
Protocol Synthesis from Timed and Structured Speci�cationsAkio Nakata Teruo Higashino Kenichi TaniguchiDept. of Information and Computer Sciences, Osaka UniversityToyonaka, Osaka 560, JapanAbstractIn this paper, we propose a method to synthesizeprotocol speci�cations automatically from service spec-i�cations written in a time-extended LOTOS calledLOTOS/T+. In LOTOS/T+, structured descrip-tions, such as parallelism and interruption are allowedto describe service speci�cations, and time-constraintsamong non-adjacent actions can be described usingPresburger formulas. Here we assume that there is areliable communication channel between any two nodesand the maximum communication delay for each chan-nel is bounded by a constant. Moreover we assumeservice speci�cations have no deadlocks. Under oursimulation policy, a speci�cation S 0 is derived froma given service speci�cation S and a given maximumcommunication delay of each channel. In S 0, time-constraints necessary for exchanging synchronizationmessages are added. If S and S 0 can carry out thesame behaviour, i.e., if S and S 0 are bisimulationequivalent when time is ignored, then a correct pro-tocol speci�cation for simulating S is derived from S 0automatically.1 IntroductionFor designing reliable distributed systems, protocolsynthesis methods are useful [1]. In the recent years,several methods for synthesizing correct protocol spec-i�cations from given service speci�cations mechani-cally have been proposed for FSM, EFSM, LOTOSand Petri Net models [2, 3, 4]. However those propos-als do not consider quantitative time constraints forthe systems. It is highly desirable to synthesize proto-col speci�cations from time-constrained service speci-�cations. Recently, in [5], a method to derive protocolspeci�cations from timed service speci�cations writ-ten in a FSM model has been proposed, but in sucha FSM model we can not specify complicated order ofactions in a structural way.In this paper, we propose a method for synthesiz-ing correct protocol speci�cations automatically fromgiven service speci�cations written in a sub-class ofLOTOS/T+ (which is a modi�ed version of [6]), oneof timed extensions of LOTOS [7]. LOTOS/T+ hasan ability to specify complicated action ordering suchas parallel composition and interruption. Moreover, inLOTOS/T+, time constraints among actions can bespeci�ed as formulas using addition, subtraction andinequalities on integers. In addition, using variablesto hold the time when preceding actions are executed,we can specify time constraints for succeeding actions.

In our method, we assume that (a) each communi-cation channel is error-free and its maximum propaga-tion delay is bounded by a constant, and that (b) allnodes with their clocks can start their executions si-multaneously and the clocks always synchronize eachother. Under this assumption, we give a simulationpolicy for each node to execute actions in exactly thesame order as speci�ed in a given service speci�ca-tion. Basically, the simulation policy is based on themethod which we have proposed in [3, 8]. That is,after executing each action, say a, a synchronizationmessage is sent to the node which executes a succeed-ing action, say b, to inform that a has been executed.If the execution time of a is needed, the time is alsotransmitted. The action b must be executed after themessage is received. We derive protocol speci�cationsunder the above policy. However, if we consider time-constraints, many problems arise. For example, if aservice speci�cation states \the action a must be exe-cuted before time 3 at node 1, and then the action bmust be executed before time 5 at node 2," and if themaximum communication delay from node 1 to node2 is 3 units of time, the synchronization message sentfrom node 1 after a is executed may not reach node2 before time 5. To cope with this kind of problem,we restrict, for example, the time constraint of the ac-tion a to \before time 2" so that we can guarantee thesynchronization message reaches node 2 in time. Asanother example, suppose that a service speci�cationstates \the action a must be executed between time 1and 3 at node 1, and after that the action b must beexecuted between time 4 and 5 at node 2". If the max-imum communication delay from node 1 to node 2 is3 units of time, the same observation as the