independent (Goldberg, 1989; Davidor, 1990; Deb & Goldberg, 1991;
Thierens, 1999; Pelikan, 2010). The strength of interactions between problem variables is often
referred to as epistasis, a term used in biology to denote the amount of interaction between different
genes. A number of approaches have been developed to adapt operators of GEAs to tackle problems
with strong epistasis; these include for example linkage learning genetic algorithms (ping Chen, Yu,
Sastry, & Goldberg, 2007; Harik & Goldberg, 1996) and estimation of distribution algorithms
(EDAs) (Larrañaga & Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002; Lozano, Larrañaga, Inza,
& Bengoetxea, 2006; Pelikan, Sastry, & Cantú-Paz, 2006).

Two direct approaches were developed to measure the amount of epistasis in an optimization
problem or the absence of it: (1) epistasis variance (Davidor, 1990) and (2) epistasis correlation (Ro-
chet, Venturini, Slimane, & Kharoubi, 1998). Epistasis correlation is often considered more useful,
because its range is [0, 1] and it is invariant with respect to linear transformations of fitness; the
results may thus often be easier to interpret and compare. Because epistasis is strongly related
to problem difficulty, measuring epistasis should provide insight into the difficulty of a problem.
Nonetheless, it has been also recognized that a problem with strong epistasis is not necessarily
more difficult than a problem with weaker epistasis (Rochet, Venturini, Slimane, & Kharoubi,
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1998; Naudts & Kallel, 1998). Although there are numerous papers discussing epistasis and mea-
sures of epistasis in the context of genetic and evolutionary algorithms (Davidor, 1990; Davidor,
1991; Reeves & Wright, 1995; Rochet, Venturini, Slimane, & Kharoubi, 1998; Naudts & Kallel,
1998), in most of these studies only a handful of problems are considered.

This paper presents a detailed empirical study of the relationship between problem parameters,
the epistasis correlation, and the performance of two qualitatively different hybrid evolutionary
algorithms, the genetic algorithm with uniform crossover (GA) (Holland, 1975; Goldberg, 1989;
Syswerda, 1989), and the hierarchical Bayesian optimization algorithm (hBOA) (Pelikan, 2005).
In GA with uniform crossover, variation operators do not take into account correlations between
variables and treat all variables as independent. On the other hand, hBOA can learn linkage; it is
able to identify and exploit interactions between problem variables. Both GA and hBOA use hill
climbing based on the single-bit neighborhood to speed up convergence and reduce computational
requirements. As the target class of problems, the paper considers NK landscapes with nearest-
neighbor interactions (Pelikan, 2010). This problem class was chosen mainly because it provides
a straightforward mechanism for tuning problem difficulty and level of epistasis, and it allows
generation of a large number of random problem instances with known optima.

The paper is organized as follows. Section 2 describes epistasis variance and epistasis correlation,
which are the two primary direct measures of epistasis in optimization. Section 3 describes the
algorithms GA and hBOA, and the class of NK landscapes with nearest-neighbor interactions.
Section 4 presents and discusses the experiments. Finally, section 5 summarizes and concludes the
paper.

2 Epistasis

For success in both applied and theoretical research in evolutionary computation it is important
to understand what makes one problem more difficult than another. Several approaches have
been proposed to measure problem difficulty for evolutionary algorithms and other metaheuristics.
The most popular measures include the fitness distance correlation (Jones & Forrest, 1995), the
autocorrelation function (Weinberger, 1990), the epistasis correlation (Rochet, Venturini, Slimane,
& Kharoubi, 1998), the signal-to-noise ratio (Goldberg, Deb, & Clark, 1992), and scaling (Thierens,
Goldberg, & Pereira, 1998). While many of these measures are related to epistasis, this paper
focuses on approaches that measure epistasis directly.

In the remainder of this paper, candidate solutions are represented by binary strings of fixed
length n > 0, although many of the discussed concepts and methods can be extended to other
alphabets in a straightforward manner.

2.1 Epistasis Variance

This section describes epistasis variance, which is a measure of epistasis proposed by Davidor
(1990) and is defined as the Euclidean distance between the linear approximation of the fitness
function and the actual fitness function over the population of all admissible solutions. To make
the computation of epistasis variance tractable for moderate to large string length, we reduce the
computation of the epistasis variance to an arbitrary population of candidate solutions.

