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Abstract Nutrient loading into rivers is generally

increased by human-induced land-use changes and can lead

to increased surface water pollution. Understanding the

extent to which land-use patterns influence nutrient loading

is critical to the development of best-management practices

aimed at water-quality improvement. In this study, we

investigated total nitrogen (total N) concentration as a

function of land-use patterns and compared the relative

significance of the identified land-use variables for 26

upstream watersheds of the Haihe River basin. Seven land-

use intensity and nine landscape complexity variables were

selected to form the land-use pattern metrics on the land-

scape scale. After analyzing the significance of the land-use

pattern metrics, we obtained five dominant principal com-

ponents: human-induced land-use intensity, landscape

patch-area complexity, area-weighted landscape patch-

shape complexity, forest and grassland area, and landscape

patch-shape complexity. A linear regression model with a

stepwise selection protocol was used to identify an optimal

set of land-use pattern predictors. The resulting contribu-

tions to the total N concentration were 50% (human-

induced land-use intensity), 23.13% (landscape patch-shape

complexity), 14.38% (forest and grassland area), and

12.50% (landscape patch-area complexity), respectively.

The regression model using land-use measurements can

explain 87% of total N variability in the upstream regions

of Haihe River. The results indicated that human-related

land-use factors, such as residential areas, population, and

road density, had the most significant effect on N concen-

tration. The agricultural area (30.1% of the study region)

was not found to be significantly correlated with total N

concentration due to little irrigative farmland and rainfall.

Results of the study could help us understand the implica-

tions of potential land-use changes that often occur as a

result of the rapid development in China.

Keywords Total nitrogen � Landscape metrics � Land-use

intensity � Multivariate regression � Principle component

analysis � Haihe River basin

Introduction

Understanding the effect of landscape patterns on the

process and function of the landscape structure is a key

issue in landscape ecology (Wu and Hobbs 2007). Land-

use patterns are found to be significantly correlated with

water quality and the health of aquatic ecosystems within a

watershed (Ye and others 2009). Investigation of the rela-

tionship between surface water quality and land-use pat-

terns is particularly useful to the development of an

effective water-management system (He and others 2000;

Baker 2003).

During the past several decades, growing human popu-

lation and intensifying development have profoundly

impacted the ecological conditions in the Haihe River.

There is a growing concern about the worsening water

quality resulting from the temporal and spatial variation

of land uses in the region (Zhang and others 2009; Wang

and others 2010). Many studies have been conducted to
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describe the spatial distribution of water quality in the main

stream of the Haihe River (Liu and others 2001), the

estuarine area to the Bohai Sea (Liu and others 2007), and

several local tributaries, such as Jiyunhe River (Liu and

others 2008) and Zhanghe River (Zhang and others 2009).

The relationship of land use with water quality is complex,

and any correlation observed in one watershed is likely to

be site- or region-specific. Few studies, however, have

examined the effects of land-use patterns on water quality

in the entire Haihe River basin, which consists of upstream

mountainous regions and downstream alluvial plains.

Human activities and land-use changes are quite different

in the extent to which they affect water quality within the

river’s nested subwatersheds. Cumulative impacts from

both the headwaters and surrounding landscapes cannot be

readily distinguished from downstream regions in such a

large-scale basin (Hunsaker and Levine 1995; Wang and

others 2005). However, the impacts of land uses on water

quality in first-order headwater streams is relatively clear

compared with that of higher-order streams. Dodds and

Oakes (2006, 2008) suggested that protection of down-

stream riparian zones alone was not sufficient to protect

water quality and that the influence of small upland streams

should not be ignored, even at times when these head-

streams are unlikely to be flowing. Therefore, it is impor-

tant to investigate the relationship between water quality

and land-use patterns in the upstream watersheds. Such

relationships would offer a effective tool not only for

identifying the spatial variation of water quality but also for

predicting nutrient inputs to the downstream regions of the

Haihe River.