previousexample holds, i.e., the synchronization message fromnode 1 to node 2 may not reach in time. But as for theabove case, a di�erent solution is possible. Since eachnode has its own clock and all clocks synchronize eachother, the ordering of actions a and b is guaranteedwithout any message exchange. That is, the temporalordering as the total system is guaranteed if each nodedecides the execution time of its action a (or b) usingits own clock.In our derivation method, �rst, from a given ser-vice speci�cation S and a given maximum delay ofeach channel, we derive a speci�cation S0 where ad-ditional time constraints are appended to S so thatthe message exchanges are carried out in time. Wemake only the weakest timing restrictions to S so thateach node can simulate S under the above policy. If

Table 1: Syntax of LOTOS/T+E ::= stop (untimed deadlock)j exit (successful termination)j a;E (action pre�x, untimed)j a[P (t; �x)];E (action pre�x, timed)j E[]E (choice)j EjjjE (asynchronous parallel)j EjjE (synchronous parallel)j Ej[A]jE (generic parallel composition)j E[> E (disabling)j E >> E (enabling)j hide A in E (hiding)j asap A in E (\as soon as possible" execution)j P [g1; : : : ; gk](�e) (process invocation)S and S0 can execute the same behaviour (note thatthe transformation from S to S0 does not necessarilypreserve the equivalence), i.e., if they are observation-ally equivalent (bisimulation equivalent[6]) when weconsider sending/receiving actions of synchronizationmessages and an action tick representing one unit timeprogress as unobservable, then a protocol speci�cationsatisfying S is derived automatically from S0.The paper is organized as follows. Section 2 de-scribes our speci�cation language LOTOS/T+. InSection 3 we explain the protocol synthesis method.Section 4 concludes this paper.2 LOTOS/T+The speci�cation language we use for describingboth service speci�cations and protocol speci�cationsis LOTOS/T+, which is slightly modi�ed one fromLOTOS/T[6]. The syntax and informal semantics ofLOTOS/T+ are described below.De�nition 1 Behaviour expressions of LO-TOS/T+ is de�ned as Table 1 (the preference ofeach operator is the same as LOTOS[7]) , where a 2Act [fig(Act stands for a �nite set of all observableactions, and i represents an internal (unobservable)action), A � Act, k 2 N(N is a set of natural num-bers), and P (t; �x) stands for a Presburger formula[9],that is, a �rst order logic formula whose atoms areinteger linear inequalities, which has a free variable tand other free variables xi. Here �x def= (x1; x2; : : : ; xk)for some k. Intuitively, t represents the current time, estands for an integer linear expression (ILE for short)and �e def= (e1; e2; : : : ; ek) for some k, where each ei isan ILE. 2In LOTOS/T+, time constraints of actions are de-scribed in a subclass of Presburger formulas, morespeci�cally, logical combinations of the atoms each ofwhich takes the form of either el � t, t � eu or x = t. Here, el (eu) is an ILE representing the lower bound(upper bound , respectively) of the time an action isexecutable. The atomic formula x = t means that theaction's executed time is assigned to the variable x.

For simplicity, we use an abbreviation el � t � eu forel � t ^ t � eu. Other symbols of inequality such as<,�,etc. may also be used. In our semantics, an upperbound eu speci�ed as a time constraint of an actionmeans the action must be executed no later than eu.In this case, we say that urgency of the action at timeeu is speci�ed. Note that in our language, executabil-ity and urgency of each action at each given time t aredecidable[6].Example 1B = a[2 � t � 3^ x0 = t]; b[t = x0 +3]; c[t =x0 + 4]; stopThe behaviour expression B represents the followingbehaviour. The action a must be executed betweentime 2 and 3, and the execution time of a is assignedto the variable x0. Then b must be executed exactly3 units of time after the execution of a. And then cmust be executed exactly 4 units of time after a. 2Example 21. E = a[x = t]; b; c[t � x+ 2]; stop2. P = a[t = 5]; stop[]b[t = 1];PThe �rst behaviour expression is an example that anaction without time constraints is inserted betweentime constrained actions. b in the �rst example canbe executed at any time after a is executed, that is,we consider that a formula \true" is omitted as a timeconstraint of b. Moreover, an unbounded interval \t �x+ 2" is speci�ed as a time constraint of c.The second one is an example of recursive processes.A clock is reset to 0 at each moment P is invoked.Generally, each instance of processes has its own clocklocally, which is reset to 0 at the beginning of the pro-cess's run. If a process P has a process parameter likeP (t), however, the clock is not reset to 0 but to theactual time t0, that is, P (t0) is invoked. The corre-sponding LTS's are shown in Fig. 1. 