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Abstract

We survey some recent results on modeling, analysis and design of congestion control schemes

for the Internet. Using tools from convex optimization and control theory, we show that con-

gestion controllers can be viewed as distributed algorithms for achieving fair resource allocation

among competing sources. We illustrate the use of simple mathematical models to analyze the

behavior of currently deployed Internet congestion control protocols as well as to design new

protocols for networks with large capacities, delays and general topology. These new protocols

are designed to nearly eliminate loss and queueing delay in the Internet, yet achieving high

utilization and any desired fairness.
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1 Introduction

Over the last decade and a half, the Internet has grown from a small collection of nodes connecting

primarily academic institutions to a pervasive network which is at the center of world-wide com-

merce. A significant technological breakthrough which facilitated this growth was the introduction

of congestion control (Jacobson, 1988) that allowed many users to share the network without causing

congestion collapse. However, the Internet as it is today does not guarantee a high quality-of-service

to its users. One of the reasons is that users in the Internet estimate the level of congestion by

measuring packet loss or delay. Thus, a bad event (either high loss or high delay) has to occur

before users can infer network congestion. To counter this problem, in the last few years, there

has been a surge of interest in the Internet community to provide low-loss, low-delay service by

encouraging users to adapt to network congestion based on feedback from the routers in the form

of Explicit Congestion Notification (ECN) (Floyd, 1994). ECN marks allow routers to notify users

about incipient congestion. A packet is said to be marked if a particular bit in its header is set to

one. The user who receives a marked packet reacts to the mark by cutting its transmission rate.

Thus, the router avoids dropping packets, thereby enhancing goodput (throughput minus retrans-

missions), and still manages to convey congestion information to the user. This has the potential

to provide real-time services with minimal additional burden on the core network i.e., without the

need of a centralized admission control, resource reservation or complicated scheduling mechanisms

(Key, Kelly and Zachary, 2000).

To provide ECN marks in a way that ensures fairness while maintaining small queue lengths,

the routers have to intelligently select the packets to mark in a manner that conveys information

about the current state of the network to the users. Algorithms which the routers employ to

convey such information are called Active Queue Management (AQM) schemes. The parameters

of the AQM scheme have to be designed to ensure low-loss network operation. Of course, it is

easy to ensure that there is no packet loss by marking every packet, which would, in turn, force

the sources not to transmit any packets at all! Thus, in addition to requiring a low-loss network

operation, we also require that the network utilization be high. In general, the choice of the AQM

parameters to tradeoff between these requirements (low-loss and high utilization) may depend upon

the current state of the network: number of users in the network, their routes, and link capacities,

etc. However such information is not available at the routers in the network. Thus, the focus of

this paper is to review some recent literature on the use of simple mathematical models to design
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scalable congestion control schemes at the sources and AQM schemes at the routers to eliminate

loss and queueing delay in the Internet. The interested reader is also referred to (Srikant, 2000)

for a general discussion on control issues in communication networks and alternate schemes for

congestion control in ATM networks, and to (Low, Paganini and Doyle, 2002) for an earlier review

of Internet congestion control.

The rest of the paper is organized as follows. In Section 2, we show the connection between

resource allocation and congestion control and review results that show that congestion control

algorithms can be viewed as decentralized schemes to solve a fair resource allocation problem. In

Section 3, we discuss some widely used versions of TCP and AQM schemes in the Internet and

interpret them in terms of the models introduced in Section 2. In Sections 2–3, our emphasis is on

fair resource allocation and distributed algorithms to achieve this equilibrium. Thus, we interpret

congestion control using the language of convex optimization. To understand the effect of feedback

delay on the stability of this equilibrium requires control-theoretic analysis. In Section 4, we extend

the network model to incorporate delay, review the stability of the current protocols, and briefly

describe some ideas behind the design of scalable congestion control protocols that can maintain

linear stability, achieve high utilization, while virtually eliminating loss and queueing delay in the

network. The models used to design these protocols are linear, deterministic abstractions of the

true behavior of the Internet. We address these modeling assumptions in Section 5. In Section 6,

we extend the class of congestion control algorithms we considered to include multicast (point-to-

multipoint) communications. Concluding remarks are provided in Section 7.

2 Resource Allocation and Congestion Control

Consider a large network shared by many users, where the goal is to share the network resources

in a fair manner. The network resources that we consider here are the link bandwidths. There

is no universally accepted definition of fairness; in this paper, we will associate a utility function

with each user in the network and we will refer to a resource allocation scheme as being fair if it

maximizes the sum of utilities of all the users in the network. For an alternate definition of fairness,

see (Goel, Meyerson and Bharghava, 2001).

We will use the terms“user”, “source”, and “connection” interchangeably.
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2.1 Problem formulation

A network is modeled as a set of resources indexed by l, called links, with finite capacities c l. It

is shared by a set of sources, indexed by i. Let Ui(xi) be the utility of source i as a function of

its rate xi (measured in packets per unit time). Associated with each source is a route which is

a collection of links in the network. Let R be a routing matrix whose (l, i) entry is 1 if source i’s

route includes link l and is 0 otherwise.

The resource allocation problem can be formulated as the following nonlinear program (Kelly,

1997):

max
x≥0

∑

i

Ui(xi), Rx ≤ c (1)

where x is the vector of source rates and c is the vector of link capacities. The constraint says that,

at each link l, the aggregate source rate
∑

i Rlixi does not exceed the capacity cl. If the utility

functions are strictly concave, then the above nonlinear program has a unique optimal solution.

To solve this problem directly, we have to the know the utility functions and routes of all the

sources in the network. In a large network such as the Internet, this information is not available

centrally. Thus, it is important to devise distributed solutions, where each source adapts its trans-

mission rate based only on local information. In the rest of this section, we will describe distributed

algorithms whereby the sources adapt their rates based on congestion feedback from the links in

their paths.

2.2 Penalty function approach

Instead of trying to obtain the optimal solution to problem (1), consider the following problem

where the constraints are added to the objective using penalty functions:

max
x≥0

∑

i

Ui(xi) −
∑

l

∫

∑

i:l∈i
xi

0
pl(x)dx (2)

where we use the notation l ∈ i to indicate that link l belongs to source i’s route. The function

pl(x) is assumed to be non-negative and denotes the penalty function corresponding to the capacity

constraint at link l. This is commonly referred to as price at link l. Note that the price at link l

is a function of the total arrival rate
∑

i:l∈i xi at link l, and can be interpreted as a measure of

congestion at link l.

To solve (2), we write down the first-order necessary condition: for each i,

U ′
i(xi) −

∑

l∈i

pl(
∑

j:l∈j

xj) = 0
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Thus, the following continuous-time version of a gradient-ascent algorithm can be used to solve (2):

ẋi = κi



1 −
1

U ′
i(xi)

∑

l∈i

pl





∑

j:l∈j

xj







 (3)

Note that the equilibrium point of the congestion control equation (3) solves (2). To prove that

the system of equations given by (3) is stable, it was shown in (Kelly, Maulloo and Tan, 1998) that

the objective in (2) is a Lyapunov function for the system of equations given by (3). Specifically,

if we denote the objective in (2) by V (x), then it is easy to verify that

dV

dt
=
∑

i

∂V

∂xi

ẋi

which is strictly positive when x is not an equilibrium point of (3), and zero otherwise. The algo-

rithm (3), with appropriate price function pl(·) (see below), is referred to as the primal algorithm.