Assume a population P of N candidate solutions represented by n-bit binary strings. The
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average fitness of solutions in P is defined as

f(P ) =
1

N

∑

x∈P

f(x).

Let us define the set of solutions in P with the value vi in ith position as Pi(vi) and their number
by Ni(vi). Then, for each position i in a solution string, we may define the fitness contribution of
a bit vi as

fi(vi) =
1

Ni(vi)

∑

x∈Pi(vi)

f(x) − f(P ) (1)

The linear approximation of f (Davidor, 1990; Reeves & Wright, 1995; Naudts, Suys, & Verschoren,
1997; Rochet, Slimane, & Venturini, 1996) is defined as

flin(X1, X2, . . . , Xn) =
n

∑

i=1

fi(Xi) + f(P ). (2)

It is of note that the above linear fitness approximation has also been used in the first approach
to modeling the fitness function in estimation of distribution algorithms (Sastry, Goldberg, &
Pelikan, 2001). The epistasis variance of f for population P is then defined as (Davidor, 1990;
Davidor, 1991)

ξP (f) =

√

1

N

∑

x∈P

(f(x) − flin(x))2 (3)

One of the problems with epistasis variance is that its value changes even when the fitness
function is just multiplied by a constant. That is why several researchers have proposed to normalize
the epistasis variance, for example by dividing it by the variance of the fitness function (Manela &
Campbell, 1992), or by using a normalized fitness function (Naudts, Suys, & Verschoren, 1997).

2.2 Epistasis Correlation

Epistasis correlation was proposed by Rochet, Venturini, Slimane, and Kharoubi (1998) as a mea-
sure of epistasis that is invariant with respect to linear transformation of the fitness function (not
only multiplication by a constant). Let us define the sum of square differences between f and f(P )
over all members of P as

sP (f) =
∑

x∈P

(

f(x) − f(P )
)2

.

Analogously, we may define the sum of square differences between flin and its average over P as

sP (flin) =
∑

x∈P

(

flin(x) − flin(P )
)2

where

flin(P ) =
1

N

∑

x∈P

flin(x).

The epistasis correlation for the population P is then defined as

epicP (f) =

∑

x∈P

(

f(x) − f(P )
) (

flin(x) − flin(P )
)

√

sP (f)sP (flin)
(4)
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The main advantage of epistasis correlation is that it is invariant with respect to linear trans-
formations of fitness and its range is [0, 1]. Consequently, epistasis correlation is much easier to
interpret than epistasis variance. These are the reasons why we use epistasis correlation in the
remainder of this paper as the measure of epistasis.

2.3 Epistasis Measures and Difficulty

One of the problems with the epistasis correlation and the epistasis variance is that while the goal of
these measures is to evaluate problem difficulty, the gap between problem difficulty and the epistasis
measures is quite substantial. For example, if the epistasis correlation is 1, then we know that the
problem is linear and it should thus be relatively easy to solve with practically any optimization
method. Nonetheless, as the epistasis correlation decreases, this measure alone cannot be used as a
single input to estimate problem difficulty because problem difficulty does not depend only on the
presence of epistasis but also on its character. This observation was pointed out in many studies
that discussed the epistasis variance or the epistasis correlation, for example in Rochet, Venturini,
Slimane, and Kharoubi (1998) and Naudts and Kallel (1998).

The weakness of the connection between problem difficulty and the measures of epistasis has led
to other models of problem difficulty originating in interactions between problem variables, such as
deception (Goldberg, 1989; Goldberg, 2002) and fluctuating crosstalk (Sastry, Pelikan, & Goldberg,
2006; Goldberg, 2002). One of the difficulties with these models is that it is not straightforward to
quantify them in practice.

Nonetheless, it is of note that the weakness of the connection between the epistasis measures
and problem difficulty is most often discussed on artificial problems that have little to do with
the real world and that were created just for the purpose of pointing out drawbacks of epistasis
measures. In this paper, we aim to analyze the epistasis measures and their relationship to problem
difficulty on a broad class of structured random problems, including both the easy and the difficult
instances.

