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The network architecture of functional connectivity within the human
brain connectome is poorly understood at the voxel level. Here, using
resting state functional magnetic resonance imaging data from 1003
healthy adults, we investigate a broad array of network centrality
measures to provide novel insights into connectivity within the
whole-brain functional network (i.e., the functional connectome). We
first assemble and visualize the voxel-wise (4 mm) functional
connectome as a functional network. We then demonstrate that each
centrality measure captures different aspects of connectivity,
highlighting the importance of considering both global and local
connectivity properties of the functional connectome. Beyond
‘‘detecting functional hubs,’’ we treat centrality as measures of
functional connectivity within the brain connectome and demon-
strate their reliability and phenotypic correlates (i.e., age and sex).
Specifically, our analyses reveal age-related decreases in degree
centrality, but not eigenvector centrality, within precuneus and
posterior cingulate regions. This implies that while local or (direct)
connectivity decreases with age, connections with hub-like regions
within the brain remain stable with age at a global level. In sum, these
findings demonstrate the nonredundancy of various centrality
measures and raise questions regarding their underlying physiological
mechanisms that may be relevant to the study of neurodegenerative
and psychiatric disorders.

Keywords: functional connectome, network centrality, resting-state fMRI,
test--retest reliability, whole-brain connectivity

Introduction

The emergence of resting-state functional magnetic resonance

imaging (R-fMRI) has made it feasible to attain a high-resolution

map of the human functional connectome (Biswal et al. 1995;

Sporns et al. 2005; Fox and Raichle 2007; Biswal et al. 2010).

However, with new advances come new challenges (DeFelipe

2010; Friston and Dolan 2010). In particular, the brain’s

functional connectome is necessarily dynamic as it underpins

a multitude of brain states involving emotion, cognition, action,

perception, and sensation (Carhart-Harris and Friston 2010;

Friston 2010; Deco et al. 2011). To understand the origin of

these complex functions in terms of the brain’s functional

connectivity, a first step consists of creating maps of potential

connections in the brain and characterizing the complexity of

their functional interactions.

Two fundamental approaches have dominated the functional

connectivity literature to date: seed-based correlation analysis

and independent component analysis (Cole, Smith, et al. 2010).

Seed-based approaches estimate the strength and significance

of pairwise relationships between regions of interest and all

other voxels in the brain. In contrast, independent component

analysis attempts to identify sets of brain regions that are

separable on the basis of statistical patterns in their dynamic

time series. Both approaches have enjoyed significant success

in leading to the discovery and detailed mapping of large-scale

brain intrinsic connectivity networks (ICNs) (Beckmann et al.

2005; Damoiseaux et al. 2006; Margulies et al. 2007, 2009).

However, neither of these approaches fully characterize the

brain’s functional connectome. While the seed-based method

can be used to map the functional connectome in its entirety, it

only provides a series of relationships between any given

region and all other regions without taking into account the

full pattern of connections. Likewise, independent component

analysis provides information about how regions may be related

within large-scale networks but does not reveal patterns of

connectivity between these networks.

Recently, researchers have begun to apply graph theory--

based network analysis to explore brain connectivity (Bullmore

and Sporns 2009; Rubinov and Sporns 2010; Wang et al. 2010).

This approach can be used to characterize functional connec-

tivity within the whole-brain network (i.e., the functional

connectome). In particular, centrality, a class of graph theory--

based network measures assessing the centrality or functional

importance, is receiving substantial attention (Koschützki et al.

2005). Unlike seed-based approaches or independent compo-

nent analysis, centrality measures take into account a given

region’s relationship with the entire functional connectome

and not just its relation to individual regions or to separate

larger components. As such, centrality measures allow us to

capture the complexity of the functional connectome as

a whole.

Initial examinations of centrality for the functional con-

nectome have primarily focused on the identification of

‘‘functional hubs’’ (Achard et al. 2006; Hagmann et al. 2008;

Buckner et al. 2009; He et al. 2009; Joyce et al. 2010; Lohmann

et al. 2010; Tomasi and Volkow 2010; Fransson et al. 2011;

Tomasi and Volkow 2011a). While some concordance of

findings has been noted across studies (e.g., high centrality in

posterior cingulate, ventral precuneus, medial prefrontal/

parietal cortex, insula, temporal cortex, and parahippocampal

gyrus), there are also some notable variations in the specific

identification of regions as hubs. In part, such variations may

reflect differences in the specific measures of centrality or the

large-scale parcellation templates employed (Wang et al. 2009).

While an increasing number of studies have begun to employ
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specific centrality measures (Joyce et al. 2010; Lohmann et al.

2010), mainly focused on detection of functional hubs, we lack

a more concrete understanding of how multiple centrality

measures are related to different aspects of connectivity within

the functional connectome.

Accordingly, to gain a more comprehensive view of the nature

of connectivity in the brain independent of particular parcella-

tion templates, we examined multiple centrality measures of the

voxel-wise functional connectome in terms of their consistency

across participants (i.e., voxel-wise network centrality maps

[VNCM], at group level), their test--retest (TRT) reliability across

time, and their phenotypic relationships. Specifically, we carried

out our analyses using a large sample (i.e., 1003 R-fMRI data sets

from the 1000 Functional Connectomes Project: FCP, http://

fcon_1000.projects.nitrc.org) to build up VNCM. We used the

New York University (NYU) TRT data set (http://www.nitrc.org/

projects/nyu_trt) to assess the TRT reliability of the VNCM.

Finally, given age- and sex-related differences in the properties of

regions commonly cited as functional hubs (Fair et al. 2008; Biswal

et al. 2010; Power et al. 2010; Zuo, Kelly, Di Martino, et al. 2010;

Tomasi and Volkow 2011b), we again used the FCP data set to

examine age- and sex-related variations in VNCM.

Materials and Methods

Participants and Brain Imaging Procedures

NYU TRT Data

A total of 25 individuals participated in this TRT experiment (mean age:

30.7 ± 8.8, 9 males). Three resting-state scans were obtained for each

participant using a Siemens Allegra 3.0 T scanner. Each scan consisted

of 197 contiguous echo planar imaging (EPI) functional volumes. Scans

2 and 3 were conducted in a single scan session, 45 min apart, and were

acquired 5--16 months (mean 11 ± 4) after scan 1. More details can be

found in our previous studies employing this data set (Shehzad et al.

