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ABSTRACT 
Recently there has been rapid growth in the number of online 
courses and venues through which students can learn introductory 
computer programming. As software engineering education 
becomes more prevalent online, online education will need to 
address how to give students the skills and experience at 
programming collaboratively on realistic projects. In this paper, 
we analyse factors affecting how a supercollaborative on-campus 
software studio course could be adapted as a project-led 
supercollaborative MOOC. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – computer science education 

General Terms 
Design, Human Factors. 

Keywords 
Software Engineering, Massively Open Online Course, Studio 
Course, Continuous Integration. 

1. INTRODUCTION 
Recently, there has been rapid growth in the number of online 
MOOCs (massively open online courses) and venues teaching 
introductory computer science and programming. Coursera, edX, 
and Udacity each offer multiple such courses. In 2012, 150,349 
students enrolled in CS50x from Harvard University on edX, with 
1,388 receiving a certificate of completion [1]. Khan Academy, 
Codecademy, Treehouse, and other sites also offer students 
support for online study in programming. 

These courses predominantly teach students to program on their 
own. BerkeleyX’s Software as a Service course [2] includes 
collaborative topics and encourages pair programming, but the 
scale of collaboration students undertake is small. As software 
engineering education becomes more prevalent online, we suggest 
that online education will need to address how to give students the 
skills and experience of programming collaboratively on realistic 
software projects. This has been an active topic of research for on-
campus courses for more than twenty years [3, 4, 5], but is an area 
that online education is largely yet to address. 

In previous work [6, 7] we described an on-campus course centred 
around a software project that has extensive inter- as well as intra-
group collaboration. Students work in small groups to develop a 
feature for a program, but must coordinate and integrate with 
many other groups also contributing features. In 2011 and 2012, 
we had approximately 70 students working on a single codebase; 
in 2013 this rose to over 140 students. For the purpose of this 
paper, we refer to this kind of project, in which students 
collaborate in groups which in turn collaborate with other groups, 
as a supercollaborative project. 

We are adapting our course to offer it as a MOOC. Online 
students would access videos, tutorials, exercises, and can take 
part in supercollaborative projects. On-campus students would 
have the additional resources of lab studio time, and interactive 
workshops and demonstrations by the lecturers in class. 

In this paper, we discuss considerations that impact on the 
course’s viability online, and how the design will need to change. 
Until the MOOC runs we will be unable to fully evaluate the 
outcome, but we present this paper so that the analysis and issues 
involved may be shared with the software engineering education 
community. 

2. ON-CAMPUS COURSE SUMMARY 
The course was developed in 2011, and for the first two iterations 
was predominantly taken by second-year students in the software 
engineering and information technology programs. In this version 
of the course, students collaborated on developing features for a 
fork of the Robocode open source project. 

A restructuring of the school’s degree programs caused the class 
size to more than double in 2013, with the addition of many 
multimedia design and information systems students. In this 
iteration of the course, we changed the project to give students a 
much smaller bespoke starting code base to build from. The 
project we chose was to build a multiplayer games arcade.   

Code collaboration takes place on GitHub, supported by 
continuous integration servers that build each commit pushed to 
the master branch of the repository. Automated builds, test 
coverage, and automated software metrics give the class ready 
access to information about the health of the project.  
Alongside the project, a weekly lecture series covers topics on 
distributed version control, automated builds, continuous 
integration, debugging, testing, design patterns and other topics 
relevant to their collaborative project. An unstructured weekly 
studio session is also provided, giving teams a weekly timeslot 
when they have access to in-person support in their project work 
from tutors, the lecturers, and each other. 

In 2013, 172 students enrolled at the start of semester, with 146 
still enrolled in the final week. Over the semester, the class made 
4,883 commits and grew the project to 67,900 lines of code. The 
students developed included many games as well as cross-cutting 
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features such as a common overlay, achievements, networked 
multiplayer support, and an event recording/replay facility.  

3. IMPACT OF CLASS SIZE AND 
ATTRITION ON VIABILITY OF 
SUPERCOLLABORATION 
While an on-campus course of 172 can place all the students on 
the same project, a MOOC that could potentially have orders of 
magnitude more students will need to subdivide the class into 
many project cohorts. 