The most important feature of (3) is that source i’s congestion control equation depends only

on the sum of the link prices along its path. Thus, from each source’s point of view, if there is a

protocol that allows it to compute the sum of the link prices along its path, then it can implement

its congestion controller in a distributed manner, without requiring any coordination with other

sources in the network. From the network’s point of view, the functions pl(·) will be computed

by the routers in the network. The fact that the price of link l depends only on the total arrival

rate at the link ensures that the computations at the routers depend on the aggregate flow into

each link. In other words, no per-flow information is necessary. Further, each link’s computation

can be performed without requiring any coordination with other links. Thus, the algorithm is

completely decentralized, except for the requirement of a protocol to communicate the link prices

to the sources. We will later describe a simple protocol for this purpose.

2.3 Dual approach

Instead of solving the optimization problem (1) using penalty functions, we can also solve the

problem exactly using Lagrange multipliers. Consider the associated dual problem (Low and Lap-

sley, 1999):

min
λl≥0

D(λ) :=
∑

i

max
xi≥0



Ui(xi) − xi

∑

l∈i

λl



 +
∑

l

λlcl (4)
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Given the Lagrange multipliers λl (also referred to as shadow prices), the maximization over xi can

be carried out by individual sources based only on the aggregate price of its path, as follows:

xi = U ′−1
i





∑

l∈i

λl



 (5)

where U ′−1
i (·) denotes the inverse of the derivative of Ui. When the utility function Ui is convex,

xi is a decreasing function of the aggregate price
∑

λl.

To compute the shadow prices, consider the continuous-time version of the scaled gradient

projection algorithm for the dual problem (4):

λ̇l = −γl

∂D

∂λl

where γl is a stepsize parameter at link l. It is easy to verify that

∂D

∂λl

= cl −
∑

i:l∈i

xi

Thus, an algorithm to compute the shadow price at link l becomes

λ̇l = γl





∑

i:l∈i

xi − cl



 (6)

This is simply the law of supply and demand: if the demand
∑

xi exceeds supply cl, increase the

price; otherwise, decrease it. Again, we note the distributed nature of the algorithm: each link only

uses the total arrival rate into it to compute its price. The global convergence of the above algorithm

has been proved in (Low and Lapsley, 1999), even in an asynchronous setting where delays between

sources and links can be large and time-varying, sources and links can communicate and update at

different times, with different frequencies, and using outdated information. The algorithm (6) and

(5) is referred to as the dual algorithm.

When cl in (6) is the real link capacity, the equilibrium queue length at link l is p∗
l /γl where

p∗l is the equilibrium price at link l. Not only can it be large (when γl is small), worse still, p∗l and

hence the equilibrium queue length typically increases as the number of sources increases. One way

to maintain zero equilibrium queue regardless of the number of sources is to take cl to be strictly

less than real link capacity. Another way is to explicitly incorporate queue length control into (6)

(Athuraliya, Li, Low and Yin, 2001). The global stability of such an explicit queue length control

in the absence of delay has been established in (Paganini, 2002) using a Lyapunov argument. It is

well known that Newton algorithm generally has much faster convergence than gradient projection
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algorithm. In (Athuraliya and Low, 2000), dynamic scaling factors γl(t) are used to approximate

the Newton algorithm. This approximate Newton algorithm maintains optimality, has the same

decentralization structure as (6), but enjoys a better convergence property.

2.4 Exact penalty functions

The penalty function approach provides an approximate solution to the resource allocation problem

(1). By comparing the first-order necessary conditions for optimality, it is easy to see that the

solution to (2) will solve (1) exactly if

pl





∑

j:l∈j

xj



 = λl

at the optimal solution of (2). Recall the penalty pl(·) is computed at each link based on the total

arrival rate
∑

i:l∈i xi into the link. An example of such a penalty function is

pl(xl) =

(

xl

c̃l

)B

for some c̃l. Such a penalty function can be interpreted as the probability that the queue exceeds

a level B in an M/M/1 queue with arrival rate xl and service rate c̃l when xl < c̃l (Gibbens and

Kelly, 1999). We will refer to c̃l as the virtual capacity of the link. Another example of a penalty

function is

pl(xl) =
(xl − c̃l)

+

xl

This penalty function can be interpreted as the loss probability in an M/M/1/B queue when B → 0

(Kunniyur and Srikant, 2000). Since the penalty function approach only approximately solves the

resource allocation problem (1), a question of both theoretical and practical interest is whether one

can choose {c̃l} such that the solution to (2) solves (1) exactly. Towards this end, consider the

following differential equations for c̃l :

˙̃cl = α(cl −
∑

j:l∈j

xj), (7)

with the understanding that c̃l ≥ 0 and α is a small parameter that can be chosen to stabilize

the system. Noting that the penalty functions are decreasing functions of c̃l, the above differential

equation can be interpreted as follows: if the arrival rate at a link is less than the link capacity,

then decrease the penalty by increasing c̃l; else, increase the penalty by decreasing c̃l. A modified

version of this algorithm, along with the primal algorithm (3), has been shown to converge to the
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solution of the network resource allocation problem exactly (Kunniyur and Srikant, 2002c) when α

is sufficiently small. Again, we wish to emphasize the decentralized nature of the algorithm: each

link computes its virtual capacity knowing only the total arrival rate into it.

2.5 One-bit feedback

So far, we have assumed that each link on a source’s path computes a penalty or price for using

that path and the sum of the prices of the links in its path is conveyed to each source. One way to

implement this would be as follows (Lapsley and Low, 1998): suppose that each packet has a field

for storing price information. This could be initialized to zero at the source. Then, as the packet

traverses the network, each link can add its price to this field. The destination can then return

the total path price to the source upon receiving each packet. However, in today’s Internet, such a

price field is not available in the IP packet header. In fact, the proposed standards for conveying

congestion information, use only one bit to indicate congestion (Ramakrishnan and Floyd, 1999)!

The congestion-indication bit, known as the ECN bit, is initially set to zero at the source. When

a router wants to indicate congestion, it sets the bit to one. This is referred to as packet marking.

We now describe two one-bit marking schemes to convey path prices, REM (Random Exponen-

tial Marking) (Athuraliya et al., 2001) and SAM (Self-normalized Additive Marking) (Adler, Cai,

Shapiro and Towsley, 2002)). They can be used for both the primal and the dual algorithm.

Let pl ≥ 0 be the link prices. When a packet arrives at link l, if it is already marked, the ECN

bit is forwarded as is. Otherwise, it is marked with probability 1 − e−pl . Then the end-to-end

probability that a packet will be marked on a path is 1 − exp(−
∑

pl), where the summation is

over all the links in the path. Thus, the aggregate price
∑

pl is embedded in the (exponent of the)

end-to-end marking probability. If the destination conveys the rate at which packets are marked

to the source, then the source can compute the end-to-end path price by − ln(1 − m), where m is

the end-to-end marking probability. This is REM (Athuraliya et al., 2001).

Suppose now the prices are bounded, say, 0 ≤ pl ≤ 1. Suppose further that every link knows its

position along a packet’s path, and without loss of generality, assume link l, l = 1, . . . , n is the lth

link in the path under consideration. Then when a packet arrives at link l, its ECN bit is forwarded

as is to link l + 1 with probability 1 − 1/l, is set to 1 with probability pl/l, and is set to 0 with

probability (1 − pl)/l. Then the end-to-end marking probability is
∑n

l=1 pl/n. In IP networks, link

position can usually be inferred from TTL (time-to-live) filed in the IP header of a packet. This is
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SAM (Adler et al., 2002).

Even though estimation of the path price both converges almost surely to its true value, REM is

a biased estimator (since the ln function is strictly concave) whereas SAM is unbiased. It is shown

in (Adler et al., 2002) that if there are no other restriction on prices except pl ≥ 0, then REM

is essentially the only scheme that can convey prices with a single bit. If prices are bounded and

links know their positions in a packet’s path, then REM and SAM are essentially the only possible

schemes. In this case, SAM generally outperforms REM.

