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Abstract. We consider the question of evaluating causal
relations among neurobiological signals. In particular,
we study the relation between the directed transfer
function (DTF) and the well-accepted Granger causal-
ity, and show that DTF can be interpreted within the
framework of Granger causality. In addition, we
propose a method to assess the significance of causality
measures. Finally, we demonstrate the applications of
these measures to simulated data and actual neurobio-
logical recordings.

1 Introduction

In neurobiology, as in many other fields of science and
engineering, a question of great interest is whether there
exist causal relations among a set of measured variables.
First attempts at answering this question, which later
evolved into the field of structural equation modeling
(Asher 1983), can be found in the social sciences
literature dating back to the 1950s. Based on the theory
of independently realized multivariate random variables
(i.e., not considering temporal information), structural
equation modeling theoretically hypothesizes the direc-
tion of interaction among the variables and then
quantifies the interaction strength with correlation
analysis. The dependence on a theoretical framework
makes the approach difficult to apply in cases where a
theoretical framework is not well established or is
absent.

Wiener (1956) recognized the importance of temporal
ordering in the inference of causal relations from a pure
statistical point of view and proposed that, for two si-
multaneously measured time series, one series can be
called causal to the other if we can better predict the
second time series by incorporating knowledge of the
first one. This concept was later adopted and formalized
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by Granger (1969) in the context of linear regression
models of stochastic processes. Specifically, if the vari-
ance of the prediction error for the second time series at
the present time is reduced by including past measure-
ments from the first time series in the linear regression
model, then the first time series can be said to cause the
second time series. Granger’s concept of causality has
received a great deal of attention and has been applied
widely in the econometrics literature. Geweke’s novel
decomposition of the multivariate autoregressive process
(Geweke 1982) led to a set of causality measures which
have a spectral representation and make the interpreta-
tion more straightforward.

In the 1970s and 1980s engineers extended Granger’s
ideas to linear systems theory. Caines and Chan (1975)
and Gevers and Anderson (1981) introduced the concept
of causality to the study of feedback relations between
input and output variables. Their measures are all con-
veniently expressed in the spectral domain and have
been subsequently adopted by researchers in other fields.

Applications of causal measures in neurobiology
started in the early 1980s. Saito and Harashima (1981)
introduced the method of directed coherence to study
the relation between a pair of data channels described by
a bivariate autoregressive process. This method has been
applied to clinical problems (Saito and Harashima 1981)
and to the investigation of interdependence between the
two cerebral hemispheres (Wang and Takigawa 1992).
Schnider et al. (1989) used results given by Gevers and
Anderson (1981) to detect feedback interactions between
parkinsonian tremor and cell activities in the thalamus.
More recently, Bernasconi and Konig (1999) applied
Geweke’s spectral measures to detect causal influences
among different areas in the cat visual cortex. Same-
shima and Baccala (1999) developed a partial causality
measure and applied it to spike train data analysis. A
similar measure was proposed by Schack et al. (1995).

It should be noted that most of the methods men-
tioned above deal with bivariate time series, or two non-
overlapping sets of time series, and do not make use of
the whole covariance structure for multichannel data.
Such pairwise treatment, as we will show in this work,
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can lead to erroneous results that otherwise could be
avoided in a full multivariate approach. Kaminski and
Blinowska (1991) proposed a full multivariate spectral
measure, called the directed transfer function (DTF),
which is used to determine the directional influences
between any given pair of channels in a multivariate
data set. The DTF has the advantage of requiring that
only one multivariate autoregressive (MVAR) model be
estimated from recordings of all the channels. This
method has been applied to a number of neurobiological
systems and is the main focus of this work. Since the
DTF function is motivated from the perspective of
spectral domain transfer functions, its relation to
Granger causality, which is most clearly defined in terms
of linear regression coefficients in the time domain, re-
mains unclear, thereby hampering interpretation of the
DTF function.

The main contributions of this work are as follows:

1. We perform a detailed analysis of the DTF func-
tion and show that it can be interpreted in terms of
Granger causality. This allows us to utilize the conve-
nience and full multivariate power of the DTF function,
while maintaining the well-accepted interpretation of
Granger causality.

