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Abstract. This paper addresses the problem of estimating the coverage of a fault
tolerance mechanism through statistical processing of observations collected in
fault injection experiments. A formal definition of coverage is given in terms of the
fault and system activity sets that characterize the input space. Two categories of
sampling techniques are considered for coverage estimation: sampling in the whole
space and sampling in a space partitioned into classes. The estimators for each
technique are compared by means of hypothetical examples. Techniques for early
estimations of coverage are then studied. These techniques allow unbiased
estimations of coverage to be made before all classes of the sampling space have
been tested. Then, the “no-reply” problem that hampers most practical fault-
injection experiments is discussed and an a posteriori stratification technique is
proposed that allows the scope of incomplete tests to be widened by accounting
for available structural information about the target system.

Index Terms. Coverage, fault injection, fault tolerance, estimation, sampling,
variance reduction

1 . Introduction

A central problem in the validation of fault-tolerant systems is the evaluation of the efficiency of
their fault tolerance mechanisms. One parameter used to quantify this efficiency is the coverage
factor defined as the probability of system recovery given that a fault exists [1]. The sensitivity
of dependability measures (such as reliability and availability) to small variations in the
coverage factor is well known [1, 2]. Consequently, it is very important to determine coverage
as accurately as possible. This paper addresses the problem of obtaining accurate and useful
estimations of coverage through the statistical processing of observations collected in fault
injection experiments.
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Fault injection can take various forms according to the level of abstraction used to represent the
system (from empirical models to physical prototypes) and the level of application of the faults
[3]. We consider in this paper the physical fault injection approach, where physical faults
(stuck-at-0, stuck-at-1, etc.) are directly applied to the pins of the integrated circuits (ICs) that
compose a prototype of the system.

A fault injection experiment is performed on a physical system by corrupting the digital signal
values of an IC contained in the system via a fault injection module. This fault injection module
places the desired fault condition over one or more IC pins at the appropriate point in time. The
behavior of the system is observed to determine whether or not the injected fault has been
properly handled by the system’s fault tolerance mechanisms. This may be done in various
ways, for example: by monitoring specific hardware signals in the system, by assessing the
truth of application-level predicates that define “correct operation” or by comparing the system
outputs with the fault free case (via a duplicate system or by reprocessing the same inputs with
the fault injection module deactivated).

One of the difficulties of the approach is the selection of the faults to be injected, since it is not
always possible to physically inject all faults that could occur during the system operational
life. The determination of these possible faults is another difficulty: the complexity of current
VLSI chips and the need to account for temporary faults, which represent the majority of the
faults that actually occur in computer systems [4], makes exhaustive testing intractable. As a
consequence, coverage evaluation is a problem of statistical estimation, where inferences about
a population are based on sample observation.

Since the effect of a fault is dependent on system activity at the moment of its occurrence, we
consider a sampling space consisting of the combination of the set of faults and the set of
system “activities” at the moment of fault occurrence. As recommended in [5], a weighted
coverage is calculated: weights are assigned to each point in the sampling space based on their
relative probability of occurrence.

The paper is organized as follows. Section 2 gives the basic system definitions and formalizes
the notion of a coverage factor. Section 3 presents and compares two categories of sampling
techniques for coverage factor estimation: sampling in the whole input space and sampling in a
space partitioned into classes. Several estimators are analyzed and compared by applying them
to data relative to three hypothetical systems. Section 4 proposes further sampling techniques
that allow unbiased estimations of coverage to be made before all classes of the sampling space
have been tested. Section 5 is devoted to the “no-reply” problem that hampers most practical
fault-injection experiments. This problem occurs if some parts of the target system cannot be
tested by the fault injection tool due to inaccessibility or parasitic mutations. An a posteriori
stratification technique is proposed that allows the scope of incomplete tests to be widened by
accounting for available structural information about the target system. Finally, Section 6
concludes the paper.

2 . Definitions

In this section, we give a formal definition of the coverage factor of a fault tolerance
mechanism and relate it to the often-used notion of the coverage proportion.

2 . 1 . Coverage Factor

We consider a fault tolerance mechanism or fault-tolerant system subjected to faults f in a given
fault space F. Let Y be a variable characterizing the coverage of a particular fault, such that
Y = 1 if the mechanism correctly handles the fault (0 otherwise). What exactly constitutes
“correct handling” of a fault depends on the considered fault tolerance mechanism or designer
viewpoint, as pointed out in the original definition of coverage [1]. For our purposes here, it
suffices to say that the boolean variable Y can be defined in terms of any observable predicate
on the system state, such that Y = 1 corresponds to the case where the fault is deemed to have
been “correctly handled”, e.g., the fault has been activated as an error, an error has been
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detected or the fault has been successfully tolerated, or any boolean function of such or similar
predicates [6]1.

The effect of a given fault is dependent on system activity at the moment of, and following, the
occurrence of the fault. This system activity can be modelled as a trajectory in the system state
space starting from the system state at the moment of fault occurrence and evolving in function
of the sequence of system inputs (including the passage of time). Here, we call such a
trajectory a system activity and let A represent the set of all possible activities in the considered
operational profile of the system.

The input space of a fault tolerance mechanism can thus be considered in two parts: (a) the
activity set A due to the system’s functional inputs, and (b) the fault set F which the mechanism
should handle. The complete input space of a fault tolerance mechanism is then defined as the
Cartesian product G = F × A. The “output” of the mechanism from the viewpoint of fault
tolerance is the predicate Y.

For a given fault/activity space G, coverage is defined as the cumulative distribution of the time
interval between the occurrence of a fault and its correct handling by a fault tolerance
mechanism [3, 7]. In this paper, we focus on the asymptotic value of this distribution, which is
called the coverage factor, defined formally as:

c(G) = Pr Y = 1 G{ } (1)

i.e., the conditional probability of correct fault handling, given the occurrence of a fault/activity
pair g ∈G.

Y is a random variable that can take the values 0 or 1 for each element of the fault/activity space
G, the coverage factor c(G) can be viewed as E Y G{ }, the expected value of Y for the
population G. In terms of each fault/activity pair g ∈G, let y(g) = 1 if Y = 1 when the system

is submitted to g (0 otherwise), and let p g G( ) be the relative probability of occurrence of g.
Expression (1) can then be rewritten as:

c G( ) = y g( )p g G( )
g∈G
∑ (2)

It should be stressed that the distribution p g G( ) is an inherent part of the very definition of
coverage as a conditional probability parameter to be used, for example, in models for
predicting system dependability. In the total absence of knowledge about p g G( ), one can do
no better than to assume a uniform distribution. In this case, the coverage factor becomes
identical to the coverage proportion, which is the subject of the next paragraph.