3 Current TCP/AQM Protocols

In the previous section, we have shown that congestion control is a distributed algorithm to share

network resources among competing sources. It has two components: a source algorithm that

dynamically adjusts rate (or window size) in response to congestion in its path, and a link algorithm

that updates, implicitly or explicitly, a congestion measure and sends it back, implicitly or explicitly,

to sources that use that link. We have also presented the primal and the dual algorithms, and their

variations, as examples. These algorithms are derived from the source utility functions.

In the current Internet, the source algorithm is carried out by TCP, and the link algorithm is

carried out by (active) queue management (AQM) schemes such as DropTail or RED (Floyd and

Jacobson, 1993). Different protocols use different metrics to measure congestion, e.g., TCP Reno

(Jacobson, 1988), and its variants, use loss probability as a congestion measure, and TCP Vegas

(Brakmo and Peterson, 1995) uses queueing delay as a congestion measure (Low, Peterson and

Wang, 2002). Both are implicitly updated at the links and implicitly fed back to sources through

end-to-end loss or delay, respectively. The equilibrium and dynamics of the network depends on

the TCP/AQM protocol pair.

In this section, we will briefly review major TCP (Section 3.1) and AQM protocols (Section 3.2),

and present mathematical models of these protocols (Section 3.3). Even though these protocols were

not designed to solve any global optimization problem, we show how to associate utility functions

with any TCP protocol (Section 3.4), thus allowing us to interpret them as different distributed

algorithms to solve the utility maximization problem formulated in Section 2; see (Low, 2000) for

more details.
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3.1 TCP algorithms

TCP uses “window” flow control, where a destination sends acknowledgments for packets that are

correctly received. A source keeps a variable called window size that determines the maximum

number of outstanding packets that have been transmitted but not yet acknowledged. When the

window size is exhausted, the source must wait for an acknowledgment before sending a new packet.

Two features are important. The first is the “self-clocking” feature that automatically slows down

the source when a network becomes congested and acknowledgments are delayed. The second is that

the window size controls the source rate: roughly one window of packets is sent every round-trip

time. The first feature was the only congestion control mechanism in the Internet before Jacobson’s

proposal in 1988 (Jacobson, 1988). Jacobson’s idea is to dynamically adapt window size to network

congestion. In this section, we will review how TCP infers congestion and adjusts window size.

3.1.1 TCP Tahoe and Reno

A connection starts cautiously with a small window size of one packet (up to four packets have

recently been proposed) and the source increments its window by one every time it receives an

acknowledgment. This doubles the window every round-trip time and is called slow-start. When

the window reaches a threshold, the source enters the congestion avoidance phase, where it

increases its window by the reciprocal of the current window size every time it receives an ac-

knowledgment. This increases the window by one in each round-trip time, and is referred to as

additive increase. The threshold that determines the transition from slow-start to congestion

avoidance is meant to indicate the available capacity in the network and is adjusted each time a

loss is detected. On detecting a loss, the source sets the slow-start threshold to half of the current

window size, retransmits the lost packet, and re-enters slow-start by resetting its window to one.

This algorithm was proposed in (Jacobson, 1988) and implemented in the Tahoe version of TCP.

Two refinements, called fast recovery, were subsequently implemented in TCP Reno to recover

from loss more efficiently. Call the time from detecting a loss (through duplicate acknowledgments)

to receiving the acknowledgment for the retransmitted packet the fast retransmit/fast recover

(fr/fr) phase. In TCP Tahoe, the window size is frozen in the fr/fr phase. This means that

a new packet can be transmitted only a round-trip time later. Moreover, the “pipe” from the

source to the destination is cleared when the retransmitted packet reaches the receiver, and some

of the routers in the path become idle during this period, resulting in loss of efficiency. The first
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refinement allows a Reno source to temporarily increment its window by one on receiving each

duplicate acknowledgment while it is in the fr/fr phase. The rationale is that each duplicate

acknowledgment signals that a packet has left the network. When the window becomes larger

than the number of outstanding packets, a new packet can be transmitted in the fr/fr phase

while it is waiting for a (nonduplicate) acknowledgment for the retransmitted packet. The second

refinement essentially sets the window size at the end of the fr/fr phase to half of the window size

when fr/fr starts and enters congestion avoidance directly. Hence, slow-start is entered only

rarely in TCP Reno when the connection first starts and when a loss is detected by timeout rather

than duplicate acknowledgments.

3.1.2 TCP Vegas

TCP Vegas (Brakmo and Peterson, 1995) improves upon TCP Reno through three main techniques.

The first is a modified retransmission mechanism where timeout is checked on receiving the first

duplicate acknowledgment, rather than waiting for the third duplicate acknowledgment (as Reno

would), and results in a more timely detection of loss. The second technique is a more prudent way

to grow the window size during the initial use of slow-start when a connection starts up and it

results in fewer losses.

The third technique is a new congestion avoidance mechanism that corrects the oscillatory

behavior of Reno. The idea is to have a source estimate the number of its own packets buffered

in the path and try to keep this number between α (typically 1) and β (typically 3) by adjusting

its window size. The window size is increased or decreased linearly in the next round-trip time

according to whether the current estimate is less than α or greater than β. Otherwise the window

size is unchanged. The rationale behind this is to maintain a small number of packets in the

pipe to take advantage of extra capacity when it becomes available. Another interpretation of the

congestion avoidance algorithm of Vegas is given in (Low, Peterson and Wang, 2002), in which a

Vegas source periodically measures the round-trip queueing delay and sets its rate to be proportional

to the ratio of its round trip propagation delay to queueing delay, the proportionality constant being

between α and β. Hence, the more congested its path is, the higher the queueing delay and the

lower the rate. The Vegas source obtains queueing delay by monitoring its round-trip time (the time

between sending a packet and receiving its acknowledgment) and subtracting from it the round-trip

propagation delay.
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3.2 AQM algorithms

3.2.1 DropTail

Congestion control of the Internet was entirely source-based at the beginning, in that the link

algorithm was implicit. A link (router) simply drops a packet that arrives at a full buffer. This is

called DropTail (or Tail Drop) and the implicit link algorithm is carried out by the queue process.

The congestion measure it updates depends on the TCP algorithm.

For TCP Reno and its variants, the congestion measure is packet loss probability. The end-

to-end loss probability is observed at the source and is a measure of congestion on the end-to-end

path. For TCP Vegas, the congestion measure turns out to be link queueing delay (Low, Peterson

and Wang, 2002) when first-in-first-out service discipline is used. The congestion measure of a path

is the sum of queueing delays at all constituent links.

3.2.2 RED

RED (Random Early Detection) (Floyd and Jacobson, 1993) is an alternative way to generate

packet loss as a congestion measure. Instead of dropping only at a full buffer, RED maintains an

exponentially weighted queue length and drops (or marks) packets with a probability that increases

with the average queue length. When the average queue length is less than a minimum threshold,

no packets are dropped. When it exceeds a maximum threshold, all packets are dropped. When

it is in between, a packet is dropped with a probability that is a piecewise linear and increasing

function of the average queue length.

We also note that other AQM schemes have been proposed recently. Some notable examples

include the PI controller (Hollot, Misra, Towsley and Gong, 2001b), REM (Athuraliya et al., 2001)

and AVQ (Kunniyur and Srikant, 2001).

3.3 Mathematical models of current protocols

As an illustration of the framework presented in Section 2, we now present models of Reno/RED

and Vegas/DropTail. We will discuss the implications of these models in the following subsection.

