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Abstract

In this paper, we propose a method to synthesize
protocol specifications automatically from service spec-
ifications written in a time-extended LOTOS called
LOTOS/T+. In LOTOS/T+, structured descrip-
tions, such as parallelism and interruption are allowed
to describe service specifications, and time-constraints
among non-adjacent actions can be described using
Presburger formulas. Here we assume that there is a
reliable communication channel between any two nodes
and the mazimum communication delay for each chan-
nel is bounded by a constant. Moreover we assume
service specifications have no deadlocks. Under our
simulation policy, a specification S’ is derived from
a given service specification S and a given mazimum
communication delay of each channel. In S', time-
constraints necessary for exchanging synchronization
messages are added. If S and S’ can carry out the
same behaviour, i.e., if S and S' are bisimulation
equivalent when time is ignored, then a correct pro-
tocol specification for simulating S is derived from S’
automatically.

1 Introduction

For designing reliable distributed systems, protocol
synthesis methods are useful [1]. In the recent years,
several methods for synthesizing correct protocol spec-
ifications from given service specifications mechani-
cally have been proposed for FSM, EFSM, LOTOS
and Petri Net models [2, 3, 4]. However those propos-
als do not consider quantitative time constraints for
the systems. It is highly desirable to synthesize proto-
col specifications from time-constrained service speci-
fications. Recently, in [5], a method to derive protocol
specifications from timed service specifications writ-
ten in a FSM model has been proposed, but in such
a FSM model we can not specify complicated order of
actions in a structural way.

In this paper, we propose a method for synthesiz-
ing correct protocol specifications automatically from

given service qpe(‘lﬁ(‘atlonq written in a sub-class of
LOTOS/T+ (which is a modified version of [6]), one
of timed extensions of LOTOS [7]. LOTOS/T—l— has
an ability to specify complicated action ordering such
as parallel composition and interruption. Moreover, in
LOTOS/T+, time constraints among actions can be
specified as formulas using addition, subtraction and
inequalities on integers. In addition, using variables
to hold the time when preceding actions are executed,
we can specify time constraints for succeeding actions.

In our method, we assume that (a) each communi-
cation channel is error-free and its maximum propaga-
tion delay is bounded by a constant, and that (b) all
nodes with their clocks can start their executions si-
multaneously and the clocks always synchronize each
other. Under this assumption, we give a simulation
policy for each node to execute actions in exactly the
same order as specified in a given service specifica-
tion. Basically, the simulation policy is based on the
method which we have proposed in [3, 8]. That is,
after executing each action, say a, a synchronization
message is sent to the node which executes a succeed-
ing action, say b, to inform that a has been executed.
If the execution time of a is needed, the time is also
transmitted. The action b must be executed after the
message is received. We derive protocol specifications
under the above policy. However, if we consider time-
constraints, many problems arise. For example, if a
service specification states “the action a must be exe-
cuted before time 3 at node 1, and then the action b
must be executed before time 5 at node 2,” and if the
maximum communication delay from node 1 to node
2 is 3 units of time, the synchronization message sent
from node 1 after a is executed may not reach node
2 before time 5. To cope with this kind of problem,
we restrict, for example, the time constraint of the ac-
tion a to “before time 2” so that we can guarantee the
synchronization message reaches node 2 in time. As
another example, suppose that a service specification
states “the action a must be executed between time 1
and 3 at node 1, and after that the action b must be
executed between time 4 and 5 at node 2”. If the max-
imum communication delay from node 1 to node 2 is
3 units of time, the same observation as the previous
example holds, i.e., the synchronization message from
node 1 to node 2 may not reach in time. But as for the
above case, a different solution is possible. Since each
node has its own clock and all clocks synchronize each
other, the ordering of actions a and b is guaranteed
without any message exchange. That is, the temporal
ordering as the total system is guaranteed if each node
decides the execution time of its action a (or b) using
its own clock.