2 . 2 . Coverage Proportion

Using the same notation as before, the efficiency of a fault tolerance mechanism can
alternatively be characterized by the proportion of fault/activity pairs in the population G which
are correctly handled, i.e., the arithmetic mean of the y(g) in G:

ỹ = 1
G

y g( )
g∈G
∑ (3)

where G  represents the cardinal of G.

1 The exact definition of Y is important when deciding for example the impact of faults that are activated as errors but
are not detected despite the fact that no system failure is observed. Such masked faults may be considered to have
been “correctly handled” from the application viewpoint (no failure occurred), but certainly not from the error
detection viewpoint.
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The relationship between c(G) and ỹ can be clarified by introducing a variable P, representing

the fault/activity occurrence process in G, i.e., P has the values p g G( ). The covariance
between Y and P, SYP is, by definition:

SYP = 1
G

y g( ) − ỹ( ) p g G( ) − p̃( )
g∈G
∑

where: p̃ = 1
G

p g G( )
g∈G
∑ = 1

G
(4)

From (2-4), it is easy to show that:

ỹ = c G( ) − G SYP (5)

From (5), it can be seen that the coverage proportion ỹ is less (resp. greater) than the coverage
factor c G( ) as defined in (2) if SYP is positive (resp. negative). A positive correlation (SYP > 0)
between Y and P could be expected, for example, if a system designer took account of the
relative occurrence probabilities, p g G( ), to implement mechanisms that “cover” the most
probable fault/activity pairs [8].

3 . Coverage Estimation

The most accurate way to determine c G( ) as defined in (2) would be to submit the system to all
g ∈G and to observe all values of y(g). However, such exhaustive testing is only possible
under very restrictive hypotheses (for example, the consideration of permanent stuck-at faults
only, or when testing only a small part of the system (e.g., see the test sequence carried out on
the computerized interlocking system presented in [3]). For this reason, coverage evaluation is
in practice carried out by submitting the system to a subset of fault/activity occurrences
G* ⊂ G . The selection of the sub-set G*  can be done either (i) deterministically, or (ii) by
random sampling in the space G.

In the first case, the experiments allow one to state, for example, that “x percent of the faults
injected of type y for a workload of type z are covered”. Such experiments can be considered
as “benchmark” tests that are useful for comparing alternative systems or design solutions
(e.g., see [9]). However, it is not possible from these experiments to infer anything about the
coverage of the system with respect to the complete fault/activity space G.

In the second case, if the random selection of G* ⊂ G  is fair, i.e., there is a non-zero
probability that ∀g ∈G:  g ⊂ G* , then it is possible to make statistical inferences about the

complete space G based on the observations of the results with respect to G* . Consequently,
conditioned on the assumption that the considered fault/activity space G is characteristic of the
faults and activities that may occur during the tested system’s operational life, the estimated
value of the coverage c(G)  can be used in evaluations for predicting measures of the system’s
dependability (e.g., see [6]).

This paper focuses on the second approach identified above, i.e., the statistical estimation of
the coverage c(G). The important questions that must be addressed are: (i) how to estimate the
value of c(G) and to obtain inferences about the error committed in the estimation; (ii) how to
select samples and (iii) how to obtain a sufficiently accurate estimation in a reasonable time.

In this section, we successively consider two approaches for estimating coverage factors based
on techniques that carry out the sampling (a) directly in the complete space G, and (b) in sub-
spaces defined by a partition of G.
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For each technique, the coverage estimator, the variance of the coverage estimator and the
estimator of this variance are defined.

3 . 1 . Sampling in a Non-Partitioned Space

We first consider the theory of coverage factor estimation by sampling in a non-partitioned
sampling space and then discuss practical aspects of the implementation of such an approach.

3.1.1. Representative Sampling

This sampling technique consists in sampling (with replacement) a group of n fault/activity
pairs g in G. To each element of G is assigned a sampling probability, t g G( ) , such that

∀g ∈G,  t g G( ) > 0 and t g G( )
g∈G
∑ = 1.

To obtain the estimation of c(G), we recall that c(G) is the expected value of the variable Y in
the space G. We are therefore faced with a problem of estimation of a population mean. It is
shown in the appendix that an unbiased estimator ˆ′c G( )  of this mean and its variance

V ˆ′c G( ){ } are given by:

ˆ′c (G) = 1
n

y(gi )
p(gi G)
t(gi G)i =1

n

∑ (6)

V ˆ′c G( ){ } = 1
n

y(g)
p2 g G( )
t g G( )











g∈G
∑ − c2 G( )









 (7)

If the sampling distribution is chosen such that ∀g ∈G,  t g G( ) = p g G( ), then (6) and (7) may
be rewritten as:

ĉ G( ) = d

n
 with d = y gi( )

i =1

n

∑ (8)

V ĉ G( ){ } = c G( ) − c2 G( )
n

(9)

The variance V ĉ G( ){ } can be estimated by:

V̂ ĉ G( ){ } = ĉ G( ) − ĉ2 G( )
n −1

(10)

The reader will recognize the well-known formulas for estimating a binomial proportion.
However, this sampling technique does indeed give an unbiased estimation of the coverage
factor c(G). The sampling experiments are Bernoulli trials with outcome Y = 1 with proba-

bility π  and Y = 0 with probability 1− π  where π = y g( )t g G( )
g∈G
∑ . If the sampling distribu-

tion were uniform (i.e., ∀g ∈G,  t g G( ) = 1 G ) then we would have π = ỹ, the coverage
proportion (cf. (3)). However, by setting the sampling distribution equal to the fault/activity
occurrence distribution, we obtain π = c G( ), the coverage factor (cf. (2)). A sample obtained
in this way will henceforth be termed a representative sample.

3.1.2. Practical Implementation

By definition, a fault/activity pair g ∈G corresponds to an activity a ∈A and a fault f ∈F .
The representative sampling technique described above therefore requires the random selection



6

of n pairs a, f  such that a and f are selected independently with probabilities t a A( ) = p a A( )
and t f F( ) = p f F( ), where p a A( ) represents the distribution of activities over the considered

activity space A at the instant the fault occurs and p f F( )  is the distribution of fault

occurrences over the considered fault space F, such that p g G( ) = p a A( ) × p f F( ).
3.1.2.1. The activity distribution. The condition t a A( ) = p a A( )  can be satisfied

without having to explicitly define the activity distribution p a A( ). The activity space A

depends on the considered target system and its functional input profile. A real fault can occur
at any random point in time, so the probability p a A( ) of it occurring in coincidence with a

particular activity a (or system state trajectory, cf. Section 2.1) is dependent only on the
frequency at which that activity recurs, given the system’s functional input profile. Therefore,
to ensure that an injected fault “chooses” a with a probability t a A( ) = p a A( ) , it suffices to

simulate this independence between system activity and the instant of occurrence of a real fault.
This can be achieved as follows:

a) the target system is reset (to remove the effects of previous experiments) and is then
activated with the considered functional input profile;

b) selection of a fault f ∈F  according to the fault occurrence distribution p f F( )  (see

below);

c) the selected fault f is injected at some random delay after initiating the system activation.