MOOCs typically have also a much higher rate of attrition than 
on-campus courses.  The quoted attrition rates can be 90% or 
more. For example, of 150,349 students registering for CS50x 
only 1,388 (0.9%) received a certificate of completion [1]. For 
MITx’s first course, 6.001x, of almost 155,000 registering only 
7,157 (4.6%) passed the course [8], and Philip Zelikow’s Coursera 
course on the history of the modern world passed nearly 5,000 
(10.6%) of nearly 47,000 students [9].  

Most of this attrition occurs early, and for many MOOCs a high 
attrition rate might not be problematic as students can gain value 
from a course without completing it. For CS50x, only 10,905 
(7%) students submitted the first problem set, 10,137 (7%) 
indicated they intended to complete all the coursework, and only 
3,381 (2.3%) indicated they took the course because of the 
prospect of the course certificate [1]. For 6.001x, 23,000 students 
(14.8%) submitted the first problem set, and 9,000 (5.8%) passed 
the midterm quiz. 

However, attrition could have a much more adverse effect in our 
course. In courses that are taken individually, if a student drops 
out they are the only one affected. In a team course, students 
dropping out could cause the team to become unviable, leaving  
their teammates “stranded”. In a supercollaborative course, if too 
many teams on a project become unviable, the project may 
become unviable or ineffective, affecting the other teams. There is 
a question, then, of whether the high attrition rate of a MOOC 
would cause a supercollaborative course to become unviable. The 
projects must be manageable when student numbers are at their 
peak, but must remain viable and pedagogically effective as 
participant numbers fall. 

If the viability of the projects can be ensured, then the attrition 
within teams can be mitigated and potentially used to pedagogical 
advantage. Reallocating stranded members to other teams tests 
both the arriving member, in comprehension of a new system, and 
the team, in providing transparency and documentation of the 
group’s product and processes. In the on-campus course, students 
undertake a single long sprint, allowing them to encounter all of 
the course content before a sprint cycle finished. But in an online 
course, shorter sprints may be preferable, to better reflect real 
practice and to provide a natural point at which to reallocate 
students between teams. 

3.1 Minimum Pedagogically Effective Size 
When we designed the on-campus course, one of our design 
principles was that students should be faced with problems for 
which the most effective solution is to use the techniques that we 
are teaching.  

This was one of the reasons for putting multiple groups on the 
same codebase. On small projects, with only intra-group 
collaboration, it is feasible for students to coordinate their activity 
just by talking to each other, without using the processes, 
discipline, and tools that the course teaches. It is when someone 

you do not talk to frequently starts modifying your code in 
unexpected ways that you discover the value of good tests, version 
control, and an issue tracker. By requiring inter-group 
collaboration, we scaled the project far beyond what conversation 
alone could support, and forced students to encounter the 
problems that the course teaching addresses rather than 
circumvent them. We dubbed this the "feel the pain" pedagogy. 

In a MOOC, students are generally remote from each other, 
although there will be some groups of students who are colocated. 
Students can join a MOOC from all around the world, but some 
students who already know each other might decide to sign up 
together, and local study groups are often formed.  

So long as a project does not consist only of colocated teams, it 
would be difficult for students to coordinate through conversation 
alone. Remote communication would be a barrier. This suggests 
that in a MOOC environment, the minimum size of a project for it 
to be pedagogically effective could be smaller than in an on-
campus environment. In the three iterations of the on-campus 
course so far, we have always had at least nineteen teams 
collaborating on a single codebase. Online, a project (a single 
codebase) could potentially remain pedagogically effective with 
far fewer. 

3.2 Maximum Manageable Size 
If attrition is to occur throughout the course, this would suggest 
that the projects would need to be reasonably large at the 
beginning so that they do not shrink too small by the end. 
However, even at its peak size, each project must be manageable. 

There are two aspects of the project that we consider may become 
unmanageable: the code base, and initial feature selection. 