In our derivation method, first, from a given ser-
vice specification S and a given maximum delay of
each channel, we derive a specification S’ where ad-
ditional time constraints are appended to S so that
the message exchanges are carried out in time. We
make only the weakest timing restrictions to S so that
each node can simulate S under the above policy. If



Table 1: Syntax of LOTOS/T+
E := stop (untimed deadlock)

exit (successful termination)

a; E  (action prefix, untimed)
a[P(t,z)]; E (action prefix, timed)
E[|E (choice)

E|||E (asynchronous parallel)

E||E (synchronous parallel)

E|[A]|E (generic parallel composition)
E[> E (disabling)

E >> FE (enabling)

hide A in £ (hiding)

asap A in ' (“as soon as possible” execution)

Plg1,...,9r](€) (process invocation)

S and S’ can execute the same behaviour (note that
the transformation from S to S’ does not necessarily
preserve the equivalence), i.e., if they are observation-
ally equivalent (bisimulation equivalent[6]) when we
consider sending/receiving actions of synchronization
messages and an action tick representing one unit time
progress as unobservable, then a protocol specification
satisfying S is derived automatically from S’.

The paper is organized as follows. Section 2 de-
scribes our specification language LOTOS/T+. In
Section 3 we explain the protocol synthesis method.
Section 4 concludes this paper.

2 LOTOS/T+

The specification language we use for describing
both service specifications and protocol specifications
is LOTOS/T+, which is slightly modified one from
LOTOS/T[6]. The syntax and informal semantics of
LOTOS/T+ are described below.

Definition 1 Behaviour expressions of LO-
TOS/T+ is defined as Table 1 (the preference of
each operator is the same as LOTOSJ7]) , where a €
ActU {i}( Act stands for a finite set of all observable
actions, and ¢ represents an internal (unobservable)
action), A C Act, k € N(N is a set of natural num-
bers), and P(t, ) stands for a Presburger formula9],
that is, a first order logic formula whose atoms are

integer linear inequalities, which has a free variable ¢

and other free variables z;. Here z def (z1,22,...,2k)
for some k. Intuitively, ¢ represents the current time, e
stands for an integer linear expression (ILE for short)

_ def .
and € = (e1,eq,...,e;) for some k, where each e; is

an ILE. O

In LOTOS/T+, time constraints of actions are de-
scribed in a subclass of Presburger formulas, more
specifically, logical combinations of the atoms each of
which takes the form of either ¢ < ¢, ¢t <e, orz =1t
. Here, €, (e,) is an ILE representing the lower bound
(upper bound , respectively) of the time an action is
executable. The atomic formula z = t means that the
action’s executed time is assigned to the variable .

For simplicity, we use an abbreviation e¢; < t < e, for
e, <tAt < e, Other symbols of inequality such as
<,>,etc. may also be used. In our semantics, an upper
bound e, specified as a time constraint of an action
means the action must be executed no later than e,.
In this case, we say that urgency of the action at time
e, is specified. Note that in our language, executabil-
ity and urgency of each action at each given time t are
decidable[6].

Example 1

B=al2<t<3Azp=t];b[t =mz¢+3];c[t =
zg + 4|; stop

The behaviour expression B represents the following
behaviour. The action a must be executed between
time 2 and 3, and the execution time of a is assigned
to the variable zg. Then b must be executed exactly
3 units of time after the execution of a. And then ¢
must be executed exactly 4 units of time after a. O

Example 2

1. E=alz =t;b;c[t > x + 2]; stop
2. P = aft = 5];stop[]b[t = 1]; P

The first behaviour expression is an example that an
action without time constraints is inserted between
time constrained actions. b in the first example can
be executed at any time after a is executed, that is,
we consider that a formula “true” is omitted as a time
constraint of b. Moreover, an unbounded interval “t >
x + 2” is specified as a time constraint of c.

The second one is an example of recursive processes.
A clock is reset to 0 at each moment P is invoked.
Generally, each instance of processes has its own clock
locally, which is reset to 0 at the beginning of the pro-
cess’s run. If a process P has a process parameter like
P(t), however, the clock is not reset to 0 but to the
actual time tq, that is, P(ty) is invoked. The corre-
sponding LTS’s are shown in Fig. 1. O

The difference between LOTOS/T+ and LO-
TOS/T is an interpretation of the behaviour of inter-
nal actions. In the method we propose, the delay of
internal messages exchanged among nodes is assumed
to be uncertain. On the other hand, in LOTOS/T
internal actions are defined to be executed as soon as
possible after it is enabled, so we cannot describe un-
certain delay of internal actions in LOTOS/T. Thus,
we define LOTOS/T+ so that the executable time of
internal actions may be decided nondeterministically
in the range of time constraints. To describe this prop-
erty, we define a construct “asap A in B,” represent-
ing the same behaviour B except the actions in A must
be executed as soon as possible they are enabled.