Process-based water-quality models have highly com-

plicated mass–balance structure to provide predictions in

relatively fine temporal scales. Examples of this type of

model include BASINS (Tong and Chen 2002), HSPE

(Diaz-Ramirez and others 2005), and SWAT (Zhang and

others 2009). These models are now virtually used in most

of the total maximum daily loads assessments in the Untied

States (Haggard and others 2003). However, in some

developing countries, such as China, there are growing

concerns about whether sufficient water-resource data and

knowledge of biogeochemical processes exist to reliably

support the general use of such highly complex descrip-

tions of processes. The complexity of these models requires

intensive data for calibration, which generally limits their

applications to relatively small watersheds (Meixler and

Bain 2010). In contrast, multivariate statistical models have

the advantage of being readily applicable to large water-

sheds and being able to quantify the errors in model

parameters and predictions.

Many relatively simple statistical models have been used

for investigating the sources and impact factors of nutrient

losses (Johnson and others 1997; Qian and others 2005;

Shrestha and Kazama 2007; Lee and others 2009), for

example, the spatially referenced regressions on watershed

attributes model has been used as a hybrid process-based

and statistical modeling approach for estimating pollutant

sources and contaminant transport in surface waters (Smith

and others 1997; Hoos and McMahon 2009). A variety of

metrics representing human activities intensity and land-use

changes have been proposed to establish quantitative rela-

tionships with water quality. These metrics include human

population, road density, urban impervious areas, topo-

graphic characteristics, stream configurations, and land-

scape heterogeneity (Johnson and others 2001; Hatt and

others 2004; Chang and others 2008; Ye and others 2009).

New development in spatial data acquisition and processing

techniques has enabled scientists to quantify the land-use

patterns over broader areas with more diverse landscape

metrics (Smith and others 1997; Ouyang and others 2010;

Mouri and others 2011).

In this study, several multivariate statistical techniques

were used to detect land–water relationships in the 26

upstream watersheds of the Haihe River basin. The

objective of the study was to assess the relationship of

land-use intensity and landscape complexity and to identify

the significance of land-use pattern factors that influence

the total nitrogen (total N) concentration. This analysis was

intended to guide decision-making process as to where

efforts to decrease total N loading can be most effectively

targeted to improve local water quality.

Methods

Study Area

The Haihe River basin, as one of the greatest basins in

northern China, is formed by seven large rivers, i.e., Luan

River, North Canal, Yongding River, Daqing River, Ziya

River, South Canal, and Tuhaimajia River. The basin

consists of[300 tributaries that spread out like a palm-leaf

fan over a large area before converging near Tianjin. The

converged river flows east and empties into the Bohai Sea.

Its drainage area covers 318,000 km2, accounting for 3.3%

of the total land area of China (Fig. 1). The total population

in the region was 134 million in 2005, accounting for

10.2% of the nation’s total population.

Annual rainfall in the Haihe River basin is predomi-

nantly concentrated in summer (Chu and others 2010).

Heavy rain in the past has caused torrents of the upstream

tributaries to rush into low-lying middle and lower reaches,

bursting onto farmlands in the alluvial plain with floods.

During recent decades, water-conservancy facilities, such

as reservoirs, ponds, man-made dams, and artificial canals,

have effectively brought the river under control. More than
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1,915 reservoirs and dams have been built to cover [85%

of the mountainous watersheds. These water conservancy

facilities interrupt the hydrometric affiliation and the

nutrient transport from upstream to downstream reaches.

A digital elevation model at a 100-m resolution from the

1:250,000 national topographical databases was used in

this study. The Haihe River basin was divided into

numerous subbasins using the hydrology module of

ArcGIS software (ESRI Company, USA). Among the

delineated subbasins, 26 of them in the upstream regions

were selected for the analysis of land–water relationships.

The selection of these upstream watersheds was based on

the existence of perennial flow in the Haihe River basin.

The overall area of 26 upstream watersheds is 96,036 km2,

which accounts for 30.2% of the total area of Haihe River

basin. The water-sampling sites were generally located at

the outlets of these subbasins (Fig. 1).

N-Concentration Data Collection

Water quality was characterized by the mean values

sampled and measured in May and August 2009. The

Fig. 1 Location and elevation

of the sampling sites and the 26

upstream watersheds in the

Haihe River basin
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water-quality data set consisted of nine water-quality

parameters, including water temperature, pH, electric

conductivity, turbidity, dissolved oxygen, ammonic N,

nitrate N, total N, and total phosphorus (P). Because of the

large area, a multiparameter water-quality monitor (YSI

6600; YSI Company, USA) was used to measure water

temperature, PH, electric conductivity, dissolved oxygen,

and turbidity. A photometer (PhotoLab S12; WTW Com-

pany, Germany) was used to measure ammonic N, nitrate

N, total N, and total P by the methods and test reagents

developed by WTW, a Nova Analytics company. Because

the measurements among total N, ammonic N, and nitrate

N were highly correlated with each other, we only used

total N concentration as an indicator to characterize the N

loading into rivers.