3.1.2.2. The fault distribution. The definition of p f F( )  can be conceptually simplified

by characterizing the set of faults F according to different attributes whose distributions can be
defined independently. One possible set of attributes suitable for IC-based systems, inspired
from those presented in [10], consists of: (a) the location of the fault in the target system (i.e.,
the affected IC), (b) the multiplicity of the fault (number of IC pins affected, noted mx), (c) the
affected pins of the faulted IC, (d) the fault value model (stuck-at-0, stuck-at-1, etc.) for each
affected IC pin, and (e) the fault timing model (transient, intermittent, permanent, etc.) of each
affected IC pin. The fault occurrence probability p f F( )  can then be expressed as the product

of a set of conditional probabilities defining the distributions of the attributes of the given fault
in each attribute category:

p f F( ) = p ic set_of _ ICs( )
× p mx 1..MX{ }( )
× p pin_set set_of _ pin_sets ic,mx( )( )
× p value_model set_of _ fault_ value_models mx( )( )
× p timing_ model set_ of _ fault_ timing_ models( )

where MX defines the maximum fault multiplicity.
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The fault occurrence distribution p f F( )  should be as representative as possible of the faults
that will affect the system during its operational life. Data concerning the attribute distributions
is of course extremely hard to find so one must resort to assumptions about these distributions
based on data from real systems (preferably), from experiments or from fault simulations, or
failing all else, on (worst-case) engineering judgement. In the absence of evidence to the
contrary, uniform distributions can be adopted. For example, the distribution of the location of
the fault, p ic set_of _ ICs( ) , might be determined based on IC failure rate data. As another
example, in a system in which error detection is based on a watchdog timer, engineering
judgement might dictate that MX=1 represents a worst-case scenario. By way of illustration,
the distributions used in the experiments described in [3, 11] are presented in Table 1 (although
with the hindsight of experience, an alternative set of distributions might have been chosen).

It should again be stressed that the very definition of a coverage factor as a conditional
probability (cf. Section 2.1) must involve the distribution p g G( ) and thereby p a A( ) and

p f F( ) . Any statement about system coverage should be conditioned by the assumptions that
are made about these distributions. The sensitivity of coverage estimations to changes in these
distributions is an interesting area for future research and will not be discussed further in this
paper.

3.1.2.3. Selection and injection of the sample fault set. Given a definition of F in
terms of fault attributes, a representative sample of n faults, noted Fn, can thus be characterized

by a set of n vectors where the elements of each vector define the fault attributes that are
selected randomly according to the different attribute distributions:

Fn =

f (1) = location1,  multiplicity1,  pins1,  value_model1,  timing_model1{ }
f (2) = location2,  multiplicity2,  pins2,  value_model2,  timing_model2{ }

…
f (n) = locationn,  multiplicityn,  pinsn,  value_modeln,  timing_modeln{ }











A practical fault injection tool, such as the MESSALINE injector developed at LAAS [3], can
automatically carry out several fault injection experiments at a single location (IC) of the target
system. However, moving the injector probe from one location to another requires manual
intervention so it is more practical to sort the set of selected faults by the attribute location
before carrying out the experiments. Furthermore, the selection of the other attributes can be
carried out dynamically for each location to avoid having to store all the n vectors of Fn.

In a target system with Nc  ICs, a practical representative fault injection campaign thus consists
of Nc subsets of experiments. A random number of experiments are carried out on each IC of
the target system according to the number of occurrences of the given location value in Fn.
These subsets of the set of possible fault locations effectively partition the fault space F and
thus the fault/activity space G into Nc  disjoint subsets. We will now consider other techniques
for estimating the coverage factor that rely on such a partitioning.

3 . 2 . Sampling in a Partitioned Space

For the sampling techniques that follow, the sampling space G is considered as partitioned into
classes. Each class will be referenced by a subscript, according to the following convention:
subscripts in Greek letters are used to refer to classes in the sampling space G and subscripts in
Latin letters are used to refer to classes in the sample (the reason for this convention will only
become apparent in the presentation of the 2-stage sampling techniques described in Section
4.2).



8

By definition of a partition, the classes form M disjoint subsets:

  

G = Gα
α =1

M

U  such that ∀α,β,  α ≠ β,  Gα ∩ Gβ = ∅

We can rewrite the coverage factor definition (2) as follows:

c G( ) = y g( )p g G( )
g∈Gα

∑
α =1

M

∑ = y g( )p g Gα( )p Gα G( )
g∈Gα

∑
α =1

M

∑ = p Gα G( ) y g( )p g Gα( )
g∈Gα

∑
α =1

M

∑

which can be written: c G( ) = p Gα G( )c Gα( )
α =1

M

∑
where c(Gα )  is the coverage factor for fault/activity class Gα :

c Gα( ) = y g( )p g Gα( )
g∈Gα

∑
We will now consider two sampling techniques based on the above definitions of a partitioned
sampling space.

3.2.1. A Naive Estimator

The first sampling technique that can be considered in a partitioned sampling space is to take an
equal number of representative samples ni = n M  in each class Gi ,∀i ∈ 1,M[ ], to count the
number of successfully covered faults for each class, di , and to apply an estimator derived
directly from that given in (8) for sampling in a non-partitioned space:

ĉna G( ) = 1
n

di
i =1

M

∑ = d

n

The variance of this estimator is given by:

V ĉna G( ){ } = 1
nM

c Gα( ) − c2 Gα( )( )
α =1

M

∑
We call this a naive estimator since it is biased if the fault occurrences in each class are not
equally probable — it can be easily shown that:

E ĉna G( ){ } = c̃ Gα( ) = 1
M

c Gα( )
α =1

M

∑
Reasoning in the same way as in Section 2, the covariance SCP between the coverage c(Gα )

and the fault/activity occurrence probability p Gα G( ) of each class is given by:

SCP = 1
M

c Gα( ) − c̃ Gα( )( ) p Gα G( ) − 1
M







α =1

M

∑
from which it can be shown that:

c̃ Gα( ) = c G( ) − M SCP

The estimator ̂cna G( ) can therefore provide pessimistic or optimistic estimations of the system
coverage depending on whether the covariance SCP is positive or negative. This will be
illustrated by the examples presented in Section 3.4.
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3.2.2. Stratified Sampling

In a stratified sampling, a number of samples nα  is predetermined2 for each class or stratum

Gα ,∀α ∈ 1,M[ ]. For each class, a representative sample of size ni = nα  is taken and the class
coverage factor is estimated using (8) applied to the class instead of the complete sampling
space:

ĉ Gi( ) = di

ni

(11)

where di  is the number of covered faults in class Gi . The system coverage factor is then

estimated by:

ĉst(G) = p(Gi G)ĉ(Gi )
i =1

M

∑ (12)

The variance of this estimator is:

V ĉst G( ){ } = p2 Gα G( )V ĉ Gα( ){ }
α =1

M

∑ (13)

where the variance of the estimator ĉ Gα( )  is given by (9) applied to the class Gα :

V ĉ Gα( ){ } = 1
nα

c Gα( ) − c2 Gα( )( ) (14)

Similarly, the variance V ĉst G( ){ } can be estimated by:

V̂ ĉst G( ){ } = p2 Gi G( )V̂ ĉ Gi( ){ }
i =1

M

∑ (15)

with, from (10): V̂ ĉ Gi( ){ } =
ĉ Gi( ) − ĉ2 Gi( )

ni −1
(16)

From (13) and (14) it can be seen that the variance of the estimator of the system coverage
depends on the allocation of the sample size in each class, nα . After the sample size n is
chosen, there are many ways to divide n into the individual classes. Hence our objective is to

use an allocation that minimizes V ĉst G( ){ }  under the constraint n = nα
α =1

M

∑ . By using the

Lagrange multiplier method [12], it can be shown that V ĉst G( ){ }  is minimal for a given total

sample size n if the nα  are fixed such that:

nα = p Gα G( )n
c Gα( ) − c2 Gα( )

p Gα G( ) c Gα( ) − c2 Gα( )
α =1

M

∑

















(17)

2 The term “a priori  stratification” is used to underline this fact and to distinguish this approach from “a posteriori
stratification” considered in Section 5.1.
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This means that the best value for the nα  depends upon two parameters, the relative probability

of fault/activity occurrences in each class, p(Gα G), and coverage variability within each

class — larger sample sizes should be assigned to classes presenting higher p(Gα G) and
greater dispersion of the coverage values. However, such an optimal sample size allocation

requires prior knowledge of c Gα( ) − c2 Gα( )  for each class. Since these are not known before
the experiments are carried out, we can do no better than to suppose that they are constant for
all classes, in which case, (17) may be rewritten as:

nα = p Gα G( )n (18)

A sample size allocation as given by (18) will be called a stratified sample with representative
allocation and the corresponding estimator will be denoted ĉstR G( ). By substituting the value of
nα  in (11) and using (12) we obtain the following estimator for the system coverage:

ĉstR G( ) = p Gi G( ) di

n p Gi G( )i =1

M

∑ = 1
n

di
i =1

M

∑ = d

n

which is analogous to the estimator of a representative sample in the whole space presented in
(8). However, since a pre-determined number of samples is taken in each class, the variance of
this estimator is different to that given in (9) — by substituting nα  in (14) and using (13), we

obtain (after a little algebraic manipulation):

V ĉstR{ } = 1
n

c(G) − 1
n

p Gα G( )c2 Gα( )
α =1

M

∑
Another possible sample allocation can be defined by taking the same number of samples in
each class, i.e., ∀α,  nα = n M . The estimator, noted ĉstH G( ), and corresponding variance for
such a homogeneous allocation are obtained in a similar way to above:

ĉstH G( ) = M

n
p Gi G( )di

i =1

M

∑ (19)

V ĉstH G( ){ } = M

n
p2 Gα G( ) c Gα( ) − c2 Gα( )( )

α =1

M

∑
3 . 3 . Confidence Intervals

The distributions of the various estimators defined in the previous section are quite complex
and difficult to calculate. Therefore, as is common in many statistical analyses, we shall
suppose, based on the central limit theorem applied to large sample sizes, that all the estimators
are approximately normally distributed around their expected values, such that:

P X̂ − E X̂{ } V X̂{ } ≤ zγ{ } = γ

where X̂  is an estimator, E X̂{ } is its expected value (which is equal to the parameter being

estimated if X̂  is unbiased), V X̂{ } is the corresponding variance, zγ  is the 100γ th standard

normal percentile. Under these conditions, a two-sided 100γ % confidence interval for E X̂{ }
can be defined by:
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X̂ − Kγ V̂ X̂{ } < E X̂{ } < X̂ + Kγ V̂ X̂{ } (20)

where V̂ X̂{ } is an estimate of V X̂{ }. and Kγ  is the 100 1+ γ( ) 2[ ]th standard normal

percentile (one-sided confidence limits are obtained by using zγ  in place of Kγ ).

Similarly, the accuracy and precision of the various estimation techniques can be compared in

terms of the expected range of variation, noted h X̂( ), with 100γ % confidence, of the

corresponding estimators, i.e., for estimator X̂ :

E X̂{ } − Kγ V X̂{ } < h X̂( ) < E X̂{ } + Kγ V X̂{ } (21)

3 . 4 . Comparative Examples

In this Section, the various estimators defined in sections 3.1 and 3.2 are compared by way of
three hypothetical systems whose characteristics are defined in Figures 1, 3 and 5. Each system
is partitioned into M = 50 classes; the distribution of the coverage, c Gα( ) , and the relative

fault/activity occurrence probability p Gα G( ) of each class are presented, as well as the values

of the system coverage, c G( ), and the mean coverage per class, c̃ Gα( ).
For each example, the value of c G( ) is given along with that of the “normalized” covariance

(the correlation factor ) between p Gα G( ) and c Gα( )  defined as:

ρCP = SCP

V C( ).V P( )
 ×  100%

with:
V C( ) = 1

M
c Gα( ) − c G( )( )2

α =1

M

∑
   a n d    

V P( ) = 1
M

P Gα G( ) − 1
M







2

α =1

M

∑
Figures 2, 4 and 6 compare the various estimators in terms of the expected range of variation of
coverage estimates as defined by (21) with Kγ = 2.58 (99% confidence). The figures give the
bounds of the system coverage estimation as a function of n, the sample size.