2009; Zuo, Di Martino, et al. 2010; Zuo, Kelly, Adelstein, et al. 2010; Zuo,

Kelly, Di Martino, et al. 2010). None of the participants had a history of

psychiatric or neurological illness as confirmed by clinical assessment.

Informed consent was obtained prior to participation. Data were

collected according to protocols approved by the institutional review

boards of NYU and the NYU School of Medicine. These TRT data sets

are fully available for downloading from the website at NITRC (http://

www.nitrc.

org/projects/nyu_trt).

1000 FCP Data

A total of 1003 participants (mean age: 28.1 ± 12.7 years; 434 males)

from 21 centers, included in the 1000 FCP, completed a R-fMRI scan. In

contrast to the original FCP publication (Biswal et al. 2010), we only

included 21 centers in this study to ensure uniform brain-wide

coverage. Table 1 provides information on the 21 centers. Each

center’s respective ethics committee approved the submission of de-

identified data obtained with written informed consent from each

participant. Details of each center’s R-fMRI data sets can be found on

the FCP website at http://www.nitrc.org/projects/fcon_1000.

MRI Preprocessing

1000 FCP Data

A standard data preprocessing strategy was carried out using both FSL

(http://www.fmrib.ox.ac.uk/fsl/) and AFNI (http://afni.nimh.nih.gov/

afni). Scripts containing the processing commands employed here have

been released as part of the FCP. Specifically, it comprised: 1)

discarding the first 5 EPI volumes from each resting-state scan to allow

for signal equilibration, 2) 3D motion correction, 3) time series

despiking, 4) 4D mean-based intensity normalization, 5) band-pass

temporal filtering (0.01--0.1 Hz), 6) removing linear and quadratic

trends, 7) estimating a 12 parameters affine linear transformation from

individual functional space to Montreal Neurological Institute (MNI)

152 space, and 8) regressing out 9 nuisance signals (global mean, white

matter, CSF signals, and 6 motion parameters). The output of these

preprocessing steps was a 4D residual functional volume in native

functional space, for each participant. The 4D native data were

registered to the MNI152 space with 4 mm resolution based on the

affine transformation.

NYU TRT Data

The preprocessing steps were similar to those described above except

for skipping step 1 (discarding the first 5 EPI volumes) due to the

scanner’s default setting of disregarding the first 4 volumes. Slice-timing

correction for interleaved acquisitions using Sinc interpolation with

a Hanning windowing kernel was additionally added prior to 3D motion

correction (step 2). Step 7 was refined by a B-spline basis nonlinear

transformation from an individual functional space to MNI152 standard

brain space as implemented in FSL FNIRT (http://www.fmrib.ox.ac.uk/

fsl/fnirt/index.html). Finally, the residuals were registered to the

MNI152 standard space with 4 mm resolution. There were 2

considerations taken into account when choosing 4 mm as our voxel

size: 1) the average voxel size of the EPI raw data (i.e., the maximum

among x/y/z resolutions) across the 21 sites is approximately 4 mm

(3.9497 mm), thereby deceasing the potential utility of using a smaller

voxel size and 2) the graph has 42 835 nodes at 3 mm voxel size, which

greatly increases the requirement of both physical memory (e.g., ~50
GB for subgraph centrality [SC]) and computational time for centrality

estimates.

For both 1000 FCP data and NYU TRT data, all preprocessing did not

include spatial smoothing because of 3 considerations (van den Heuvel,

Stam, et al. 2008): 1) the spatial registration of 4D residuals involves the

interpolation of EPI voxels (i.e., somewhat like spatial smoothing), 2)

spatial smoothing could introduce artifactual local correlations

between voxels unrelated to their functional connectivity, and 3)

spatial smoothing can blur the boundaries and artificially increase the

correlations between 2 regions with respect to their time series.

Graph Formation of ICNs
Prior to any centrality or other graph theoretical analyses, a graph has

to be abstracted and formatted from the real data. This step is crucial

before conducting centrality analyses (Smith et al. 2011). We

constructed graphs for ICNs at voxel level. The time series for each

voxel were extracted from the preprocessed R-fMRI data to calculate

a correlation matrix R=
�
rij
�
; 1<i ; j<N (N is the number of voxels),

where rij is the temporal Pearson’s correlation of time series between

the i- and j-th voxels and measures the similarity of R-fMRI signals

Table 1
The ‘‘1000 Functional Connectomes’’ project data for current study

Center PI N

1. Baltimore, MD, USA James J. Pekar/Stewart H. Mostofsky 23
2. Bangor, UK Stan Colcombe 20
3. Berlin, Germany Daniel Margulies 26
4. Beijing, China Yu-Feng Zang 192
5. Cambridge, MA, USA Randy L. Buckner 198
6. Cleveland, OH, USA Mark J. Lowe 31
7. Dallas, TX, USA Bart Rypma 24
8. Leiden, Netherlands Serge A R B. Rombouts 31
9. Leipzig, Germany Arno Villringer 37
10. Milwaukee, WI, USA Shi-Jiang Li 46
11. Montreal, Canada Alan C. Evans 51
12. Munich, Germany Christian Sorg/Valentin Riedl 15
13. New York City, NY, USA Michael Milham/F. Xavier Castellanos 59
14. New York City, NY, USA Michael Milham/F. Xavier Castellanos 20
15. Newark, NJ, USA Bharat B. Biswal 19
16. Orangeburg, NY, USA Matthew J. Hoptman 20
17. Oulu, Finland Vesa J. Kiviniemi/Juha Veijola 103
18. Oxford, UK Steve M. Smith/Clare Mackay 22
19. Palo Alto, CA, USA Michael Greicius 17
20. Queensland, Australia Katie McMahon 18
21. Saint Louis, MO, USA Bradley L. Schlaggar/Steven E. Petersen 31
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between the 2 voxels. To build a fully connected graph, a threshold of

correlation r0 was estimated with statistical significance P = 0.0001

(uncorrected). It was used to threshold the correlation matrix into an

adjacency matrix A=
�
aij

�
1<i<N ; 1<j<N of a graph G :

aij= 0; rij <r0

1; rij>r0: ð1aÞ

aij= 0; rij <r0

rij ; rij>r0: ð1bÞ

A binary graph was constructed as in equation (1a); its weighted

version is equation (1b). To exclude artifactual correlations from non-

gray matter voxels, we restricted our voxel-wise centrality analyses to

a predefined gray matter mask with gray matter tissue probability

greater than 20%. The gray matter tissue probability template was

released as part of tissue priors in SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm8).