Metrics for Land-Use Pattern

The land-use data were derived from Landsat TM images

(30-m resolution) in 2008, which were produced and

released by Chinese Research Academy of Environmental

Sciences. The land uses were classified into 25 types, and

its accuracy was assessed before release. According to our

research objectivities, we reclassified the land uses into

seven categories: agricultural land, forest land, grass land,

urban land, rural land, water, and unused land (Table 1;

Fig. 2). Population data were derived from demographic

yearbooks of China in 2008. Road data were derived from

the 1:250,000 national database. Road density was repre-

sented by road length (km) per square kilometers and from

grade 1 to grade 5 roads as classified by the ministry of

transport of China.

Land-use patterns were characterized by land-use

intensity and landscape complexity variables. The land-use

intensity metrics were calculated by the spatial module of

the ArcGIS software, and the landscape complexity metrics

were calculated by the Fragstats package embedded in the

ArcGIS software (Table 2).

Analytical Methods

Several statistical methods, including Pearson correlation

analysis, principal component analysis (PCA), and multivar-

iate regression analysis, were used to analyze the relationships

between the land-use pattern and total N concentration.

Pearson correlation analysis quantified the associations

among the total N concentration, land-use intensity, and

landscape complexity metrics. PCA transformed a number

of possibly correlated metrics into a smaller number of

uncorrelated factors. Its operation could be thought of as

showing the internal structure of the data in a way that best

explained the variance in the data. As a result, a small

number of factors could account for approximately the

same amount of information as do the much larger set of

original metrics. Finally, a step-wise multivariate regres-

sion analysis was used to evaluate the relative importance

of different land-use factors on total N concentration. All

mathematical and statistical computations were performed

using Microsoft Office Excel 2007 (Microsoft Company,

USA) and SPSS 16 software (IBM Company, USA).

Results

Spatial Pattern of Land Uses and Total N Concentration

The tributary drainage areas in the upstream regions of

Haihe River ranged from 778 to 12,965 km2 (average

3,694 km2). Forest had the greatest area ratio (35.2%)

followed by agriculture (30.1%) and grass land (29.4%).

The urban and rural areas made up 4.0% of the entire

research regions, whereas water areas only occupied

approximately 1.0%. The mean population density was 269

capita/km2, with a range from 63.31 capita/km2 in the

Xiaoluanhe River watershed to 1832.62 capita/km2 in the

Wenyuhe River drainage basin. Road density ranged from

0.36 km/km2 in the Baihe River to 0.77 km/km2 in the

Weihe River (average 0.51 km/km2). Five watersheds had

Table 1 Scheme of land-use classification in the Haihe River basin

Land-use/cover

classes

Description

Farm land All areas including irrigated and rainfed farmland

Forest land All forest areas, including arbor trees, shrubs, brushes, and young trees

Grass land All herbaceous vegetation with a cover ratio [ 5%, including natural grass lands and cultivated grasslands that are

regularly mowed for hay or grazed by livestock

Urban land Urban areas with high density of commercial and industrial buildings

Rural land Rural areas with a various amount of vegetation cover commonly found in housing divisions

Water All areas of open water, including canals, rivers, lakes and reservoirs

Unused land All unused lands and other hard-to-use lands, including bare, salt, alkaline and gravel lands
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significant cultivated lands (maximum 51.31%). Overall,

the studied upstream regions of the Haihe River were pri-

marily occupied by forest (maximum 80.25%) and grass-

land (maximum 46.77%) (Table 3).

Measured average total N concentration was 3.67 mg/l

for all of the watersheds monitored in the study. The highest

value (10.11 mg/l) of the total N concentration was detected

in the Wenyuhe River, which flows through the suburb and

urban areas of Beijing. The lowest value (0.61 mg/l) was

found in the Jumahe River, which drains from Taihang

Mountains with intensive forests and grasslands (Fig. 3).