2The di�erence between LOTOS/T+ and LO-TOS/T is an interpretation of the behaviour of inter-nal actions. In the method we propose, the delay ofinternal messages exchanged among nodes is assumedto be uncertain. On the other hand, in LOTOS/Tinternal actions are de�ned to be executed as soon aspossible after it is enabled, so we cannot describe un-certain delay of internal actions in LOTOS/T. Thus,we de�ne LOTOS/T+ so that the executable time ofinternal actions may be decided nondeterministicallyin the range of time constraints. To describe this prop-erty, we de�ne a construct \asap A in B," represent-ing the same behaviour B except the actions in Amustbe executed as soon as possible they are enabled.The formal de�nition of the semantics is given asthe inference rules in Fig. 2. From the rules, we canautomatically decide whether an action a[P (t; �x)] isexecutable, if satis�ability of the corresponding pred-icates P (0; �x) and 9t09�x[t0 > 0^ P (t0; �x)] is decidable.P (0; �x) denotes whether a is executable at the currenttime and 9t09�x[t0 > 0 ^ P (t0; �x)] denotes whether a

tickatickticktick bbb tickticktick ticka[t = x]; b;c[t � x+ 2]; stopb; c[t � 2]; stopb; c[t+ 1 � 2]; stopb; c[t+ 2 � 2]; stop c[t � 2]; stopc[t+ 1 � 2]; stopc[t+ 2 � 2]; stopstopE tickticktickticktick ba tickPa[t = 4]; stop[]b[t = 0];Pa[t = 3]; stopa[t = 2]; stopa[t = 1]; stopa[t = 0]; stopstopPcFigure 1: The semantics of E and P|stop tick�! stop (S1) |exit ��! stop (E1) |exit tick�! exit (E2)P (0; �c)a[P (t; �x)];B a�! [�c=�x]B (TAP1) 9t09x[t0 > 0 ^ P (t0; x)]a[P (t; �x)];B tick�! a[P (t+ 1; �x)]; [t+ 1=t]B(TAP2) |a;B a�! B (UAP1)|a;B tick�! a; [t+ 1=t]B (UAP2) B1 ��! B01B1[]B2 ��! B01 i� � 2 Act [f�; ig(CH1) B2 ��! B02B1[]B2 ��! B02 i� � 2 Act [f�; ig(CH2)B1 tick�! B01 B2 tick�! B02B1[]B2 tick�! B01[]B02 (CH3) B1 tick�! B01 B2 6tick�!B1[]B2 tick�! B01 (CH4) B2 tick�! B02 B1 6tick�!B1[]B2 tick�! B02 (CH5)B1 ��! B01 B2 ��! B02B1j[A]jB2 ��! B01j[A]jB02 i� � 2 A [f�g(PA1) B1 tick�! B01 B2 tick�! B02B1j[A]jB2 tick�! B01j[A]jB02 (PA2) B1 a�! B01B1j[A]jB2 a�! B01j[A]jB2 i� a 62 A _ a = i(PA3)B2 a�! B02B1j[A]jB2 a�! B1j[A]jB02 i� a 62 A _ a = i(PA4) B1j[;]jB2 ��! B0B1jjjB2 ��! B0 (PA5) B1j[Act]jB2 ��! B0B1jjB2 ��! B0 (PA6)B1 a�! B01B1[> B2 a�! B01[> B2 (DI1) B2 ��! B02B1[> B2 ��! B02 i� � 2 Act [f�; ig(DI2) B1 ��! B01B1[> B2 ��! B01 (DI3)B1 tick�! B01 B2 tick�! B02B1[> B2 tick�! B01[> B02 (DI4) B1 a�! B01B1 >> B2 a�! B01 >> B2 (EN1) B1 ��! B01B1 >> B2 i�! B2 (EN2)B1 tick�! B01 B2 tick�! B02 B1 6 ��!B1 >> B2 tick�! B01 >> B02 (EN3) B ��! B0hide A in B ��! hide A in B0 i� � 2 (Act nA) [f�; ig (HI1)B a�! B0hide A in B i�! hide A in B0 i� a 2 A(HI2) B tick�! B0hide A in B tick�! hide A in B0 (HI3) B a�! B0asap A in B a�! asap A in B0(ASAP1)B tick�! B0 B 6 a�! for all a 2 Aasap A in B tick�! asap A in B0(ASAP2) [�e=�x]Bfg01=g1; : : : ; g0k=gkg ��! B0P [g01; : : : ; g0k](�e) ��! B0 i� P [g1; : : : ; gk](�x) := B is a de�nition(PR1)Figure 2: The operational semantics of LOTOS/T+may be executable in the future. Since P (t; �x), a timeconstraint of the action, is a Presburger formula, allthe predicates above are also Presburger formulas, sotheir satis�ability is decidable[9, 6]. Hence, we canconstruct mechanically the corresponding LTS's (pos-sibly, of in�nite state spaces) from given behaviourexpressions. Here we give some rules to show how toconstruct LTS's. Firstly, for the process E in Exam-ple 2 (see Fig.1):
� E = a[t = x]; b; c[t � x + 2]; stop a�! b; c[t �2]; stop [from the rule (TAP1)],� b; c[t � 2]; stop tick�! b; c[(t + 1) � 2]; stop [fromthe rule (TAP2)],Secondly, for the process P in Example 2 (see Fig.1):� P tick�! a[t = 4]; stop[]b[t = 0];P [from therules (PR1), (CH3), (TAP2)],