3.3.1 Reno/RED

We only model the average behavior of AIMD (the additive increase, multiplicative decrease algo-

rithm used to control the window size) and does not differentiate between TCP Reno (Stevens, 1999)
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and its variants such as NewReno, SACK, etc. All these protocols (henceforth referred to as ‘Reno’)

increase the window by one every round trip time if there is no loss in the round trip time, and

halves the window otherwise. There are two versions of multiplicative decrease. Let wi(t) be the

window size. Let τi be the equilibrium round trip time (propagation plus equilibrium queueing

delay), which we assume is constant. Let xi(t) defined by xi(t) = wi(t)/τi be the source rate at

time t. The time unit is on the order of several round trip times and source rate xs(t) should be

interpreted as the average rate over this timescale. Dynamics smaller than the timescale of a round

trip time is not captured by the fluid model.

Let pl(t) be the marking probability at link l at time t. We make the key assumption that the

end-to-end marking probability qi(t) to which source algorithm reacts is the sum of link marking

probabilities: qi(t) =
∑

l Rlipl(t).
1 This is reasonable when pl(t) are small, in which case qi(t) =

1−
∏

l(1− pl(t))
Rli '

∑

l Rlipl(t). In period t, it transmits at rate xi(t) packets per unit time, and

receives (positive and negative) acknowledgments at approximately the same rate, assuming every

packets is acknowledged. Hence, on the average, source i receives xi(t)(1−qi(t)) number of positive

acknowledgments per unit time and each positive acknowledgment increases the window wi(t) by

1/wi(t). It receives, on the average, xi(t)qi(t) negative acknowledgments (losses) per unit time and

each halves the window. Hence, in period t, the net change to the window is roughly

xi(t)(1 − qi(t))/wi(t) − xi(t)qi(t)wi(t)/2

Then Reno is modeled by the source algorithm Fi:

ẋi =
1 − qi(t)

τ2
i

−
1

2
qi(t)x

2
i (t) (8)

The quadratic term signifies the property that, if rate doubles, the multiplicative decrease occurs at

twice the frequency with twice the amplitude. This model is used in (Kelly, 2001) and (Low, 2000).

There are variants of this model. One is that the window increases deterministically by 1 every

round trip time. This modifies the additive increase term in (8) into:

ẋi =
1

τ2
i

−
1

2
qi(t)x

2
i (t) (9)

This is used in (Kunniyur and Srikant, 2000; Hollot et al., 2001b; Massoulie and Roberts, 1999).

It is approximately the same as (8) when loss probabilities pl(t) are small.

1If this assumption is violated, the model presented below still holds, but the underlying utility function is modified;

see (Kelly, 2001, Theorem 4).

12



Another variant is that, instead of halving the window on each negative acknowledgment, the

window is halved once in each round trip time that contains one or more negative acknowledgments.

This modifies the multiplicative decrease term in (8) into:

ẋi =
1 − qi(t)

τ2
i

−
1

2τi

qi(t)xi(t) (10)

This is studied in (Low, 2000).

RED (Floyd and Jacobson, 1993) maintains two internal variables, the instantaneous queue

length bl(t) and average queue length rl(t). They are updated according to

ḃl = yl(t) − cl (11)

ṙl = −αl(rl(t) − bl(t)) (12)

where αl ∈ (0, 1). Then, (the ‘gentle’ version of) RED marks a packet with a probability pl(t) that

is a piecewise linear increasing function of rl(t):

pl(t) =



































0 rl(t) ≤ bl

ρ1(rl(t) − bl) bl ≤ rl(t) ≤ bl

ρ2(rl(t) − bl) + ml bl ≤ rl(t) ≤ 2bl

1 rl(t) ≥ 2bl

(13)

where

ρ1 =
ml

bl − bl

and ρ2 =
1 − ml

bl

3.3.2 Vegas/FIFO

A model of Vegas is developed in (Low, Peterson and Wang, 2002) where queueing delay, p l(t) =

bl(t)/cl, is used as a congestion measure (see also (Mo and Walrand, 2000)). Here bl(t) is the queue

length and evolves according to (11). Hence the AQM algorithm does not involve any internal

variable and is given by (dividing both sides of (11) by cl):

ṗl =
1

cl

(yl(t) − cl) (14)

To model the TCP algorithm, let di be the round trip propagation delay for source i and assume

αi = βi for all i. Then the rate is adjusted according to:

ẋi =
1

(di + qi(t))2
sgn

(

1 −
xi(t)qi(t)

αidi

)

(15)

13



where sgn(z) is −1 if z < 0, 0 if z = 0, and 1 if z > 0. Here, qi(t) =
∑

l Rlipl(t) is the sum of

link queueing delays in the path of i at time t, di + qi(t) is the round trip time of i at time t, and

xi(t)qi(t) is the number of packets2 that are buffered in the queues in i’s path. Hence (15) says

that the window (rate × round trip time) is incremented or decremented by 1 packet per round

trip time, according as the number xi(t)qi(t) of packets buffered in the path is smaller or greater

than the target αidi. In equilibrium, each source i maintains αidi packets in its path.

Instead of the Vegas source algorithm (15), (Mo and Walrand, 2000) proposes a window adjust-

ment scheme that achieves the same target queue and proportional fairness (Kelly et al., 1998):

ẇi = −κ
di

di + qi(t)

(

1 −
di

di + qi(t)
−

αidi

wi(t)

)

Note that when queueing delay qi(t) = 0, ẇi = καidi/wi(t), i.e., when the network is not congested,

window increases at a rate that is inversely proportional to current window. Global stability of the

algorithm is shown in (Mo and Walrand, 2000) in the absence of feedback delay using a Lyapunov

argument.

3.4 Equilibrium properties of current protocols

In this subsection, we first describe a general model of TCP/AQM algorithms, show how to associate

utility functions to these algorithms, and then apply the result to Reno and Vegas models derived

in the last subsection.

Define, for each link l, the aggregate flow rate yl(t) by:

yl(t) =
∑

i

Rlixi(t) (16)

and for each source i, the aggregate price qi(t)

qi(t) =
∑

i

Rlipl(t) (17)

Or, in matrix form, we have y = Rx and q = RT p (T denotes transpose).

Then TCP algorithms can generally be expressed as:

żi = Fi(zi, qi) (18)

xi = Gi(zi, qi) (19)

2This assumes xi(t) is in packets per unit time.
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where zi is a local state variable. TCP Reno and Vegas are special cases where zi = xi. AQM

algorithms can generally be expressed as:

v̇l = Hl(yl, vl) (20)

pl = Kl(yl, vl) (21)

For RED, vl represents the instantaneous and average queue length. Note that decentralization

requires that source rate xi(t) be adjusted based only on aggregate price qi(t), not on p(t) nor

qj(t), j 6= i, and that price pl(t) be adjusted based only on aggregate rate yl(t), not on x(t) nor

ym(t),m 6= l.

The equilibrium (x∗, z∗, v∗, p∗) of (18)–(21) satisfies

Fi(z
∗
i , q∗i ) = 0

Assuming ∂Fi/∂zi 6= 0 in the domain of interest, then by the implicit function theorem, zi = fi(qi)

for some fi. Hence, eliminating zi from (19), we get

xi = Gi(fi(qi), qi) =: gi(qi)

for some function gi. We make the natural assumption that both gi and g−1
i are positive and strictly

decreasing for all i, meaning that a larger congestion measure yields a smaller rate in equilibrium.

Then, define the utility function of source i as

Ui(xi) :=

∫

g−1
i (xi)dxi (22)

that is unique up to a constant. Under the assumption on g−1
i , Ui are strictly concave increasing

functions. An increasing utility function implies a greedy source – a larger rate yields a higher

utility – and concavity implies diminishing return.

