
Logical Types for Untyped Languages ∗

Sam Tobin-Hochstadt Matthias Felleisen
Northeastern University

{samth,matthias}@ccs.neu.edu

Abstract
Programmers reason about their programs using a wide variety of
formal and informal methods. Programmers in untyped languages
such as Scheme or Erlang are able to use any such method to reason
about the type behavior of their programs. Our type system for
Scheme accommodates common reasoning methods by assigning
variable occurrences a subtype of their declared type based on the
predicates prior to the occurrence, a discipline dubbed occurrence
typing. It thus enables programmers to enrich existing Scheme code
with types, while requiring few changes to the code itself.

Three years of practical experience has revealed serious short-
comings of our type system. In particular, it relied on a system of
ad-hoc rules to relate combinations of predicates, it could not rea-
son about subcomponents of data structures, and it could not fol-
low sophisticated reasoning about the relationship among predicate
tests, all of which are used in existing code.

In this paper, we reformulate occurrence typing to eliminate
these shortcomings. The new formulation derives propositional
logic formulas that hold when an expression evaluates to true or
false, respectively. A simple proof system is then used to determine
types of variable occurrences from these propositions. Our imple-
mentation of this revised occurrence type system thus copes with
many more untyped programming idioms than the original system.

1. Reasoning about Untyped Languages
Developing programs in a typed language helps programmers avoid
mistakes. It also forces them to provide some documentation, and it
establishes some protective abstraction barriers. As such, the type
system imposes a discipline on the programming process.

Nevertheless, numerous programmers continue to choose un-
typed scripting languages for their work, including many who work
in a functional style. When someone eventually decides that explic-
itly stated type information reduces maintenance cost, they face a
dilemma. To address this situation, we need to develop typed sis-
ter languages for untyped languages. With those, programmers can
enrich existing programs with type declarations as needed while
maintaining smooth interoperability.

A type system for an existing untyped language must accommo-
date the existing programming idioms in order to keep the cost of

∗ This research was partially supported by grants from the US NSF and a
donation from the Mozilla Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

type enrichment low. Otherwise, type enrichment requires changes
to code, which may introduce new mistakes. Put positively, the
ideal typed sister language requires nothing but the addition of type
specifications to function headers, structure definitions, etc.

Our experience shows that programming idioms in untyped
functional languages rest on a combination of traditional type-
based reasoning with reasoning about control flow. In particular,
conditionals and data-type predicates are used to establish the na-
ture of variables’ values, and based on this flow-sensitive reasoning,
programmers use variables at more specific types than expected.
Put differently, the programmer determines the type of each vari-
able occurrence based on the predicates that flow-dominate it.

Multiple researchers over the decades have discovered this in-
sight. In his paper on the static analysis of untyped programs,
Reynolds [1968] notes that such reasoning is necessary, stating that
in future systems, “some account should be taken of the premises in
conditional expressions.” In his work on TYPED LISP, Cartwright
[1976, §5] describes having to abandon the policy of rejecting type-
incorrect programs because the variables in conditionals had overly
broad types. Similarly, in their paper on translating Scheme to ML,
Henglein and Rehof [1995] state “type testing predicates aggravate
the loss of static type information since they are typically used to
steer the control flow in a program in such a fashion that execution
depends on which type tag an object has at run-time.”

We exploited this insight for the development of Typed Scheme,
a typed sister language for Racket (formerly PLT Scheme) [Tobin-
Hochstadt and Felleisen 2008]. Its type system combines several
preexisting elements—“true” recursive union types, subtyping,
polymorphism—with the novel idea of occurrence typing,1 a type
discipline for exploiting the use of data-type predicates in the test
expression of conditionals. Thus, if a test uses (number? x), the
type system uses the type Number for x in the then branch and the
declared type of x, minus Number, otherwise.

Three years of extensive use have revealed several shortcom-
ings in our original design. One significant problem concerns con-
trol flow governed by logical combinations (e.g., and, or, not) of
predicate tests. Another is that the type system cannot track uses of
predicates applied to structure selectors such as car.

This lack of expressiveness in the type system is due to fun-
damental limitations. First, our original system does not consider
asymmetries between the then and else branches of conditionals.
For example, when the expression (and (number? x) (> x 100)) is
true, the type system should know that x is a number, but x might or
might not be a number when the expression is false, since it might
be 97 or "Hello". Second, the type system does not appropriately
distinguish between selector expressions such as (car x) and predi-
cate expressions such as (number? x). Third, the treatment of com-
binations of tests relies on an ad-hoc collection of rules.

1 Komondoor et al. [2005] independently coined the term “occurrence typ-
ing” in the context of providing an advanced type system for COBOL.

In this paper, we present a new and simple framework for oc-
currence typing that eliminates all three problems via an increase in
expressive power. The key innovation is to turn control flow pred-
icates into formulas in propositional logic for reasoning about the
types of variables. The atomic propositions include statements that
a particular variable has a particular type, replacing the previous
collection of special cases with textbook rules of logical inference.

This new design allows the type system to reason about combi-
nations of predicates:

(cond
[(and (number? (node-left x)) (string? (node-right y)))
;; known: (node-right y) is a string, (node-left x) is a number
. . .]
[(number? (node-left x))
;; known: (node-right y) is not a string
. . .]
[(string? (node-right y))
;; known: (node-left x) is not a number
. . .])

Now the programmer and the revised type system both determine
that since (number? (node-left x)) is true in the second clause,
(string? (node-right y)) must be false, and thus, (node-right y) is
not a string. Using propositional logic to reason about predicates
handles this and many other similar situations.

Beyond the new type system, this paper contributes:

• a full-fledged implementation of the calculus, now known as
Typed Racket, addressing the full complexities of the functional
core of Racket, such as mutable data and multiple arguments;
• an empirical study of the usefulness of our extensions; and
• a novel model-theoretic proof technique for type soundness.

The paper begins with a brief review of the essence of occur-
rence typing with an emphasis on programming idioms that our
original system cannot typecheck. We then describe the new sys-
tem in a semi-formal manner. In the three following sections, we
describe the system formally: first the core system of occurrence
typing, then several extensions demonstrating the expressiveness
of the system, and third the proof of soundness. These sections
are followed by a description of our implementation strategy and
empirical measures of its usefulness on existing code. Finally, we
discuss related work and conclude.

2. A Brief Introduction to Occurrence Typing
Here is the simplest example of occurrence typing:

Example 1. . . (if (number? x) (add1 x) 0) . . .

Regardless of the value of x, this program fragment always pro-
duces a number. Thus, our type system should accept this fragment,
regardless of the type assigned to x, even if the type is not legitimate
for add1. The key to typing this program is to assign the second oc-
currence of x a different, more precise type than it has in the outer
context. Fortunately, we know that for any value of type Number,
number? returns #t; otherwise, it returns #f. Therefore, it is safe
to use Number as the type of x in the then branch.

2.1 Existing Capabilities
The following function f always produces a number:

Example 2(define: (f [x : (
⋃

String Number)])
(if (number? x) (add1 x) (string-length x)))

If (number? x) produces #t, x is an appropriate input for add1.
If it produces #f, x must be a String by process of elimination;

it is therefore an acceptable input to string-length. To handle this
program, the type system must take into account not only when
predicates hold, but also when they fail to hold.

Our next fragment represents the essence of a common idiom:

Example 3. . . (let ([x (member v l)])
(if x

— compute with x —
(error ’fail))) . . .

This idiom, seen here in member, uses arbitrary non-#f values as
true and uses #f as a marker for missing results, analogous to
ML’s NONE. The type for member specifies this behavior with an
appropriate type signature. It can thus infer that in the then branch,
x has the type of the desired result and is not #f.

2.2 Challenges
Of course, programmers write tests beyond simple applications of
predicates such as (number? x). For example, logical connectives
can combine the results of predicates:2

Example 4. . . (if (or (number? x) (string? x)) (f x) 0) . . .

For this fragment to typecheck, the type system must recognize
that (or (number? x) (string? x)) ensures that x has type (

⋃
String

Number) in the then branch, the domain of f from example 2.
For and, there is no such neat connection:

Example 5. . . (if (and (number? x) (string? y))
(+ x (string-length y))
0) . . .