Correlation Between Total N Concentration

and Land-Use Metrics

Pearson correlations of all available land-use metrics with

measured total N concentrations of the studied watersheds

are listed in Table 4. As shown, 16 land-use metrics had

correlation coefficients [0.3 with total N concentration.

Seven of the metrics were quantities that characterize the

degree of land-use intensity in the areas. These included

population density, road density, and farmland, urban land,

rural land, forest land, and grass land proportions. The

Fig. 2 Land-use/-cover map of

the Haihe River basin in 2008
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landscape complexity metrics included three groups, with

each describing landscape-type complexity, landscape

patch-area complexity, and landscape patch-shape com-

plexity, respectively. The landscape-type complexity met-

rics had Shannon’s diversity index (SDI) and Shannon’s

evenness index (SEI), both with correlation coefficients

[0.3. The landscape patch-area complexity metrics inclu-

ded mean patch size (MPS), patch size SD (PSSD), patch

edge density (PED), and mean patch edge (MPE), all with

correlation coefficients [0.3. Last, the landscape patch-

shape complexity metrics had area weighted mean shape

index (AWMSI), mean perimeter-area ratio (MPAR), and

area weighted mean patch fractal dimension (AWMPFD),

all with correlation coefficients [0.3.

Significant positive correlations between total N con-

centration and population density, urban land proportion,

and rural land proportion variables were obtained. Road

density, farmland proportion, SDI, and SEI variables were

also positively correlated with total N concentration,

whereas landscape patch-area and patch-shape metrics

were most negatively correlated with total N concentration.

These correlations clearly demonstrated that the land uses

linking to human activities were significantly associated

with total N loading, whereas land uses with complex

geometry were likely to mitigate total N loading in the

studied areas.

Correlations were also detected between land-use

intensity and landscape complexity metrics. For example,

positive correlations existed between land-use intensity

(population density, road density, and urban land, rural

land, and farmland proportions) and Shannon indices (SDI

and SEI), whereas negative correlations existed between

forest land proportion and Shannon indices. This result

suggested that land-use intensification did not always lead

to simplification of the landscape complexity, especially

landscape-type complexity. Therefore, dimensionality

clustering and reduction were necessary to further evaluate

relationships between land uses and total N concentrations.

PCA of Land-Use Metrics

A mixture of variables, including human-induced land-use

intensity, landscape-type complexity, landscape patch-area

complexity, and landscape patch-shape complexity, were

used in PCA. Varimax rotation was adopted to maximize

the variance of the principal component (PC) loading.

Eigenvalues provide a measure of the significance of each

PC. Five PCs were selected for the analysis because their

cumulative eigenvalues explained [90% of the total vari-

ance (Table 5).

As listed in Table 5, among the five PCs, PC1 explained

30.13% the total variance and had strong positive loadings

on population density, road density, and urban land and

rural land proportions, thus representing human-induced

factors. PC2, explaining 18.64% of the total variance, had

obvious positive loadings on MPS, MPE, and PSSD and

negative loadings on PED. By definition, MPS, MPE, and

PSSD decreased whereas PED increased when many small

patches occupied a watershed. This means that PC2 rep-

resented the impact of landscape patch-area complexity.

PC3, which explained 16.77% of the total variance, had

strong positive loadings on AWMSI and AWMPFD, thus

representing the impact of the area-weighted patch-shape

complexity. PC4, explaining 14.81% of the total variance,

had strong positive loadings on the proportions of forest

and grass land. Therefore, this factor represented the

impact of increasing forests and grasslands. Finally, PC5,

Table 2 Land-use intensity and landscape complexity metrics in the

Haihe River basin

Metric types Index Full name Unit

Land-use

intensity

PDI Population density 104 capita/km2

RDI Road density km/km2

PFML Proportion of farmland %

PUBL Proportion of urban

land

%

PRRL Proportion of rural land %

PFRL Proportion of forest

land

%

PGSL Proportion of grass

land

%

Landscape-

type

complexity

SDI Shannon’s diversity

index

SEI Shannon’s evenness

index

Landscape

patch-

area

complexity

TE Total edge m

MPS Mean patch size ha

PSSD Patch size SD ha

PED Patch edge density m/ha

MPE Mean patch edge m

PSCOV Patch size coefficient of

variation

%

NUMP Number of patches

MEDPS Median patch size ha

Landscape

patch-

shape

complexity

AWMSI Area weighted mean

shape index

MSI Mean shape index

MPAR Mean perimeter-area

ratio

MPFD Mean patch fractal

dimension

AWMPFD Area weighted mean

patch fractal

dimension

Metric definitions from McGarigal and Marks (1995)
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which explained the lowest variance (9.92%), had strong

positive loadings on MPAR, thus representing the impact

of the more complicated landscape patch-shape. The values

of five PCs were calculated by the PC loadings and the

values of land-use pattern metrics.