2.4 Approximating Epistasis Correlation

Calculating the exact value of the epistasis correlation using a population of all possible strings
is intractable for moderate to large values of n. Furthermore, approximating the value of epista-
sis correlation turns out to be slightly more challenging than approximating the values of some
other measures of problem difficulty, such as the fitness distance correlation and the correlation
length (Pelikan, 2010). Since in this paper we considered 250,000 problem instances for which we
computed the value of epistasis correlation, it was crucial ensure that the computation of epistasis
correlation is computationally efficient. Of course, for the results to be useful, accuracy was just
as important as efficiency.

To estimate the value of the epistasis analysis, we started with nexp = 10 independent experi-
ments. In each of these experiments, we generated a population of 106 solutions, and we computed
the exact value of the epistasis correlation for the generated population. The resulting epistasis
correlation values were averaged to compute the final estimate of the epistasis correlation. If the
results of the individual experiments indicated that the error in the average epistasis correlation
value is away from its target value by more than 0.1% (assuming the normal distribution of the
results), another 10 experiments were executed. Regardless of the error, the maximum number of
experiments was 1,000. That means that the resulting estimate was computed from 107 to 109

independently generated samples.
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3 Problems and Methods

This section outlines the algorithms and fitness functions used in the experiments.

3.1 Algorithms

3.1.1 Genetic algorithm

The genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) evolves a population of candidate
solutions typically represented by binary strings of fixed length. The initial population is generated
at random according to the uniform distribution over all binary strings. Each iteration starts
by selecting promising solutions from the current population; we use binary tournament selection
without replacement. New solutions are created by applying variation operators to the population
of selected solutions. Specifically, crossover is used to exchange bits and pieces between pairs of
candidate solutions and mutation is used to perturb the resulting solutions. Here we use uniform
crossover (Syswerda, 1989), and bit-flip mutation (Goldberg, 1989). To maintain useful diversity
in the population, the new candidate solutions are incorporated into the original population using
restricted tournament selection (RTS) (Harik, 1995). The run is terminated when termination
criteria are met. In this paper, each run is terminated either when the global optimum has been
found or when a maximum number of iterations has been reached.

3.1.2 Hierarchical BOA

The hierarchical Bayesian optimization algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan &
Goldberg, 2003; Pelikan, 2005) is an estimation of distribution algorithm (EDA) (Baluja, 1994;
Mühlenbein & Paaß, 1996; Larrañaga & Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002; Lozano,
Larrañaga, Inza, & Bengoetxea, 2006; Pelikan, Sastry, & Cantú-Paz, 2006). EDAs—also called
probabilistic model-building genetic algorithms (PMBGAs) (Pelikan, Goldberg, & Lobo, 2002)
and iterated density estimation algorithms (IDEAs) (Bosman & Thierens, 2000)—differ from GAs
by replacing standard variation operators of GAs such as crossover and mutation by building a
probabilistic model of promising solutions and sampling the built model to generate new candidate
solutions. The only difference between GA and hBOA variants used in this study is that instead of
using crossover and mutation to create new candidate solutions, hBOA learns a Bayesian network
with local structures (Chickering, Heckerman, & Meek, 1997; Friedman & Goldszmidt, 1999) as a
model of the selected solutions and generates new candidate solutions from the distribution encoded
by this model. For more details on hBOA, see Pelikan and Goldberg (2001) and Pelikan (2005).

It is important to note that by building and sampling Bayesian networks, hBOA is able to
scalably solve even problems with high levels of epistasis, assuming that the order of subproblems
in an adequate problem decomposition is upper bounded by a constant (Pelikan, Sastry, & Goldberg,
2002). Since the variation operators of the GA variant studied here assume that the string positions
are independent whereas hBOA has a mechanism to deal with epistasis, it should be interesting
to look at the effects of epistasis on these two algorithms. This is in fact the main reason for the
choice of these two algorithms. In this context, an EDA based on univariate models may have been
an even better choice than the GA with uniform crossover, but in that case most NK landscapes
of larger size became intractable.

5



3.1.3 Bit-flip hill climber

The deterministic hill climber (DHC) is incorporated into both GA and hBOA to improve their
performance similarly as in previous studies on using GA and hBOA for solving NK landscapes
and related problems (Pelikan, Sastry, Goldberg, Butz, & Hauschild, 2009; Pelikan, 2010). DHC
takes a candidate solution represented by an n-bit binary string on input. Then, it performs one-
bit changes on the solution that lead to the maximum improvement of solution quality. DHC is
terminated when no single-bit flip improves solution quality and the solution is thus locally optimal.
Here, DHC is used to improve every solution in the population before the evaluation is performed.