� a[t = 4]; stop[]b[t = 0];P tick�! a[t = 3]; stop [fromthe rules (CH4), (TAP2)],3 Protocol Synthesis3.1 Protocol Synthesis ProblemIn this section, we de�ne a protocol synthesis prob-lem from timed service speci�cations. First we intro-duce some notations. Let place(a) denote a node as-signment for the action a. In the rest of this paper, weassume that ak stands for an action a with place(a) =k. Moreover, we use some notations SP (B), EP (B),AP (B), whose intuitive meanings are the sets of thestarting nodes of B, the ending nodes of B, all theparticipating nodes in B, respectively. For example,if B = a1; b2; exitjjje3; d2; exit, then SP (B) = f1; 3g,EP (B) = f2g and AP (B) = f1; 2; 3g. We can derivethem from B and place() mechanically. The formalde�nitions of these notations appeared in [3].[Protocol Synthesis Problem]Assumptions: 1. there exists a reliable(error-free), asynchronous, full-duplex communica-tion channel between every two nodes.2. there's no limitations on contents of mes-sages exchanged among nodes.3. all nodes have their own clocks and they al-ways synchronize each other.Inputs: � A service speci�cation S.� A node assignment place(a) for each actiona.� An upper bound of delay dijmax for eachchannel from node i to j, such that diimax =0 and 8k dijmax � dikmax + dkjmax.Here, we give the following restrictions for simpli-fying the derivation.Restriction 1. S does not contain any deadlockstates. And S does not contain the syn-chronous parallel composition (rendezvous).Restriction 2. If S contains B1[> B2 as asubexpression, B1 must be a �nite process,and there exists a constant t0 such that B1can execute no action after time t0 and B2can execute any action only after time t0.Restriction 3. If S contains B1 >> B2 as asubexpression, B1 must be a �nite process.Restriction 4. Every process invocation in Smust not have any process parameters, i.e.the behaviour of each invoked process doesnot depend on the previous behaviour.Restriction 5. The context of each process in-vocation P must be either a;P or a[P (t; �x)];P , so that just one action precedes P .Restriction 6. For every subexpression B1[]B2of S, there exists a node p such thatSP (B1) = SP (B2) = fpg, and EP (B1) =EP (B2)[3].Restriction 7. For every subexpression B1[>B2 of S, EP (B1) = EP (B2)[3].Outputs: Protocol entity speci�cationsNode1, Node2, : : : , Noden for all nodes, whichare correct in the following meaning:

Let I be the composite system which connectsNode1, Node2, : : : , Noden together with a com-munication medium which has channels fromnode i to j with maximum delay of dijmax. Intu-itively, fNodeigi=1;2;:::;n are correct w.r.t. S whenS can strictly simulate I including timing proper-ties, whereas I can simulate S if time is ignored.In this case, a set of executable time of each ac-tion in I is a nonempty subset of that of the cor-responding action in S.Formally, the correctness is de�ned as follows.LetI = hide G in (asap Gs in((Node1jjjNode2jjj : : : jjjNoden)j[G]jMedium));where G is a set of all sending/receiving ac-tions of synchronization messages fsij(m); rij (m)j i; j 2 f1; 2; : : : ; ng; m 2 Mg and Gs is a setof all sending actions of synchronization mes-sages fsij(m)ji; j 2 f1; 2; : : : ; ng; m 2 Mg, andMedium is a speci�cation of the communicationmedium de�ned as follows:Medium = jjji;j2f1;2;:::;ngChannelijChannelij = jjjm2M (sij(m)[x = t];rij(m)[x � t � x+ dijmax];Channelij)Note that under the asynchronous communica-tion medium, the sending actions are executed assoon as possible they are enabled, because theyare spontanous. In contrast, the receiving actionsare not spontanous, so they are not executed assoon as possible.Before de�ning the correctness, we need some pre-liminary de�nitions.De�nition 2 Relations �=)t, ��!u, �=)u arede�ned as follows:B �=)t B0 def= (B(i�!)� ��! (i�!)�B0;� 2 Act [f�; tickgB(i�!)�B0; � = �B ��!u B0 def= 8<: B(tick�!)� ��! (tick�!)�B0;� 2 Act [f�; igB(tick�!)�B0; � = �B �=)u B0 def= (B(i�!u)� ��!u (i�!u)�B0;� 2 Act [f�gB(i�!u)�B0; � = � 2De�nition 3 A binary relation vt on be-haviour expressions is de�ned as a maximum oneof relations R satisfying the following condition:� If IRS, then for all � 2 Act [f�; �g, all ofthe following conditions hold:1. If I �=)t I 0, then there exists some S0s.t. S �=)t S0 and I 0RS0.2. If I tick=)t I 0, then there exists some S0s.t. S tick=)t S0 and I 0RS0.3. If S �=)u S0, then there exists some I 0s.t. I �=)u I 0 and I 0RS0. 2Here we de�ne the correctness.