To explore other less conservative ways of constructing the graphs,

we also used correlation thresholds with a significance criterion of P =
0.005 for voxel wise analysis. The findings obtained from these graphs

were highly similar and thus are not presented.

Centrality Indices
Given a graph G=ðV ;EÞ; V =ðviÞ1<i<N defines all nodes and A=

�
aij

�

1<i<N ; 1<j<N represents the graph’s adjacency matrix, in which all

nonzero elements define graph G ’s edges set E . The element aij of the

adjacency matrix represents the connection or edge from node vi to node

vj , which is 0 if no edge exists and nonzero for an edge with a weight aij .

In the current work, we only focus on undirected graphs, that is, the

adjacency matrixA is symmetric. A graph is binary if only 0 and 1 appear

within its adjacency matrix; otherwise, it is a weighted graph. To quantify

nodal contribution (i.e., nodal centrality) for a graph, we examined 4

different centrality measures: degree, eigenvector, page-rank, and sub-

graph. They can be categorized into local (degree), mesoscale (subgraph),

and global centralities (eigenvector and page-rank). Each of them is

a function of nodes f ðiÞ=f ðviÞ; 1<i<N .

Degree Centrality

For a binary graph, degree centrality (DC) is the number of edges

connecting to a node. For a weighted graph, it is defined as the sum of

weights from edges connecting to a node (also sometimes referred to

as the node strength). According to the adjacency matrix of a graph, DC

can be computed as in equation (3). It represents the most local and

directly quantifiable centrality measure. This measure has been widely

used to examine node characteristics of ICNs (Buckner et al. 2009;

Bullmore and Sporns 2009; He et al. 2009; Cole, Pathak, et al. 2010;

Wang et al. 2010; Fransson et al. 2011).

DC
�
i

�
= +

N

j=1

aij : ð3Þ

Subgraph Centrality

SC characterizes the participation of a node in all subgraphs comprised

in a network (Estrada and Rodriguez-Velazquez 2005). The ‘‘mesoscale’’

nature of this index is reflected in that smaller subgraphs receive more

weight than larger subgraphs. SC is typically calculated based on the

spectral representation of a graph, that is, the eigenvalues and

eigenvectors of the adjacency matrix of the graph,

SC
�
i

�
= +

N

j=1

h
lj

�
i

�i2
sinh

�
kj

�
: ð4Þ

In equation (4), lj

�
i

�
is the i-th component of the j-th eigenvector

of the adjacency matrix A, and kj is the corresponding j-th eigenvalue,

that is, Alj=kjlj . SC can be considered as a mesoscale property of order

in networks, which characterizes the odd-cyclic subgraph or closed

walk centrality of the i-th node in brain networks. Motif and clustering

coefficient are 2 network metrics based on subgraph abundances that

are widely used to characterize a complex network (Sporns 2006;

Bullmore and Sporns 2009) (e.g., its small-worldness). Although the

mesoscale properties of ICNs are likely to be of interest (Sporns et al.

2005), SC has not been widely employed in investigating ICNs. SC takes

into account all possible subgraphs. For a weighted graph, the

adjacency matrix A is converted to D–1=2AD–1=2 using the degree

diagonal matrix D before computing SC (Crofts and Higham 2009). To

calculate SC at the voxel level, we use only the first 20 largest eigenvalues

(i.e., j=1 . . .20 in eq. 4) due to the computational limitationon solving the

eigensystem of the large sparse adjacency matrix. The MATLAB function

‘‘eigs’’ was employed to compute eigenvalues/eigenvectors for the large-

scale sparse matrix, which implements deflation techniques for an

implicitly restarted Arnoldi iteration (Lehoucq and Sorensen 1996). We

also modify (eq. 4) to its large network version because the weight of

closed walks can produce an infinite SC (i.e., beyond the machine

accuracy):

SC

�
i

�
= +

20

j=1

h
lj

�
i

�i2� N – 1

N – 1 – kj

�
:

This general SC, named resolvent centrality, was recently proposed

for revealing network properties in terms of matrix functions (Estrada

and Higham 2010).

Eigenvector Centrality

Introduced by Bonacich (Bonacich 1972), eigenvector centrality (EC)

is simply the first eigenvector of the adjacency matrix, which

corresponds to the largest eigenvalue k1 (called the principal

eigenvalue):

EC

�
i

�
=l1

�
i

�
=
1

k1

Al1=
1

k1

+
N

j=1

aijl1

�
j
�
: ð5Þ

Clearly, EC not only depends on the degree of all adjacent nodes but

also on their EC. Because of this recursive property, EC is able to

capture an aspect of centrality that extends to global features of the

graph. Of note, similar to SC, its implementation was also based on eigs

in MATLAB. Neuroscientists have started to employ EC for measuring

functional connectivity in both resting and task states of brain activity

(Lohmann et al. 2010).

Page-rank centrality

The well-known Google page-rank centrality (PC) algorithm is a variant

of EC. It introduces a small probability (1 – d = 0.15) of random damping

(i.e., damping factor) to handle walking traps on a graph (Boldi et al.

2009):

PC

�
i

�
=r

�
i

�
=1 –d +d +

N

j=1

aij r
�
j
�

DCðjÞ : ð6Þ

PC has been shown to be similar to DC for undirected graphs

(Fortunato et al. 2008). However, no study has yet directly examined

PC of ICNs (i.e., R-fMRI networks) in a neurobiological context. Both

EC and PC are solvable for binary and weighted graphs. To accelerate

the computation of PC at the voxel level, we employed an inner--outer

iteration strategy (Gleich et al. 2010).