From Figure 1, it can be noted that the main characteristics of system A are: a relative
homogeneity among the classes with respect to the coverage, low variability of the relative
probabilities of the classes and a slight (negative) correlation ρCP with the consequence that

c G( ) and c̃ Gα( ) are close to one another, with c̃ Gα( ) slightly greater than c G( ). For this
system, the gain in precision provided by stratification is negligible — Figure 2 shows that the
theoretical confidence intervals are almost the same.

For system B (Figure 3) there is a greater variability for the coverage and the relative
occurrence probability in each class than for system A. Furthermore, the correlation factor ρCP

is positive and greater than 40%. Consequently, c G( ) is quite different from ̃c Gα( ). The

estimator ̂cna G( ), which converges to c̃ Gα( ), provides a very pessimistic value of the system
coverage (Figure 4). Concerning the other estimators, it can be noticed that stratified sampling
with representative allocation, ĉstR G( ), provides better precision in the estimations, especially
for small n.

System C (Figure 5) has a very high coverage with quite a high variability over the classes and
a large negative correlation with respect to the fault/activity occurrence probabilities. As a
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consequence, ̃c Gα( ) is an optimistic evaluation for the system coverage — the same is

therefore true for the estimations provided by ĉna G( ) (Figure 6). It can also be noted that the
stratification with representative allocation is equivalent to the representative sampling in a non
partitioned population. However the gain in precision over a stratification with homogeneous
allocation is appreciable.

In summary, these three examples illustrate that:

1) a naive estimation of coverage by the estimator ĉna G( ) can be very pessimistic (system
B) or optimistic (system C) depending on the sign of the covariance SCP;

2) representative stratification allows an appreciable gain in precision when the classes have
very different values of c Gα( )  (system B).

Concerning the last point, it can be shown [12] that stratification with a representative
allocation of samples is in fact never worse than an equivalent sample in the whole space.
However, as illustrated by system A (Figure 2), the gain in precision is negligible when the
classes are homogeneous.

4 . Early Estimations

When validating a prototype of a fault-tolerant system, it is of real practical interest to obtain
estimations of coverage as soon as possible to provide rapid feedback to the design process.
However, fault injection experiments can be very time-consuming. In this section, we consider
two techniques that enable unbiased estimations of coverage to be obtained as soon as possible.
We first consider what early conclusions can be drawn when a stratified sampling approach has
been followed but not yet completed. Second, we introduce another method, called two-stage
sampling. A comparison of these techniques is then given.

4 . 1 . Incomplete Stratified Sampling

When a stratified sampling technique has been followed but not yet completed, the sampling
space G can be decomposed in two parts:

• the subset ′G  containing the m classes that have been tested, with m∈ 1,M[ ], with a

corresponding probability of fault/activity occurrences:

p ′G G( ) = p Gα G( )
α =1

m

∑
• the subset ′G = G − ′G , containing the classes not yet covered by the tests, with a

corresponding probability of fault/activity occurrences:

p ′G G( ) = 1− p ′G G( )
The system coverage c G( ) can then be expressed as:

c G( ) = p ′G G( )c ′G( ) + p ′G G( )c ′G( ) (22)

Letting p(Gi ′G ) = p Gi G( ) p ′G G( ) , the coverage relative to the part tested, c ′G( ) , can be

estimated according to (12) for the sub-population ′G  by:

ĉst ′G( ) = p Gi ′G( ).ĉ Gi( )
i =1

m

∑
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Since classes are selected deterministically, we cannot make any statistical inference about

c ′G( ) the coverage for the sub-population not yet covered by the tests. The only thing we can

say about c ′G( ) is that it is some value between zero and one! This means that we can only

estimate bounds on the system coverage c G( ) taking into account the lack of knowledge about

c ′G( ). If, for a given confidence level, we have: ĉst ′G( ) − δ ′G ≤ c ′G( ) ≤ ĉst ′G( ) + δ ′G , then,
applying this relation to (22), we can write with the same confidence level:

p ′G G( ). ĉst ′G( ) − δ ′G[ ] ≤ c(G) ≤ p ′G G( ). ĉst ′G( ) + δ ′G[ ] + p ′G G( ) (23)

From relation (23), it can be concluded that in incomplete stratified sampling, the error in
extending the estimation to the complete system space is minimized if p ′G G( ) is maximized

for a given m. This occurs if classes are tested by decreasing order of p(Gα G).

4 . 2 . Two-Stage Sampling

Another way to obtain unbiased early estimations of system coverage is to use two-stage
sampling. In this technique, the sampling space is again divided into M classes but the
sampling process is carried out in two steps:

1) selection of random sample of m classes among M ;

2) selection of a representative random sample of predetermined size nα ,  α ∈ 1,M[ ] in

each of the m classes.

Three different two-stage sampling procedures are considered. They differ by the sampling
technique used in the first stage and the type of estimator used:

• sampling without replacement, with an equal probability of choosing each class — a
linear and a quotient estimator are considered, noted ĉ2epL G( )  and ĉ2epQ G( ) ;

• sampling with replacement, with different probabilities Aα  of choosing each class

Gα  — the corresponding estimator is noted ĉ2dp G( ).
For the sake of simplicity, the theory behind these two-stage sampling techniques is not
detailed here — we use results presented in [13] by adapting the notation. The expressions for
the different estimators, their variances and variance estimators are presented in Table 2.

In Table 2, the estimators ĉ Gi( ), the variances V ĉ Gα( ){ } and the variance estimators

V̂ ĉ Gi( ){ }  are given by equations (11), (14) and (16) respectively. Note that the estimators

ĉepL G( ) and ĉepQ G( )  both become equal to the stratified sampling estimator ĉst G( ) (cf. (12))
when m = M . This is so because the first stage sampling is carried out without replacement.
Also, the first term of the variances of these two estimators disappears when m = M  and the
second term becomes equal to that given by (13).

4 . 3 . Comparative Examples

The same three hypothetical systems that were presented in Figures 1, 3 and 5 are used to
compare the estimators obtained from an incomplete stratified sampling (with classes selected
by decreasing probability) and two-stage sampling. In all methods, a representative sample size
in each class is fixed in advance: nα = p Gα G( )n. In addition, the 1st-stage class sampling

probabilities for estimator ̂c2dp G( ) are given by: Aα = p Gα G( ).
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Figures 7, 8 and 9 compare the various two-stage estimators in terms of the expected range of
variation of coverage estimates as defined by (21) with Kγ = 2.58 (99% confidence). The
figures give the bounds of the system coverage estimation as a function of m, the number of
classes tested. For incomplete (representative) stratified sampling, the expected value of the
partial estimate E ĉstR ′G( ){ } is shown, together with the lower and upper limits of the overall

coverage, noted ĉstR ′G( ) and ĉstR ′G( ), obtained from the two extremes of relation (23) with

ĉst ′G( ) = ĉstR ′G( )  and δ ′G = Kγ V ĉstR ′G( ){ } .