The formal definition of the semantics is given as
the inference rules in Fig. 2. From the rules, we can
automatically decide whether an action a[P(t,Z)] is
executable, if satisfiability of the corresponding pred-
icates P(0,z) and 3t'3z[t' > 0 A P(t', z)] is decidable.
P(0, ) denotes whether a is executable at the current
time and 3¢'3z[t’ > 0 A P(t',z)] denotes whether a



a,[[f, ; z[; h;] tick -, b
c[t > x + 2]; stop tic
byelt > 2]; stotpic b e[t > 2]; stop tic = 4]; stop|[|b[t = 0]; P
. . tick .
bicft4+1> Q]vStOPiC éf,+1 > 2]; stop tick a[t = 3]; stop
b; c[t + 2 > 2]; stop ti . t = 2];sto
tick c[t + 2 > 2|; stop tic [ I; P
ti c " tid [t = 1];stop
fick + [t = istop
E P stop

Figure 1: The semantics of £ and P
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Figure 2: The operational semantics of LOTOS/T+

may be executable in the future. Since P(t, %), a time
constraint of the action, is a Presburger formula, all
the predicates above are also Presburger formulas, so
their satisfiability is decidable[9, 6]. Hence, we can
construct mechanically the corresponding LTS’s (pos-
sibly, of infinite state spaces) from given behaviour
expressions. Here we give some rules to show how to
construct LTS’s. Firstly, for the process F in Exam-
ple 2 (see Fig.1):

e E = aft = z];b;c[t > z + 2];stop —— b;cft >
2]; stop [ from the rule (TAP1)],

e b;c[t > 2];stop bick b;c[(t + 1) > 2];stop [ from
the rule (TAP2)]

Secondly, for the process P in Example 2 (see Fig.1):

« P 2% at = 4listop[lb[t = 0; P [from the

rules (PR1), (CH3), (TAP2)]

3



e aft = 4];stopl]b[t =0]; P ick aft = 3];stop [from

the rules (CH4), (TAP2)]

3 Protocol Synthesis
3.1 Protocol Synthesis Problem

In this section, we define a protocol synthesis prob-
lem from timed service specifications. First we intro-
duce some notations. Let place(a) denote a node as-
signment for the action a. In the rest of this paper, we
assume that a* stands for an action a with place(a) =
k. Moreover, we use some notations SP(B), EP(B),
AP(B), whose intuitive meanings are the sets of the
starting nodes of B, the ending nodes of B, all the
participating nodes in B, respectively. For example,
if B = a';b?; exit|||e?; d?; exit, then SP(B) = {1, 3},
EP(B) = {2} and AP(B) = {1,2,3}. We can derive
them from B and place() mechanically. The formal
definitions of these notations appeared in [3].

[Protocol Synthesis Problem)]

Assumptions: 1. there exists a reliable(error-
free), asynchronous, full-duplex communica-
tion channel between every two nodes.

2. there’s no limitations on contents of mes-
sages exchanged among nodes.

3. all nodes have their own clocks and they al-
ways synchronize each other.

Inputs: e A service specification S.

e A node assignment place(a) for each action

a.
e An upper bound of delay d;;,, for each
channel from node i to 7, such that d;;max =
0 and Vk dijmax S dikmax + dk]‘max.
Here, we give the following restrictions for simpli-
fying the derivation.

Restriction 1. S does not contain any deadlock
states. And S does not contain the syn-
chronous parallel composition (rendezvous).

Restriction 2. If S contains Bi[> By as a
subexpression, B; must be a finite process,
and there exists a constant ¢y such that B;
can execute no action after time t5 and B>
can execute any action only after time ¢g.