Recall the problem of maximizing aggregate utility (1) and its dual (4). A unique optimal rate

vector x∗ exists since the objective function in (1) is strictly concave and the feasible solution set is

compact. We can interpret TCP/AQM algorithms as distributed primal-dual procedures to solve

the utility maximization problem and its dual. Specifically, suppose (x∗, p∗) is an equilibrium of

(18)–(21). Then it is proved in (Low, 2000) that x∗ solves the primal problem (1) with utility

function given by (22) if and only if for all l

y∗l ≤ cl with equality if p∗l > 0 (23)
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Moreover, in this case, x∗ is the unique primal optimal solution and p∗ is a dual optimal solution,

i.e., solves (4).

Hence, various TCP/AQM protocols can be modeled as different distributed primal-dual algo-

rithms (F,G,H,K) to solve the global optimization problem (1), with different utility functions

Ui. This computation is carried out by sources and links over the Internet in real time in the

form of congestion control. Note that the definition of utility function Ui depends only on TCP

algorithm (Fi, Gi); however, that the equilibrium (x∗, p∗) is optimal depends on AQM algorithm

(H,K) through the complementary slackness condition (23), which requires that (H,K) match

input rate to capacity at every bottleneck link. When this is satisfied, the gradient of the dual

objective function in (4) is zero at bottleneck links, and since the dual problem is convex, p∗ is

necessarily a Lagrange multiplier that solves the dual problem. Any AQM that stabilizes queues

possesses this property.

Applying this result to Reno algorithms (8)–(10) and to Vegas algorithm (15), the utility func-

tions of these algorithms are derived in (Low, 2000), shown in Table 1. These utility functions

are indeed strictly concave increasing and hence the equilibrium rate x∗ is the unique optimal

rate vector for (1). The utility function of Vegas implies that it achieves proportional fairness in

equilibrium (Kelly et al., 1998).

Reno (8) Fi(xi(t), qi(t))
1−qi(t)

τ2
i

− 1
2qi(t)x

2
i (t)

Utility
√

2
τi

tan−1
(

xiτi√
2

)

Reno (9) Fi(xi(t), qi(t))
1
τ2
i

− 1
2qi(t)x

2
i (t)

Utility − 2
τ2
i
xi

Reno (10) Fi(xi(t), qi(t))
1−qi(t)

τ2
i

− 1
2τi

qi(t)xi(t)

Utility 2
τi

log(2 + xiτi)

Vegas (15) Fi(xi(t), qi(t))
1

(di + qi(t))2
sgn

(

1 − xi(t)qi(t)
αidi

)

Utility αidi log xi

Table 1: Utility functions of TCP algorithms (Low, 2000)
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3.5 AQM design

The result of the last subsection shows that the equilibrium of TCP/AQM is largely determined

by the TCP algorithm (18)–(19) in that it alone defines the utility functions of the underlying

optimization problem (1). This interpretation provides a convenient way to understand (the equi-

librium properties of) various TCP algorithms in terms of their utility functions. The role of AQM

(20)–(21) is to ensure complementary slackness condition (23) and to stabilize the equilibrium.

This prompts the question: given a TCP algorithm (18)–(19), what is be “best” AQM?

This problem is formulated as an optimal control problem in (Kim and Low, 2002) as follows:

the linearized TCP Reno (and queue) dynamics is treated as a dynamical system (Fi, Gi) and the

AQM (20)–(21) is treated as the control input to this dynamical system. The control input (AQM

scheme) is then chosen to minimize a linear quadratic cost of the transients in queue length, ag-

gregate rate, jitter in the aggregate rate and price. By using a state-space model, AQM with PD

(proportional-derivative) and PID (proportional-integral-derivative) structures are derived natu-

rally as state feedback. Moreover, for the case of a single bottleneck link and N identical sources,

the solution to the optimal control problem is a stabilizing AQM with a PID structure; conversely,

any AQM with an appropriate structure solves the same optimal control problem with appropriate

weighting matrices. Thus, whereas we can associate a utility function with any TCP algorithm,

we can associate an optimal control problem with any AQM algorithm. Though the optimal AQM

requires global information for its implementation, this model can potentially be useful to evaluate

different practical AQMs as different approximations to the optimal AQM.

In this section, we have not dealt with the computational advantages of differential equation

models in studying the performance of the Internet. The interested reader is referred to (Altman,

Avrachenkov and Barakat, 2001; Bu and Towsley, 2001) for work along these lines.

4 Linearly Stable Protocols

So far, we have ignored the effect of network delay, i.e., we have assumed that the price information

is instantly available at sources for their rate adjustments, and their new rates affect the link prices

instantly. This is valid as we have been concerned with resource allocation in equilibrium. In this

section, we study how delay determines the stability of the equilibrium point, and how to design

TCP/AQM protocols that are linearly stable for general network topology, delay, and capacity.
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4.1 Model with delay

We start by extending our dynamic model (16)–(21) to include network delay.

For each link l, the flow rate is determined by source rates that are τ f
li time units earlier (compare

with (16) and (17)):

yl(t) =
∑

i

Rlixi(t − τ f
li) (24)

where τ f
li denote the equilibrium forward delays from sources to links. Similarly, the aggregate price

observed at source i is

qi(t) =
∑

l

Rlipl(t − τ b
li). (25)

where τ b
li are equilibrium backward delays in the feedback path. Let τi := τ f

li + τ b
li (for any link l in

the path of source i) be the equilibrium round trip time of source i.

These equations can be represented in the Laplace domain in terms of the delayed forward and

backward routing matrices:

[Rf (s)]
li

=











e−τ
f

li
s if l ∈ i

0 otherwise
, [Rb(s)]li =











e−τb
li

s if l ∈ i

0 otherwise
. (26)

We have, in vector form,

y(s) = Rf (s)x(s) (27)

q(s) = Rb(s)
T p(s). (28)

Then a network of TCP/AQM is modeled by (18)–(21) and their interconnection is modeled by

(24)–(25).

4.2 Stability of current protocols

Local stability of Reno/RED with feedback delays has been studied in (Hollot, Misra, Towsley and

Gong, 2001a; Low, Paganini, Wang, Adlakha and Doyle, 2002) by linearizing (8) and (11)–(13). It

is well known that TCP/RED can oscillate wildly and it is extremely hard to reduce the oscillation

by tuning RED parameters, e.g., (May, Bonald and Bolot, 2000; Christiansen, Jeffay, Ott and

Smith, 2000). The additive-increase-multiplicative-decrease (AIMD) strategy employed by TCP

Reno (and its variants such as NewReno and SACK) and noise-like traffic that are not effectively
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controlled by TCP no doubt contribute to this oscillation. We show in (Low, Paganini, Wang,

Adlakha and Doyle, 2002) however that these effects pale in comparison with protocol instability.

The system is unstable when there is severe oscillation in aggregate quantities, such as queue

length and aggregate window. We show that Reno/RED becomes unstable when delay increases,

and more strikingly, when network capacity increases! Moreover, even if we smooth out AIMD,

i.e., even if window is not adjusted on each acknowledgment arrival or loss event, but is adjusted

periodically by the same average amount AIMD would over the same period, the oscillation persists.

In particular, equation-based rate control will not help if the equation mimics the Reno dynamics.

This suggests that Reno/RED is ill-suited for future networks where capacities will be large. We

defer our discussion on the stability of Vegas/DropTail in the presence of delay to Section 4.5.

The above discussion motivates the design of simple, distributed algorithms that are scalable

to general delay and capacity, as we now explain.