Individual-level VNCM Analyses
For each of 21 sites, a group mask was first generated to include all

voxels presented across all subjects in the site. Specifically, an

individual mask included all voxels with positive standard deviation

(SD) of the residual time series. All individual masks were multiplied to

produce the site’s mask. All 21 sites’ group masks were then combined

into a final group mask including voxels present across all 1003 subjects

from the 21 sites. To optimize comparability of network size across the

21 sites, all individual network analyses were constrained within the

final group mask at voxel level. Specifically, only gray matter voxels (i.e.,
>20% gray matter tissue probability) within the final mask were

employed to calculate individual centralities.

Voxel-based graphs were generated for each subject. Based on the

graph, 4 centrality measures were calculated at the individual level.

f
f
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These individual centrality voxel-wise maps were standardized to z-

scores to make them comparable across subjects, sites, and centralities

(Buckner et al. 2009; Zuo, Di Martino, et al. 2010). The z-score

standardization is:

zi=
xi – l

r
; 1<i<N :

where l and r are mean and SD of the centrality measure x across all N

nodes (i.e., voxels in the group mask).

Group-level VNCM Analyses
All individual centrality z-score maps were first spatially smoothed with

a Gaussian smoothing kernel (full-width at half-maximum = 6 mm) and

used as inputs of subsequent group-level analyses.

1000 FCP Data: One-Way Analysis of Variance

As in our previous study (Biswal et al. 2010), to examine the factors of

interest simultaneously, we developed a unified general linear model

frame for center-level statistical analyses. The unified statistical model is

a one-way analysis of variance (ANOVA) treating centers as the

between-factor. F-contrasts were used to measure the effect of centers.

Overall group mean contrasts across all centers were also modeled.

Specifically, we used a 1-factor 21-level ANOVA (factor: center; 1003

participants) with age and sex as covariates to examine the effects of

age, sex, and center on the centrality measures. In considering the

potential sensitivity of age-related differences in centrality to head

motion and registration quality, the root mean squares of overall head

displacement/rotation, their temporal derivative, and the registration

error were included to adjust for head motion and registration.

The computational details of head motion and registration error can

be found in our previous study (Zuo, Kelly, Di Martino, et al. 2010).

Multiple comparisons were corrected at the cluster level using Gaussian

random field theory (min Z > 2.3; cluster significance: P < 0.05,

corrected).

NYU TRT Data: TRT Reliability Analyses

To assess the TRT reliability of each centrality measure, we used

intraclass correlation coefficients (ICCs) as in our previous work (Zuo,

Kelly, Adelstein, et al. 2010):

rTRT=
MSp –MSe

MSp +MSe
:

In this equation, MSp is the between-participants mean square and

MSe is the error mean square. We examined both intrasession (i.e., short

term) and intersession (i.e., long term) ICC values based upon

centralities from scans 2/3 and scans 1/2, respectively. To estimate

significantly reliable centralities, ICC values were converted to Z

statistics:

Z=
ffiffiffiffiffiffiffiffiffiffiffi
N – 3
p

3 tanh
– 1ðrTRTÞ;

where N is the number of participants. A minimum Z = 2.3 (P < 0.01)

was applied to threshold Z-statistical values. Voxel-wise Z maps were

corrected for multiple comparisons at the cluster level using Gaussian

random field theory (min Z > 2.3; cluster significance: P < 0.05,

corrected).

Human Brain Functional Connectome

To visualize the full brain functional connectome and further examine

relationship between different centralities, for all 21 sites, we

constructed a mean functional brain network. Specifically, all correla-

tion matrices from participants were first converted into Fisher z-values

and then averaged across participants. The averaged Fisher z-matrices

were back-transformed to average correlation matrices by using inverse

Fisher z-transformation. Based on the averaged correlation matrix, the

same graph or network construction approach as described above (see

‘‘Graph Formation of ICNs’’) was used to generate the mean functional

network. The mean of the correlation thresholds across all 1003

subjects was used to threshold the mean correlation matrix.

Specifically, corresponding to the same P value = 0.0001, the mean of

the correlation thresholds was 0.2982 for voxel-derived graphs.

We assessed 1) the visualization of the full brain functional connectome

based on the ability of MATLAB (http://www.mathworks.com) to handle

large sparse matrices and Gephi (http://gephi.org) to explore a large

network; 2) distributions of centrality measures, and 3) correlations

between centrality measures.

Finally, for each voxel, to characterize the concordance of centrality

measures across 1003 subjects, we proposed another summary

statistic—Kendall’s W (Legendre 2005):

W =
12S

m2ðn3 –nÞ;E= – W lnðW Þ: ð7Þ

Entropy E was used to measure the richness of information encoded

across centrality measures. Here, m is the number of centralities, n is

the number of subjects, and S is the squared SD of ranks.

Results

In the present work, centrality analyses were performed for

both binary and weighted graphs representing the functional

connectome. We primarily report findings based on binarized

networks except for cases where weighted centrality analyses

revealed significant different findings.

The Human Brain Functional Connectome: Communities
and Network Layout

Given the challenge of visualizing the voxel-wise connectivity

matrix graph (i.e., for the entire brain functional connectome,

59 960 050 connections were detected on the mean connec-

tivity matrix, representing a sparsity of 1.2%), we first depict

the sparse adjacency matrix for the entire functional con-

nectome (Supplementary Fig. S1A) and its reordered version

(Supplementary Fig. S1B). To build a network layout of the

entire functional connectome, we employed a fast force-

directed layout algorithm—OpenOrd (Martin et al. 2011)—to

emphasize different clusters or hierarchy in the connectome,

resulting in 20 detected communities (Fig. 1A; see Table 2 for

details of brain regions). We applied a repeated iterative

algorithm for fast unfolding communities in large networks

(Blondel et al. 2008). Specifically, each iteration includes 2

phases: one where modularity is optimized by allowing only

local changes of communities; one where the communities

found are aggregated in order to build a new network of

communities. Such phases are repeated iteratively until no

increase of modularity is possible. The number of final

communities was thus found in such automatically optimal

way. The voxel-wise whole-brain network layout is illustrated

in Figure 1B (see its full resolution from http://lfcd.

psych.ac.cn/pdfs/kfc_layout_22knodes.pdf). All visualization

procedures were completed with a graphics workstation

(Lenovo ThinkStation D20 armed with 16 CPU cores, 16 GB

physical memory, and Nivida Quadro FX4800 video card) in the

Neuropsychology and Applied Cognitive Neuroscience labora-

tory at Institute of Psychology, Chinese Academy of Sciences. To

provide a public resource for exploring further properties of

large brain networks, we uploaded the adjacency matrix of

the entire functional connectome (N = 1003) to the LFCD

website (http://lfcd.psych.ac.cn/vncm/sp_fullbrain_4mm_1003

subs_p0001.mat).