2. We show that a nonzero value of DTF or Granger
causality does not necessarily imply that the causal in-
fluence between the two evaluated channels is direct. It is
possible that the effect is mediated by another channel or
by another group of channels, or by variables that are
not included in the measurements. We propose a mea-
sure, referred to henceforth as direct causality (DC),
which can be used to give further information about
whether a direct link exists between two given channels.

3. All of the causality measures that we consider are
highly nonlinear functions of the data and, conse-
quently, the distributions of their estimators are often
unknown. This problem hinders one’s ability to assess
the statistical significance of the estimates. We propose a
possible solution to this problem by using a surrogate
data technique. Specifically, with this technique one
generates an empirical distribution for a given estimator
in which interactions between channels are removed.
Significance tests can then be performed based on this
empirical distribution.

4. The DTF function is a highly complex statistical
variable. To gain confidence in its usefulness for data
analysis, we study its behavior when applied to simu-
lated field potential time series generated by neural
models having built-in causality patterns. We also dis-
cuss the important complementary role of DC in the
same model simulations.

5. Using data generated by models of spiking neu-
rons, we show that the DTF function can also measure
causal relations among interacting point processes. This
extends the applicability of this measure to single-unit
studies.

6. We demonstrate the utility of the proposed cau-
sality measures in two neurobiological examples. One of
them deals with human sleep data and the other con-
cerns a visual pattern discrimination task in the monkey.
In the context of the second example, we stress the im-

portance of combining the causality measures with a
recently proposed short window spectral analysis tech-
nique for cognitive experiments (Ding et al. 2000) to
capture the rapidly changing cognitive state of the brain.

2 Theoretical considerations
2.1 Granger causality

Let X;(f) and X>(¢) denote the time series from two data
channels. (The same discussion applies to the case where
X (#) and X;(#) are vectors, representing two sets of non-
overlapping channels.) Suppose that the temporal dy-
namics of X;(¢) and X,(¢) are suitably represented by the
following bivariate autoregressive process:

= ZAIIU)XI (t=J)+ ZAlz(f)Xz(f —J)+Ei(1)

ZAZI Xl l— +ZA22 XZ(I_ )+E2() .
j=1 Jj=1
(1)

If the variance of the prediction error E; (or E) is
reduced by the inclusion of the X; (or X)) terms in the
first (or second) equation, then, based on Granger
causality, we say that X, (or Xj) causes Xj (or X>).
An equivalent but more convenient way of expressing
the same concept is that coeflicients A;2(j) (or
An()),j=1,2,...,p, are not uniformly zero under
suitable statistical criteria.

To examine the causal relations in the spectral do-
main, we Fourier transform (1) to obtain

(o) 50)G0)-(25) o

where the components of the A(f) matrix are

Alm(f =01 — ZAlm —127{)’]
P 1 when I=m 3)
lm{O when I #m .
Rewriting (2) as
Xi(f)\ _ (Hu(f) Huo(f) [ E(f)
(Xz(f)) N <H21(f) sz(f)) (Ez(f)> (4)
we have
Hi(f) Ho()\ _ [(Au(f) An(f) -1
<H21(f) sz(f)> N <A21(f) Azz(f)) (5)

as the transfer matrix. Using the definition of matrix
inversion, the Granger causality from channel j to
channel i in the spectral domain can be defined in terms
of the off-diagonal elements of the transfer matrix
(Caines and Chan 1975). Namely
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2.2 Directed transfer function

In the above definition of Granger causality only two
channels (or two sets of channels) are considered. Now
we describe a multivariate method that gives pairwise
directional information from one autoregressive model
fit to a larger number of channels. Specifically, let
X(t) = X1 (1), X2(0), ..., Xe(£)]" denote the measurement
from k channels at time ¢. Here T denotes matrix
transposition. Suppose that X(¢) is adequately described
by the following MVAR process:

P

X(1) = A@)X(t— i)+ E(r) (7)

i=1

Transforming this equation to the frequency domain
yields

AUX(f) = E(f) (8)
where
AG) == A >

with A(0) = —I (I being the identity matrix). Equation
(8) can be rewritten as:

X(f) = A" (NE(f) = H(AE(/) ©)

Here H is the transfer matrix of the system. Patterned on
the two-channel Granger causality measure in the
frequency domain, (6), the DTF from channel ;j to
channel i, representing the causal influence from j to i, is
defined as

05(1) = [Hy (1) - (10)

The normalized DTF is defined as (Kaminski and
Blinowska 1991):

Hy(f)[
Skt [ Hu ()]

which expresses the ratio of influence of channel j
to channel i to the joint influences from all the
other channels to the channel i, and has a value between
0 and 1.