De�nition 4 We call a derived protocol speci-�cation fNodeigi=1;2;:::;n as vt-correct w.r.t. S ifthe following relation holds:hide G in (asap Gs in ((Node1jjjNode2jjj : : : jjjNoden)j[G]jMedium)) vt S23.2 Synthesis MethodNow we describe our method for synthesizing pro-tocol speci�cations from timed service speci�cations.Basically, we follow a similar idea to our previouswork[3, 8]. Thus, after each node executed an action,it sends messages to the nodes which execute the suc-ceeding actions, informing them that it has �nished.We refer this kind of messages as synchronization mes-sages. To handle time constraints between actions ondi�erent nodes, we naturally assume that synchroniza-tion messages may also contain, if needed, informationabout the time at which preceding actions were exe-cuted. One major problem is that the communicationdelay may make it impossible to execute an action intime. In general, all realistic communication mediahave propagation delay, and we cannot neglect uncer-tainty of such a delay in most cases. To overcome thisproblem, we propose the following method. First, for agiven service speci�cation S, we decide where to insertactions sending or receiving synchronization messagesto simulate S, according to the policy similar to [3, 8].Then we restrict time-constraints of some actions in Sin order to guarantee the execution of succeeding ac-tions are possible at the worst case of communicationdelay, keeping the restriction to a minimum. We rep-resent the obtained speci�cation as Restr(S). Finally,from the restricted speci�cation S0 = Restr(S) , wederive protocol entity speci�cations for all nodes. If Sand S0 are equivalent[6], the derived protocol speci�-cations are guaranteed correct w.r.t. S.In the following subsections, we describe how thesimulation of the service speci�cation S is done, andhow we can de�ne the transformation Restr(), for eachconstruct of LOTOS/T+.3.2.1 Action Pre�xWe can simulate Action Pre�x ap[P (t; �x)];B by send-ing a synchronization message from node p to all thenodes in SP (B).If time constraints are speci�ed by assignment andreferrence of the variables, nodes at which such vari-ables are assigned to some values must propagate thevalues to the succeeding nodes.Example 3S = a1[x = t]; b2[t � x+ 5 ^ y = t];c3[t � x+ 7 ^ t � y + 5]; exitd12max = d13max = d23max = 2Node1 = a[x = t]; s12(m;x); exitNode2 = r12(m;x); b[t � x+ 5 ^ y = t];s23(m0; x; y); exitNode3 = r23(m0; x; y); c[t � x+ 5 ^ t � y + 5]; exit 2

Here we can remove some redundancies in insertingsynchronization messages when time is considered.Speci�cally, if there's no executable time of a suc-ceeding action that is earlier than or equal to someexecutable time of the preceding action, and there'sno values to propagate to succeeding nodes, the syn-chronization message at this place is of no need toguarantee actions' order, i.e., time implicitly guaran-tees the order (recall Assumption 3 in Section 3.1).For example, let S = a1[P (t; �x)]; b2[Q(t; �y)]; exit andsuppose 9t; t0; �x; �y[P (t; �x)^ Q(t0; �y)^ t0 � t] is unsat-is�able. Then from the time constraints, a is alwaysexecuted before b, so even if we simply execute a and bat di�erent places, the order is still preserved. There-fore, we can remove the synchronization message fromnode 1 to node 2 in this case.Example 4 If the input is the following:S = a1[1 � t � 3]; b2[4 � t � 5]; exitd12max = 4,we will simply derive:Node1 = a[1 � t � 3]; exitNode2 = b[4 � t � 5]; exitbecause [(1 � t � 3) ^ (4 � t0 � 5) ^ (t0 � t)] isunsatis�able. 2From now, we consider the case where communica-tion delay a�ects the simulation. For action pre�xap[P (t; �x)];B, we will derive a speci�cation Restr(S)whose time constraint of ap is restricted so that thereexists a time to execute the succeeding actions in B nomatter how late the messages from the node p reachthe nodes in SP (B). Because we describe time con-straints in Presburger formulas, we can easily restricttime constraints by logical conjunction.Example 5 If the input is:S = a1[1 � t � 3]; b2[4 � t � 7];c3[5 � t � 10]; d2[6 � t � 12]; exitd12max = 4 , d23max = 4, d32max = 3,we restrict the time constraint of each action as fol-lows:d2: 6 � t � 12 (unmodi�ed)c3: 5 � t � 10^ 9t0(t0 � t + d32max ^ 6 � t0 � 12)(� 5 � t � 9)b2: 4 � t � 7^ 9t0(t0 � t + d23max^ 5 � t0 � 9)(� 4 � t � 5)a1: 2 � t � 4 (unmodi�ed (by Example 4))So the derived protocol entity speci�cation will be thefollowings:Node1 = a1[1 � t � 3]; exitNode2 = b2[4 � t � 5]; s23(m1);r32(m2); d2[6 � t � 12]; exitNode3 = r23(m1); c3[5 � t � 9]; s32(m2); exit 2