3.2 Nearest-neighbor NK landscapes

NK fitness landscapes (Kauffman, 1989) were introduced by Kauffman as tunable models of rugged
fitness landscape. An NK fitness landscape is fully defined by the following components: (1) The
number of bits, n, (2) the number of neighbors per bit, k, (3) a set of k neighbors Π(Xi) for the i-th
bit for every i ∈ {1, . . . , n}, and (4) a subfunction fi defining a real value for each combination of
values of Xi and Π(Xi) for every i ∈ {1, . . . , n}. Typically, each subfunction is defined as a lookup
table. The objective function fnk to maximize is defined as

fnk(X1, X2, . . . , Xn) =
n

∑

i=1

fi(Xi, Π(Xi)).

In this paper, we consider nearest-neighbor NK landscapes, in which neighbors of each bit
are restricted to the k bits that immediately follow this bit. The neighborhoods wrap around;
thus, for bits that do not have k bits to the right, the neighborhood is completed with the first
few bits of solution strings. The reason for restricting neighborhoods to nearest neighbors was
to ensure that the problem instances can be solved in polynomial time even for k > 1 using
dynamic programming (Pelikan, 2010). The subfunctions are represented by look-up tables (a
unique value is used for each instance of a bit and its neighbors), and each entry in the look-up
table is generated with the uniform distribution from [0, 1). To make the problem more difficult for
conventional variation operators based on tight linkage between bits located close to each other,
the string positions are randomly shuffled prior to optimization. The used class of NK landscapes
with nearest neighbors is thus the same as that in Pelikan (2010).

In this paper, we consider k ∈ {2, 3, 4, 5, 6} and n = 20 to 100 with step 10 (for scalability
experiments) or 20 (for epistasis correlation). For each combination of n and k, we generated and
tested 10,000 unique problem instances. The reason for using such a large number of instances was
to get a sufficient number of samples for the various tests presented here. For GA, the results for
instances with n = 100 and k = 6 were too computationally expensive and they were thus omitted.
In summary, for epistasis correlation, 250,000 independently generated problem instances were used
and 450,000 independently generated instances were used for experiments on scalability of hBOA
and GA.

The difficulty of optimizing NK landscapes depends on all components defining an NK problem
instance (Wright, Thompson, & Zhang, 2000). Although NK landscapes with nearest neighbor
interactions are polynomially solvable in terms of n (Pelikan, 2010), the difficulty of problem in-
stances from this class generally increases as n and k grow. On nearest-neighbor NK landscapes,
the time complexity of most evolutionary algorithms is expected to grow at least polynomially fast
with n, and no better than exponentially fast with k (Pelikan, Sastry, Goldberg, Butz, & Hauschild,
2009; Pelikan, 2010).
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(a) hBOA with local search.
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(b) GA with uniform crossover and local search.

Figure 1: Performance of hBOA and GA with uniform crossover on nearest-neighbor NK landscapes
of k = 2 to k = 6 and n = 20 to n = 100.

4 Experiments

4.1 hBOA and GA Parameter Settings

In hBOA, Bayesian networks with decision trees (Friedman & Yakhini, 1996; Chickering, Heck-
erman, & Meek, 1997) are used as probabilistic models. To guide model building, the Bayesian-
Dirichlet metric with likelihood equivalence (Chickering, Heckerman, & Meek, 1997) and the penalty
for model complexity (Pelikan, 2005) is used. In GA, uniform crossover and bit-flip mutation are
used as variation operators. The probability of crossover is pc = 0.6 and the probability of flipping
a bit with mutation is 1/n where n is the number of bits. To select promising solutions, binary
tournament selection without replacement is used in both GA and hBOA. New solutions are incor-
porated into the original population using RTS (Harik, 1995) with window size w = min{n, N/20}
as suggested by Pelikan (2005). The population sizes are identified using bisection (Sastry, 2001;
Pelikan, 2005) to ensure convergence in 10 out of 10 independent runs. Each run is terminated
either when the global optimum is found (success) or when the maximum number of iterations
equal to the number of bits n has been reached (failure).