For all three systems, the estimator ĉ2epL G( ) gives the worst results, since the estimations
obtained are subject to great variability.

The incomplete stratified sample shows better precision for system B only, especially for
m ≥ 13. This is because class 13 — i.e., the class with the 13th highest value of p Gα G( ),
(cf. Figure 3) has a very low coverage value and its inclusion in the sample has a significant
effect on the global coverage estimate.

The estimator ̂c2dp G( ) displays a good precision for systems A and C, but not for system B.
This is due to the fact that system B has a greater variability of the coverage values than the
other two. Moreover, the estimations provided do not converge to c G( ) when m→ M ,
because the first stage samples are selected with replacement.

Finally, the estimator that provides quite good results for the three systems considered is
ĉ2epQ G( ) . This estimator provides relatively good precision for small values of m. Only for

system B is it necessary to wait till m ≈ 30. This is due to the heterogeneity of the class
coverage values of system B, which means that more classes must be tested to reduce the
variance of the estimator. In conclusion, this estimator provides the best overall early
estimations — moreover, the estimator becomes equivalent to stratified sampling when
m = M .

5 . The No-Reply Problem

One source of estimation errors that is quite common in opinion polls is the “no-reply” problem
that occurs when it is not possible to obtain measures from some elements in the sample [14].
In physical fault injection, a similar problem occurs because of non-significant experiments,
which can occur for at least two reasons.

1) Some injected faults may not activated3.

2) Some experiments foreseen in the sample set may not be feasible due to physical
problems such as injection probes not adapted to certain circuits or parasitic mutations
(e.g., capacitive loading effects) that prevent the target system from working even
though no faults are explicitly injected.

In case (1) above, it is sometimes possible to carry out further experiments to increase the
effective sample size and restore the level of precision. In case (2), however, it is not usually
possible to carry out further experiments. Whatever sampling technique was adopted at the
outset, as soon as a circuit is chosen that cannot be sampled, then — from a circuit-only
viewpoint — it will be impossible to sample the whole system and the only way to make an

3 Faults can be observed as being activated only if the fault injector is equipped with a current-sensing device at the
level of the injection probe. If this is not the case, then experiments with non-activated faults cannot be discarded,
with pessimistic or optimistic consequences on the coverage estimation, depending on the observed fault-handling
predicate Y.
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inference about the overall coverage is to extend a partial estimate to the bounds expressed by
relation (23) for incomplete stratified sampling.

In this section, we study an “a posteriori stratification” technique that enables better estimations
to be obtained if structural information about the target system is available.

5 . 1 . A Posteriori Stratification

A posteriori stratification is based on the definition of “strata” or classes after having sampled
the fault/activity space. We consider the case where an attempt is made to test the target system
using the homogeneous (a priori) stratification technique (estimator ĉstH G( ), cf. (19)). The
classes are defined here by the integrated circuits that compose the target system.

When a fault is injected directly onto a single pin of an IC (i.e., a fault of multiplicity 1, cf.
Section 3.1.2.2), for instance, by forcing a particular voltage pattern on it, the fault that is
injected simulates a fault that could have occurred in that IC or, indeed, in any IC that has a pin
connected to the same equipotential line (wire). In the general case of faults of multiplicity
mx≥ 1, the same can be said for the group of affected equipotentials4.

This suggests a different way of “counting” the fault injection experiments — instead of
counting the experiments for each circuit, they can be counted by groups of equipotentials.
This can be done if the detailed wiring diagram of the target system is available. If the target
system has Q equipotentials and faults of multiplicity mx≤ MX are taken into account during
the fault injection experiments, the sampling space can be partitioned according to the

Θ = θ mx( )
mx=1

MX

∑  equipotential groups that can be affected, where θ 1( ) = Q and θ mx( ) ≤
Q

mx






for mx∈ 2,MX[ ].
The estimator, noted ˆ′′cst(G), that applies to a posteriori stratification is the same as that for a
priori  stratification with a representative sample in each class, i.e., from (11) and (12), and
letting ′′Gi  represent a class in the sampling space partitioned according to equipotential groups:

ˆ′′cst(G) = p ′′Gi  G( ) di

nii =1

Θ

∑
where ni  is the number of injected faults that affect equipotential group ′′Gi , di  the number of

covered faults and p( ′′Gi  G) is the probability of fault/activity occurrence affecting that

equipotential group. The probabilities p( ′′Gi  G) are calculated from the distributions of the

various fault attributes as defined in Section 3.1.2.2, together with the connectivity information
derived from a description of the target system, which enables the probability of faults at the IC
pin level to mapped onto the corresponding equipotential group [15].

The variance of this estimator cannot be determined in advance however, since the number of
faults affecting each equipotential group is no longer fixed but is in fact itself a random
variable. Nevertheless, once a set of experiments has been carried out, the number of faults
nα ,  α = 1..Θ  affecting each equipotential group is known, so the variance of the estimator

ˆ′′cst G( ), given the actual sample distribution n1,n2,..,nΘ[ ], can be calculated in exactly the same
way as for a priori stratification:

4 Note that for mx>1,  the group of equipotentials could have less than mx members if the faulted circuit has more than
one pin on the same equipotential.
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V ˆ′′cst G( ) n1,n2,..,nΘ{ } =
p2 ′′Gα G( )

nα
c ′′Gα( ) − c2 ′′Gα( )( )

α =1

Θ

∑ (24)

Now, if the original sampling distribution was chosen such that the probability of an injected
fault/activity occurring in equipotential group ′′Gα  is equal to p ′′Gα G( ) and, given that all

equipotential groups are sampled at least once, then the random variables nα ,  α = 1..Θ  are
distributed according to a positive binomial distribution with parameters n (the total sample
size) and p ′′Gα G( ). Therefore, we can write [16, page 73]:

E
1

nα









≈ 1

np Gα G( ) − 1− p Gα G( )( )
Taking expectations of expression (24), and approximating for large n, we can thus show that
the expected estimator variance is given by:

E V ˆ′′cst G( ){ }{ } ≈
p ′′Gα G( )

n
c ′′Gα( ) − c2 ′′Gα( )( )

α =1

Θ

∑
Irrespectively of the distribution of injected fault/activity occurrences across the equipotential
groups, the estimator variance can be estimated in exactly the same way as for a priori
stratification, i.e., by adapting (15) and (16) to the new class definition.