Example 5 is perfectly safe, regardless of the values of x and y.
In contrast, the next example shows how little we know when a
conjunction evaluates to false:

Example 6;; x is either a Number or a String
. . . (if (and (number? x) (string? y))

(+ x (string-length y))
(string-length x)) . . .

Here a programmer falsely assumes x to be a String when the test
fails. But, the test may produce #f because x is actually a String,
or because y is not a String while x is a Number. In the latter case,
(string-length x) fails. In general, when a conjunction is false, we
do not know which conjunct is false.

Finally, and is expressible using nested if expressions, a pattern
that is often macro-generated:

Example 7. . . (if (if (number? x) (string? y) #f)
(+ x (string-length y))
0) . . .

One way for the type system to deal with this pattern is to reason
that it is equivalent to the conjunction of the two predicates.

So far, we have seen how programmers can use predefined
predicates. It is important, however, that programmers can also
abstract over existing predicates:

Example 8(define: (strnum? [x : >]) ;; > is the top type
(or (string? x) (number? x)))

Take the previous example of a test for (
⋃

String Number). A
programmer can use the test to create the function strnum?, which
behaves as a predicate for that type. This means the type system
must represent the fact that strnum? is a predicate for this type, so
that it can be exploited for conditionals.

2 The original system could handle only an encoding of or, with different
semantics than that provided by Racket.

In example 4, we saw the use of or to test for disjunctions. Like
and, or is directly expressible using if:

Example 9(if (let ([tmp (number? x)])
(if tmp tmp (string? x)))

(f x)
0)

The expansion is analyzed as follows: if (number? x) is #t, then
so is tmp, and thus the result of the inner if is also #t. Otherwise,
the result of the inner if is (string? x). This code presents a new
challenge for the type system, however. Since the expression tested
in the inner if is the variable reference tmp, but the system must
also learn about (number? x) from the test of tmp.

Selectors All of the tests thus far only involve variables. It is also
useful to subject the result of arbitrary expressions to type tests:

Example 10. . . (if (number? (car p)) (add1 (car p)) 7) . . .

Even if p has the pair type 〈>,>〉, then example 10 should pro-
duce a number.3 Of course, simply accommodating repeated appli-
cations of car is insufficient for real programs. Instead, the rele-
vant portions of the type of p must be refined in the then and else
branches of the if.

In the next example:

Example 11(λ: ([p : 〈>,>〉])
(if (and (number? (car p)) (number? (cdr p)))

(g p)
’no))

the test expression refines the type of p from the declared 〈>,>〉
to the required 〈Number,Number〉. This is the expected result of
the conjunction of tests on the car and cdr fields.

Example 12 shows how programmers can simultaneously ab-
stract over the use of both predicates and selectors:

Example 12(define carnum?
(λ: ([x : 〈>,>〉]) (number? (car x))))

The carnum? predicate tests if the car of its argument is a Number,
and its type must capture this fact.

Reasoning Logically Of course, we do learn something when
conjunctions such as those in examples 5 and 6 are false. When
a conjunction is false, we know that one of the conjuncts is false,
and thus when all but one are true, the remaining one must be
false. This reasoning principle is used in multi-way conditionals,
which is a common idiom extensively illustrated in How to Design
Programs [Felleisen et al. 2001]:

Example 13. . . (cond
[(and (number? x) (string? y)) — 1 —]
[(number? x) — 2 —]
[else — 3 —]) . . .

This program represents a common idiom. In clause 1, we obvi-
ously know that x is a Number and y is a String. In clause 2, x is
again a Number. But we also know that y cannot be a String. To
effectively typecheck such programs, the type system must be able
to follow this reasoning.

3 Racket pairs are immutable; this reasoning is unsound for mutable pairs.

2.3 Putting it all Together
Our type system correctly handles all of the preceding examples.
Finally, we combine these features into an example that demon-
strates all aspects of our system:

Example 14(λ: ([input : (
⋃

Number String)]
[extra : 〈>,>〉])

(cond
[(and (number? input) (number? (car extra)))
(+ input (car extra))]

[(number? (car extra))
(+ (string-length input) (car extra))]

[else 0]))

In section 5.3, we return to this example with a type system that
checks it correctly.

3. How to Check the Examples
Next we use the preceding examples to explain the basic ideas of
our new system for occurrence typing.

3.1 Propositions and Objects
Recall example 1:

(if (number? x) (add1 x) 0)

In this example, the typechecker must propagate information from
the test to the then branch. Therefore, the typechecker really proves
the proposition that “if the test evaluates to #t, then x is a number”,
a proposition abbreviated as Nx , with N short for Number. The
typechecker then uses this proposition to check the then branch.

The proposition Nx is computed from (number? x) by combin-
ing information from two sources. On one hand, the type of num-
ber? includes the information that it is a predicate. On the other,
testing x produces information about the variable x.

The addition of a proposition as part of the type of the number?
function accomplishes the first goal. Specifically, the added propo-
sition allows the type of a function to describe what propositions
are derivable when the function produces a true value. Borrowing
terminology from work on effect systems [Lucassen and Gifford
1988], we refer to these propositions as latent. Borrowing notation
from dependent types, we name the argument in each function, al-
lowing latent propositions to be well-scoped in function types. If
the argument to number? is named y, the latent proposition is Ny .
This makes the type of number?:

y :>
Ny−−→B

To satisfy the second goal, we modify the type system so that it
derives an object for each expression. The object describes which
part of the environment an expression accesses. In our example, it
is simply x.

Given these pieces of information, the typechecker obtains the
desired proposition about a predicate application from the substi-
tution of the actual object for the formal parameter in the latent
proposition. For the first example, the result is Nx .

In example 2, x initially has the type (
⋃

String Number).
To check the else branch, the typechecker needs the information
that x is not a Number; i.e., that it is a String. It computes this
information via two propositions, one for each of the then and else
branches. For the then branch the proposition is Nx , as above. For
the else branch, the type checker must propagate the proposition “x
is not a Number”—written Nx—from the test to the else branch.
To this end, function types are actually equipped with two latent
propositions: one for when the function produces a true value, and

one for when it produces a false value. Thus, the type of number?
is now

y :>
Ny |Ny−−−−−→B

with the two propositions separated by |. Substituting x for y in the
latent propositions produces the desired results.

Contrary to appearances, pairs of propositions need not be com-
plementary. Recall (and (number? x) (> x 100)) from section 1. In
this case, the then proposition should be Nx , because if the and ex-
pression produces #t, x must be a number. But the else proposition
cannot be Nx , since x might have been 97, which would produce
#f but is nonetheless a number.

3.2 Handling Complex Tests
For complex tests, such as those of example 4, the type system com-
bines the propositions of different subexpressions. In the cited ex-
ample, the propositions for (number? x) and (string? x) are Nx |Nx
and Sx |Sx , respectively. For the or expression, these should be
combined to Nx ∨ Sx for the then branch and Nx ∧ Sx for the
else branch.

From these complex propositions, the typechecker derives
propositions about the type of x. If x is a number or a string, x
is in (

⋃
N S). By codifying this as a rule of inference, it is pos-

sible to derive (
⋃

N S)x from Nx ∨ Sx , just what is needed to
check the then branch. From Nx ∧ Sx it is similarly possible to
derive (

⋃
N S)x , as expected for the else branch. To propagate

propositions, we use a proposition environment instead of a type
environment; the type environment becomes a special case.

Examples 5 and 6 are dealt with in the same manner, but with
conjunction instead of disjunction. In example 7, the test expression
of the outer if is itself an if expression. The typechecker must
derive propositions from it and propagate them to the then and
else branches. Thus, it first computes the propositions derived for
each of the three subexpressions, giving Nx |Nx for the test and
Sy |Sy for the then branch. Since the else branch—a plain #f—
never produces a true value, the relevant propositions are ff and
tt, the impossible and trivial propositions.