Restriction 3. If S contains By >> B, as a
subexpression, B; must be a finite process.

Restriction 4. Every process invocation in S
must not have any process parameters, i.e.
the behaviour of each invoked process does
not depend on the previous behaviour.

Restriction 5. The context of each process in-
vocation P must be either a; P or a[P(t,T)];
P, so that just one action precedes P.

Restriction 6. For every subexpression Bj[|Bs
of S, there exists a node p such that
SP(By) = SP(B;3) = {p}, and EP(B;) =
EP(By)[3].

Restriction 7. For every subexpression Bj[>

B, of S, EP(B,) = EP(B,)[3].

Outputs: Protocol entity specifications
Nodey, Nodes, ..., Node, for all nodes, which
are correct in the following meaning;:

Let I be the composite system which connects
Nodey, Nodes, ..., Node, together with a com-
munication medium which has channels from
node ¢ to j with maximum delay of d;;,,., . Intu-
itively, {Node;}i=1 ... » are correct w.r.t. S when
S can strictly simulate I including timing proper-
ties, whereas I can simulate S if time is ignored.
In this case, a set of executable time of each ac-
tion in [ is a nonempty subset of that of the cor-
responding action in S.

Formally, the correctness is defined as follows.

Let

I = hide G in (asap G, in
((Nodeq|||Nodes|| - . . ||| Node,)|[G]| M edium,))

where G is a set of all sending/receiving ac-
tions of synchronization messages {s;;(m),r;;(m)
| 3,7 € {1,2,...,n}, m € M} and G, is a set
of all sending actions of synchronization mes-
sages {s;;(m)]i,7 € {1,2,...,n}, m € M}, and
Medium is a specification of the communication
medium defined as follows:

.....

Medium = |||; jeq1,2,...,ny Channel;
Channel;; = mmEM(-"‘i]‘ ('m)[T — t];
rij(m){z <t <z +dijax]; Channels;)

Note that under the asynchronous communica-
tion medium, the sending actions are executed as
soon as possible they are enabled, because they
are spontanous. In contrast, the receiving actions
are not spontanous, so they are not executed as
soon as possible.

Before defining the correctness, we need some pre-
liminary definitions.

o, . . (03 (03 (o3
Definition 2 Relations —y,—,,—, are
defined as follows: : . ,

o det B(-5)" -5 (-5)" B/,
B ==, B = a € ActU {6, tick}
B(*I—>)*B', a=c¢
(ks o (Mg,

a € ActU {6,1}

tick
B(lc—>)*B', a=c¢

W e { B(—5u)" 5o (~5u)* B,

def
B-%,B =

B ==, B a € ActU {6}
B(fi—m)*B', a =€
O
Definition 3 A binary relation C; on be-
haviour expressions is defined as a maximum one
of relations R satisfying the following condition:

e If IRS, then for all @ € ActU {§,€}, all of
the following conditions hold:
1. If I ==, I', then there exists some S’
st. S =; S" and I'RS".
2. I I gt I', then there exists some S’
st. S UK, 9 and I'RS".
3. If S ==, S’, then there exists some I’
st. I =, I' and 'RS". O
Here we define the correctness.



Definition 4  We call a derived protocol speci-
fication {Node; }i—1 ... » as Cy-correct w.r.t. S if
the following relation holds:

hide G in (asap G, in (
(Nodei|||Nodes||| ... ||| Node,)||G]| M edium)) E¢ S

O
3.2 Synthesis Method
Now we describe our method for synthesizing pro-
tocol specifications from timed service specifications.
Basically, we follow a similar idea to our previous
work[3, 8]. Thus, after each node executed an action,
it sends messages to the nodes which execute the suc-
ceeding actions, informing them that it has finished.
We refer this kind of messages as synchronization mes-
sages. To handle time constraints between actions on
different nodes, we naturally assume that synchroniza-
tion messages may also contain, if needed, information
about the time at which preceding actions were exe-
cuted. One major problem is that the communication
delay may make it impossible to execute an action in
time. In general, all realistic communication media
have propagation delay, and we cannot neglect uncer-
tainty of such a delay in most cases. To overcome this
problem, we propose the following method. First, for a
given service specification S, we decide where to insert
actions sending or receiving synchronization messages
to simulate S, according to the policy similar to [3, §].
Then we restrict time-constraints of some actions in S
in order to guarantee the execution of succeeding ac-
tions are possible at the worst case of communication
delay, keeping the restriction to a minimum. We rep-
resent the obtained specification as Restr(S). Finally,
from the restricted specification S’ = Restr(S) , we
derive protocol entity specifications for all nodes. If S
and S’ are equivalent[6], the derived protocol specifi-
cations are guaranteed correct w.r.t. S.
In the following subsections, we describe how the
simulation of the service specification S is done, and
how we can define the transformation Restr(), for each