It should be noted that the number of equipotential groups to be considered is usually much
greater than the number of integrated circuits — this means that the number of injected faults
that affect a given equipotential group can be quite small. This can lead to an overall decrease in
precision due to the higher variance of the estimations of the equipotential group coverage. This
will be illustrated by the example given in the next section.

5 . 2 . Comparative Example

The gain in precision obtained using a posteriori stratification based on equipotentials is again
illustrated by means of a hypothetical example. Since structural information about the target
system is necessary to map the fault counts and the fault occurrence probabilities from circuit
pins to equipotential groups, structural information from a real target system is considered. The
considered system is composed of a card with 111 integrated circuits and 597 equipotential
lines. The considered fault-injector (MESSALINE) only has adequate test-probes for 64 of the
111 integrated circuits. The “no-reply” problem therefore occurs for the 47 non-testable
circuits. Values for the relative probabilities of fault occurrences at the circuit level were
calculated based on IC failure rate data. Coverage values were randomly assigned to each
equipotential (and thereby to the target system ICs) on a purely hypothetical basis — they do
not in any way represent the real coverage values of the target system and serve only as an
illustration of the proposed technique. The theoretical coverage of this hypothetical system is
0.99.

The results presented correspond to a fault injection campaign in which the initial plan was to
inject 150 faults on each IC of the target system (homogeneous a priori circuit-level
stratification). For simplicity, we only consider faults of multiplicity mx= 1. The comparison
is based on the upper and lower limits of the overall system coverage obtained from an
incomplete stratified sample as expressed by relation (23). The probability of fault/activity
occurrences in the tested part of the system, p ′G G( ), is obtained by summing the fault/activity
probabilities corresponding to classes that have been tested either from the circuit-level a priori
stratification viewpoint or from the equipotential-level a posteriori stratification viewpoint. The
estimation of the coverage of the tested part of the system ĉst ′G( ), and the associated two-sided
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99% confidence half-interval δ ′G , are obtained from the a priori and a posteriori estimators

ĉstH ′G( ) and ˆ′′cst ′G( ), and their corresponding variances (in the latter case, the expected
variance).

Figure 10 shows the results obtained when the circuits are tested in an order corresponding to
decreasing fault/activity occurrence probabilities, discounting the non-testable circuits. The
curves are plotted in function of the number of tested circuits m.

It can be seen that as soon as 7 circuits have been tested, the a posteriori stratification by
equipotential gives better results than the estimation with a priori circuit-level stratification.
Also, the final result with a priori circuit-level stratification is very poor: the 64 testable circuits
have a total relative fault/activity occurrence probability of only 58% — the consequent
uncertainty on the overall coverage means that it can only be bounded by 0.57< c G( ) <0.996.
When the additional information concerning the target system structure is taken into account,
the a posteriori stratification technique gives an appreciable improvement since now the 99%-
confidence interval on overall coverage becomes 0.968< c G( ) <0.994.

6 . Discussion and Conclusions

In this paper, various sampling methods have been presented that can be applied when
estimating coverage based on physical fault injection. A formal definition of coverage has been
given in terms of the relative probabilities of points in the complete input space of a fault-
tolerant system that includes both system activities and fault occurrences. The considered
sampling techniques have been compared from the viewpoints of the precision that they
procure in the estimation of overall system coverage and the testing effort required to obtain
sufficiently precise results.

When all the circuits in the complete system can be tested, a priori circuit-level stratification
with a representative sample allocation enables an unbiased estimation of system coverage that
is never worse than representative sampling in the complete space and is sometimes appreciably
better.

Two-stage sampling techniques allow unbiased early estimations of overall coverage to be
obtained that are usually better than the bounds on coverage that can be deduced from
incomplete stratified sampling. Of the three two-stage sampling techniques considered, a
quotient estimator based on first-stage sampling with equal probabilities (without replacement)
gives the best results. Moreover, the technique is equivalent to a priori stratification when all
classes have been tested.

The “no reply” problem that unfortunately affects most practical fault-injection experiments
means however that little can be gained from two-stage circuit-level sampling and one must
often resort to the poor bounds obtained from incomplete stratified sampling.

By taking into account available structural information about the target system, we were able to
consider an alternative stratification technique based on equipotential groups. This stratification
technique was used in an a posteriori fashion to improve the results obtained after a set of
experiments initially carried out with circuit-level stratification in mind.

We are currently carrying a set of fault injection experiments on a real system in which
equipotential groups are used as a basis for a priori stratification with the aim of avoiding,
rather than correcting, the “no-reply” problems posed by inadequate injection probes and
parasitic mutations.

Further research on coverage estimation techniques is being considered in two directions. First,
we are investigating estimation techniques that allow stratification to be used to estimate
coverage confidence limits for systems with very high coverage, i.e., so high that very few (or
even zero) fault-tolerance deficiencies are observed during fault injection experiments. Under
such extreme conditions, the normal approximation for confidence interval calculation is no
longer valid and other techniques must be developed. Second, since the definition of a
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coverage factor as a conditional probability must involve the distributions of fault and system
activity occurrences, it is essential to assess the impact on the estimations of innaccuracies in
our assumptions about these distributions. It would thus be of very real interest to study the
sensitivity of the results to variations in the distributions. Note however, that if new evidence
about the distributions is obtained after carrying out the fault injection experiments then a
posteriori stratification can often be used to correct the estimations.

Appendix : Estimator and
corresponding variance for

generalized global sampling
Theorem A1: Given n fault/activity pairs obtained by sampling the population G with
replacement and with a sampling probability t g G( )  assigned to each element of G, such that

∀g ∈G,  t g G( ) > 0 and t g G( )
g∈G
∑ = 1, an unbiassed estimator of c G( ) = y g( )p g G( )

g∈G
∑  is

given by:

ˆ′c (G) = 1
n

y(gi )
p(gi G)
t(gi G)i =1

n

∑

Proof: We show that the mathematical expectation of ˆ′c (G) is equal to c(G):

E ˆ′c (G){ } = E
1
n

y(gi )
p(gi G)
t(gi G)i =1

n

∑











= 1

n
E y(gi )

p(gi G)
t(gi G)







i =1

n

∑ (A.1)

Since the sampling is carried out with replacement, then, from the definition of
mathematical expectation and from (2) (cf. Section 2.1), we have:

E y(gi )
p gi G( )
t gi G( )









= t(g G)
g∈G
∑  y g( ) p g G( )

t g G( )






= y G( )

g∈G
∑ p g G( ) = c G( ) (A.2)