3.3 Abstracting over Predicates
The next challenge, due to example 8, is to include proposition
information in function types for user-defined predicates:

(λ: ([x : >]) (or (string? x) (number? x)))

As explained above, the typechecker assigns the body of the func-
tion type B and derives (

⋃
N S)x |(

⋃
N S)x as the then and else

propositions. To add these to a function type, it merely moves these
propositions into the arrow type:

x :>
(
⋃N S)x |(

⋃N S)x−−−−−−−−−−−−−→B

The key to the simplicity of this rule is that the bound variable of
the λ expression becomes the name of the argument in the function
type, keeping the propositions well-scoped.

3.4 Variables as Tests
In examples 3 and 9, the test expression is just a variable. For such
cases, the typechecker uses the proposition #fx in the else branch
to indicate that variable x has the value #f. Conversely, in the then
branch, the variable must be true, giving the proposition #fx .

Example 9 demands an additional step. In the then branch of
the if, tmp must be true. But this implies that (number? x) must also
be true; the propsition representing this implication, #ftmp ⊃ Nx ,
is added to the environment used to check the body of the let
expression.

3.5 Selectors
The essence of example 10 is the application of predicates to se-
lector expressions, e.g., (car p). Our type system represents such
expressions as complex objects. For example, (number? (car p))
involves a predicate with latent propositions Nx |Nx applied to an
expression whose object indicates that it accesses the car field of
p. We write car(p) for this object. Thus, the entire expression has
proposition Ncar(p) for the then branch and Ncar(p) for the else
branch, obtained by substituting car(p) for x in the latent propo-
sitions. Combinations of such tests (example 11) and abstraction
over them (example 12) work as before.

To specify the access behavior of selectors, each function type is
equipped with a latent object, added below the arrow. For car, it is
car. But, since selectors can be composed arbitrarily, the function

(λ: ([x : 〈>, 〈>,>〉〉]) (car (cdr x)))

has the type

x :〈>, 〈>,>〉〉
#fcar(cdr(x))|#fcar(cdr(x))−−−−−−−−−−−−−−−−−→

car(cdr(x))
>

3.6 Reasoning Logically
Next we revisit conjunctions such as (and (number? x) (string? y)).
If this expression evaluates to #f, the typechecker can infer some
propositions about x and y. In particular, since the original expres-
sion derived the proposition Nx ∨ Sy for the else branch, the type
system can combine this environmental information with the re-
sults of subsequent tests. In example 13, the type system derives
the proposition Nx when the second cond clause produces true,
which means Sy holds, too. In short, maintaining propositions in
the environment allows the typechecker to simulate the reasoning
of the programmer and to track the many facts available for deduc-
ing type correctness for an expression.

3.7 The Form of the Type System
The essence of our discussion can be distilled into five ideas:

• Propositions express relationships between variables and types.
• Instead of type environments, we use proposition environments.
• Typechecking an expression computes two propositions, which

hold when the expression evaluates to true or false, respectively.
• Typechecking an expression also determines an object of in-

quiry, describing the particular piece of the environment pointed
to by that expression. This piece of the environment may also
be a portion of a larger data structure, accessed via a path.
• Latent propositions and objects are attached to function types in

order to describe facts about the result of applying the function.

The next sections translate these ideas into a typed calculus, λTR.

4. The Base Calculus
We begin our presentation of λTR with the base system, a typed
lambda calculus with booleans, numbers, and conditionals. In Sec-
tion 5, we extend the system with pairs and local variable binding.

The fundamental judgment of the type system is

Γ ` e : τ ; ψ+|ψ− ; o

It states that in environment Γ, the expression e has type τ, comes
with then proposition ψ+ and else proposition ψ−, and references
object o. That is, if e evaluates to a true value, then proposition
ψ+ holds; conversely, if e evaluates to a false value, ψ− is true.
Further, if e evaluates to a value, then looking up o in the runtime
environment produces the same value.

d, e ::= x | (e e) | λxτ.e | (if e e e) | c | #t | #f | n Expressions
c ::= add1 | zero? | number? | boolean? | procedure? Primitive Operations

σ, τ ::= > | N | #t | #f | (
⋃ −→τ) | x :τ

ψ|ψ−−→
o

τ Types

ψ ::= τx | τx | ψ ⊃ ψ | ψ ∨ ψ | ψ ∧ ψ | ff | tt Propositions
o ::= x | ∅ Objects
Γ ::=

−→
ψ Environments

Figure 1. Syntax of Terms, Types, Propositions, and Objects

4.1 Syntax
The syntax of expressions, types, propositions, and objects is given
in figure 1. The expression syntax is standard, with conditionals,
numeric and boolean constants, and primitive operators, in addition
to the basics of abstraction, application, and variable reference.
Abstractions come with type annotations on the bound variable.
The presentation of the standard operational semantics is deferred
to section 6, in conjunction with the soundness proof.

As for types, > is the supertype of all types; N is the type
of numeric values; #t and #f are the types of the true and false
constants, respectively; and (

⋃ −→τ) is the untagged or “true” union
of its components. We abbreviate (

⋃
#t #f) as B and (

⋃
) as

⊥. Function types name their arguments. This name is in scope
in the latent propositions and objects of a function type—written
above and below the arrow, respectively—and in the result type.
The latent propositions are knowledge about the types of variables
when the function produces a true or false value, respectively.

Most propositions come in familiar form, borrowed from
propositional logic: implications, disjunctions, and conjunctions,
plus always-true (tt) and always-false (ff) propositions. Atomic
propositions relate variables to their types: τx states that x has type
τ; τx states that x never assumes a value with type τ.

An object describes a portion of the runtime environment. In the
base system, it is either a variable or the empty object. For example,
the expression (add1 7) has object ∅ because it does not access any
portion of the environment.

Environments are simply collections of arbitrary propositions.

Types and Propositions Unlike many systems that relate type
systems and logic, λTR distinguishes types, propositions, and
terms. Propositions state claims about the runtime environment
and thus relate types and variables. This choice allows a simple
and decidable logic to be used to derive types from propositions to
achieve the desired expressiveness.

4.2 Typing Rules
Figures 2 and 3 specify the typing and subtyping rules.

Constants The simplest rule is T-NUM, which gives all numbers
the type N. Since numbers are treated as true by the evaluation
rules for if, numeric constants are assigned the propositions tt|ff ,
indicating that no new information is acquired when the number
evaluates to a true value; if it evaluates to false, a contradiction
is obtained. The rule for function constants, T-CONST, work in
similar manner, though we use a δτ function to assign types to
function constants. The boolean constants are given singleton types
by T-TRUE and T-FALSE, along with propositions that reflect that
#t is always true, and #f is always false. All of the constants have
the object ∅, since none refer to any portion of the environment.

Variables The rule for typing variables, T-VAR, exploits the proof
system. If the current environment proves that x has type τ, repre-
sented by the proposition τx , then the type system assigns x the
type τ. The object for a variable is itself. Finally, the propositions

for a variable indicates that if x evaluates to a true value, x cannot
have type #f. Similarly, if x evaluates to #f, its type is #f.

Abstraction and Application The rule for checking an abstrac-
tion, T-ABS, takes the propositions and object from the body and
makes them the latent propositions and object in the function type.
By taking the bound variable from the abstraction and turns it into
the name of the argument, references to the variable in the types,
propositions, and object remain well-scoped.

Correspondingly, in T-APP, the latent propositions and object
are used as the result propositions and object, just as with the result
type. In all cases, the actual object oa is substituted for the name of
the formal parameter, x. Consider the abstraction:

λy>.(number? y)

which typechecks as follows. In the body of the abstraction, Γ =
>y . Thus, Γ ` y : > ; #fy|#fy ; y, and number? has the
above-mentioned type. To check the application, the typechecker
substitutes y for x in the result type, latent propositions, and latent
object of number?, which yields Γ ` (number? y):B ; Ny|Ny ; ∅.
Finally, the function is assigned the desired type via T-ABS:

y :>
Ny |Ny−−−−−→
∅

B

In our prior system, this example required multiple special-
purpose rules and the use of several metafunctions, whereas here
it is a simple matter of scope and substitution.

Of course, substitution of an object for a variable must account
for the case when the object is ∅. When this happens, any references
to the variable are forgotten, and propositions or objects that refer
to it become trivial. Figure 8 defines the full substitution function.