Voxel-wise Centrality Strengths

Voxel-wise centrality analyses allowed us to depict full brain

patterns for 4 centrality measures at the 4-mm level. As shown

in Figure 2, voxels in the insula exhibited high centrality and
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high similarity across centrality measures. We plotted voxels

against one another with respect to centrality scores (Fig. 3).

Except for DC and PC, which again were highly correlated, we

observed more complex relationships, with subpopulations of

voxels exhibiting notably different relationships. For example,

while one population of voxels exhibited relatively high

correlation between EC and both DC and PC, another

population of voxels exhibited little to no relationship between

EC and either of these measures. Such distinctions among

voxels likely reflect differences with respect to whether or not

a given voxel has a high degree of global connectivity, a feature

to which EC is particularly sensitive. The difference map

between EC and DC in Supplementary Figure S3 illustrates the

distinction between these 2 populations (e.g., medial visual

cortex versus posterior cingulate cortex). Finally, the relation-

ship between EC and SC was more parabolic (i.e., ‘‘U’’ shaped),

indicating that SC is intermediate between DC and EC.

Regional Concordance of Centrality

Two analytic approaches were employed to assess concor-

dance of centrality measures assigned to a given region. First,

we calculated Kendall’s W and its entropy version by treating

the different centrality measures as raters and subjects as

samples. Core regions of the default network and dorsal

attention network exhibited lower concordance (Fig. 4A) and

higher entropy (Fig. 4B) compared with lower order regions.

Of note, all centrality measures were highly concordant with

respect to differentiating the gray matter/white matter

boundary.

To understand the unique aspects of functional connectivity

captured by different centrality measures, we compared the

results obtained with each of the centrality measures with

those obtained for DC, using voxel-wise (Fig. 5) paired t-tests

carried out across participants. We used DC as the reference

measure due to its relative simplicity and wide usage. Relative

to DC, EC demonstrated significantly higher centrality for

subcortical regions, suggesting that while these regions may

not be as widely connected throughout the brain, they are

connected with key hubs, thereby increasing their own EC. In

contrast, DC was greater in cortical regions, suggesting more

diffuse patterns of connectivity. It is worth noting that PC,

which by definition is intermediate to the more globally

focused EC and more locally focused DC measures, indeed

yielded results intermediate to EC and DC. Like EC, PC was

notably more sensitive to the centrality of subcortical regions.

PC also exhibited significantly lower centrality in cortical

regions, though not to the extent of EC.

When comparing SC with DC, findings were notably distinct

from those obtained for both EC and PC. In particular, SC

emphasized the centrality of parietal and frontal regions

commonly implicated in attentional control (Behrmann et al.

2004), particularly the posterior inferior frontal gyrus (IFG)

known to underlie attentional biasing and selection (MacDonald

et al. 2000; Miller and Cohen 2001; Milham et al. 2003; Banich

2009).

TRT Reliability

All voxel-wise centrality measures yielded spatially extended

short- (Supplementary Fig. S2) and long-term (Fig. 6) TRT

reliability, with short-term reliability outperforming long-term

Figure 1. The whole-brain functional connectome: communities and layout. The full brain contains about 22 387 4-mm cubic voxels. We detected 20 functional communities (A),
which are colored distinctly within multiple axial slices and rendered on a MNI152 standard brain surface (see Table 2 for details on communities and regions). To highlight the
overall layout, the voxel-wise connectome was further visualized as a network layout with the same colors (B).

Table 2
The functional parcellation including 20 functional communities

Functional community

1. Hippocampus (B)—Brain-stem (B)—Cerebellum Anterior Loble (B)
2. Amygdala (B)—Parahippocampus (B)—Posterior Temporal Gyrus (R)
3. Orbital Frontal Cortex (B)
4. Striatum (B)—Medial Prefrontal Cortex (B)
5. Anterior Temporal Gyrus (R)
6. Temporal Gyrus (L)
7 Visual Cortex (B)
8. Thalamus (B)
9. Posterior Cingulate Cortex (B)—Precuneus (B)—Angular Cortex

(B)—Superior Frontal Gyrus (B)—Parahippocampal Gyrus (B)—Medial
Prefrontal Cortex (B)—Middle Temporal Gyrus (B)

10. Dorsal Lateral Prefrontal Cortex (B-L)
11. Middle Frontal Gyrus (R)—IFG (R)
12. Middle Frontal Gyrus (L)—IFG (L)
13. Supplementary Motor Cortex (B)—Middle Cingulate Gyrus (B)
14. Precentral Gyrus (B)—Postcentral Gyrus (B)
15. Anterior Cingulate Cortex (B)—Supramarginal Gyrus (B)—Inferior Parietal

Lobule (B)—Superior Temporal Gyrus (B)—Insular Lobe (B)
16. Superior Frontal Gyrus (L)—Middle Frontal Cortex (L)
17. Middle Frontal Gyrus (R)—Inferior Parietal Lobule (B)
18. Lateral Occipital Cortex (B)—Pecuneus (B)
19. Superior Temporal Gyrus (L)—Middle Temporal Gyrus (R)
20. Inferior Temporal Gyrus (B)

Note: B, Bilateral; L, Left; and R, Right.