Importance of Different Land-Use Metrics on Total N

Concentration

Multivariate regression analysis was conducted to deter-

mine if statistical correlations occurred between land-use

component factors and total N concentration. We followed

the criterion of the stepwise approach and selected the

forward algorithm provided in the SPSS software.

There were four PCs significant at a level of p \ 0.05:

PC1, PC5, PC4, and PC2 (Table 6). Regression with PC1

as the only predictor, model 1 was able to account for

63% of the variation in total N concentration. By adding

other landscape complexity factors, however, the model

accuracy (models 2 and 3) increased noticeably. In model

4, all four variables were included, and the model could

account for 87% of the variation in total N concentration.

Figure 4 compared the measured to the predicted total N

concentration of the 26 watersheds studied. Although it

was difficult to define the absolute contribution of each

variable to the total N concentration regression, their rel-

ative contributions could be evaluated by comparing their

standardized regression coefficients. The contribution of

PC1, PC5, PC4, and PC2 on the total N concentration

variations was 50, 23.13, 14.38, and 12.50%, respectively.

PC1 was significantly positively correlated with total N

concentration, indicating that the intensification of human-

induced land uses could result in increased total N load-

ings. The negative correlation of PC5 suggested that the

shape complexity of landscape patches could potentially

mitigate the total N loading. Increase in forest and

grassland would decrease total N loading as evidenced by

the negative correlation of PC4. Moreover, increasing

Table 3 Summary of watershed characteristics and measured total N concentrations in the upstream regions of the Haihe River basin

Name Monitoring

station

Area

(km2)

Total N

(mg/l)

Proportion of land-use types Population density

(capita/km2)