Conditionals As far as types and objects are concerned, the T-IF
rule is straightforward. The test may have any type and object, and
the then and else branches must have identical types and objects,
which then become the type and the object of the entire expression.
The key difference between T-IF and conventional rules for condi-
tionals is due to the differential propagation of knowledge from the
test to the branches. Specifically, the rule uses two distinct environ-
ments to check the then and else branches, because ψ1+ holds in
the then branch and ψ1− holds in the else branch.

The resulting propositions follow from a simple principle about
the evaluation of if. If a true value is produced, either the then
branch or the else branch must have evaluated to a true value, and
similarly for a false value. Therefore, in the true case, either the
then proposition of the then branch, ψ2+ , or the then proposition
of the else branch, ψ3+ , must be true, which means ψ2+ ∨ ψ3+ is
the then proposition of the entire expression and, correspondingly,
ψ2− ∨ ψ3− is the else proposition.

Subsumption & Subtyping Finally, λTR comes with subtyping.
Expressions of type τ can be viewed as having a larger type τ′.
Objects can also be lifted to larger objects. The ordering on propo-
sitions is simply provability in the current environment.

T-NUM
Γ ` n : N ; tt|ff ; ∅

T-CONST
Γ ` c : δτ (c) ; tt|ff ; ∅

T-TRUE
Γ ` #t : #t ; tt|ff ; ∅

T-FALSE
Γ ` #f : #f ; ff|tt ; ∅

T-VAR
Γ ` τx

Γ ` x : τ ; #fx |#fx ; x

T-ABS
Γ, σx ` e : τ ; ψ+|ψ− ; o

Γ ` λxσ.e : x :σ
ψ+|ψ−−−−−→
o

τ ; tt|ff ; ∅

T-APP

Γ ` e : x :σ
ψf+
|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ : σ ; ψ+
′|ψ−′ ; o′

Γ ` (e e′) : τ[o′/x] ; ψf+ |ψf− [o′/x] ; of [o′/x]

T-IF
Γ ` e1 : τ1 ; ψ1+ |ψ1− ; o1

Γ, ψ1+ ` e2 : τ ; ψ2+ |ψ2− ; o
Γ, ψ1− ` e3 : τ ; ψ3+ |ψ3− ; o

Γ ` (if e1 e2 e3) : τ ; ψ2+ ∨ ψ3+ |ψ2− ∨ ψ3− ; o

T-SUBSUME
Γ ` e : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ′+ Γ, ψ− ` ψ′−
` τ <: τ′ ` o <: o′

Γ ` e : τ′ ; ψ′+|ψ′− ; o′

Figure 2. Typing Rules

SO-REFL
` o <: o

SO-TOP
` o <: ∅

S-REFL
` τ <: τ

S-TOP
` τ <: >

S-UNIONSUPER
∃i. ` τ <: σi

` τ <: (
⋃ −→iσ)

S-UNIONSUB−−−−−−→i
` τi <: σ

` (
⋃ −→iτ) <: σ

S-FUN
` σ′ <: σ ` τ <: τ′

ψ+ ` ψ+
′ ψ− ` ψ−′ ` o <: o′

` x :σ
ψ+|ψ−−−−−→
o

τ <: x :σ′
ψ+
′|ψ−′−−−−−−→
o′

τ′

Figure 3. Subtyping Rules

Given these definitions, the rules for subtyping are straightfor-
ward. All types are subtypes of > and of themselves. Subtypes of
elements of a union are subtypes of the union, and any type that is
a supertype of every element is a supertype of the union. Finally,
function types are ordered in the usual fashion.

4.3 Proof System
Figure 4 specifies the proof rules for our logic. The first nine
rules—L-ATOM through L-ORE—use the natural deduction style
to express the standard rules of propositional logic.

The subsequent four rules relate the atomic propositions. In
particular, L-SUB says that if x has type τ, then it has any larger
type. Similarly, L-SUBNOT says that if x does not have type τ, then
it does not have any smaller type. By L-BOT, if x has an empty
type, it is possible to conclude anything since this is impossible.

The L-UPDATE rule refines the type of a variable via a combina-
tion of multiple propositions. Roughly speaking, this metafunction
satisfies the equations

update(τ, σ) = τ ∩ σ update(τ, σ) = τ − σ
See figure 9 for the full definition.

4.4 A Worked Example
At this point, eight of our 14 examples typecheck. To illustrate the
workings of the type system, let us work example 7:

(if (if (number? x) (string? y) #f)
(+ x (string-length y))
0)

First, assume that the initial environment is Γ = >x,>y . Now
consider the inner if expression. The test has then proposition Nx
and else proposition Nx . The then branch has propositions Sy
and Sy , or by subsumption Nx ∧ Sy |tt, since T-IF adds the then
proposition of the test to the environment for checking the then
branch. The else branch has propositions ff|tt, and by subsump-

tion Nx ∧ Sy |tt since ff ` Nx ∧ Sy . Therefore, the entire inner if
expression has then proposition

(Nx ∧ Sy) ∨ (Nx ∧ Sy) = Nx ∧ Sy

and else proposition tt.
Second, we typecheck the then branch of the main if expression

in the environment Γ1 = >x,>y,Nx ∧ Sy . Since Γ1 ` Nx and
Γ1 ` Sy , we can give x and y the appropriate types to check the
expression (+ x (string-length y)).

5. Extensions
The base system of section 4 lacks several important features, in-
cluding support for compound data structures and let. This section
shows how to extend the base system with these features.

5.1 Pairs
The most significant extension concerns compound data, e.g., pairs.
We extend the expression, type, and proposition grammars as
shown in figure 5.4 Most significantly, in all places where a variable
appeared previously in propositions and objects, it is now legal to
specify a path—a sequence of selectors—rooted at a variable, writ-
ten π(x). This allows the system to refer not just to variables in the
environment, but to parts of their values.

Typing Rules Figure 6 shows the extensions to the typing and
subtyping rules. Again, the subtyping rule S-PAIR and typing rule
for cons are straightforward; all pair values are treated as true.
The T-CAR and T-CDR rules are versions of the application rule
specialized to the appropriate latent propositions and objects, which
here involve non-trivial paths. Substitution of objects for variables
is also appropriately extended; the full definition is in figure 8.

None of the existing typing rules require changes.

4 In a polymorphic λTR, pair operations could be added as primitives.

L-ATOM
ψ ∈ Γ

Γ ` ψ
L-TRUE
Γ ` tt

L-FALSE
Γ ` ff

Γ ` ψ

L-ANDI
Γ ` ψ1

Γ ` ψ2

Γ ` ψ1 ∧ ψ2

L-ANDE
Γ, ψ1 ` ψ or Γ, ψ2 ` ψ

Γ, ψ1 ∧ ψ2 ` ψ

L-IMPI
Γ, ψ1 ` ψ2

Γ ` ψ1 ⊃ ψ2

L-IMPE
Γ ` ψ1

Γ ` ψ1 ⊃ ψ2

Γ ` ψ2

L-ORI
Γ ` ψ1 or Γ ` ψ2

Γ ` ψ1 ∨ ψ2

L-ORE
Γ, ψ1 ` ψ
Γ, ψ2 ` ψ

Γ, ψ1 ∨ ψ2 ` ψ

L-SUB
Γ ` τx ` τ <: σ

Γ ` σx

L-SUBNOT
Γ ` σx ` τ <: σ

Γ ` τx

L-BOT
Γ ` ⊥x

Γ ` ψ

L-UPDATE
Γ ` τx Γ ` νx
Γ ` update(τ, ν)x

(The metavariable ν ranges over τ and τ (without variables).)