Brain Network Centrality d Zuo et al.1866

 by guest on M
arch 3, 2015

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/cgi/content/full/bhr269/DC1
http://cercor.oxfordjournals.org/cgi/content/full/bhr269/DC1
http://cercor.oxfordjournals.org/


reliability. The 4 measures of centrality showed highly similar

pattern of TRT reliability for both binarized (Fig. 6: intersession;

Supplementary Fig. S2: intrasession) and weighted networks

(Supplementary Fig. S8: intersession; Supplementary Fig. S9:

intrasession). These voxel-level findings are consistent with

those from a recent study on TRT reliability of large-scale

functional brain networks (Wang et al. 2011). Once again, the

specific centrality measures were not all equivalent with respect

to which regions exhibited higher or lower reliability. DC and PC

showednearmaximal correlationwith each otherwith respect to

short- (r = 0.99) and long-term (r = 0.99) ICC values across voxels

(i.e., spatially correlating the ICC maps for DC and PC). This

implies that DC and PC have nearly identical reliability. The other

correlations with DC were much lower (for EC, short term:

r = 0.69; long term: r = 0.70; for SC, short term: r = 0.82; long term:

r = 0.84). SC exhibited the lowest degree of correlation of ICC

values with the 3 other centrality measures (short term: average

r = 0.61; long term: average r = 0.62).

Age and Sex Effects

Before examining specific findings, we first calculated the

concordance among the 4 measures with respect to the

statistical volumes produced for age and sex effects. For both

age and sex, overall statistical maps exhibited a high degree of

concordance among DC, EC, and PC measures (age: average

Kendall’s W = 0.93; sex: average Kendall’s W = 0.92); more

moderate concordance was observed between SC and the other

measures, particularly for age effects (DC: Kendall’s W = 0.85;

EC: Kendall’s W = 0.72; and PC: Kendall’s W = 0.87).

When examining voxel-level findings related to age (Fig. 7),

age-related increases in centrality within medial temporal lobe

and caudate regions were highly concordant across all

centrality measures. Additionally, age-related decreases in

centrality were detected in superior parietal and posterior

cingulate regions, though only by DC, SC, and PC. EC was

relatively insensitive to age, suggesting preservation of global

organization over the age range we examined. Beyond highly

similar findings, for both DC and SC, weighted networks

(Supplementary Fig. S5) seemed more robust in the detection

of age effect than binarized networks (Fig. 7: binarized

network).

Only the hippocampus showed consistent sex differences

across all 4 measures with greater centrality being observed in

females than males (Fig. 8). Consistent effects were detected in

multiple regions for 3 of 4 centrality measures. The specific

combination of measures varied somewhat. For example, lateral

precentral and postcentral lobule regions exhibited greater DC,

EC, and PC, but not SC centrality in males. In contrast, medial

Figure 2. VNCM. For each of 4 centralities including DC, SC, EC, and PC, a one-way ANOVA model including center, age, sex, head motion, and registration error as covariates of
interest was used to calculate the voxel-wise centrality map across 1003 participants. Multiple comparisons were corrected at the cluster level using Gaussian random field
theory (min Z[ 2.3; cluster significance: P\ 0.05, corrected). The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2 for left hemisphere [L] and 2
for right hemisphere [R]) and 8 coronal slices (subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).
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occipital areas exhibited greater DC, SC, and PC, but not EC

centrality in females. Intriguingly, the posterior cingulate

cortex showed detectable but inconsistent sex findings across

3 of the 4 measures—that is, females exhibited greater DC and

EC, but lower SC. In contrast, weighted SC did not detect the

significantly higher centrality of PCC in females than males

(Supplementary Fig. S7).

Our ANOVA model includes head motion and registration

error as covariates. As expected, the spatial extents of age effects

were markedly reduced, implying the potential impacts of the

2 factors on centrality changes with age. However, significant

age-centrality relationships were still observed (Fig. 7: head

motion and registration error as covariates; Supplementary Fig.

S4: no head motion and registration error as covariates). Of note,

Figure 3. Scatter plots of voxel-wise network centrality measures. For each pair of 4 centrality measures including DC, SC, EC, and PC, a subscatter plot of all voxel centrality
scores was used to show the relationship between pairs of centrality measures. The fitted lines were also plotted in red color according to the best least square fit of the
centrality scores. The histograms of each centrality score were depicted as in the diagonal scatter plots.

Figure 4. Regional variability of concordance among centrality measures across 1003 participants. Kendall’s W (A) and entropy (B) were calculated to measure concordance
among different centrality measures. The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2 for left hemisphere [L] and 2 for right hemisphere [R])
and 8 coronal slices (subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).
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weighted versions of centrality seem more robust against these

2 confounding factors (Fig. 7: binary network; Supplementary

Fig. S5: weighted network). In contrast, the 2 factors had no

obvious impact on sex-centrality relationship (Fig. 8: head

motion and registration error as covariates; Supplementary Fig.

S6: no head motion and registration error as covariates).

Discussion

Investigating voxel-wise centrality maps provided novel

insights into the patterns and complexity of functional

connectivity throughout the huge human functional connec-

tome. Despite marked differences in definitions among

centrality measures, prior studies of centrality have treated

them as if they were interchangeable, and generally, similar

patterns of results have been reported (Fransson and Marrelec

2008; Hagmann et al. 2008; Buckner et al. 2009; He et al. 2009;

Fransson et al. 2011). In the present work, we first assembled

and visualized the 4-mm resolution functional connectome as

a functional network with 22 387 nodes and then analyzed the

contribution of each node to connectome-wide functional

connectivity. Our findings highlight the importance of consid-

eringmultiple (i.e., local, meso, and global) scales of connectivity

properties in the functional connectome and distinguishing

them in terms of their interindividual variability, TRT reliability,

and phenotypic sensitivity. We argue that using voxel-wise

centrality as measures of whole-brain functional connectivity

will facilitate discovery of physiological mechanisms underlying

the brain’s intrinsic functional organization.

Functional Communities within the Functional
Connectome

The construction of whole-brain functional network is the first

step of computing centrality measures. Particularly, at the voxel

level, the network and its organization are not commonly

visualized due to its size. It is important to illustrate the

complex network and its organization for readers to get an

appreciation of the graph on which the centrality and/or

functional connectivity measures will be calculated and to

guide its further explorations. We first built and visualized the

network layout of the functional connectome at 4 mm spatial

resolution, displaying the high complexity of the network.

Community detection revealed 20 functional modules, parcel-

lating the brain in terms of functional interactions among

voxels on the basis of spontaneous low-frequency fluctuations.