Road density

(km/km2)
Farm

land

Urban

land

Rural

land

Forest

land

Grass

land

Water

Baihe Yangtianzhen 2363 3.65 20.8 0.13 0.83 55.55 22.22 0.46 54 0.38

Beidaihe Beidaihe 1401 3.00 37.92 8.56 5.87 32.47 12.47 2.50 738 0.63

Caohe Xidayang 2267 2.64 8.29 0.00 2.00 37.27 51.84 0.07 278 0.44

Chaohe Zhangsanying 2515 6.32 23.67 0.22 0.61 60.03 14.82 0.45 43 0.30

Dashahe Wangkui 3723 2.82 7.51 0.05 0.39 35.01 55.66 1.08 90 0.44

Dongyanghe Youyi 3388 1.36 34.42 0.38 3.75 10.47 46.77 2.90 137 0.50

Heihe Badaying 2995 3.30 25.22 0.01 0.29 63.89 10.24 0.34 66 0.36

Huangshuihe Dongyulin 4044 3.56 46.47 0.58 2.75 20.60 28.37 0.94 161 0.55

Huliuhe Huliuhe 3170 6.27 42.06 0.46 2.23 30.09 23.31 1.28 142 0.45

Hunhe Zhenziliang 1568 1.83 36.70 0.34 1.82 15.17 45.00 0.75 170 0.54

Hutuohe Gangnan 4455 3.67 10.89 0.00 0.54 46.05 41.65 0.71 147 0.47

Jumahe Shidu 3828 0.61 14.01 0.15 1.00 64.17 20.16 0.39 193 0.39

Laoniuhe Liying 1305 6.17 13.72 0.07 0.39 68.72 16.64 0.35 125 0.42

Puhe Kuancheng 1479 5.11 25.19 0.62 1.36 51.47 20.72 0.36 135 0.48

Qinglonghe Taolinkou 2770 1.51 21.03 0.11 1.35 57.55 17.18 2.62 450 0.55

Qingshuihe Zhangjiakou 2480 0.98 25.44 0.08 1.00 52.83 20.18 0.39 90 0.37

Qingzhanghe Hezhang 4687 4.86 17.21 0.22 1.19 42.70 37.74 0.80 118 0.48

Sangganhe Cetian 10266 5.48 44.50 1.32 4.17 17.52 29.47 1.95 244 0.53

Weihe Xincun 9484 3.03 51.31 3.59 8.31 23.16 12.80 0.71 625 0.77

Wenyuhe Beiguanzha 2228 10.11 20.43 10.68 13.97 44.29 7.94 1.93 1833 0.69

Wuliehe Chengde 1870 2.97 23.48 0.00 0.62 53.62 22.06 0.13 103 0.38

Xiaoluanhe Guojiatun 2126 1.95 16.22 0.00 0.34 80.25 2.61 0.57 63 0.31

Yanghe Yanghe 778 1.37 9.31 0.00 1.43 54.32 32.96 1.63 208 0.55

Yehe Huangbizhuang 4549 4.55 29.58 0.98 3.94 30.51 33.94 0.88 333 0.53

Yixunhe Miaogong 3332 3.21 28.41 0.25 0.65 42.68 27.61 0.29 64 0.36

Zhuozhanghe Zhangze 12965 5.10 34.40 0.49 2.44 16.12 45.52 0.99 238.67 0.53
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landscape patch size would decrease total N loading as

shown by the PC2 negative correlation.

Discussion

Relationship Between Land-Use Intensity

and Landscape Complexity

Land-use intensification could induce changes in landscape

complexity at the field and landscape levels (Concepcion

and others 2008). Harvest data have been proposed as an

effective index for land-use intensity and the proportion of

arable land per farm as a simple predictor of the landscape

complexity (Roschewitz and others 2005). In contrast,

Persson (Persson and others 2010) regarded the proportion

of farmland and annual crops as indicators of land-use

intensity and the amount of field borders as a better indi-

cator of complexity than the field sizes. Other landscape

diversity metrics may be considered as different aspects of

landscape complexity in large spatial scales. In our study,

the first component (PC1) could be interpreted by

Fig. 3 Measured total N

concentrations in the upstream

watersheds of the Haihe River

basin
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population density, road density, and the proportion of

residential areas within a watershed. These new metrics

were directly influenced by human-induced land-use types;

thus, they could be used as alternative indicators for land-

use intensity on a watershed scale.

Correlation analysis showed that land-use intensity was

related to many, but not all, indicators of landscape com-

plexity (Table 4). Land-use intensity metrics, including

population density, road density, and urban and rural land

proportions, were found to be positively correlated with

landscape-type complexity as represented by SDI and SEI.

This result indicated that land-use intensification in a

watershed scale could enhance land-use diversity by

increasing farmland, road, and residential areas. Landscape

patch-area metrics characterized the degree of forest frag-

mentation as reflected in the relationship that decreased

MPS and MPE corresponded to increased PED. Our results

showed that the proportion of forest had a significant posi-

tive correlation with MPE and MPS, and road density was

the most significant effect on the landscape fragmentation.

It indicated that land-use intensification had significant

negative impacts on landscape patch size. Interestingly,

rural area, similar to urban area, had a high correlation with

landscape fragmentation. Opposite to aggregated urban

areas, scattered rural areas might break the forest and

grassland into fragments through extended roads to connect

each other, which might also generate nonpoint source

pollution by speeding up runoff and soil erosion.

Effect of Land-Use Intensity on Total N Concentration

Nutrient loading was influenced by a combination of nat-

ural and anthropogenic factors, and their relative influences

could change over a range of temporal and spatial scales

(Baker 2003). Our results suggested that total N concen-

tration in the upstream watersheds was strongly and posi-

tively related to human-related land-use types as expressed

by both proportion of residential areas and density of

human population and roads. The linkage between water

quality and density of human population and roads was

consistent with the findings in other areas (Morrice and

others 2008; DeCatanzaro and others 2009). Moreover,

similar to the research by Wilson and Weng (2010), the

proportion of residential areas had significant impacts on

total N concentration in our study because of the point-

source discharges. Our results suggested the association of

better water quality in watersheds with less urbanization

and more forests. Human-induced point source pollution

was the primary factor affecting total N concentration in the

upstream areas of the Haihe River basin.