Figure 4. Proof System

e ::= . . . | (cons e e) Expressions
c ::= . . . | cons? | car | cdr Primitive Operations
σ, τ ::= . . . | 〈τ, τ〉 Types

ψ ::= . . . | τπ(x) | τπ(x) Propositions
o ::= π(x) | ∅ Objects
π ::= −→pe Paths
pe ::= car | cdr Path Elements

Figure 5. Syntax Extensions for Pairs

S-PAIR
` τ1 <: τ2
` σ1 <: σ2

` 〈τ1, σ1〉 <: 〈τ2, σ2〉

T-CONS
Γ ` e1 : τ1 ; ψ1+ |ψ1− ; o1
Γ ` e2 : τ2 ; ψ2+ |ψ2− ; o2

Γ ` (cons e1 e2) : 〈τ1, τ2〉 ; tt|ff ; ∅

T-CAR
Γ ` e : 〈τ1, τ2〉 ; ψ0+ |ψ0− ; o

ψ+ |ψ− = #fcar(x)|#fcar(x)[o/x]
or = car(x)[o/x]

Γ ` (car e) : τ1 ; ψ+ |ψ− ; or

T-CDR
Γ ` e : 〈τ1, τ2〉 ; ψ0+ |ψ0− ; o

ψ+ |ψ− = #fcdr(x)|#fcdr(x)[o/x]
or = cdr(x)[o/x]

Γ ` (cdr e) : τ2 ; ψ+ |ψ− ; or

Figure 6. Type and Subtype Extensions

L-SUB
Γ ` τπ(x) ` τ <: σ

Γ ` σπ(x)

L-SUBNOT
Γ ` σπ(x) ` τ <: σ

Γ ` τπ(x)

L-BOT
Γ ` ⊥π(x)

Γ ` ψ

L-UPDATE
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

Figure 7. Logic Extensions

Logic Rules Figure 7 specifies the changes to the logic for deal-
ing with paths. For the first three rules, the only change needed
is allowing paths in the appropriate syntactic locations. For the L-
UPDATE rule, there is an additional change. When the environment
proves both 〈>,>〉x and Ncar(x), it must be possible to derive
〈N,>〉x . The new version of L-UPDATE allows this inference via
a revised version of update. Its third argument specifies a path to
follow before refining the type. See figure 9 for details.

Of course, none of the rules implementing the standard proof
theory of propositional logic change with this extension.

With the addition of pairs, the type system can cope with 12 of
the 14 examples from section 2.

5.2 Local Binding
To add a local binding construct, we again extend the grammar:

d, e ::= . . . | (let (x e) e)

Recall our motivating example 9. The crucial aspect is to relate
the propositions about the initialization expression to the variable
itself. Logical implication precisely expresses this connection, giv-

ing us the following rule:
T-LET

Γ ` e0 : τ ; ψ0+ |ψ0− ; o0
Γ, τx , #fx ⊃ ψ0+ , #fx ⊃ ψ0− ` e1 : σ ; ψ1+ |ψ1− ; o1

Γ ` (let (x e0) e1) : σ[o0/x] ; ψ1+ |ψ1− [o0/x] ; o1[o0/x]

This rule has three components. The first antecedent checks the
right-hand side. The second checks the body with an environment
extended both with the type of the bound variable (τx) and with
implications stating that if x is not false, e0 must evaluate to
true, and similarly if x is false, e0 must evaluate to false. The
consequence replaces all references to x with the object of e0.

5.3 The Final Example
With this extension, we are now able to check all the examples from
section 2. To demonstrate the complete system, consider exam-
ple 14. We begin with Γ0 = (

⋃
N S)input, 〈>,>〉extra. The two

tests, (number? input) and (number? (car extra)), yield the propo-
sitions Ninput|Ninput for the former and Ncar(extra)|Ncar(extra)

for the latter. Using T-IF, T-SUBSUME, and the definition of and

ψ+|ψ−[o/x] = ψ+[o/x]|ψ−[o/x]

νπ(x)[π
′(y)/x] = (ν[π′(y)/x])π(π′(y))

νπ(x)[∅/x]+ = tt

νπ(x)[∅/x]− = ff

νπ(x)[o/z] = νπ(x) x 6= z and z 6∈ fv(ν)
νπ(x)[o/z]+ = tt x 6= z and z ∈ fv(ν)
νπ(x)[o/z]− = ff x 6= z and z ∈ fv(ν)
tt[o/x] = tt

ff[o/x] = ff

(ψ1 ⊃ ψ2)[o/x]+ = ψ1[o/x]− ⊃ ψ2[o/x]+
(ψ1 ⊃ ψ2)[o/x]− = ψ1[o/x]+ ⊃ ψ2[o/x]−
(ψ1 ∨ ψ2)[o/x] = ψ1[o/x] ∨ ψ2[o/x]
(ψ1 ∧ ψ2)[o/x] = ψ1[o/x] ∧ ψ2[o/x]

π(x)[π′(y)/x] = π(π′(y))
π(x)[∅/x] = ∅
π(x)[o/z] = π(x) x 6= z
∅[o/x] = ∅

Substitution on types is capture-avoiding structural recursion.

Figure 8. Substitution

update(〈τ, σ〉, ν, π :: car) = 〈update(τ, ν, π), σ〉
update(〈τ, σ〉, ν, π :: cdr) = 〈τ, update(σ, ν, π)〉
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

restrict(τ, σ) = ⊥
if 6 ∃v. ` v : τ ; ψ1 ; o1 and ` v : σ ; ψ2 ; o2

restrict((∪ −→τ), σ) = (∪
−−−−−−−−→
restrict(τ, σ))

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ

remove((∪ −→τ), σ) = (∪
−−−−−−−−→
remove(τ, σ))

remove(τ, σ) = τ otherwise

Figure 9. Type Update

(see example 7), we can therefore derive the then proposition
Ninput∧Ncar(extra) and the else proposition Ninput∨Ncar(extra).
The then proposition, added to the environment for the right-hand
side of the first cond clause, also proves 〈N,>〉extra by the L-
UPDATE rule, which suffices for typechecking the expression (+
input (car extra)).

In the second cond clause, the test has the then proposition
Ncar(extra), and the environment is Γ0,Ninput∨Ncar(extra) From
this, we can derive Ninput since Ncar(extra) and Ncar(extra) are
contradictory. Then, using (

⋃
N S)input from Γ0 and Ninput, we

can derive Sinput, which is required to typecheck the application
of string-length. This completes the second clause.

The third clause is a constant and thus obvious.

5.4 Metafunctions
Equipped with the full formal system, we can now provide a de-
tailed description of the substitution and type update metafunc-
tions; see figures 8 and 9.

Substitution replaces a variable with an object. When the object
is of the form π(x), this is in general a straightforward structural

δτ (number?) = x :>
Nx |Nx−−−−−→
∅

B

δτ (procedure?) = x :>
⊥−→>

x
|⊥−→>

x−−−−−−−−−−−−→
∅

B

δτ (boolean?) = x :>
Bx |Bx−−−−−→
∅

B

δτ (cons?) = x :>
〈>,>〉x |〈>,>〉x−−−−−−−−−−−−→

∅
B

δτ (add1) = N −→N
δτ (zero?) = N −→B

Figure 10. Constant Typing

δ(add1 , n) = n + 1

δ(zero?, 0) = #t
δ(zero?, n) = #f otherwise

δ(number?, n) =#t
δ(number?, v) =#f otherwise

δ(boolean?,#t) =#t
δ(boolean?,#f) = #t
δ(boolean?, v) = #f otherwise

δ(procedure?, λxτ.e) =#t
δ(procedure?, c) = #t
δ(procedure?, v) =#f otherwise

δ(cons?, (cons v1 v2)) =#t
δ(cons?, v) =#f otherwise

δ(car , (cons v1 v2)) = v1
δ(cdr , (cons v1 v2)) = v2

Figure 13. Primitives

recursion. There are a few tricky cases to consider, however. First,
if the object being substituted is ∅, then references to the variable
must be erased. In most contexts, such propositions should be
erased to tt, the trivial proposition. But, just as with contravariance
of function types, such propositions must be erased to ff when to
the left of an odd number of implications. Second, if a proposition
such as τx references a variable z in τ, then if z goes out of scope,
the entire proposition must be erased.

In comparison, the update metafunction is simple. It follows a
path into its first argument and then appropriately replaces the type
there with a type that depends on the second argument. If the sec-
ond argument is of the form τ, update computes the intersection
of the two types; if the second argument is of the form τ, update
computes the difference. To compute the intersection and differ-
ence, update uses the auxiliary metafunctions restrict and remove,
respectively.

6. Semantics, Models, and Soundness
To prove type soundness, we introduce an environment-based oper-
ational semantics, use the environments to construct a model for the
logic, prove the soundness of the logic with respect to this model,
and conclude the type soundness argument from there.