4.3 Primal algorithm

For ease of exposition, let us consider a single congestion controller accessing a single link with a

utility function U(x) = w log(x), where w is some weighting factor. The primal algorithm (3) then

becomes

ẋ = κ (w − x(t − τ)p(x(t − τ))) ,

where τ is round-trip delay. The linearized version of this equation is

δẋ = −κ(p(x∗) + x∗p′(x∗)) δx(t − τ) (29)

where δx(t) represents the perturbation from the equilibrium point x∗ which satisfies

w − x∗p(x∗) = 0.

Taking the Laplace transform of (29) yields

(s + κ(p(x∗) + x∗p′(x∗))e−sτ )δx(s) = δx(0)

where we have used the same notation δx to denote variable in both time and Laplace domains.

Thus, the linear delay differential equation is stable if the roots of

s + κ(p(x∗) + x∗p′(x∗))e−sτ = 0
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do not lie in the right-half plane. From the Nyquist criterion, this would be true if the plot of

G(jω) = −κτ(p(x∗) + x∗p′(x∗))
e−jωτ

jωτ

as ω goes from −∞ to +∞ does not encircle the point −1 in the complex plane. It is easy to

see that the values of ω for which G(jω) intersects the real axis are given by cos(ωτ) = 0, which

implies that ωτ = π/2 ± 2πn, n = 0, 1, . . . . The maximum value of sin(ωτ)/ωτ at these values for

ωτ is 2/π. Thus, a little thought shows that the graph of G(jω) always intersects the real axis to

the right of −1 if

κτ(p(x∗) + x∗p′(x∗)) <
π

2
.

Roughly speaking, if the source chooses its controller gain κ inversely proportional to its round-trip

delay, then the linearized version of the congestion controller is stable.

In (Johari and Tan, 2001), it was conjectured that, for general multi-link multi-source case, the

network will be linearly stable under the primal algorithm (3) if, for each i,

κiτi(q
∗
i +

∑

l∈i

y∗l p
′
l(y

∗
l )) <

π

2
(30)

where q∗i is the aggregate price of source i in equilibrium and y∗
l is the aggregate arrival rate at

link l in equilibrium. A weaker version of this conjecture was proved in (Massoulie, 2000) and the

original conjecture was proved in (Vinnicombe, 2000; Vinnicombe, 2002), which also allows general

utility functions. These results again lead to the following remarkable decentralized structure: each

controller needs only to know its round-trip time and information about the price on its path to

ensure the stability of the network of congestion controllers.

4.4 Dual algorithm

Recall the scaled gradient projection algorithm to solve the dual problem (4):

ṗl = γl(yl(t) − cl)

xi(t) = U
′−1
i (qi(t))

This dual algorithm is an example of the general TCP/AQM structure (18)–(21) with a static

source algorithm and a first-order link algorithm. A special case with specific scaling γ l and utility

function Ui, developed in (Paganini, Doyle and Low, 2001), is the following TCP/AQM pair:

ṗl =
1

cl

(yl(t) − cl) (31)

xi(t) = xm,i e
−αiqi(t)

Miτi (32)

20



where αi ∈ (0, 1) and Mi is an upper bound on the number of bottleneck links in i’s path. This

source algorithm implies a utility function

Ui(x) =
Miτi

αi

x

[

1 − log

(

x

xm,i

)]

, for x ≤ xm,i.

The advantage of the dual algorithm (31)–(32) is that it automatically rescales itself with

network delays and capacities to maintain linear stability. Specifically, suppose the routing matrix

R has full row rank. Then there is a unique equilibrium rate and price vector (x∗, p∗). The linearized

system around the equilibrium is described by (variables now denote perturbation):

δṗl =
δyl(t)

cl

, for all l (33)

δxi = −
αix

∗
i

Miτi

δqi(t), for all s (34)

where the source rates x(t) and link prices p(t) are interconnected by the delayed routing matrices

defined in (24)–(25). Hence, the algorithm compensates for delay by scaling down the gain on

source rates by their individual round trip times τi. It compensates for loop gain introduced by

capacity and routing by scaling down the control gain at links by their capacities c l and scaling it

up at sources by their rates x∗
i . In other words, a source reacts more slowly if its round trip delay

is large or if its rate is small; a link updates its price more slowly if it has a larger capacity. Note

that network delay is the only open-loop parameter not under our control, and it should set the

time-scale of the system response.

Then, it is proved in (Paganini et al., 2001) that, provided R has full row rank, the closed-loop

system described by (33)–(34) and (24)–(25) is stable for arbitrary delays τi and link capacities cl.

4.5 Primal-dual algorithms

The primal and dual algorithms of the last subsections are complementary in many ways. Both

maintain linear stability in the presence of delays and for arbitrary link capacities. The primal

algorithm uses a first order source algorithm and a static link algorithm whereas the dual algorithm

is exactly the opposite. The primal algorithm allows general utility functions, and hence arbitrary

fairness in rate allocation, but gives up tight control on utilization. The dual algorithm, on the other

hand, can achieve very high utilization, but is restricted to a specific class of utility functions. By

adding slow timescale dynamics at links (for primal algorithm) or at sources (for dual algorithm),

it is possible to achieve both high utilization and arbitrary fairness, as we now explain.
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The result of Section 4.3 can be further extended to suggest design choices when each link adapts

its virtual queue capacity as in (7). It has been shown in (Kunniyur and Srikant, 2002b; Kunniyur

and Srikant, 2002a) that choosing κi for each source i in a way that satisfies (30) and choosing the

parameter αl at each link inversely proportional to the longest source-destination round-trip time in

the network ensures linear stability of the network of congestion controllers. In the case of a single

link and single congestion-controlled source, the congestion control/pricing combination considered

in (Kunniyur and Srikant, 2002b; Kunniyur and Srikant, 2002a) reduces to the following:

ẋ = κ (w − x(t − τ)p(x(t − τ), c̃))

˙̃c = α(cl − x).

In the above set of equations, we explicitly show the dependence of the marking function p on the

virtual capacity c̃. In Section 4.3, considering only the dynamics at the sources, i.e., considering

only the first of the above two equations and treating c̃ as a constant, we showed conditions on

κ for the linearized version of the above system to be stable. The dynamics for c̃ allow for full

utilization of the link. Note that the equilibrium point of the above equation is given by x = c l,

thus the link would be fully utilized if we can choose the parameters κ and α to ensure stability.

To do this, in (Kunniyur and Srikant, 2002b; Kunniyur and Srikant, 2002a), the c̃ dynamics were

thought of as a perturbation of the dynamics of the system without the c̃ dynamics and using results

from perturbation theory, it was shown that κ and α can be chosen small enough to ensure linear

stability. In the general result in (Kunniyur and Srikant, 2002b; Kunniyur and Srikant, 2002a),

each congestion controller can choose κ knowing only pricing information in its route and its own

round-trip delay, while each router can choose its α using a bound on the largest round-trip delay

in the network. We also refer the reader to (Vinnicombe, 2002) for a robustness analysis of the

above choice of design parameters.

While the primal algorithm needs to be augmented with slow timescale link dynamics to achieve

full utilization, the dual algorithm of the last subsection has to be augmented with slow timescale

dynamics at the source algorithm to track an arbitrary utility function. Consider the following

adaptation of xm,i in (32):

xi(t) = xm,i(t) e
−αiqi(t)

Miτi

xm,i(t) = xmax,i eξi(t)

τiξ̇i = βi(U
′
i(xi(t)) − qi(t))
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where the utility function Ui can be arbitrary. In equilibrium, ξ̇i = 0 and U ′
i(x

∗
i ) = q∗i , and hence

the equilibrium rates x∗
i maximize aggregate utility with general utility functions Ui. The linearized

source law is:

τiδξ̇i = βi

(

U
′′

i (x∗
i )δxi(t) − δqi(t)

)

(35)

δxi(t) = x∗
i

(

δξi(t) −
αi

Miτi

δqi(t)

)

(36)

Hence it replaces the static source law (34) by a lead-lag compensator that tracks arbitrary utility

function at a slower timescale. It is shown in (Paganini, Wang, Low and Doyle, 2003) that, provided

there is a common bound τ on delays, τi ≤ τ for all i, αi and βi can be chosen so that the linearized

system (31) and (35)–(36) is stable for arbitrary capacities cl and delays τi ≤ τ .