The results of correlation analysis and PCA demonstrated

that the simple proportion of agricultural areas did not

show a significant relationship with total N concentrationT
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despite previous studies indicating negative relationships

with most water-quality characteristics (Tong and Chen

2002). Other studies have also reported that the effect of

agricultural areas on water quality depended on farming

practices and climatic characteristics (Baker 2003; Lee and

others 2009). The contrasting results of the present study

could possibly be explained by the farmland types and there

being less rainfall during our sampling time. In the upstream

watersheds of the Haihe River, although the proportion of

agricultural lands could be as high as 30.1% of the total areas,

only a small fraction (\1%) of the farmland was irrigated. It

is therefore our hypothesis that the lack of irrigation and

Table 5 Loadings of land-use intensity and landscape complexity metrics on significant principal components for the upstream watersheds of

the Haihe River basin

Metric type PC1 PC2 PC3 PC4 PC5

SDI 0.74 -0.18 0.17 0.41 0.34

SEI 0.71 -0.16 0.09 0.53 0.26

AWMSI 0.10 0.20 0.93 0.09 0.07

MPAR 0.28 0.03 -0.07 -0.08 0.85

AWMPFD -0.07 -0.14 0.94 -0.06 -0.18

PED 0.24 20.88 0.23 0.09 -0.18

MPE -0.37 0.69 0.13 -0.43 -0.21

MPS -0.27 0.86 -0.05 -0.31 -0.19

PSSD 0.05 0.79 0.56 -0.04 0.08

Population density 0.95 -0.15 -0.07 -0.15 0.01

Road density 0.74 -0.19 0.14 0.34 0.32

Proportion of urban land 0.92 -0.11 -0.03 -0.16 0.19

Proportion of rural land 0.96 -0.16 0.11 0.05 0.06

Proportion of forest land -0.25 0.31 -0.29 0.83 -0.17

Proportion of grass land -0.27 -0.21 -0.14 0.82 -0.29

Proportion of farmland 0.22 -0.13 0.61 0.30 0.51

Eigenvalue 4.82 2.98 2.68 2.37 1.59

Total variance (%) 30.13 18.64 16.77 14.81 9.92

Cumulative variance (%) 30.13 48.78 65.54 80.36 90.28

Boldface values indicate strong loadings

Table 6 Regression results with component factors as predictor variables and total N concentration as response variable for the upstream

watersheds of the Haihe River basin

Model Unstandardized coefficients Standardized coefficients t p Partial correlations R F

B SE Beta

1 (Constant) 4.63 0.78 5.93 0.00 0.63 41.23

PC1 5.12 0.80 0.80 6.42 0.00 0.80

2 (Constant) 4.63 0.63 7.34 0.00 0.77 38.50

PC1 5.12 0.64 0.80 7.95 0.00 0.86

PC5 -2.39 0.64 -0.37 -3.71 0.00 -0.61

3 (Constant) 4.63 0.56 8.21 0.00 0.82 34.40

PC1 5.12 0.58 0.80 8.90 0.00 0.88

PC5 -2.39 0.58 -0.37 -4.16 0.00 -0.66

PC4 -1.50 0.58 -0.23 -2.61 0.02 -0.49

4 (Constant) 4.63 0.50 9.20 0.00 0.87 34.00

PC1 5.12 0.51 0.80 9.96 0.00 0.91

PC5 -2.39 0.51 -0.37 -4.65 0.00 -0.71

PC4 -1.50 0.51 -0.23 -2.92 0.01 -0.54

PC2 -1.32 0.51 -0.20 -2.57 0.02 -0.49
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drainage systems minimized the negative impact of the

agricultural land uses on total N loading in the region. In

these areas, large amounts of precipitation could be the major

contributor to transport nutrient to the rivers. In addition, the

water-quality data used in this study were collected in 2009,

and there were no records of extreme rainfall that would have

caused massive runoff and erosion during the sampling

period. In fact, the 2009 summer precipitation was the lowest

in the past 10 years, leading to significant regional drought in

autumn and winter in that year (Ai and others 2010).

The most important contributors to total N loading in the

upstream Haihe River basin were the unrestricted dis-

charges of wastewater and the scarcity of purifying water

infrastructures, particularly in the rural areas. This was not

consistent with similar watersheds in North American and

European regions where nonpoint source pollution was

more predominant (Baker 2003).