6.1 Operational Semantics
Figure 11 defines a big-step, environment-based operational se-
mantics of λTR. The metavariable ρ ranges over value environ-
ments (or just environments), which are finite maps from variables

B-VAR
ρ(x) = v

ρ ` x ⇓ v

B-DELTA
ρ ` e ⇓ c ρ ` e′ ⇓ v

δ(c, v) = v′

ρ ` (e e′) ⇓ v′

B-LET
ρ ` ea ⇓ va

ρ[x 7→ va] ` eb ⇓ v
ρ ` (let (x ea) eb) ⇓ v

B-VAL
ρ ` v ⇓ v

B-ABS
ρ ` λxτ.e ⇓ [ρ, λxτ.e]

B-BETA
ρ ` ef ⇓ [ρc, λx

τ.eb]
ρ ` ea ⇓ va

ρc[x 7→ va] ` eb ⇓ v
ρ ` (ef ea) ⇓ v

B-CONS
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ v2

ρ ` (cons e1 e2) ⇓ (cons v1 v2)

B-IFTRUE
ρ ` e1 ⇓ v1
v1 6= #f
ρ ` e2 ⇓ v

ρ ` (if e1 e2 e3) ⇓ v

B-IFFALSE
ρ ` e1 ⇓ #f
ρ ` e3 ⇓ v

ρ ` (if e1 e2 e3) ⇓ v

Figure 11. Operational Semantics

M-OR
ρ |= ψ1 or ρ |= ψ2

ρ |= ψ1 ∨ ψ2

M-IMP
ρ |= ψ implies ρ |= ψ′

ρ |= ψ ⊃ ψ′

M-AND
ρ |= ψ ρ |= ψ′

ρ |= ψ ∧ ψ′
M-TOP
ρ |= tt

M-TYPE
` ρ(π(x)) : τ ; ψ+ |ψ− ; o

ρ |= τπ(x)

M-NOTTYPE
` ρ(π(x)) : σ ; ψ+ |ψ− ; o

there is no v such that ` v : τ ; ψ1+ |ψ1− ; o1 and ` v : σ ; ψ2+ |ψ2− ; o2

ρ |= τπ(x)

Figure 12. Satisfaction Relation

to closed values. We write ρ(x) for the value of x in ρ, and ρ(π(x))
for the value at path π in ρ(x). The central judgment is

ρ ` e ⇓ v
which states that in environment ρ, the expression e evaluates to
the value v. Values are given by the following grammar:

v ::= c | #t | #f | n | [ρ, λxτ.e] | (cons v v)

For the interpretation of primitives, see figure 13.

6.2 Models
A model is any value environment, and an environment ρ satisfies
a proposition ψ, ρ |= ψ, as defined in figure 12 mostly in the
usual manner. The satisfaction relation is extended to proposition
environments in a pointwise manner. To formulate the satisfaction
relation, we need a typing rule for closures:

T-CLOS
∃Γ.ρ |= Γ and Γ ` λxτ.e : σ ; ψ+ |ψ− ; o

` [ρ, λxτ.e] : σ ; ψ+ |ψ− ; o

Two clauses in figure 12—M-TYPE and M-NOTTYPE—need
some explanation. They state that if a value of x in the environment
has the type τ, the model satisfies τx , and if x has a type that does
not overlap with τ, the model satisfies τx .

We can see immediately that not all propositions are consistent,
such as ff , as expected, but also propositions such as Nx ∧ Bx .

Our first lemma says that the proof theory respects models.

Lemma 1. If ρ |= Γ and Γ ` ψ then ρ |= ψ.

Proof: Structural induction on Γ ` ψ.
Conversely, we can use this lemma as the guideline that any

logical rule that satisfies this lemma is appropriate.

6.3 Soundness for λTR
With the model theory and the operational semantics in place, we
can state and prove the second major lemma.

Lemma 2. If Γ ` e : τ ; ψ+|ψ− ; o, ρ |= Γ, and ρ ` e ⇓ v then
all of the following hold:

1. either o = ∅ or ρ(o) = v,
2. either v 6= #f and ρ |= ψ+ or v = #f and ρ |= ψ−, and
3. ` v : τ ; ψ+

′|ψ−′ ; o′ for some ψ+
′, ψ−′, and o′.

Proof: By induction on the derivation of the typing judgment.
For illustrative purposes, we examine the T-IF case with e =

(if e1 e2 e3). Proving part 1 is trivial: either o is ∅, or both e2 and
e3 have an identical object, and e must evaluate to the results of
one of them. To prove part 2, we note that if v = #f, either e2
or e3 must evaluate to #f. If it is e2, we have ρ |= ψ2− , and thus
ρ |= ψ2− ∨ ψ3− by M-OR, giving the desired result. The cases
for e3 evaluating to false and the whole expression evaluating to
true are dealt with in an analogous manner. Finally, part 3 is trivial,
since both the then and else branches have the same type.

Given this, we can state the desired soundness theorem.

Theorem 1 (Type Soundness for λTR). If ` e : τ ; ψ+|ψ− ; o and
` e ⇓ v then ` v : τ ; ψ+

′|ψ−′ ; o′ for some ψ+
′, ψ−′, and o′.

Proof: Corollary of lemma 2.
This theorem comes with the standard drawbacks of big-step

soundness proofs. It says nothing about diverging or stuck terms.5

7. From λTR to Typed Racket
As a core calculus, λTR lacks many of the features of a program-
ming language such as Racket, which consists of a rich functional
core enriched with support for object-oriented and component-
oriented programming. Creating an implementation from the cal-
culus demands additional research and engineering.

This section reports on the most important implementation
ideas. Our current implementation—dubbed Typed Racket—deals
with the functional core of Racket, which also supports mutable

5 To deal with errors, we would need the following additional steps:
1. Add an additional value, wrong, which has every type.
2. Add evaluation rules that propagate wrong.
3. Add evaluation rules to generate wrong for each stuck state.
4. Add clauses to the δ function to generatewrong for undefined clauses.
5. Prove that if ` e : τ ; ψ+|ψ− ; o, then 6` e ⇓ wrong.

data structures, assignable variables and Scheme’s multiple value
returns. In addition, the section discusses user interface issues and
the implementation of the logical reasoning system.

7.1 Paths and Mutability
The λTR calculus assumes immutable data structures. In Racket,
some forms of data are mutable, however. Predicate tests on paths
into mutable data cannot soundly refine the type environment.
Consider an example using Racket’s equivalent of ref cells:

(let∗: ([b : (Box >) (box 0)] [b∗ : (Box >) b])
(if (number? (unbox b))

(begin (set-box! b∗ ’no) (unbox b))
0))

A naive implementation might assign this fragment the type Num-
ber, but its evaluation produces a symbol, because b and b∗ are
aliased. To avoid this unsoundness, the unbox procedure is assigned
trivial latent propositions and object. In general, Racket provides
structures that are mutable on a per-field basis and that are accessed
with per-field selectors. Typed Racket therefore does not assign the
selectors of mutable fields any latent propositions or objects.

Assignable variables are a second concern in the same realm.
If a variable is the target of an assignment, the L-UPDATE rule is
unsound for this variable. Hence, Typed Racket uses a simple anal-
ysis to find all assignment statements and to disable the L-UPDATE
rule for those. Since variables are assignable only in the module
that declares them, the analysis is modular and straightforward.

7.2 Multiple Arguments, Multiple Values
All λTR functions consume one argument and produce one value.
In contrast, Racket functions are multi-ary and may produce multi-
ple values [Flatt and PLT 2010]. For example, the function

(define two-val?
(λ ([x : >] [y : >]) (values (number? x) (string? y))))

determines both whether its first argument is a number, and
whether its second argument is a string.

Expressing this form of reasoning in our type system demands
a different representation of function types. On the domain side, no
additional work is needed because propositions and objects refer
directly to the names of the parameters. On the range side, each
function produces a sequence of values, each of which comes with
a type, two latent propositions, and a latent object. In our running
example, the latent propositions for the first return value are Nx|Nx.