4.2 Performance of hBOA and GA

Before presenting the results for the epistasis correlation, let us examine performance of hBOA and
GA hybrids with respect to the values of n and k. Figure 1 shows the growth of the number of
evaluations and the number of local search steps (DHC flips) with n and k for both hybrids. The
results confirm that the number of evaluations and the number of flips grow polynomially fast with
the number n of bits. The results also confirm that both these statistics grow at least exponentially
fast with k.
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(a) Results for hBOA+DHC.
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(b) Results for GA+DHC.

Figure 2: Scatter plots of the epistasis correlation with respect to the number of evaluations and
the number of steps of the local search (DHC flips) for GA and hBOA.

4.3 Effects of Problem Size and Neighborhood Size on Epistasis Correlation

Figure 2 shows scatter plots of epistasis correlation with respect to the number of evaluations and
the number of steps of local search (DHC flips) for n = 100 and k ∈ {2, 3, 4, 5, 6}. The figure
indicates that, as expected, as k grows, epistasis increases in magnitude and, in agreement with
this, the epistasis correlation decreases with k. This is confirmed with the results shown in figure 3b,
which also considers n = 100 and k ∈ {2, 3, 4, 5, 6}. It is of note that although figures 2 and 3b
consider only one problem size n = 100, the results for other problem sizes are nearly identical.

Scatter plots in figure 2 also indicate that the number of evaluations and the number of steps
of the local searcher vary more for GA than for hBOA; this is expected because uniform crossover
cannot deal with epistasis and assumes that the variables are independent.

Figure 3a shows that the epistasis correlation does not seem to be affected by the overall
number of bits in the problem, because it stays nearly constant regardless of the problem size. This
observation is not a surprise; problem difficulty originating in problem size is related mainly to
collateral noise (Goldberg, 2002; Harik, Cantú-Paz, Goldberg, & Miller, 1997), whereas epistasis is
concerned only with the amount of interaction between problem variables.

4.4 Epistasis Correlation and Problem Difficulty with Fixed Problem Size and

Neighborhood Size

While the relationship between epistasis correlation, n and k was in agreement with our under-
standing of epistasis and the difficulty of NK landscapes, it is not as clear what the relationship
between epistasis and problem difficulty is for fixed n and k. In this section, we examine the rela-
tionship between epistasis correlation and the actual difficulty of problem instances assuming fixed
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Figure 3: Epistasis correlation with respect to the number n of bits and the number k of neighbors
of nearest-neighbor NK landscapes.

n and k.

Specifically, for various combinations of n and k, several subsets of easy and difficult problem
instances are selected, and for each of these subsets, the average number of steps of local search and
the average epistasis correlation are presented. As subsets, we select the 10%, 25% and 50% easiest
instances, the 10%, 25% and 50% hardest instances, and all instances for the specific combination
of n and k regardless of their difficulty. Since for each combination of n and k, 10,000 instances
were used, even the smallest subset of 10% instances contains 1,000 instances. The difficulty of an
instance is measured by the actual number of steps of local search using the optimization method
under consideration (either GA with uniform crossover and DHC, or hBOA with DHC). In most
cases, n = 100 and k ∈ {2, 3, 4, 5, 6}. The results for other problem sizes are similar. However, for
GA with uniform crossover, resource constraints did not allow us to complete experiments k = 6
and n = 90 or n = 100, so we used n = 80 for k = 6. The results are shown in tables 1 and 2.

As shown in table 1, for hBOA with DHC and most values of k, the values of epistasis correlation
are in agreement with the actual difficulty of the subsets of instances. This is in agreement with our
intuition that as the problem difficulty increases, the epistasis correlation decreases, indicating an
increased level of epistasis. Nonetheless, as k grows, the differences between the values of epistasis
correlation for the different subsets of instances decrease. In fact, for k = 5 and k = 6, the values of
epistasis correlation sometimes increase with problem difficulty. While these results are somewhat
surprising, they can be explained by the fact that hBOA is able to deal with problems with epistasis
of bounded order efficiently. That is why hBOA should not be as sensitive to epistasis as many
other evolutionary algorithms.