We now discuss the stability of Vegas/DropTail and propose a modification that has a similar

structure as (35)–(36).

In contrast to Reno and its variants, Vegas seems particularly well-suited for high speed net-

works. At high speed, Reno and its variants, with RED, become unstable as network capacity

increases (Hollot et al., 2001a; Low, Paganini, Wang, Adlakha and Doyle, 2002). It also must

maintain an exceedingly small loss probability in equilibrium that is difficult to reliably use for

control. Vegas, on the other hand, scales correctly with capacity: compare (14) and (31). This

built-in scaling with capacity makes Vegas potentially scalable to high bandwidth, in stark con-

trast to Reno and its variants. The source algorithm of Vegas, however, has a different scaling with

respect to delay from those in (Paganini et al., 2001; Paganini et al., 2003).

To analyze its stability, note that

sgn (z) '
2

π
tan−1 (ηz)

The approximation becomes exact in the limit as η → ∞. In (Choe and Low, 2003) the discontin-

uous Vegas algorithm (15) is approximated by the following differentiable function:

ẋi(t) =
2

π

1

T 2
i (t)

tan−1 η

(

1 −
xi(t)qi(t)

αidi

)

(37)

where again Ti(t) = di + qi(t) is the round trip time. Linearizing (14) and (37), Vegas is then

modeled around its equilibrium, in Laplace domain, by

δxr(s) = −
x∗

r

q∗r

ar

sTr + ar

δqr(s) (38)

δpl(s) =
1

cls
δyl(s)
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and the interconnection (26)–(28), where ar = 2η/πx∗
rTr. A sufficient stability condition is derived

in (Choe and Low, 2003) that suggests that Vegas can become unstable at large delay, and this is

confirmed by packet-level simulations.

To stabilize it, the following PD (proportional differential) modification to (37) is proposed in

(Choe and Low, 2003):

ẋr =
w

T 2
r (t)

· tan−1 ηr(t)

(

1 −
xr(t)qr(t)

αrdr

− κr(t)q̇r(t)

)

where

κr(t) =
1

a
·
Tr(t)

qr(t)
, ηr(t) =

µa

w
· xr(t)Tr(t)

and µ and a are parameters to be chosen. The overall gain parameter ηr is proportional to the

current window size: the larger the window, the more aggressive the response. The gain κr(t) on

the differential term is proportional to the ratio of round trip time to end-to-end queueing delay

of source r, and serves as a normalization to q̇r(t). The additional differential term κr(t)q̇r(t)

anticipates the future of qr(t). Without this term, source rate xr(t) will be increased if the number

xr(t)qr(t) of packets buffered in the links is small (compared with αrdr). With this term, even

when xr(t)qr(t) is small, the source may decrease its rate if prices are rapidly growing, i.e. if q̇(t)

is large. This modifies the linearized equation (38) into

δxr(s) = −
µx∗

r

q∗r

(

sTr + a

sTr + µa

)

δqr(s)

It is shown in (Choe and Low, 2003) how to choose the parameters µ, a to ensure the linear stability

of the modified Vegas.

5 Modeling Assumptions

We have made several modeling assumptions in deriving congestion controllers and making param-

eter choices for these controllers. We comment on these assumptions in this section.

5.1 Deterministic fluid models

We have so far assumed that the network is described by a set of deterministic, delay-differential

equations. It is more realistic to incorporate randomness in the network model (e.g. see (Baccelli

and Hong, 2002)). A network such as the Internet is not only accessed by congestion-controlled
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sources, but is also used by sources that are either non-rate-adaptive or too short to be effectively

controlled end-to-end. These uncontrolled or short-duration sources can be modeled as random

disturbances to the deterministic system. It is well-known that file sizes in the Internet have

a heavy-tailed distribution (see (Zhu, Yu and Doyle, 2001) for a plausible explanation of this

phenomenon). For our purposes, this means that while most files have only a few packets, most

packets belong to a few files. The small files are called mice and the huge files are called elephants.

The aim of congestion control is to control the elephants to maximally utilize network bandwidth

in a way that leaves the network queues mostly empty, so that mice can fly through the network

with little delay or loss. Thus, the models in this paper address the control of elephants, but a

more accurate model would include mice as random disturbances.

Recall the primal algorithm for the proportionally fair congestion controllers where the sources

have a utility function U(x) = log(x) :

ẋi = κi



1 − xi(t − τ)p





n
∑

j=1

xj(t − τ)









where we have assumed that there is a single link accessed by n sources, all with the same round-

trip delay of τ. Suppose that, in addition to the congestion-controlled sources, there are n other

sources with instantaneous rates wi(t), i = 1, 2, . . . , n that also share the link. Then, the congestion

control equation becomes

ẋi = κ



1 − xi(t − τ)p





n
∑

j=1

xj(t − τ) +
n
∑

j=1

wj(t), nc̃







 ,

where we use the notation p(x, c̃) to denote the marking rate when the arrival rate is x and the

virtual capacity is c̃. Defining x(t) = 1
n

∑n
i=1 xi(t), and supposing that the marking function is such

that p(nx, nc̃) = p(x, c̃), then the delay differential equation for the average rate x(t) can be written

as

ẋ = κ



1 − x(t − τ)p



x(t − τ) +
1

n

n
∑

j=1

wj(t), c̃







 .

If we make a law-of-large-numbers assumption on {wj(t)} whereby

1

n

n
∑

j=1

wj(t) → 0

uniformly in t ≥ 0, then it is reasonable to expect that the above differential equation will converge

to the limit

ẋ = κ (1 − x(t − τ)p(x(t − τ), c̃))
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The assumption p(nx, nc̃) = p(x, c̃) can be interpreted as that network capacity scales linearly

with traffic demand, which is reasonable. For instance, the marking function

p(x, c̃) =

(

x

c̃

)B

can be thought of as the overflow probability in an M/M/1 queue with buffer size B, input rate

x and service rate c̃. It seems reasonable that the capacity of the virtual queue nc̃ should be

scaled with n, the number of sources. This would ensure that a constant amount of resource

is used per source. Thus, when the virtual capacity is scaled with the number of sources, the

assumption p(nx, nc̃) = p(x, c̃) is valid. This informal discussion is made precise in (Shakkottai and

Srikant, 2001; Deb, Shakkottai and Srikant, 2002) taking into account many factors such as the

fact that the transmission rate of each source should be non-negative, the marking could be based

on queue length, there could be randomness in the marking process itself, the congestion controller

could be the duality-based controller, etc.

5.2 Linearization

As we discussed in the previous subsection, the real network is described by a stochastic delay

differential equation, but it seems reasonable to design controllers for such a system based on a

deterministic delay differential equation model. However, even these models are difficult to analyze

and therefore, for control parameter design, we resort to linearization. We now briefly discuss the

effect of linearization and whether the conclusions from these linear models make sense for the

nonlinear model.

We consider a single primal congestion controller accessing a single link, although similar results

are possible for the dual controller as well:

ẋ = κ(1 − x(t − τ)p(x(t − τ))).