Beyond the networks consistent with those found in

previous studies on functional brain parcellations (Peltier

Figure 5. Distinction between voxel-wise network centrality measures. Using DC as the reference centrality measure, a two-sample paired t-test on centrality scores was
performed for each voxel between DC and each of other 3 centrality scores: SC, EC, and PC across 1003 participants. Multiple comparisons were corrected at the cluster level
using Gaussian random field theory (min Z [ 2.3; cluster significance: P \ 0.05, corrected). The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2
for left hemisphere [L] and 2 for right hemisphere [R]) and 8 coronal slices (subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).
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et al. 2003; Bellec et al. 2006; van den Heuvel, Mandl, et al. 2008;

He et al. 2009; Mezer et al. 2009) (e.g., default network and

control network), the communities detected appear to reflect

the fundamental organization of the functional connectome.

The algorithm produced 20 communities or modules spanning

across 40 separate brain regions. Clearly, such a functional

parcellation is different from a structural parcellation (Tzourio-

Mazoyer et al. 2002), reflecting both topological and hierar-

chical distinctions between structure and function of the brain.

Compared with 3 recent studies on functional parcellation of

the human brain (Craddock et al. 2011; Doucet et al. 2011; Yeo

et al. 2011), there is notable convergence regarding the basic

organization of the brain. For example, all these studies

revealed several common functional modules of sensorimotor,

auditory, and visual cortex as well as default network and

attention control network, which are bilaterally distributed

(i.e., homotopic communities). Note that more accurate

comparison with these previous studies is difficult, as they

employed various clustering methods to build modular

organization while we considered a community detection

algorithm from network science. In the sense of hierarchy in

algorithm, the work of Doucet et al. (2011) was more

comparable with ours. We found a close match for the number

of modules (20) to theirs (23). However, our method revealed

some unique lateralized communities (i.e., nonhomotopic

communities) that are commonly associated with functions,

such as language, working memory, and biasing attention (Toga

and Thompson 2003; Yan et al. 2009; Zuo, Kelly, Di Martino,

et al. 2010; Gee et al. 2011). We believe that this difference is

likely related to a methodological choice. In sum, the current

functional parcellation based on a community detection

algorithm provides a unique way of mapping and deepening

understanding of functional hierarchy within the human brain

(Smith et al. 2009).

The Importance of Multiple-scale Connectivity Properties:
Network Centrality Mapping

While DC, a measure of local (direct) network connectivity,

highlights the importance of higher order cortical association

regions, it is less sensitive to paralimbic and subcortical regions.

However, when global properties are taken into account by

centrality measures, such as EC and PC, hippocampal, striatal,

and thalamic regions become prominent, likely due to their

extensive global associations (Achard et al. 2006; Sporns et al.

2007).

At mesoscale connectivity, SC particularly emphasizes the

centrality of parietal and frontal regions commonly implicated

in attentional control (Behrmann et al. 2004). Interestingly, the

centrality of the posterior IFG, a key region implicated in top-

Figure 6. TRT reliability of voxel-wise network centrality measures. For each of 4 centrality measures including DC, SC, EC, and PC, intersession or long-term ICCs were
computed for each voxel. For each centrality measure, all significantly reliable voxels were visualized as multiple axial slices (cluster significance: P \ 0.05, corrected for multiple
comparisons). The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2 for left hemisphere [L] and 2 for right hemisphere [R]) and 8 coronal slices
(subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).
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down control of attention (Milham et al. 2003; Behrmann et al.

2004; Banich 2009), is only appreciated by SC. Further research

will have to indicate whether such divergent findings reflect

diminished informational importance of this region or rather

something unique about the nature of its information flow.

The Importance of Multiple-scale Connectivity Properties:
Relating Phenotypic Information to Network Centrality

A major feature of centrality measures is their inherently

exploratory nature—no a priori predictions are required. This

makes them ideally suited for exploration of the neural

correlates of both dimensional and categorical phenotypic

data (Di Martino et al. 2009; Cox et al. 2010). Here, we were

able to detect robustly significant if complex associations for

both age and sex.

Even when the focus is limited to the cerebral cortex, the

information emerging from global and local measures can differ

substantially. For instance, when examining age effects, DC

revealed age-related decreases in centrality within precuneus and

posterior cingulate regions, but EC did not. Although such

disparities seem problematic at first glance, they are informative.

In this case, we interpret these findings as supporting the

hypothesis that while the local or (direct) connectivity of these

regions decreases with age, they maintain their connections with

hub-like regions within the brain and thus their centrality at

a global level (Park and Reuter-Lorenz 2009). Interestingly, the PC

measure was potentially most effective for capturing centrality at

both the global and local level, likely due to the inclusion of

‘‘random jumps’’ that allow the otherwise global algorithm to

better appreciate local distinctions.

Assessing sex-related differences in centrality revealed a com-

plex range of results at the mesoscale. Females exhibited greater

centrality than males for all 4 measures in the hippocampus.

However, for other cortical regions, the direction of sex-related

differences depended on the specific centrality measure. If our

results are replicated independently, they would motivate an

improved understanding of how to integrate higher order

measures and models across multiple scales.

Looking Beyond Functional Hubs

Following the structural literature, the functional connectivity

community has begun its own hunt for hubs (reviewed in

Wang et al. 2010). Yet, the definition of a functional hub is

poorly operationalized, at least when functional connectivity

is based upon simple cross-correlation. Our results highlight the

potential utility of using centrality as a way of characterizing

information flow through the full brain functional connectome

rather than attempting to identify functional hubs. We did not find

Figure 7. Areas exhibiting significant age-related variation in voxel-wise network centrality measures. Group-level maps were derived from one-way ANOVA across 1003
participants from 21 centers (factor: center; covariates: age, sex, head motion, and registration error). All group-level maps depicted were corrected for multiple comparisons at
the cluster level using Gaussian random-field theory (min Z [ 2.3; cluster significance P \ 0.05, corrected). For each of 4 centrality measures including DC, SC, EC, and PC,
voxels exhibiting significant effects of age as detected by the one-way ANOVA are depicted. The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2
for left hemisphere [L] and 2 for right hemisphere [R]) and 8 coronal slices (subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).
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functional hubs emerging consistently across centrality

measures—at least not at the individual subject level. Heteromodal

association areas in the cortex showed the lowest concordances

(i.e., highest entropy) across centralitymeasures. This attests to the

complexity and richness of these regions—presumably not to their

lack of importance in information flow.