Now we can de�ne Restr(S) formally as follows.De�nition 5 If S = a[Q(t; x)];B, then Restr(S) isde�ned inductively as follows:Restr(S) def= Restr(S; ;)Restr(S; V) def= 8><>: S if B = exit; B = stopor B = P (Process invocation),a[Q(t; �x) ^Q0(t)];Restr(B; V [�x)otherwise.where, if fbk[Qk(t; yk)] j k 2 Kg is the set of startingactions of Restr(B; V [�x) with their time constraints,Q0(t) def= 8>>>>>>><>>>>>>>:
Vk2Kf9t09yk[t0 � t+ dplace(a);place(bk)max^Qk(t0; yk)]gif for some k 2 K s.t. Q(t; �x)^Qk(t0; yk) ^ t0 � t is satis�able,or any of the variables in V [�x arereferenced in B,true otherwise. 2To summarize this section, our derivation takes 3steps:Step 1 determine at what position the synchroniza-tion messages are needed.Step 2 according to the results of Step 1 and dijmax,construct Restr(S).Step 3 decompose Restr(S) into each node by thesimilar method to [3, 8], already described above.3.2.2 ChoiceTo simulate choice expressions, we must solvethe problem about distributed choice and emptyalternatives[3]. A choice expression B1[]B2 is calleddistributed choice if the starting actions of B1 and B2may be executed at di�erent nodes. And we say thata node p has an empty alternative w.r.t. B1[]B2 if someactions in Bi may be executed at node p, whereas noactions in B(imod2)+1 are executed at node p. Dis-tributed choice may cause simultaneous execution ofthe starting actions of both B1 and B2. Empty alter-natives on node p may cause unconditional executionof Bi even if B(imod2)+1 is chosen. As for distributedchoice, we avoid it by putting the same restriction(Restriction 6) as [3]. We have proposed a methodfor solving the empty alternative problem for the un-timed case in [3]. But, here, we will use a slightlymodi�ed method. Unlike [3], the node where choicewas made should immediately sends messages to thenodes that have empty alternatives in order not to vi-olate time constraints of succeeding processes. More-over, to make sure each Bi would not terminate be-fore the messages sent to the nodes which has emptyalternatives reach the destinations, the ending nodesof the chosen expression will receive acknowledgmentsfrom the nodes with empty alternatives before execut-ing the ending actions (note that if the starting action

of Bi coincides the ending action of it, i.e., the max-imum length of Bi's action sequences is 1, this simu-lation method may not be applicable). Furthermore,to simulate a choice expression B1[]B2 in the aboveway successfully, we must not remove redundant syn-chronization messages in both B1 and B2, discussed inSection 3.2.1 (Example 4), otherwise the intermediateactions of each Bi may be executed independently, nomatter which alternative is chosen.To make it possible to simulate choice in the wayabove, we must guarantee that all the messages reachthe destinations in time by restricting the time con-straints of some actions. For a choice expressionB1[]B2, if the messages sent from the node choice wasmade wouldn't have reached the destinations, or theacknowledgments wouldn't return, before the chosenbehaviour Bi have been done, extra time would bespent waiting for the messages. So we will restrict thetime constraints of the starting actions of B1 and B2so that the messages can reach in time.Example 6 Consider the following input:S = a1[2 � t � 5 ^ x = t]; b2[t � x+ 3]; c3[t � x+ 6]; exit[]d1[3 � t � 9]; e3[t � 10];exitd12max = 2, d23max = 4, d13max = 3We must restrict the time constraint of d1 in or-der to make the message from node 1 to 2 and theacknowledgment from node 2 to 3 reach by time 10.Restr(S) = a1[2 � t � 5 ^ x = t]; b2[t � x+ 2];c3[t � x+ 6]; exit[]d1[3 � t � 4]; e3[t � 10];exitThen, the speci�cation of each node will be derivedas follows:Node1 = a1[2 � t � 5 ^ x = t]; s12(m1; x); s13(m3; x);exit[]d[3 � t � 4]; (s13(m2); exitjjjs12(m4); exit)Node2 = r12(m1; x); b2[t � x+ 2]; s23(m5); exit[]r12(m4); s23(m4); exitNode3 = r13(m3; x); r23(m4); c3[t � x+ 6]; exit[](r13(m2)jjjr23(m4)) >> e3[t � 10];exit 2For de�ning Restr(S), we need the auxiliary functionRestr0(S), which is the same as Restr(S) except thatno removal of redundant messages is considered. Theformal de�nition of Restr0(S) appears in [10].Now we can de�ne Restr(S) as follows:De�nition 6 If S = B1[]B2, then Restr(S) is de-�ned inductively as follows:Restr(S) def= Restr0(f(B1))[]Restr0(f(B2))where, we assume that fbk[Qk(t; yk)] j k 2 Kg is theset of the starting actions of Bi with their time con-straints, and that f(Bi) is an expression Bi whose timeconstraint of each starting action Qk(t; yk) is replaced