Although test positions cannot cope with multiple values, the
following idioms exploits multiple values for tests:

(let-values ([(x y) (two-val? e1 e2)]) (if x — —))

Our new function type representation allows the type system to
prove e1 is a number in the then branch of the if expression, and to
use y in a later test expression for checking if e2 is a string.

7.3 User Presentation
While the Typed Racket types capture much useful information
about the program, they can also be hard for programmers to read
and write. Fortunately, in most cases a simplified type presentation
suffices, and complex types are reserved for special occasions.

First, few type errors involve types with non-trivial propositions
directly. In our experience with Typed Scheme, almost all type er-
rors are directly explicable with the underlying, non-occurrence
typing portion of the system, meaning that users’ primary expe-
rience with occurrence typing is that it just works.

Second, when users need to specify or read types with proposi-
tions or objects, these are primarily latent and symmetric between

the two propositions. For example, to specify the type of strnum?
in Typed Racket syntax, the user writes

(: strnum? (>→ Boolean : (
⋃

String Number)))

The syntax states that the latent then proposition is (
⋃

S N)x,
where x is the name of the argument, and the latent else proposition
is conversely (

⋃
S N)x , with a latent object of ∅. In practice, this

syntax suffices for capturing the substantial majority of the types
with latent propositions.

Third, Typed Racket uses local type inference and bi-directional
typechecking [Pierce and Turner 2000]. Since all top-level defini-
tions are annotated in the above fashion, the type system can prop-
agate the latent propositions into non-latent propositions for the
bodies of functions such as strnum?. In short, programmers almost
never need to write down non-latent propositions.

7.4 Implementing the Logical System
The type system presented in section 4 is non-algorithmic. For
an implementation, we must both eliminate the subsumption rule
and implement the T-VAR rule. The former is accomplished via a
distribution of the subtyping obligations among the rules. The latter
demands the implementation of a notion of provability.

Since propositional satisfiability is decidable, the logical sys-
tem is straightforward to implement in principle. We employ three
strategies to avoid paying the full cost of deciding the logic in al-
most all cases. First, we split the type environment from the propo-
sition environment. This separation avoids invoking the logic to
typecheck each variable reference. Second, Typed Racket eagerly
simplifies logical formulas, significantly decreasing their typical
size. Third, it also refines the type environment each time a new
formula is added to the proposition environment. These optimiza-
tions mean that most code does not pay the cost of the proof system.

These techniques are well-known from work on SAT solvers.
Since deciding the logical inference rules of λTR can be cast as a
satisfiability-modulo-theories problem, we plan to investigate ap-
plying existing off-the-shelf SMT solvers [Ganzinger et al. 2004].

8. Empirical Measurements
Numerous encounters with difficult-to-type idioms in Racket code
triggered the development of our new system. In order to mea-
sure its actual effectiveness in comparison with the original sys-
tem, we inspected the existing Racket code base and measured the
frequency of certain idioms in practice.

Since precise measurement of programming idioms is impossi-
ble, this section begins with a detailed explanation of our empirical
approach and its limitations. The following two subsections report
on the measurements for the two most important idioms that moti-
vate the Typed Racket work: those that involve predicates applied
to selectors, as in example 10, and those that involve combinations
of predicates, as in example 4. In both cases, our results suggest
that our new approach to occurrence typing greatly improves our
capability to enrich existing Racket code with types.

8.1 Methodology
Measuring the usefulness of Typed Racket for typing existing code
presents both opportunities and challenges. The major opportunity
is that the existing Racket code base provides 650,000 lines of code
on which to test both our hypotheses about existing code and our
type system. The challenge is assessing the use of type system
features on code that does not typecheck.

Since the purpose of Typed Racket is to convert existing un-
typed Racket programs, it is vital to confirm its usefulness on exist-
ing code. Our primary strategy for assessing the usefulness of our
type system has been the porting of existing code, which is the ul-
timate test of the ability of Typed Racket to follow the reasoning

of Racket programmers. However, Typed Racket does not operate
on untyped code; it requires type annotations on all functions and
user-defined structures. Therefore, it is not possible to simply apply
our new implementation to existing untyped code.

Instead, we have applied less exact techniques to empirically
validate the usefulness of our extensions to Typed Racket. Starting
from the knowledge of particular type predicates, selectors, and
patterns of logical combinations, we searched for occurrences of
the relevant idioms in the existing code base. We then randomly
sampled these results and analyzed the code fragments in detail;
this allows us to discover whether the techniques of occurrence
typing are useful for the fragment under consideration.

This approach has two major drawbacks. First, it only allows
us to count a known set of predicates, selectors, idioms, and other
forms. Whether a function is a selector or a type predicate could
only be answered with a semantics-based search, which is currently
not available. Second, our approach does not determine if a pro-
gram would indeed typecheck under Typed Racket, merely that the
features we have outlined are indeed necessary. Further limitations
may be discovered in the future, requiring additional extensions.
However, despite these drawbacks, we believe that empirical study
of the features of Typed Racket is useful. It has already alerted us
to uses of occurrence typing that we had not predicted.

8.2 Selectors
Our first measurement focuses on uses of three widely used, built-in
selectors: car, cdr, and syntax-e (a selector that extracts expression
representations from a AST node). A search for compositions of
any predicate-like function with any of these selectors yields:

1. 254 compositions of built-in predicates to uses of car for which
λTR would assign a non-trivial object;

2. 567 such applications for cdr; and
3. 285 such applications for syntax-e.

Counting only known predicate names means that (number? (car
x)) is counted but neither (unknown? (car y)) or (string? (car (f)))
are included because (f) is not known to have a non-trivial object.
In sum, this measurement produces a total of at least 1106 useful
instances for just three selectors composed with known predicates.

A manual inspection of 20 uses each per selector suggests that
the extensions to occurrence typing presented in this paper are
needed for just under half of all cases. Specifically, in the case of
car, seven of 20 uses require occurrence typing; for cdr, nine of
20 benefit; and the same number applies to syntax-e. Additionally,
in four cases the type correctness of the code would rely on flow-
sensitivity based on predicate tests, but using exceptional control
flow rather than conditionals.

In conclusion, our manual inspection suggests that some 40% to
45% of the 1106 cases found can benefit from extending occurrence
typing to selector expressions, as described in section 5. This mea-
surement together with the numerous user requests for this feature
justifies the logical extensions for selector-predicate compositions.

8.3 Logical Combinations
Since our original system cannot cope with disjunctive combination
of propositions, typically expressed using or, measuring or expres-
sions in the code base is a natural way to confirm the usefulness
of general propositional reasoning for Typed Racket. The source of
Racket contains approximately 4860 uses of the or macro; also, or
expressions are expanded more than 2000 times for the compila-
tion of the minimal Racket library, demonstrating that this pattern
occurs widely in the code base.

The survey of all or expressions in the code base reveals that
or is used with 37 different primitive type predicates a total of 474
times, as well as with a wide variety of other functions that may

be user-defined type predicates. Each of these uses requires the
extension for local binding described in section 5.2, as well as the
more general logical reasoning framework of this paper to generate
the correct filters.

9. Related Work
Intensional Polymorphism Languages with intensional polymor-
phism [Crary et al. 1998] also offer introspective operations, e.g.,
typecase, allowing programs to dispatch on type of the data pro-
vided to functions. The λTR calculus provides significantly greater
flexibility. In particular, it is able to use predicates applied to se-
lectors, reason about combinations of tests, abstract over type tests,
use both the positive and negative results of tests, and use logical
formulas to enhance the expressiveness of the system. In terms of
our examples, the system of Crary et al. could only handle the first.

Generalized Algebraic Data Types Generalized algebraic data
types [Peyton Jones et al. 2006] are an extension to algebraic data
types in which “pattern matching causes type refinement.” This is
sometimes presented as a system of type constraints, in addition to
the standard type environment, as in the HMG(X) and LHM(X)
systems [Simonet and Pottier 2007, Vytiniotis et al. 2010].