Limitations and Future Directions

We note several limitations to be considered when interpreting

our findings. A potential criticism concerns discrepancies in

analytical strategies and graph theory approaches. For example,

various strategies can be used for thresholding a functional

connectivity matrix to format a graph adjacency matrix (Wang

et al. 2010): 1) correlation criterion using a fixed correlation

value for all subjects, 2) sparsity criterion using a fixed sparsity

value for all subjects, or 3) area under the curve criterion to

combine results based on multiple thresholds. In the current

study, we use a fourth alternative that we consider a ‘‘signifi-

cance criterion’’—that is, maintaining a constant probability of

false positives across samples. This criterion is motivated by our

use of 1003 R-fMRI data sets from 21 centers, each comprising

a different number of scan volumes. Although we conduct

analyses at 2 different thresholds of significance, the degree to

which our results will be robust to a broader range of

significance criteria requires additional investigation. Of note,

more consistent results might be obtained if graph analyses

could be carried out on fully weighted (i.e., nonthresholded)

functional networks. Initial efforts in this regard have been

directed at characterizing functional modules (Rubinov and

Sporns 2011) and may be extendable to assessing nodal

centrality and nodal influence given a module partition.

Centrality analyses also raise challenging issues regarding

structure--function relationships. Although high centrality

regions (i.e., network hubs) have been consistently identified

by both structural and functional data (Fransson and Marrelec

2008; Hagmann et al. 2008; Buckner et al. 2009; Gong et al.

2009; Fransson et al. 2011), differences have also been noted

(He et al. 2009). Such differences are to be expected since

structural and functional connectivity do not show simple 1:1

correspondence (Vincent et al. 2007; Margulies et al. 2009; Roy

et al. 2009). In addition, graph metrics applied to structural and

functional networks are amenable to different neurobiological

interpretations. Future studies should clarify centrality relation-

ships by combining structural and functional connectomes

based on high-resolution neuroimaging data.

There are 2 potential confounds in analyzing multisite

neuroimaging data and examining age effects. First, artificial

effects could be introduced if the age range is not equally

Figure 8. Areas exhibiting significant sex-related variation in voxel-wise network centrality measures. Group-level maps were derived from one-way ANOVA across 1003
participants from 21 centers (factor: center; covariates: age, sex, head motion, and registration error). All group-level maps depicted were corrected for multiple comparisons at
the cluster level using Gaussian random-field theory (min Z [ 2.3; cluster significance P \ 0.05, corrected). For each of 4 centrality measures including DC, SC, EC, and PC,
voxels exhibiting significant effects of sex as detected by one-way ANOVA are depicted. The final statistical maps are visualized as 4 hemispheric surfaces (cortical regions: 2 for
left hemisphere [L] and 2 for right hemisphere [R]) and 8 coronal slices (subcortical regions: y coordinates from �23.5 to 11.5 mm with 5 mm space).

Brain Network Centrality d Zuo et al.1872

 by guest on M
arch 3, 2015

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


distributed across different sites, which is particularly relevant in

the current situation as most sites had young participants while

only a few sites had a small number of old participants. Such

a site effect cannot be totally ruled out by including center as

a factor in the model. We thus performed the same analysis

based upon the data from a single site (Montreal), which has

the largest age span (19--85 years). Limited by the number of

samples (51 subjects), a liberal uncorrected Z-statistic threshold

(Z > 1.0) was used to allow visualization of subthreshold trends

present for the age effect on centrality. As indicated in

Supplementary Figs S10 and S11, an overall trend of age-

centrality relationship was observed, mitigating this concern.

Second, there is growing realization that motion has an impact

on ICNs (Van Dijk et al. 2011). We had demonstrated similar

effects of head motion and registration quality on a life span

developmental trajectory study (Zuo, Kelly, Di Martino, et al.

2010). Similarly, we updated our centrality analyses by including

head motion and registration error as covariates. As expected,

the spatial extents of age effects were notably reduced, implying

a potential impact of these 2 factors on centrality changes with

age. However, the significant age-centrality relationship was

kept, implying such an effect is unlikely to be fully explained by

the 2 confounding factors.

Future work on centrality analysis with directed graphs (i.e.,

graphs in which temporal order or causal relationships can be

inferred or demonstrated) derived from R-fMRI data would yield

crucial insights into the information flow through the functional

connectome. We performed our analyses using undirected

graphs. Although establishing a ‘‘true’’ network model for the brain

connectome is difficult (Smith et al. 2011), recent work suggests

that it may be possible to map out a directed graphical

representation of the causal relationships between brain regions

using resting fMRI data (Friston et al. 2011). Our approach of

detecting a limited number of centrality communities may provide

candidates for directed graphical analyses using data-driven

dynamical causal models (Friston et al. 2011). Such analyses can

befirstcarriedout for regionof interest--deriveddirectednetworks.

Of note, voxel-level centrality analyses on directed graphs are

particularly challenging. Region of interest--based analyses, on

the other hand, can open the door to graph theoretic analyses

that leverage advances in centrality-based characteristics of

information flow in directed networks (Shepelyansky and Zhirov

2010).

Conclusion

We demonstrate that each of 4 centrality measures captures

a different aspect of functional connectivity, yielding significant

differences in both their relative sensitivities (e.g., global vs. local

properties) and utility (e.g., TRT reliability). Our findings

highlight the importance of considering multiple-scale connec-

tivity properties when examining the functional connectome. In

going beyond detecting functional hubs, we treat centrality as

a way to chart information flow in the functional connectome

and demonstrate its power to capture phenotypic correlates (i.e.,

age and sex). In sum, our work shows that combining multiple

centrality measures allows a more comprehensive characteriza-

tion of the complexities of the functional connectome and could

serve to motivate studies on the physiological mechanisms

underlying functional organization in neurodegenerative and

psychiatric disorders (Greicius 2008; Broyd et al. 2009; Seeley

et al. 2009; Seeley 2010; Cole et al. 2011).

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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