with Qk(t; yk) ^ R0k(t). Here R0k(t) is a Presburgerformula de�ned as follows.R0k(t) def=^q 2 AP (Bi) nAP (B(imod2)+1)l 2 L; r 2 EP (Bi)f9t09zl[t0 � t+ dpqmax + dqrmax ^Rl(t0; zl)]gwhere fRl(t; zl)jl 2 Lg denotes the time constraintsof EP (Bi) and SP (Bi) = fpg. 23.2.3 Asynchronous ParallelFor any asynchronous parallel expression B1jjjB2, B1and B2 are executed independently. So any synchro-nization messages are necessary between B1 and B2.Thus, Restr(S) is de�ned as follows:De�nition 7 If S = B1jjjB2, then Restr(S) def=Restr(B1) jjj Restr(B2) 23.2.4 EnablingFor enabling expression B1 >> B2, we can apply es-sentially the same idea as action pre�x. Due to thelack of space, we omit the details about Restr() trans-formation for the enabling expressions. The detailscan be found in [10].3.2.5 DisablingFor each disabling expression B1[> B2, we make astrong restriction, Restriction 2, for simplicity. Thatis, for some t0, all actions in B1 are not executableafter time t0, and all actions in B2 are executable onlyafter time t0. From Restriction 2, there is no casesthat actions in B1 and B2 are simultaneously enabledat di�erent nodes. So B1[> B2 can be simulated byinserting messages to notify successful termination ofB1 to all nodes.To make this simulation method work,the messagesnotifying B1's termination have to reach before t0.Example 7 The input described below satis�esRestriction 2 (t0 = 11) and Restriction 7:S = a1[1 � t � 4]; b2[3 � t � 8]; c3[7 � t � 10]; exit[> d3[12 � t]; exitd12max = 3, d23max = 4, d31max = 3, d32max = 4,dijmax = 2 for other i,j.In order to guarantee that the noti�cation of success-ful termination sent from node 3 to nodes 1 and 2 canreach before time t0 = 11, the time constraint of c3must be restricted to 7 � t � 7, because the noti�-cation from node 3 to node 2 may take d32max = 4units of time. Then, the restriction discussed in theprevious section is applied for b2 and a1.Restr(S) = a1[1 � t � 1]; b2[3 � t � 4];c3[7 � t � 7]; exit[> d3[12 � t]; exitFrom this, the protocol entity speci�cation of eachnode will be derived as below:Node1 = a1[1 � t � 1]; r31(m1); exit[> i[t = 12]; exit

Node2 = b2[3 � t � 4]; r32(m1); exit[> i[t = 12]; exitNode3 = c3[7 � t � 7]; (s31(m1)jjjs32(m1)) >> exit[> d3[12 � t]; exit 2The de�nition of Restr(S) is as follows:De�nition 8 If S = B1[> B2,Restr(S) def= Restr(g0(B1))[> Restr(B2);where g0(B1) represents a transformation replacing thetime constraint P (t; �x) of each ending action of B1with P (t; �x) ^ P 0(t). HereP 0(t) def= ^p2EP (B1);q2ALLft+ dpqmax � t0g: 23.2.6 Process InvocationIn our speci�cation language, time is reset to 0 at everymoment processes are invoked, avoiding accumulationof time constraints. To simulate this in distributedenvironments, we make all nodes to pretend as if theyinvoke a process simultaneously. In order to do so,1. Fix one node for a responsible node, which de-cides the time to invoke a process (the time justbefore invoking a process). In this paper, fromRestriction 5, the context of each process invoca-tion must be the form of a;B or a[P (t; x)];B. Sowe �x the node place(a) as the responsible nodew.r.t. the process P .2. The responsible node noti�es the invocation timeof the process to all nodes, and immediately in-vokes the process locally.3. The other nodes except the responsible node re-ceive the noti�cation, and invoke the processwhose time constraints are modi�ed to make theinvocation time be virtually equal to that of theresponsible node. Recall that the actual localtime is reset to 0 just after the process invoca-tion of each node.To implement 3., we modify each process P withoutparameters in service speci�cations to P (eP) with justone parameter eP in protocol speci�cations (Restric-tion 4), and replace every occurrence of t in the righthand of the process de�nition of P with t+ eP . Theparameter eP represents the di�erence between the ac-tual invocation time and virtual invocation time. Forexample, P (3) means the process P with replacing itstime constraint, for instance, t � 5, with t + 3 � 5.Corresponding to each process invocation of P in theservice speci�cation, we derive a protocol speci�cationsuch that (1.)the responsible node sends the currenttime tP to every other node just before invoking P (0),and (2.)the other nodes invoke P (t� tP) after receiv-ing tP from the responsible node. The time t � tPcorresponds to the actual communication delay fromthe responsible node.Note that the process P may be called by anotherprocess Q. In such a case, the variable t in P (t� tP)should be adjusted to represent the virtual time atwhich Q had been invoked. So it should be modi�edto P (t+ eQ � eP) if this process invocation occurs inthe right hand of the de�nition of process Q, where