As shown in table 2, for GA with uniform crossover and DHC, the values of epistasis correlation
are also in agreement with our understanding of how epistasis affects problem difficulty. Specifically,
as the problem instances become more difficult, the epistasis correlation decreases, indicating an
increased level of epistasis. In fact, for GA, the results are in agreement with our understanding
of epistasis and problem difficulty even for larger values of k, although the differences between the
values of epistasis in different subsets decrease with k.

The differences between the results for hBOA and GA confirm that the effect of epistasis should
be weaker for hBOA than for GA because hBOA can deal with epistasis better than conventional
GAs by detecting and using interactions between problem variables. The differences are certainly
small, but so are the differences between the epistasis correlation values between the subsets of
problems that are even orders of magnitude different in terms of the computational time. The
differences between a conventional GA with no linkage learning and one of the most advanced
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EDAs are among the most interesting results in this paper.

5 Summary and Conclusions

This paper discussed epistasis and its relationship with problem difficulty. To measure epistasis,
epistasis correlation was used. The empirical analysis considered hybrids of two qualitatively dif-
ferent evolutionary algorithms and a large number of instances of nearest-neighbor NK landscapes.

The use of epistasis correlation in assessing problem difficulty has received a lot of criti-
cism (Naudts, Suys, & Verschoren, 1997; Rochet, Venturini, Slimane, & Kharoubi, 1998). The
main reason for this is that although the absence of epistasis does imply that a problem is easy, the
presence of epistasis does not necessarily imply that the problem is difficult. Nonetheless, given our
current understanding of problem difficulty, there is no doubt that introducing epistasis increases
the potential of a problem to be difficult.

This paper indicated that for randomly generated NK landscapes with nearest-neighbor inter-
actions, epistasis correlation correctly captures the fact that the problem instances become more
difficult as the order of interactions (number of neighbors) increases. Additionally, the results
confirmed that for a fixed problem size and order of interactions, sets of more difficult problem
instances have lower values of epistasis correlation (and, thus, stronger epistasis). The results in-
dicated also that evolutionary algorithms capable of linkage learning are less sensitive to epistasis
than conventional evolutionary algorithms.

The bad news is that the results confirmed that epistasis correlation does not provide a single
input for the practitioner to assess problem difficulty, even if we assume that the problem size and
the order of interactions are fixed, and all instances are generated from the same distribution. In
many cases, simple problems included strong epistasis and hard problems included weak epistasis.
A similar observation has been made by Pelikan (2010) for the correlation length and the fitness
distance correlation. However, compared to these other popular measures of problem difficulty,
epistasis correlation belongs to one of the more accurate ones, at least for the class of randomly
generated NK landscapes with nearest-neighbor interactions.

One of the important topics of future work would be to compile some of the past results in
analysis of various measures of problem difficulty with the results presented here, and explore the
ways in which different measures of problem difficulty can be combined to provide the practitioner
a better indication of what problem instances are more difficult and what problem instances are
easier. The experimental study presented in this paper should also be extended to other classes
of problems, especially those that allow one to generate a large set of random problem instances.
Classes of spin glass optimization problems and graph problems are good candidates for these
efforts.
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hBOA, n = 100, k = 2:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 3330.9 (163.9) 0.6645 (0.030)
25% easiest 3550.2 (217.0) 0.6608 (0.030)
50% easiest 3758.6 (265.2) 0.6580 (0.030)
all instances 4436.2 (1019.5) 0.6534 (0.031)
50% hardest 5113.8 (1044.2) 0.6487 (0.031)
25% hardest 5805.5 (1089.4) 0.6466 (0.031)
10% hardest 6767.6 (1152.3) 0.6447 (0.032)

hBOA, n = 100, k = 3:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 4643.5 (264.0) 0.5221 (0.029)
25% easiest 5071.2 (420.4) 0.5193 (0.029)
50% easiest 5618.8 (651.1) 0.5175 (0.029)
all instances 6919.3 (1795.8) 0.5150 (0.029)
50% hardest 8219.7 (1626.0) 0.5124 (0.029)
25% hardest 9298.2 (1690.0) 0.5109 (0.029)
10% hardest 10688.3 (1925.0) 0.5106 (0.028)