Such systems are similar to λTR in several ways—they type-
check distinct branches of case expressions with enriched static
environments and support general constraint environments from
which new constraints can be derived. The λTR calculus and
constraint-based such as HMG(X) differ in two fundamental ways,
however. First, HMG(X), like other GADT systems, relies on pat-
tern matching for type refinement, whereas λTR combines con-
ditional expressions and selector applications, allowing forms ab-
stractions that patterns prohibit. Second, all of these systems work
solely on type variables, whereas λTR refines arbitrary types.

Types and Logic Considering types as logical propositions has
a long history, going back to Curry and Howard [Curry and Feys
1958, Howard 1980]. In a dependently typed language such as
Agda [Norell 2007], Coq [Bertot and Castéran 2004], or Epi-
gram [McBride and McKinna 2004], the relationships we describe
with predicates and objects could be encoded in types, since types
can contain arbitrary terms, including terms that reference other
variables or the expression itself.

The innovation in λTR is to consider propositions that relate
types and variables. This allows us to express the relationships
needed to typecheck existing Racket code, while keeping the logic
decidable and easy to understand.

Types and Flow Analysis for Untyped Languages Shivers [1991]
describes a type recovery analysis—exploited by Wright [1997]
and Flanagan [1999] for soft typing systems—that includes refin-
ing the type of variables in type tests. This analysis is only for par-
ticular predicates, however, and does not support abstraction over
predicates or logical reasoning about combinations of predicates.

Similarly, Aiken et al. [1994] describe a type inference system
using conditional types, which refine the types of variables based
on patterns in a case expression. Since this system is built on
the use of patterns, abstracting over tests or combining them, as
in examples 12 or 5 is impossible. Further, the system does not
account for preceding patterns when typing a right-hand side and
thus cannot perform logical reasoning as in examples 13 and 14.

Types for Untyped Languages There has long been interest in
static typechecking of untyped code. Thatte [1990] and Henglein
[1994] both present systems integrating static and dynamic types,
and Henglein and Rehof [1995] describe a system for automatic
translation of untyped Scheme code into ML. These systems did
not take into account the information provided by predicate tests,
as described by Henglein and Rehof in the quote from section 1.

In the past few years, this work has been picked up and applied
to existing untyped languages. In addition to Typed Scheme, pro-
posals have been made for Ruby [Furr et al. 2009], Thorn [Wrigstad
et al. 2010], JavaScript [ECMA 2007], and others, and theoretical
studies have been conducted by Siek and Taha [2006] and Wadler
and Findler [2009]. To our knowledge, none have yet incorporated
occurrence typing or other means of handling predicate tests, al-
though the authors of DRuby have stated that occurrence typing is
their most significant missing feature [priv. comm.].

Semantic Subtyping Bierman et al. [2010] present Dminor, a sys-
tem with a rule for conditionals similar to T-IF. Their system sup-
ports extremely expressive refinement types, with subtyping deter-
mined by an SMT solver. However, while λTR supports higher-
order use of type tests, due to the limitations of the semantics sub-
typing framework, Dminor is restricted to first order programs.

10. Conclusion
This paper describes a new framework for occurrence typing. The
two key ideas are to derive general propositions from expressions
and to replace the type environment with a propositions environ-
ment. These ideas increase the type system’s expressive power via
reasoning tools from propositional logic.

Acknowledgements
Discussions with Aaron Turon greatly improved this paper. The de-
velopment of Typed Racket has been supported by Stevie Strick-
land, Eli Barzilay, Hari Prashanth K R, Vincent St-Amour, Ryan
Culpepper and many others. Jed Davis provided assistance with
Coq.

References
A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with condi-

tional types. In Proc. 21st Symposium on Principles of Programming
Languages, pages 163–173. ACM Press, 1994.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development, volume XXV of EATCS Texts in Theoretical Computer
Science. Springer-Verlag, 2004.

G. M. Bierman, A. D. Gordon, C. Hricu, and D. Langworthy. Semantic sub-
typing with an SMT solver. In Proc. Fifteenth International Conference
on Functional Programming. ACM Press, 2010.

R. Cartwright. User-defined data types as an aid to verifying LISP pro-
grams. In International Conference on Automata, Languages and Pro-
gramming, pages 228–256, 1976.

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. In Proc. Third International Conference on
Functional Programming, pages 301–312. ACM Press, 1998.

H. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958.
ECMA. ECMAScript Edition 4 group wiki, 2007. URL

http://wiki.ecmascript.org/.
M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to Design

Programs. MIT Press, 2001. URL http://www.htdp.org/.
C. Flanagan and M. Felleisen. Componential set-based analysis. ACM

Trans. Progr. Lang. Sys., 21(2):370–416, 1999.
M. Flatt and PLT. Reference: Racket. Reference Manual

PLT-TR2010-reference-v5.0, PLT Scheme Inc., January 2010.
http://plt-scheme.org/techreports/.

M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference for
ruby. In SAC ’09: Proc. 2009 ACM Symposium on Applied Computing,
pages 1859–1866. ACM Press, 2009.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast Decision Procedures. In 16th International Conference
on Computer Aided Verification, CAV’04, volume 3114 of Lecture Notes
in Computer Science, pages 175–188. Springer-Verlag, 2004.

F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput.
Programming, 22(3):197–230, 1994.

F. Henglein and J. Rehof. Safe polymorphic type inference for a dynami-
cally typed language: translating Scheme to ML. In Proc. Seventh Inter-
national Conference on Functional Programming Languages and Com-
puter Architecture, pages 192–203. ACM Press, 1995.

W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin
and J. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 479–490. Academic Press,
1980.

R. Komondoor, G. Ramalingam, S. Chandra, and J. Field. Dependent types
for program understanding. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 3440 of Lecture Notes in Computer
Science, pages 157–173. Springer-Verlag, 2005.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc.
15th Symposium on Principles of Programming Languages, pages 47–
57. ACM Press, 1988.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proc. Eleventh Inter-
national Conference on Functional Programming, pages 50–61. ACM
Press, 2006.

B. C. Pierce and D. N. Turner. Local type inference. ACM Trans. Progr.
Lang. Sys., 22(1):1–44, 2000.

J. C. Reynolds. Automatic computation of data set definitions. In IFIP
Congress (1), pages 456–461, 1968.

O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, 1991.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Sev-
enth Workshop on Scheme and Functional Programming, University of
Chicago Technical Report TR-2006-06, pages 81–92, September 2006.

V. Simonet and F. Pottier. A constraint-based approach to guarded algebraic
data types. ACM Trans. Progr. Lang. Sys., 29(1):1–54, 2007.

S. Thatte. Quasi-static typing. In Proc. 17th Symposium on Principles of
Programming Languages, pages 367–381. ACM Press, 1990.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of
Typed Scheme. In Proc. 35th Symposium on Principles of Programming
Languages, pages 395–406. ACM Press, 2008.

D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should not be
generalized. In TLDI ’10: Proc. 5th workshop on Types in language
design and implementation, pages 39–50. ACM Press, 2010.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In ESOP
’09: Proc. Eighteenth European Symposium on Programming, volume
5502 of Lecture Notes in Computer Science, pages 1–16. Springer-
Verlag, 2009.

A. K. Wright and R. Cartwright. A practical soft type system for Scheme.
ACM Trans. Progr. Lang. Sys., 19(1):87–152, 1997.

T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating
typed and untyped code in a scripting language. In Proc. 37th Sympo-
sium on Principles of Programming Languages, pages 377–388. ACM
Press, 2010.

	Reasoning about Untyped Languages
	A Brief Introduction to Occurrence Typing
	Existing Capabilities
	Challenges
	Putting it all Together

	How to Check the Examples
	Propositions and Objects
	Handling Complex Tests
	Abstracting over Predicates
	Variables as Tests
	Selectors
	Reasoning Logically
	The Form of the Type System

	The Base Calculus
	Syntax
	Typing Rules
	Proof System
	A Worked Example

	Extensions
	Pairs
	Local Binding
	The Final Example
	Metafunctions

	Semantics, Models, and Soundness
	Operational Semantics
	Models
	Soundness for TR

	From TR to Typed Racket
	Paths and Mutability
	Multiple Arguments, Multiple Values
	User Presentation
	Implementing the Logical System

	Empirical Measurements
	Methodology
	Selectors
	Logical Combinations

	Related Work
	Conclusion