If the linearized form of the above equation is unstable, it does not necessarily mean that the

trajectory of the nonlinear system will go to ∞. It is possible for the nonlinear system to be

bounded, but oscillatory.

We will now argue that if κτ is sufficiently small, the system will have bounded oscillations close

to the equilibrium point. To do this, let M and l be some upper and lower bounds, respectively, on

the trajectory of x(t). To obtain a bound on M, we argue as follows: suppose ẋ(t) < 0 whenever

x(t) > M, then we can conclude that x(t) will be ultimately upper bounded by M. Similarly, if
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ẋ(t) > 0 whenever x(t) < l, then we can conclude that x(t) will be ultimately lower bounded by M.

Now a straight forward argument from (Shakkottai, Srikant and Meyn, 2001) gives the following

expressions for M and l:

M = x∗ + κτ

l = x∗ − κτ(1 − (κτ + x∗)p(κτ + x∗)).

Thus, we can obtain an upper bound on κτ for any desired upper bound on M − l. Conditions of

the form κτ < η, for some constant η, seem to be fundamental in designing congestion controllers,

both to guarantee linear stability and to reduce the magnitude of oscillation when the system is

unstable. We also note that, if η is made sufficiently small, one can actually prove that the single

source, single link, nonlinear delay differential equation is indeed stable (Deb and Srikant, 2001b).

6 Multicast

So far we have considered networks with unicast sessions only, i.e., each session has a single source

and a single destination. On the other hand, there are many applications where a single source’s

transmission may be of interest to multiple destinations (also known as receivers). To model

this scenario, let S denote the set of sessions and Rs be the set of receivers corresponding to a

session s ∈S. Rs is a singleton set for the unicast sessions and so we include the unicast case

within the same framework. The receivers of a multicast group can be viewed as virtual sessions

corresponding to that particular multicast session. Henceforth we use the terms virtual session and

receiver interchangeably. We use the notation (s, r) to denote a virtual session corresponding to

session s. Let Lsr be the set of all links in the route of a virtual session (s, r). Let Sl be the set of

all sessions passing through link l and let Vsl be the set of all virtual sessions of the session s using

link l. Let Usr(x) be the utility function of the virtual session (s, r). Also, associated with each

link, let there be a function pl(x) which denotes the fraction of packets marked whenever there is

congestion in that link when the total flow rate in that link is x. The details of how the marks are

distributed among the virtual sessions sharing the link will be provided later. Let xsr(t) denote

the rate at which the virtual session (s, r) sends data at time t. The total flow in link l at time t

is given by
∑

s∈Sl
(max(s,r)∈Vsl

(xsr(t))).

The objective is to find rates so as to

max
xsr≥0

∑

s∈S

∑

r∈Rs

Usr(xsr)
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subject to
∑

s∈Sl

max
(s,r)∈Vsl

xsr ≤ cl, ∀l ∈ L (39)

The above maximization problem has a concave objective function and a convex constraint set and

thus, has a unique optimal solution.

The non-differentiability of the max functions in (39) poses a challenge in studying the rate

control equations and their stability. To bypass this difficulty, we approximate the function max i(xi)

by the function (
∑

i x
n
i )

1
n , which uniformly converges to maxi(xi) as n → ∞ when all xi’s are non-

negative real numbers. We hence consider the following optimization problem, for some sufficiently

large n:

max
xsr≥0

∑

s∈S

∑

r∈Rs

Usr(xsr)

subject to
∑

s∈Sl

(
∑

(s,r)∈Vsl

xn
sr)

1
n ≤ cl, ∀l ∈ L (40)

We now summarize the results from (Deb and Srikant, 2001b) where a set of rate control equations

for the convex program (40) is presented and based on this, a heuristic for rate control for a network

with multicast multirate sessions is developed.

Towards this end we consider a penalty function formulation of the convex program (40), in

which we maximize the following function:

Vn(x) =
∑

s∈S

∑

r∈Rs

Usr(xsr) −
∑

l∈L

∫ (
∑

m∈Sl
(
∑

(m,j)∈Vml
xn

mj
)

1
n )

0
pl(u)du

As in the penalty function approach to the unicast congestion control problem, the following algo-

rithm can be shown to solve the above problem:

ẋsr = κsr



1 − (U
′

sr(xsr))
−1

∑

l∈Lsr

ql(sr)





∑

m∈Sl

max
(m,j)∈Vml

xmj







 (41)

Here the function ql(sr)(.) is link l’s marking function for the virtual session (s, r). For all unicast

sessions this function is the same as the original marking function pl(.). For all virtual sessions

belonging to a multicast group the function ql(sr)(.) is same as pl(.) if that virtual session alone has

the highest rate among all the virtual sessions of that multicast group through link l; q l(sr)(.) is

equal to zero for any virtual session going through that link but having rate less than the multicast

session rate through that link. If more than one virtual session has a rate equal to the multicast

session rate through the link then for all those virtual sessions ql(sr)(.) is equal to pl(.)
K

, where K is

the number of virtual sessions with rate equal to the multicast session rate. In practice, this can

be viewed as being equal to pl(.) with probability 1
K

and 0 with probability (1 − 1
K

).
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This algorithm can be implemented as follows:

1. Link algorithm: Suppose link l has a marking function pl(.) which depends on the total

flow rate through the link. Then it sets the ECN bit of a packet to 1 with probability pl(.),

if the ECN bit is 0; if the ECN bit is 1 it is left as is. So packets from a session (multicast or

unicast) are marked in proportion to their rates through the link.

2. Node algorithm: Every (multicast or unicast) session defines a directed tree on which

packets flow from the source (root) towards the receivers (all leaves). Each packet is replicated

k times at each node where k is the number of outgoing links from the node; call a node a

junction node (with respect to a particular session) if k > 1. When a packet arrives at a non-

junction node (with respect to the packet’s session), it is forwarded to the (only) outgoing

link as is. When a packet arrives at a junction node, the junction node chooses at random

one of the receivers of this packet whose rate is the same as the session rate and sends the

mark to that receiver. For all other receivers, the junction node unmarks any packet that is

marked, before sending any copy of the packet.

3. Receiver algorithm: From the marked packets received each virtual session estimates the

sum of the marking probabilities (
∑

l∈Lsr
ql(sr)) along its path. This can be achieved by

counting the fraction of packets received with ECN bit set to 1 over some time interval. Then

the rates are updated according to (41).

In the above congestion control mechanism, the only information the multicast flows require at the

nodes (the junction nodes) is the identification of receivers whose rates are maximum.

The heuristic discussion here is rigorously proved in (Deb and Srikant, 2001a); see (Kar, Sarkar

and Tassiulas, 2001) for related work. We have not discussed the extensions of the delay analysis or

the adaptive virtual queue for multicast networks. We expect that analysis similar to the unicast

case will also hold here.

7 Conclusions

We have presented a brief survey of some recent developments on modeling and design of congestion

control protocols for the Internet. Interestingly, while there are two ways to solve the fair resource

allocation problem for the Internet, namely, the primal and dual approaches, the choice of the
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congestion control parameters leads to design principles that are common to both approaches: the

controller gains have to be chosen proportional to the inverse of the round-trip delays in the system,

and if the congestion controller operates at a fast time scale, then the AQM scheme should operate

at a slow time scale, and vice-versa.

Work is currently underway to translate these algorithms into practically implementable proto-

cols that would allow the Internet to deliver faster service more reliably. On the theoretical front,

much remains to be done, especially in understanding the implications of deterministic, linear

modeling paradigm for the original highly nonlinear, stochastic system. It would also be important

to develop models that show the connections between congestion control and other layers of the

protocol stack such as routing, medium access, and call admission control, etc.
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