Substituting E y(gi )
p(gi G)
t(gi G)









= c G( )  into (A.1), we obtain:

E ˆ′c G( ){ } = 1
n

c G( )
i =1

n

∑ = c G( )
❏

Theorem A2: The variance of the estimator ˆ′c (G) defined in theorem A1 is given by:

V ˆ′c G( ){ } = 1
n

y(g)
p2 g G( )
t g G( )











g∈G

∑ − c2 G( )










Proof: The experiments are independent so we can write:



19

V ˆ′c (G){ } = V
1
n

y(gi )
p(gi G)
t(gi G)i =1

n

∑











= 1

n2 V y(gi )
p(gi G)
t(gi G)







i =1

n

∑ (A.3)

From the definition of variance and using (A.2):

V y(gi )
p(gi G)
t(gi G)









= E y(gi )
p(gi G)
t(gi G)

− E y(gi )
p(gi G)
t(gi G)
















2











= E y(gi )
p(gi G)
t(gi G)

− c G( )





2











From the definition of mathematical expectation:

V y gi( ) p gi G( )
t gi G( )









= t g G( )  y g( ) p g G( )
t g G( ) − c G( )








2

g∈G
∑

= y2 g( ) p2 g G( )
t g G( ) − 2y g( )p g G( )c G( ) + t g G( )c2 G( )






g∈G
∑

= y2 g( ) p2 g G( )
t g G( )






g∈G
∑ − 2c G( ) y g( )p g G( )( )

g∈G
∑ + c2 G( ) t g G( )

g∈G
∑

Since y g( ) may take only the values 0 and 1, and by definitiony G( )
g∈G
∑ p(g G) = c G( ) and

t g G( )
g∈G
∑ = 1, we obtain:

V y gi( ) p gi G( )
t gi G( )









= y g( ) p2 g G( )
t g G( )






g∈G
∑ − c2 G( )

whence, from (A.3), we finally obtain:

V ˆ′c G( ){ } = 1
n2 y(g)

p2 g G( )
t g G( )











g∈G
∑ − c2 G( )











i =1

n

∑ = 1
n

y(g)
p2 g G( )
t g G( )











g∈G
∑ − c2 G( )











❏
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Table 1 — Fault attribute distributions adopted in [3,12]

Attribute Distribution

Location p ic set_of _ ICs( ) = cardinal set_of _ ICs{ }[ ]−1
 (the uniform distribution)

Multiplicity MX = 3 and p 1 1..3{ }( ) = 50%,  p 2 1..3{ }( ) = 30%,  p 3 1..3{ }( ) = 20%

Pins p pin_set set_of _ pin_sets ic,mx( )( ) =
Nic

mx
















−1

 (uniform distribution

over all combinations of mx pins out of the total of Nic  pins for the selected
circuit ic)

Value model
Only stuck-at-0 and -1 faults were considered. All 0-1 combinations of mx
pins were considered equally probable fault values — e.g., for mx=2,
∀value_model:  p value_model 00,01,10,11{ }( ) = 0.25

Timing model

Only intermittent faults were considered in these experiments. Such faults
were modelled by asserting the prescribed fault pattern on the selected pins
for a given durationand with a given repetition period. The period was
logarithmically distributed over the interval 10µs,30ms[ ] and the duration

was uniformly distribution over the interval 2µs,min duration 2;1ms( )[ ].



22

Table 2 — Expressions for two-stage sampling techniques

1st-stage sampling with equal probabilities (without replacement) — linear
estimator

ĉ2epL G( ) = M

m
p Gi G( ) ĉ Gi( )

i =1

m

∑

V ĉ2epL G( ){ } = M

m
 

M − m

M −1




 p Gα G( )  c Gα( ) − c(G)

M






2

α =1

M

∑ + M

m
p2 Gα G( )  V ĉ Gα( ){ }

α =1

M

∑

V̂ ĉ2epL G( ){ } = M

m
 

M − m

m−1




 p Gi G( )  ĉ Gi( ) −

ĉ2epL G( )
M











2

i =1

m

∑ + M

m
p2 Gi G( )  V̂ ĉ Gi( ){ }

i =1

m

∑
1st-stage sampling with equal probabilities (without replacement) — quotient
estimator

ĉ2epQ G( ) = p Gi G( )  ĉ Gi( )
i =1

m

∑ p Gi G( )
i =1

m

∑

V ĉ2epQ G( ){ } = M

m

M − m

M −1




 p2 Gα G( )  c Gα( ) − c G( )[ ]2

α =1

M

∑ + M

m
p2 Gα G( )  V ĉ Gα( ){ }

α =1

M

∑

V̂ ĉ2epQ G( ){ } = M

m

M − m

m−1




 p2 Gi G( )  ĉ Gi( ) − ĉ2epQ G( )[ ]2

i =1

m

∑ + M

m
p2 Gi G( )  V̂ ĉ Gi( ){ }

i =1

m

∑
1st-stage sampling with different probabilities (with replacement)

ĉ2dp G( ) = 1
m

p Gi G( )
Ai

 ĉ Gi( )
i =1

m

∑

V ĉ2dp G( ){ } = 1
m

Aα  
p Gα G( )

Aα
 c Gα( ) − c G( )









α =1

M

∑
2

+ 1
m

p2 Gα G( )
Aα

 V ĉ Gα( ){ }
α =1

M

∑

V̂ ĉ2dp G( ){ } = 1
m

1
m−1







p Gi G( )
Ai

 ĉ Gi( ) − ĉ2dp G( )









i =1

m

∑
2
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Figure 1 — Characteristics of system A
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Figure 2 — Expected ranges of variation of coverage estimates for system A (99% confidence)
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Figure 3 — Characteristics of system B
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Figure 4 — Expected ranges of variation of coverage estimates for system B (99% confidence)
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Figure 5 — Characteristics of system C
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Figure 6 — Expected ranges of variation of coverage estimates for system C (99% confidence)



26

0.999

0.99

0.9

0.0

0 10 20 30 40 50

E ˆ c stR ′ G ( ){ }
h ˆ c 2dp G( )( )

m

ˆ c stR ′ G ( )

ˆ c stR ′ G ( )

h ˆ c 2epQ G( )( )
h ˆ c 2epL G( )( )

c G( )

Figure 7 — Expected ranges of variation of coverage estimates for system A (99% confidence)
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Figure 8 — Expected ranges of variation of coverage estimates for system B (99% confidence)
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Figure 9 — Expected ranges of variation of coverage estimates for system C (99% confidence)
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Figure 10 — Reduction of “no-reply” problem with a posteriori stratification