1) = (11)

2.3 Granger causality and DTF

For a bivariate process, the non-normalized DTF
function, (10), is equivalent to the spectral Granger
causality, (6), which is directly related to the MVAR
coeflicients. But, for the multivariate case, the relation
between the off-diagonal entries in the transfer matrix
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H(f), which are the basis of the DTF function, and the
MVAR coefficients remains unclear. Recognizing that a
bivariate autoregressive model can always be extracted
by variable elimination from the full multivariate model
containing the two channels, we now show that —
through matrix analysis — one can establish the relation
between the off-diagonal elements of H(f) and the
appropriate MVAR coefficients, making it possible to
interpret the multivariate DTF function within the
framework of Granger causality.

Without loss of generality, consider the first two
channels in the MVAR model, (8). Partition the matrix
A(f) into the following block form

<A11 A12> <A13 A1p> <X1>
Ay Ax Ay -0 Ay X>
Az A Az - Az X3
Apt Ap Aps -+ Ap Xp
(z)
E>
= E;3 (12)
Ep

Introducing matrix block notation
A Ap
A =
) <A21 A

the above equation can be further written as:

X3
X 2 (B
A]](X2)+A12 : = (Ez) (1321)
Xy
X3 E3
X . .
Aoy (X;) +FAn| =1 ¢ (13b)
Xp E,

From (13b) we obtain:

X; Ej
_ X _ .

D =A% Ay (X;) +AL |
Xp Ep

Using this result to eliminate variables in (13a) we have:

X5

Es
E; »
= (g, ) —AnAn

X
(A — A12A2_21A21) ( 1 >
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This equation is the Fourier transform of a bivariate
model involving only channels 1 and 2 with E| and E
being the Fourier transforms of the new noise sources.
Knowing that

A3z
An = (Aiz--Ap)Ay |
Api
(A — A12A§21A21) = Ap
31
Ay — (Aps - A2p)AS |
Ay

We can rewrite (14) as:

Ap — (A -- 'Azp)Az_zl

(X1> - 1
X> A1 — ARAS Ay
— |42 — (A3 - 'AZp)A£21

Following (6), using entries from the transfer matrix, the
causal influence from channel 1 to 2 can be defined as:

2

A3
Axt — (o3 Azp)Ay)
R= o (15)
A1l — ARAS Ay
Recalling the following matrix algebra fact:
‘I,f, 1‘; ‘ =|U - VD 'W|D|
we get the result:
A\ |7
Ant — (Ao -+ A2p) Ay A’
112H2 - 1 124,;1 2
|A11 — AnAy, Aoi|7|Ag|
_ Myl (16)
A

where |M;;| is a minor of the matrix A with row 7 and
column j removed.

Now we turn our attention to the DTF function.
Refer to (9). The non-normalized DTF function is:

92 (f) - |H 2 -1 2 |M12|2
21 = |Ha1 (f)] *HA (f)}21| 7|A(f)\2

based on the definition of matrix inversion. This is the
same expression as for Granger causality (15), thereby

establishing that the DTF function can be interpreted in
terms of Granger causality.

A3
A — (A3 Aip)Ay |
Ap
A3
A — (do3 - Ap)AS |
Ay
Az Az

— A1 — (A3 - -Alp)Az_z1

Ap2 Apz <E’1 )
A3 Ey)

A — (di3 -+ A1p)A5)

2.4 DC measure

It is important to realize that a nonzero value of the
Granger causality measure does not necessarily mean
that the two channels interact directly. A benefit of
multivariate model fitting is that it uses information
from all the channels, allowing us to ask whether there
exists a direct causal influence between any two channels
while the effects of all the other channels are taken into
account. Specifically, referring to (7), if A;(t),r=
1,2,...,p, are not uniformly zero, we say that there is
a direct causal influence from channel j to channel i, and
define the DC measure:

D; = Zp:AiZj(t) (17)
=1

to evaluate the level of this influence. The same goal can
be achieved using the Fourier transformed quantity
|A,-j(f)|2 (Sameshima and Baccala 1999).