construct of LOTOS/T+.

3.2.1 Action Prefix

We can simulate Action Prefix a?[P(t, z)]; B by send-
ing a synchronization message from node p to all the
nodes in SP(B).

If time constraints are specified by assignment and
referrence of the variables, nodes at which such vari-
ables are assigned to some values must propagate the
values to the succeeding nodes.

Example 3
S =a'lz=t];p’t<az+5Ay =t
At <o+ TAL< y+ 5);exit
di2max = dizmax = d2smax = 2
Node1 = alz =t]; s12(m, z); exit
Node; = ri2(m,z);b[t <z +5Ay=1];
saz(m’', x,y); exit

Nodes = roz(m',z,y);c[t <z +5At < y+ 5];exit O

Here we can remove some redundancies in inserting
synchronization messages when time is considered.
Specifically, if there’s no executable time of a suc-
ceeding action that is earlier than or equal to some
executable time of the preceding action, and there’s
no values to propagate to succeeding nodes, the syn-
chronization message at this place is of no need to
guarantee actions’ order, i.e., time implicitly guaran-
tees the order (recall Assumption 3 in Section 3.1).
For example, let S = a'[P(t, 7)]; b*[Q(¢,7)]; exit and
suppose 3t t' T, y[P(t,Z)A Q(t',g)A t' < t] is unsat-
isfiable. Then from the time constraints, a is always
executed before b, so even if we simply execute a and b
at different places, the order is still preserved. There-
fore, we can remove the synchronization message from
node 1 to node 2 in this case.

Example 4
S=a'll <t <3[4 <t <5 exit

If the input is the following;:

di2max = 4,

we will simply derive:
Node; = all <t < 3[;
Nodey, = bl4 <t <5];

because [(1 < t < 3)A 4 <t <B5)A(t <t)]is

unsatisfiable. O

From now, we consider the case where communica-
tion delay affects the simulation. For action prefix
aP[P(t,z)]; B, we will derive a specification Restr(S)
whose time constraint of aP is restricted so that there
exists a time to execute the succeeding actions in B no
matter how late the messages from the node p reach
the nodes in SP(B). Because we describe time con-
straints in Presburger formulas, we can easily restrict
time constraints by logical conjunction.

Example 5 If the input is:
S =a' 1 <t<3;°a<t< T

A5 <t <10];d%[6 < t < 12]; exit
dismax = 4, d2zmax = 4, dzs2max = 3,

we restrict the time constraint of each action as fol-
lows:

d?: 6 <t <12 (unmodified)

315 <t < 10A W >t + dsamax A6 <t < 12)
(=5<t<9)

b2: 4 <t < TA It >t +dozmaxA 5 <t < 9)
(=4<t<5)

al: 2<t<4 (unmodified (by Example 4))

So the derived protocol entity specification will be the
followings:

Node; = a'[1 <t < 3];exit
Node, = b*[4 <t < 5]; s93(m1);
r35(m2);d*[6 < t < 12]; exit
Nodes = r93(ml); C3[5 <t < 9;s32(m2); exit O



Now we can define Restr(S) formally as follows.