hBOA, n = 100, k = 4:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 7380.6 (689.2) 0.4049 (0.024)
25% easiest 8361.4 (958.0) 0.4031 (0.025)
50% easiest 9528.3 (1414.2) 0.4025 (0.025)
all instances 12782.4 (4897.7) 0.4009 (0.025)
50% hardest 16036.5 (4979.6) 0.3994 (0.025)
25% hardest 19203.1 (5384.0) 0.3990 (0.025)
10% hardest 23674.1 (6088.7) 0.3986 (0.025)

hBOA, n = 100, k = 5:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 12526.4 (1408.4) 0.3090 (0.020)
25% easiest 14662.1 (2078.3) 0.3085 (0.020)
50% easiest 17399.8 (3334.6) 0.3085 (0.020)
all instances 26684.2 (14255.6) 0.3079 (0.020)
50% hardest 35968.5 (14931.0) 0.3072 (0.020)
25% hardest 44928.0 (16730.7) 0.3068 (0.020)
10% hardest 58353.5 (19617.4) 0.3071 (0.020)

hBOA, n = 100, k = 6:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 21364.1 (2929.9) 0.2349 (0.016)
25% easiest 26787.7 (5261.6) 0.2351 (0.016)
50% easiest 34276.6 (8833.1) 0.2348 (0.016)
all instances 60774.8 (42442.8) 0.2344 (0.016)
50% hardest 87272.9 (46049.2) 0.2339 (0.016)
25% hardest 114418.9 (52085.3) 0.2340 (0.016)
10% hardest 154912.8 (62794.1) 0.2341 (0.016)

Table 1: Epistasis correlation for easy and hard
instances for hBOA.

GA (uniform), n = 100, k = 2:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 1493.1 (259.4) 0.6660 (0.028)
25% easiest 1881.9 (373.9) 0.6625 (0.030)
50% easiest 2332.3 (543.2) 0.6588 (0.030)
all instances 3516.7 (1741.5) 0.6534 (0.031)
50% hardest 4701.0 (1722.0) 0.6479 (0.031)
25% hardest 5840.9 (1800.5) 0.6443 (0.031)
10% hardest 7358.3 (2002.9) 0.6395 (0.030)

GA (uniform), n = 100, k = 3:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 3240.8 (461.9) 0.5249 (0.029)
25% easiest 4035.6 (790.6) 0.5215 (0.029)
50% easiest 5178.5 (1340.6) 0.5189 (0.029)
all instances 9082.9 (6558.2) 0.5150 (0.029)
50% hardest 12987.4 (7330.5) 0.5110 (0.029)
25% hardest 17116.9 (8517.9) 0.5095 (0.029)
10% hardest 23829.5 (10164.2) 0.5082 (0.030)

GA (uniform), n = 100, k = 4:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 6594.6 (1183.6) 0.4045 (0.024)
25% easiest 8590.6 (1928.4) 0.4037 (0.025)
50% easiest 11445.0 (3427.8) 0.4026 (0.025)
all instances 25903.7 (26303.0) 0.4009 (0.025)
50% hardest 40362.3 (30885.2) 0.3993 (0.025)
25% hardest 57288.4 (36351.8) 0.3989 (0.025)
10% hardest 85279.2 (44200.4) 0.3970 (0.025)

GA (uniform), n = 100, k = 5:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 13898.4 (2852.6) 0.3099 (0.020)
25% easiest 19872.9 (5765.2) 0.3098 (0.020)
50% easiest 29259.2 (11063.4) 0.3087 (0.020)
all instances 84375.6 (119204.9) 0.3079 (0.020)
50% hardest 139492.0 (149074.5) 0.3070 (0.020)
25% hardest 209536.2 (185682.5) 0.3068 (0.020)
10% hardest 335718.7 (242644.0) 0.3058 (0.019)

GA (uniform), n = 80, k = 6:
desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 15208.7 (3718.2) 0.2358 (0.018)
25% easiest 22427.3 (6968.4) 0.2358 (0.018)
50% easiest 34855.5 (14722.9) 0.2353 (0.018)
all instances 117021.4 (204462.0) 0.2344 (0.018)
50% hardest 199187.4 (264378.2) 0.2335 (0.018)
25% hardest 310451.2 (338773.5) 0.2330 (0.018)
10% hardest 519430.9 (461122.7) 0.2324 (0.018)

Table 2: Epistasis correlation for easy and hard
instances for GA.
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