t+ eQ represents the virtual invocation time of Q.Example 8P := a1[2 � t � 4 ^ x = t]; b2[t � x+ 5];P[]c1[5 � t]; exitd12max = 4 , d21max = 3Node1 = P (eP) := a1[2 � t+ eP � 4 ^ x = t+ eP ^9t0(t0 � t+ eP + d12max ^ t0 � x+ 5)];s12(m1; x); r21(m3; tP);P (t+ eP � tP)>> s2(m4); exit[]c1[5 � t+ eP]; exitNode2 = P (eP) := r12(m1; x); b2[t+ eP � x+ 5];s21(m2; x); s21(m3; t+ eP);P (0)[]r12(m4); exit 2To make this simulation possible, we check whetherthe starting action of each process cannot be late ifthe noti�cation from the responsible node would reachin maximum delay. For consistency, we include thischecking into Restr(). If the checking is false, thetime constraint of the starting action becomes \false."De�nition 9 If S = P where P := B, Restr(S) isde�ned inductively as follows:Restr(S) def= P where P := h(Restr(B))where h(Restr(B)) is an expression obtained by re-placing the time constraint Qk(t; xk) of each startingaction ak of Restr(B) with Qk(t; xk) ^ Q0k. Here Q0kis a Presburger formula de�ned as follows :Q0k def= ^p=1;:::;nf9t09xk[t0 � 0+dp;place(ak)max^Q(t0; xk)]g23.3 Synthesis AlgorithmThe synthesis algorithm consists of two parts:1. For a given service speci�cation S, an assignmentof each action to a node, and a maximum delaydijmax for each pair of nodes, construct S0 =Restr(S).2. If S �u S0, i.e., S and S0 are bisimulation equiv-alent when time is ignored[6], derive a protocolentity speci�cation Nodei of each node i from S0.Otherwise, do not derive and halt.In [10], we have de�ned a transformation Tp(B) whichderives a protocol entity speci�cation of node p froma service speci�cation described by the behaviour ex-pression B. Although we omit the precise de�nitionof Tp(B) in this paper because of the space limitation,we summarize our result by the following theorem:Theorem 1 For a given service speci�cation S, letS0 = Restr(S). If S �u S0, the protocol speci�ca-tion fTi(S0)gi=1;2;:::;n is vt-correct w.r.t. the servicespeci�cation S. 24 Concluding RemarksIn this paper, we have proposed a method tosynthesize protocol speci�cations from timed servicespeci�cations written in LOTOS/T+. The proposedmethod enables us to synthesize protocol speci�ca-tions from both timed and structured service speci-�cations. In contrast to [5], our method restricts the

time constraints of service speci�cations, not of thecommunication media, because the delay of the mediadepends on the physical lines, so it is more di�cult tochange them than those of the speci�cations. More-over, our correctness criterion guarantees that the con-trol structure of the derived protocol speci�cation isa full, not partial, implementation of that of the ser-vice speci�cation. Using the same timing extension asours, our result should easily apply to other processmodels such as CCS.The future work is to extend the class of servicespeci�cations and to establish a framework for evalu-ating performance aspects of the derived protocol en-tity speci�cations.References[1] R. L. Probert and K. Saleh, \Synthesis of communica-tion protocols: Survey and assessment," IEEE Trans.Comput., vol. 40, pp. 468{475, 1991.[2] P. M. Chu and M. T. Liu, \Protocol synthesis in astate transition model," in Proc. IEEE COMPSAC'88, pp. 505{512, 1988.[3] C. Kant, T. Higashino, and G. v. Bochmann, \De-riving protocol speci�cations from service speci�ca-tions written in LOTOS," in Proc. of 12th AnnualInt'l Phoenix Conf. on Computers and Communica-tions (IPCCC'93), pp. 310{318, IEEE, 1993.[4] H. Yamaguchi, K. Okano, T. Higashino, andK. Taniguchi, \Synthesis of protocol entities' speci�-cations from service speci�cations in a Petri net modelwith registers," in Proc. of 15th IEEE Int'l Conf. onDistributed Computing Systems, pp.510{517, 1995.[5] A. Khoumsi, G. v. Bochmann, and R. Dssouli, \Onspecifying services and synthesizing protocols for real-time applications," in Protocol Speci�cation, Testingand Veri�cation, XIV, pp. 185{200, IFIP, Chapman& Hall, 1995.[6] A. Nakata, T. Higashino, and K. Taniguchi, \LOTOSenhancement to specify time constraints among non-adjacent actions using �rst order logic," in Formal De-scription Techniques, VI (FORTE'93), pp. 451{466,IFIP, North-Holland, 1994.[7] ISO, LOTOS { A Formal Description TechniqueBased on the Temporal Ordering of Observational Be-haviour. IS 8807, 1989.[8] K. Yasumoto, T. Higashino, and K. Taniguchi, \Soft-ware process description using LOTOS and its enac-tion," in Proc. of 16th IEEE Int'l Conf. on SoftwareEngineering (ICSE-16), pp. 169{179, 1994.[9] J. E. Hopcroft and J. D. Ullman, Introductionto Automata Theory, Languages and Computation.Addison-Wesley, 1979.[10] A. Nakata, T. Higashino, and K. Taniguchi, \Synthe-sis of protocol entity speci�cations from timed andstructured service speci�cations," I.C.S. Research Re-port 95-ICS-5, Dept. of Information and ComputerSciences, Osaka University, 1995.