With more students and more teams modifying the code, we 
would expect the code base to change more rapidly. This could 
make it difficult for some students to keep up with a fast-moving 
target. However, on campus we have found that the code changes 
fastest at the end of the project, as teams rush to finish their work 
before the due date.  Figure 1 shows the number of commits per 
week in the on-campus course in 2013. This end-of-project rush 
does cause problems for students and is something that we are 
seeking to reduce. But it is worth noting that in a MOOC it would 
occur when attrition has already taken place and projects are at 
their smallest. 

Feature selection, where groups decide what they would like to 
work on, occurs earlier in the course. While groups may 
implement more than one feature, typically they have one feature 
that is their main focus, and usually it is the one they first selected. 
 

 
Figure 1: Commits per week in the on-campus course in 2013.  



This feature selection drives aspects of both the collaboration and 
the design. As teams try to ensure that their own work is coherent 
(so they have a clear vision of what they are trying to achieve) and 
has loose coupling with other teams (so they do not need to wait 
on each other’s changes), the teams’ choices of features can be 
seen as a quickly established high-level design for the system. 

In 2013, thirty-one teams collaborated on the project.  Fifteen of 
those teams worked on infrastructure features and APIs that could 
be consumed by other teams, and nineteen teams developed 
games. (Three did both.)  While nineteen (in 2012) and thirty-one 
(in 2013) teams succeeded in choosing well-fitting features with a 
reasonable separation of concerns, that number probably does not 
scale up indefinitely. At some project size, there would be too 
many teams in the system for each student to have a reasonable 
grasp of what the other teams are choosing to do. 

In our view, then, it is feature selection rather than code velocity 
that is likely to impose an upper limit on the viable project size. 

3.3 Individual Work as well as Group Work 
One strategy for minimizing attrition in the projects would be to 
begin the project work after much of the course attrition has taken 
place. This also fits the practical needs of the project structure. 
In Figure 1, there are comparatively few commits until week 4. 
Before students can begin making significant changes to the code, 
they need to obtain it, understand some part of it, and have a 
reasonable idea of a change they would like to make. Thus the 
first part of the course requires learning version control (to get the 
code), build systems (to get the code working), and ways of 
exploring and understanding the existing code. This has to happen 
before collaboration can start taking place. We ask students to 
form their groups by week 3 of the course, and to start 
establishing what feature they would like to work on in week 4.  

CS50x is the MOOC with the lowest nominal completion rate that 
we have found, so makes for a suitable pessimistic scenario to test 
against. In CS50x, 3,292 students submitted the problem set in 
week 3, and 5,259 students completed the subsequent quiz [1]. If 
we take the higher of those two numbers (rather than course 
registrations) as our base, then the attrition rate from there on in is 
73.6%, rather than 99.1%. This is still very high, but in this 
scenario supercollaboration would be viable. 

Figures 2 and 3 show the mean results of twenty runs of a 
computer simulation in which students are placed in teams of ten, 
with fifty teams per project. The simulation repeatedly removes a 
student from a random team according to the attrition rate. The 
chart shows the survivability of teams, and the survivability of 
projects, where 150,000 students are placed into groups and then 
undergo 99% attrition, and where 5,250 students are placed into 
groups and undergo 74% attrition. In the former case, half the 
surviving teams are left with only a single team member, and half 
the projects are left with only a single team. However, in the latter 
scenario, the median team size is three and all of the projects in 
every run had at least fourteen active teams remaining. 

The results here are not intended to be predictive. So far we know 
very little about the factors that affect MOOC attrition rates, and it 
is unlikely that students would leave groups randomly, but it 
suggests that even under a reasonably pessimistic scenario, 
supercollaboration is not obviously doomed to collapse. A lead 
time of individual work before the project begins can bring the 
attrition rate during the project below a rate where it is viable.  
Automated quizzes and exercises, which are typical to most 
MOOCs, would also have two additional benefits for the course. 

 
Figure 2: The number of teams with at least n students after 
attrition. Mean of twenty computer simulations. 