We note that, although the DTF function is com-
puted from the full multivariate model, careful analysis
of its definition indicates that it is in fact a linear com-
bination of both the direct influence from one channel to
another and the influence mediated by the other chan-
nels along various causal pathways. We illustrate this
point by considering the DTF from channel 1 to channel
2 in a three-channel situation. From the definition of
matrix inversion, the non-normalized DTF function
follows from (10) as:

> _ 2 |4 (f)43(f) — A31 (A (/)
05,(f) = [Ha (f)|" = AP

(18)



Clearly, even if the direct influence from channel 1 to
channel 2, 45, (f"), is zero, the above quantity may still be
different from zero since there is an influence from 1 to 3
(431(f)) and from 3 to 2 (423(f)). The linkage from
channel 1 to 3 to 2 will be a causal pathway if all the
direct causal influences along the way are not zero.
Equation (18) raises another interesting question.
Namely, even if 421 (f)433(f) and A3, (f)A2(f) are both
nonzero, their linear combination in the above expression
still could be zero. Thus a zero DTF value may not mean
a total absence of causal influence between the two
channels. We give an explicit example of such a situation
in Appendix A. Due to the possibility of this situation
occurring, it is crucial to examine the DC measure to have
a more precise understanding of the connection patterns.

2.5 Statistical test for significance

Both the DTF function and the DC measure have a
highly nonlinear relation to the time series data from
which they are derived. As a result, the distributions of
their estimators are not well established. This makes
tests of significance difficult to perform. Here we
propose an empirical distribution technique using sur-
rogate data (Theiler et al. 1992) to deal with this
problem. Specifically, we randomly and independently
shuffle the time series data from each channel to create a
surrogate data set. Then a model is fitted to this
surrogate data set and causal measures are derived from
the model. Carrying out this process many times, each
time performed on a new surrogate data set, we can
create an empirical distribution for the causal measures.
Since the construction is designed so that there is no
interaction among the channels, these distributions give
the estimator behavior for the null hypothesis case.
Using this distribution we can then assess the signif-
icance of the causal measures evaluated from the actual
data. The effectiveness of this technique will be exam-
ined in the next section on simulated examples.

3 Simulated examples

In this section we study the behavior of the DTF
function and DC measure using simulated models with
built-in causality patterns, and evaluate the effectiveness
of the surrogate-data-based significance test. Two classes
of model are considered: (1) a continuous neural
population model mimicking local field potential
(LFP) recordings, and (2) an integrate-and-fire-type
point process model mimicking spike train data.

3.1 Two-channel LFP model

Interacting neural populations are modeled by coupled
nonlinear ordinary differential equations. Mathematical
details can be found in Appendix B. We fit a bivariate
autoregressive model of order five to the simulated data,
which comes in the form of a single long trial, normalized
to have zero mean and unity variance. Equivalent results
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can be obtained by fitting models to multiple trials of
shorter segments of simulated data (Ding et al. 2000;
Liang et al. 2000) (see the analysis of actual recordings in
Sect. 4 for further elaboration on this point).

We consider two different coupling schemes. The first
scheme is shown in Fig. la where there is a unidirec-
tional coupling from channel 1 to channel 2. As ex-
pected, substantial causal influence exists from channel 1
to channel 2 for both the normalized DTF (Fig. 1b) and
the non-normalized DTF (Fig. 1c), while the values of
reverse influence are very small. To examine the statis-
tical significance of these reverse influence values we
adopt the surrogate data strategy discussed in the pre-
vious section. Specifically, we perform random and in-
dependent shuffling of the time series for each channel of
the simulated data. A bivariate autoregressive model is
fit to the shuffled data and the DTF functions are
computed from the model. Carrying out the procedure
for 100 such independently shuffled data sets we are able
to construct an empirical distribution for the DTF
functions. Since the shuffling procedure destroys all the
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Fig. 1a—d. Results of a two-channel local field potential (LFP) model
where the coupling is unidirectional: a coupling scheme; b normalized
directed transfer function (DTF); ¢ non-normalized DTF; d power
spectra; b-d plotted as a function of frequency (Hz)
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Fig. 2a,b. Distributions of DTF values resulting from 100 surrogate
data sets. a Histograms for normalized 0%1 as a function of frequency;
b histogram by combining results from all frequencies

temporal structure in the data, this empirical distribu-
tion gives the variability for the DTF functions when the
null hypothesis of no causal influence is true.