Definition 5 If S = a[Q(¢, z)]; B, then Restr(S) is

defined inductively as follows:

Restr(S) def Restr(S,0)
S if B = exit, B = stop
Restr(S.V) =N 4[Q(t,2) A Q'(1)]; Restr(B,V U z)

otherwise.

where, if {b;[Qk(t,yr)] | £ € K} is the set of starting
actions of Restr(B,V UZ) with their time constraints,

( Akex{atlayk [t'>t+ dplace(a),place(bk)max
AQr(t', yr)]}
if for some k € K s.t. Q(¢,Z)A
Qr(t',yr) At' <t is satisfiable,
or any of the variables in V U Z are
referenced in B,
true otherwise.

Q=

O
To summarize this section, our derivation takes 3
steps:

Step 1 determine at what position the synchroniza-
tion messages are needed.

Step 2 according to the results of Step 1 and d
construct Restr(S).

Step 3 decompose Restr(S) into each node by the
similar method to [3, 8], already described above.

ijmax’

3.2.2 Choice

To simulate choice expressions, we must solve
the problem about distributed choice and empty
alternatives[3]. A choice expression B;[|Bs is called
distributed choice if the starting actions of By and Bs
may be executed at different nodes. And we say that
a node p has an empty alternative w.r.t. By[| B, if some
actions in B; may be executed at node p, whereas no
actions in B(jmod2)+1 are executed at node p. Dis-
tributed choice may cause simultaneous execution of
the starting actions of both By and Bs. Empty alter-
natives on node p may cause unconditional execution
of B; even if B(jmoaz2)+1 is chosen. As for distributed
choice, we avoid it by putting the same restriction
(Restriction 6) as [3]. We have proposed a method
for solving the empty alternative problem for the un-
timed case in [3]. But, here, we will use a slightly
modified method. Unlike [3], the node where choice
was made should immediately sends messages to the
nodes that have empty alternatives in order not to vi-
olate time constraints of succeeding processes. More-
over, to make sure each B; would not terminate be-
fore the messages sent to the nodes which has empty
alternatives reach the destinations, the ending nodes
of the chosen expression will receive acknowledgments
from the nodes with empty alternatives before execut-
ing the ending actions (note that if the starting action

def or B = P (Process invocation),

of B; coincides the ending action of it, i.e., the max-
imum length of B;’s action sequences is 1, this simu-
lation method may not be applicable). Furthermore,
to simulate a choice expression B;[|Bs in the above
way successfully, we must not remove redundant syn-
chronization messages in both B; and B,, discussed in
Section 3.2.1 (Example 4), otherwise the intermediate
actions of each B; may be executed independently, no
matter which alternative is chosen.

To make it possible to simulate choice in the way
above, we must guarantee that all the messages reach
the destinations in time by restricting the time con-
straints of some actions. For a choice expression
B[] Bs, if the messages sent from the node choice was
made wouldn’t have reached the destinations, or the
acknowledgments wouldn’t return, before the chosen
behaviour B; have been done, extra time would be
spent waiting for the messages. So we will restrict the
time constraints of the starting actions of By and B,
so that the messages can reach in time.

Example 6 Consider the following input:

S =a'2<t<5Az=t];b[t <z+3];c’[t <z + 6]; exit
[d'[3 <t < 9];e’[t < 10]; exit
dizmax = 2, d2smax = 4, dismax = 3

We must restrict the time constraint of d* in or-
der to make the message from node 1 to 2 and the
acknowledgment from node 2 to 3 reach by time 10.

Restr(S) = a'2<t<5Az =t];b’[t <z + 2;
At < + 6]; exit
[d'[3 <t < 4];€*[t < 10]; exit
Then, the specification of each node will be derived
as follows:
Node; = a'[2<t <5 Az =t];s12(ml,z); s13(m3, z);
exit
[d[3 < t < 4]; (s13(m2); exit|||s12(m4); exit)
Nodey = ria(ml,z);b°[t < @ + 2]; s93(mb); exit
[Jr12(mA4); s23(m4); exit
Nodes = ri13(m3,x);123(m4); c [t <z + 6]; exit
[(r12(m2)|||res(m4)) >> €’[t < 10];exit O
For defining Restr(S), we need the auxiliary function
Restr'(S), which is the same as Restr(S) except that
no removal of redundant messages is considered. The

formal definition of Restr’(S) appears in [10].
Now we can define Restr(S) as follows:

Definition 6 If S = B[] Bz, then Restr(S) is de-

fined inductively as follows:

Restr(S) < Restr'(f(B;))[|Restr'(f(Bz))

where, we assume that {b;[Qr(¢,yr)] | k € K} is the
set of the starting actions of B; with their time con-
straints, and that f(B;) is an expression B; whose time
constraint of each starting action Qg (¢, yx) is replaced



with Qr(t,yr) A R, (t). Here R (t) is a Presburger
formula defined as follows.
RL(t) = /\ (33l >t + dpamax + darmax N Ri(t', )]}

q € AP( 7)\AP(B(7mod2)+'l)
leL,re EP(B;)

def

where {R(t,z)|l € L} denotes the time constraints
of EP(B;) and SP(B;) = {p}. O

3.2.3 Asynchronous Parallel

For any asynchronous parallel expression B|||Ba, B;
and B, are executed independently. So any synchro-
nization messages are necessary between B; and Bs.

Thus, Restr(S) is defined as follows:

de

-

Definition 7 If S = Bj|||Bs, then Restr(S) =
Restr(By) ||| Restr(Bs) O

3.2.4 Enabling

For enabling expression B; >> By, we can apply es-
sentially the same idea as action prefix. Due to the
lack of space, we omit the details about Restr() trans-
formation for the enabling expressions. The details
can be found in [10].

3.2.5 Disabling

For each disabling expression Bj[> Bs, we make a
strong restriction, Restriction 2, for simplicity. That
is, for some tj, all actions in B; are not executable
after time tp, and all actions in By are executable only
after time t5. From Restriction 2, there is no cases
that actions in B; and By are simultaneously enabled
at different nodes. So B;i[> Bs can be simulated by
inserting messages to notify successful termination of
By to all nodes.

To make this simulation method work,the messages
notifying B;’s termination have to reach before ;.

Example 7 The input described below satisfies
Restriction 2 (tg = 112) and Restriction 7:
S = a'[l <t <4;b%[3 <t <87 <t <10];exit

[> d®[12 < t]; exit
dismax = 3, dasmax = 4, dsimax = 3, dsamax = 4,

Liimax = 2 “for other ,]-

In order to guarantee that the notification of success-
ful termination sent from node 3 to nodes 1 and 2 can
reach before time ¢, = 11, the time constraint of ¢
must be restricted to 7 < ¢t < 7, because the notifi-
cation from node 3 to node 2 may take dzsmax = 4
units of time. Then, the restriction discussed in the
previous section is applied for b? and a'.

Restr(S) = a'[1 <t <1];b%[3 <t < 4];
A7 <t < T)yexit[> d*[12 < #]; exit

From this, the protocol entity specification of each
node will be derived as below:

Node;, = a*[1 <t <1];73(ml);exit[> i[t = 12]; exit

Nodey = b?[3 <t < 4];739(m1); exit[> i[t = 12]; exit
Nodez = ¢*[7 <t < 7];(s31(m1)|||s32(m1)) >> exit

[> d’[12 < t]; exit O
The definition of Restr(S) is as follows:

Definition 8 If S = B;[> Bs,

Restr(S) def Restr(g'(B1))[> Restr(B>),

where ¢'(B;) represents a transformation replacing the
time constraint P(t,Z) of each ending action of By
with P(t,z) A P'(t). Here
P't) < A
pEEP(B1),qEALL
3.2.6 Process Invocation

{t+dPQmax < tO}' U

In our specification language, time is reset to 0 at every
moment processes are invoked, avoiding accumulation
of time constraints. To simulate this in distributed
environments, we make all nodes to pretend as if they
invoke a process simultaneously. In order to do so,

1. Fix one node for a responsible node, which de-
cides the time to invoke a process (the time just
before invoking a process). In this paper, from
Restriction 5, the context of each process invoca-
tion must be the form of a; B or a[P(t,z)]; B. So
we fix the node place(a) as the responsible node
w.r.t. the process P.

2. The responsible node notifies the invocation time
of the process to all nodes, and immediately in-
vokes the process locally.

3. The other nodes except the responsible node re-
ceive the notification, and invoke the process
whose time constraints are modified to make the
invocation time be virtually equal to that of the
responsible node. Recall that the actual local
time is reset to 0 just after the process invoca-
tion of each node.