Effect of Landscape Complexity on Total N

Concentration

The complex geometry and patterns of land uses can

adjustment their effects on water quality (Johnson and

others 1997). Many studies have found that more complex

landscape shapes within a watershed can considerably

relieve the negative effects on water quality in areas adja-

cent to rivers (Hwang and others 2007). However, the

relationship between patch density and water quality was

not clear. A negative relationship between PED and total N

concentration was found in rivers of Estonia (Uuemaa and

others 2005), whereas a positive relationship was significant

in South Korea (Lee and others 2009). Our results showed

the positive correlation of PED and total N concentration.

This indicated that the relationships between land uses and

water quality were complex and perhaps region-specific.

Landscape patch size and density always tended to be

associated with forest fragmentation, and highly fragmented

forests could not function effectively to filter nutrient

loadings. Lee and others (2009) found that highly inter-

spersed land uses, particularly residential areas, might

represent the worst case from the perspective of water-

quality management for adjacent aquatic systems. In our

study, we also found that total N concentration increased

when different land uses were greatly interspersed and the

number of land-use (especially for roads and residential

areas) types increased. Our results showing high correla-

tions between landscape complexity and land-use intensi-

fication may suggest that total N concentration was

primarily associated with the negative impacts of inter-

spersion and the diversity of human-induced land-uses.

Implications for Environmental Management

in the Haihe River

The Haihe River is a highly urbanized watershed, and

water shortages and allocation conflicts are increasingly

serious. The study analyzed the relationships between land

use and total N concentrations and could provide some

useful implications for the environmental management.

The results indicated that point-source effluent contrib-

uted more than non–point-source effluent to the total N load

of the Haihe River. This result is consistent with previous

studies. For example, total N loads discharged with waste-

water through surface runoff totaled 51,966 tons from crop

farming (Zhu and others 2010a), which is little greater than

that of livestock and poultry breeding (41,500 ton) in the

Haihe River in 2007 (Zhu and others 2010b). In addition,

total N loads of rural solid waste reached[3,000,000 tons in

2007 (Zhu and others 2010c). Solid waste had little impact

on surface and underground water during the dry season, but

during the rainy season heavy rains might cause wastewater

to rush into neighboring reaches and underground water.

Therefore, several management techniques should be

employed to mitigate nutrient loading into the Haihe

River. First, solid-waste treatment technologies should be

improved in the rural areas. The use of green manure from

human and animal feces to decrease nutrient loading should

be encouraged through economic compensation and gov-

ernment incentives. Methane from straw resources has been

regarded as a green energy to save traditional energy con-

sumption and decrease nutrient discharge into surface and

underground water. More official capitals and supporting

facilities are needed to promote the popularization of the

green energy. Second, infrastructure should be improved

with more investment in the rural areas. Water-purifying

infrastructures and waste-treatment plants are basic

Fig. 4 Model-predicted versus measured total N concentrations in

the upstream watersheds of the Haihe River basin. The dashed line is

the 1:1 line, indicating a perfect correlation
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demands of water-resource management. We should also

invest more in water supplies and drainage systems in rural

areas to decrease waste discharges into adjacent rivers in the

rainy season. Third, centralized management of separated

rural regions could make water infrastructures more effi-

cient. Less road construction in centralized rural regions

could also decrease fragmentation of forests and grasslands.

Conclusion

Many studies have demonstrated that both natural water-

shed characteristics and land-use practices influence the

nutrient conditions of receiving waters (Ripa and others

2006). Additional natural controlling variables, such as

geologic, edaphic, and climatic characteristics, can also

influence a river’s chemical and biotic quality (O’Neill and

others 1988). Although these natural variables may

improve the predictive capabilities of a water-quality

model, researchers have focused on the effects of modifi-

able land-use attributes for the purpose of managing or

planning a watershed’s ecosystem (Shiels 2010). The cur-

rent study illustrates the usefulness of multivariate statis-

tical techniques for the analysis and interpretation of

effects of land-use patterns on watershed water quality.

Our analysis showed that human-induced factors

increased total N loading due to not only to transformation

of natural lands into residential and traffic areas but also

lowering of the quality of remnant forest in watersheds with

small and highly dense edged areas. The results indicated

that human-induced factors, such as population density, road

density, and residential areas, were strong indicators of water

quality in the upstream regions of the Haihe River basin.
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