Figure 2a shows the histogram of the surrogate nor-
malized DTF function values as a function of frequency.
Since the distribution is frequency independent by con-
struction, we can combine the samples from all the fre-
quencies into a single distribution (Fig. 2b). Without
having an explicit formulation for the shape of this
distribution, we compute an empirical threshold for a
given significance level. The threshold value is further
corrected for multiple comparisons by Dunn’s method
(Kirk 1995). Since the DTF is evaluated at 100 fre-
quencies the Dunn-corrected threshold at P < 0.05 is
0.0045 for the normalized DTF and 0.068 for the non-
normalized DTF.

Figure 3 shows both normalized and non-normalized
DTF functions from channel 2 to channel 1, and the
corresponding threshold values. As expected, both func-
tions lie below their respective threshold, indicating the
absence of causal influence from channel 2 to channel 1.

Another aspect we examine in Fig. 1 is frequency
dependence of the DTF functions. Comparison of the
DTF function spectra with the power spectra in Fig. 1d
reveals very similar frequency profiles. This means that
the DTF function shares the same frequency character-
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Fig. 3a,b. Normalized a and non-normalized b DTF functions from
channel 2 to channel 1 from Fig. 1 plotted together with the
significance level obtained from Fig. 2, as functions of frequency (Hz)

istics as the signals themselves. This property is observed
both for simulated examples and for actual field-poten-
tial recordings, and makes the frequency dependence of
the causal measures interpretable in terms of the overall
frequency structure of the data. This effect can be un-
derstood from the fact that both the power spectra and
the DTF functions are derived from the same transfer
functions.

We next examine the meaning of the magnitudes of
the DTF functions. In Fig. 4, normalized and non-nor-
malized DTF values at the peak frequency are plotted
against the connection strength between the two simu-
lated neural populations. One can see that these func-
tions rise monotonically with increasing connection
strength. For the normalized DTF, Fig. 4b, saturation
occurs as the connection strength increases, whereas the
non-normalized DTF increases much more as a linear
function of the connection strength.

The second coupling scheme is shown in Fig. 5a, where
the interaction is reciprocal. As expected, the normalized
(Fig. 5b) and non-normalized (Fig. 5¢) DTF functions
exhibit strong influences in both directions. Interestingly,
the non-normalized DTF (Fig. 5¢) has a frequency spec-
trum that is shaped more closely to the power spectrum of
the signal than the normalized DTF (Fig. 5b), for which a
more smoothed spectral shape is seen.
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Fig. 4a—. Dependency of the DTF functions on the coupling
strength between the two neural populations. a Normalized DTF at
low connection strengths; b normalized DTF over full range of
connection strengths; ¢ non-normalized DTF over full range of
connection strengths

3.2 Three-channel LFP model

For a mutichannel data set, one can always perform
pairwise analysis by fitting AR models for each distinct
pair of data channels. In this case the DC measure and the
DTF functions give equivalent information. However,
performing pairwise evaluation for multichannel data has
the drawback that one cannot discern whether the
influence between the two channels is direct or is mediated
by the other channels. One may even arrive at a wrong
conclusion using only a pair of channels that could
otherwise be avoided by using the full channel set, as
shown below. In this regard, employing the DC measure
with the full multivariate data model is an important way
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Fig. 5a—d. Results of a two-channel LFP model where the coupling is
reciprocal. a Coupling scheme; b normalized DTF; ¢ non-normalized
DTF; d power spectra; b—d plotted as functions of frequency (Hz)