 
Figure 3: The number of projects with at least n non-empty 
teams after attrition. Mean of twenty computer simulations. 
Firstly, by exposing students’ activity (though not their marks) in 
individual exercises, the course could encourage active students to 
cluster together into teams. This would provide some additional 
defence against attrition, as the harm occurs when an active 
student finds that his or her collaborators are inactive.  
Secondly, it would improve the course’s support for trying out a 
technique in a tame environment, before applying it to the project. 
The project compels students to apply some concepts frequently, 
such as merging changes, and produces immediately visible 
outcomes for these. However, on-campus we observe that other 
topics (e.g. refactoring) have longer feedback loops. The teams 
consuming a code change might not be ready to work with it 
immediately, and students do not always view the static analysis 
reports. Automated exercises would ensure students can test their 
understanding of these topics with immediate feedback. 

4. SELECTIVE PARTICIPATION AND 
HETEROGENEITY 
In a traditional on-campus course, the knowledge, background, 
and interests of the students are heavily constrained. We know 
that students have taken the prerequisite subjects, and that they 
have not taken the subsequent subjects for which this is a 
prerequisite. We know that, as university students, they will have 
a broad focus across most of the topics we require for the exam, 
because they need to pass their courses in order to obtain their 
degrees. In a MOOC, this is not the case. Some students may 
already have degrees, while others may still be in high school. 
In 2013, our on-campus cohort became somewhat more varied as 
multimedia design and information systems students came into the 



course alongside the software engineers. To cater for this, we 
changed the project from improving a pre-existing product 
(Robocode) to creating a new system from a very small base. As 
the base was small, it was comparatively unconstrained, and teams 
were able to specialise. Some teams took it upon themselves to 
define the design language of the arcade that teams should fit into. 
Other teams built games. Others built infrastructure that is used 
entirely behind the scenes. In terms of the balance of teams, we 
regard this as a successful change.  

For a MOOC cohort that is even more varied, the course would 
need to be more flexible still. Some students might only be 
interested in particular topics within the course, and have no time 
for the project. Others could be well versed in the material, but 
perhaps interested in taking part in a project with students in order 
to try taking on a more senior role on the team than they have in 
their workplace. In our design, the supercollaborative project 
would be the largest component of the course. Teaching content 
would comprise topic-based sequences of videos and exercises, 
with each topic sequence able to stand alone, but also forming part 
of a consistent narrative within the course. The aim would be to 
ensure that new topic sequences could be added as needed, 
without the course becoming disjoint. 
In a software engineering course like this, there are also many 
voices other than the course staff that would be of interest to 
students. There are many professional materials, videos, 
presentations, and an increasing number of online playgrounds 
and tutorials available. In previous work, we proposed courses 
where smart exercises were supported by a dynamic ecosystem of 
socially discovered, written, and added content [9]. The goal of 
dynamically evolving courses is still far off, but we can begin by 
including interviews with practitioners from companies and open 
source projects, and other materials by people outside the course. 

5. PEER MARKING OF GROUPS 
In the 2013 course, we introduced a critique at week 8. Groups 
presented their progress, and sought feedback from their 
colleagues. Students were allocated five groups to mark and 
critique by filling in a simple survey.  The textual feedback in 
each critique was then made available to the group being 
criticised, who would in turn mark the critique on whether it was 
objective, specific, actionable, constructive, and useful.  In total 
725 critiques were completed, and 3,075 reviews of critiques.  

The only staff intervention we were called to undertake in the 
critique marking (apart from writing the software to support it) 
was handling a small number of requests to fix student errors – 
particularly where students had submitted a critique for one team 
that they intended to be for another. However, as each group 
received more than twenty critiques, even if uncorrected these 
errors would have had negligible impact on the marking. 

In our on-campus course, teams’ final project outcomes are 
marked by the course staff. Within the teams, students use a peer 
grading system to divide their project mark between them 
according to their contribution. However, it appears it would be 
viable to replace the staff marking with a sequence of peer 
critiques, that might also encourage students not to leave so much 
work for the final week’s rush.  

6. CONCLUSION 
Supercollaboration in the classroom is comparatively new. As far 
as we know, our course is still the only software engineering 
course to place so many teams of students on a single project. 
Supercollaboration in the open online classroom, then, is always 

likely to be a step into the unknown. However, our analysis 
suggests that it is feasible, and we are in the process of producing 
such a course. The key aspects appear to be keeping the elements 
of the course coherent but independent, and ensuring that project 
groups only form after the initial high student attrition has 
occurred, when there is data to identify and group active students. 
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