To implement 3., we modify each process P without
parameters in service specifications to P(ep) with just
one parameter ep in protocol specifications (Restric-
tion 4), and replace every occurrence of ¢ in the right
hand of the process definition of P with ¢t + ep. The
parameter ep represents the difference between the ac-
tual invocation time and virtual invocation time. For
example, P(3) means the process P with replacing its
time constraint, for instance, ¢ < 5, with ¢t + 3 < 5.
Corresponding to each process invocation of P in the
service specification, we derive a protocol specification
such that (1.)the responsible node sends the current
time tp to every other node just before invoking P(0),
and (2.)the other nodes invoke P(t — tp) after receiv-
ing tp from the responsible node. The time t — tp
corresponds to the actual communication delay from
the responsible node.

Note that the process P may be called by another
process Q. In such a case, the variable t in P(t — tp)
should be adjusted to represent the virtual time at
which @ had been invoked. So it should be modified
to P(t + eq — ep) if this process invocation occurs in
the right hand of the definition of process @), where



t 4+ eg represents the virtual invocation time of Q.
Example 8
P :=ad'2<t<4nz=t];b*[t<z+5];P
[c'[5 < t]; exit
"2max = 21 max = 3
Node, = Plep):=a'[2<t+ep<dAz=t+epA
't >t+ep+digmax At <x+5));
s12(ml,z);791(m3,tp); P(t+ep —tp)
>> sy(md); exit]]c![5 < t + ep]; exit
Nodey, = P(ep):=ri15(ml,z);b’[t +ep <z + 5];
s91(m2,x); s91(m3,t + ep); P(0)
[Jr12(m4); exit |
To make this simulation possible, we check whether
the starting action of each process cannot be late if
the notification from the responsible node would reach
in maximum delay. For consistency, we include this

checking into Restr(). If the checking is false, the
time constraint of the starting action becomes “false.”

Definition 9 If S = P where P := B, Restr(S) is
defined inductively as follows:
Restr(S) X' P where P := h(Restr(B))

where h(Restr(B)) is an expression obtained by re-
placing the time constraint Q(t, zx) of each starting
action ay, of Restr(B) with Qi (¢, zx) A Q. Here Q},
is a Presburger formula defined as follows :

def

;c = /\{Elt'fla:k [t’ > 0+dp7place(ak)max/\Q(t/= 371»)]}

p=1,....n

3.3 Synthesis Algorithm

The synthesis algorithm consists of two parts:

O

1. For a given service specification S, an assignment
of each action to a node, and a maximum delay
dijimax for each pair of nodes, construct §' =
Restr(S).

2. If S ~, S’ ie., S and S’ are bisimulation equiv-
alent when time is ignored[6], derive a protocol
entity specification Node; of each node 7 from S’.
Otherwise, do not derive and halt.

In [10], we have defined a transformation 7, (B) which
derives a protocol entity specification of node p from
a service specification described by the behaviour ex-
pression B. Although we omit the precise definition
of T,(B) in this paper because of the space limitation,
we summarize our result by the following theorem:

Theorem 1  For a given service specification S, let
S' = Restr(S). If S ~, S’, the protocol specifica-
tion {T;(S")}iz1,2,....n is Ci-correct w.r.t. the service
specification S. O

4 Concluding Remarks

In this paper, we have proposed a method to
synthesize protocol specifications from timed service
specifications written in LOTOS/T+. The proposed
method enables us to synthesize protocol specifica-
tions from both timed and structured service speci-
fications. In contrast to [5], our method restricts the

3

time constraints of service specifications, not of the
communication media, because the delay of the media
depends on the physical lines, so it is more difficult to
change them than those of the specifications. More-
over, our correctness criterion guarantees that the con-
trol structure of the derived protocol specification is
a full, not partial, implementation of that of the ser-
vice specification. Using the same timing extension as
ours, our result should easily apply to other process
models such as CCS.

The future work is to extend the class of service
specifications and to establish a framework for evalu-
ating performance aspects of the derived protocol en-
tity specifications.
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