to gain further insight into the network connectivity. We
illustrate these points with a three-channel LFP model.
We consider two coupling schemes. In the first cou-
pling scheme, as shown in Fig. 6a, channel 3 drives both
channel 1 and channel 2, while channel 1 and channel 2
are not coupled. Furthermore, the signals from channel 3
undergo different delays, A; and A, respectively,
A, > Ay, before reaching channels 1 and 2. Using only
data from channel 1 and channel 2, not knowing the in-
fluence of channel 3, one sees a causal influence from
channel 1 to 2 due to the difference in the delays. This is
shown in Fig. 6b for the non-normalized DTF. When
signals from all three channels are fit into a single three-
variable MVAR model of order 7, we obtain much better
network resolution. Neither normalized (Fig. 6¢) nor
non-normalized (Fig. 6d) DTF functions show a causal
influence between channels 1 and 2, in agreement with the
built-in network connectivity pattern. This is because, by
including the third channel, the MVAR model properly
accounts for the similarity between channel 1 and chan-
nel 2 as being due to the common input from channel 3.
As can be seen from (18), the existence of nonzero
DTF functions between two channels does not neces-
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sarily imply a direct linkage between them. In fact, DTF
functions represent a linear combination of causal
influences along all causal pathways — direct and indirect
— originating from one channel and terminating at the
other. To examine this question more carefully, we
consider the second coupling scheme, shown in Fig. 7a,
where we add a connection from channel 1 to channel 3
in addition to the connections in Fig. 6a. This new link
opens an indirect causal pathway from channel 1 to
channel 2 through channel 3. As expected, both the
normalized and non-normalized DTF functions from
channel 1 to channel 2 are now nonzero (Fig. 7b, c).
The behavior seen in Fig. 7 raises the question of
whether —when an influence from one channel to another
is observed with the DTF functions — a direct causal in-
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Fig. 6a—d. Results of a three-channel LFP model. a Coupling scheme;
b non-normalized DTF where only data from channels 1 and 2 are
used in the autoregressive model fitting; ¢ normalized DTF; d non-
normalized DTF where data from all three channels are used in the
model fitting

fluence exists between the channels, or whether the in-
fluence is entirely due to indirect causal pathways. To
address this question, the DC measure discussed in the
previous section becomes an important tool. For the
coupling scheme in Fig. 7a, the DC measure from chan-
nel 1 to channel 2 is D3, = 0.0041, where no connection
exists, as compared to the three real direct connections
for which the DC measures are an order of magnitude
larger (e.g., D%l = 0.0814). Thus, because it is only sen-
sitive to direct influence, the DC measure does not show
an effect from channel 1 to channel 2, unlike the DTF
function which includes indirect influences. Another
benefit of the DC measure is that it can also indicate the
existence of a causal link between channels, even when
the DTF function is zero, as illustrated in Appendix A.
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@ Fig. 7a—c. Results of a three-channel LFP model where the coupling

is modified from Fig. 6. a Coupling scheme; b normalized DTF; ¢ non
normalized DTF; b—c¢ plotted as functions of frequency (Hz)

3.3 Spike train models

Causality analysis is not limited to field-potential data.
Here we show that, despite the need for AR model

(b) 1->2 2.1 fitting, DTF functions can also be applied to the analysis
1 1 of multiple spike trains after proper filtering.
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Fig. 9a—c. Results of a spike train model where the coupling is
reciprocal. a Coupling scheme; b normalized DTF; ¢ non-normalized
DTF; b—¢ plotted as functions of frequency (Hz)

We consider two model neurons in two different
connectivity patterns. Mathematical details are given in
Appendix C. Figure 8a shows the first coupling scheme,
where neuron 1 is unidirectionally coupled to neuron 2.
Unfiltered spike trains from both model neurons are
shown in Fig. 8b. A data set consisting of 600-1050
spikes from each neuron was analyzed. The spike trains
were low-pass filtered (Butterworth filter of order one
and cutoff frequency equal to 10% of the Nyquist fre-
quency, filtered in both directions to preserve phase) and
a bivariate autoregressive model of order 8 was fit to the
filtered data. The normalized and non-normalized DTF
functions are shown in Fig. 8c and d. As expected, only
the DTF functions from neuron 1 to 2 have significant
values, while the functions for the reverse direction are
statistically insignificant.

In the second coupling scheme, shown in Fig. 9, the
neurons are reciprocally coupled. The DTF functions in
Fig. 9b and ¢ show significant influences in both direc-
tions, in agreement with the built-in pattern of connec-
tivity.

4 Applications to neurobiological data
4.1 Human sleep analysis

In this example we analyze a data set consisting of a
20-min sample of scalp EEGs recorded during stage 2
sleep by Professor Szelenberger at the EEG Laboratory
of Psychiatry, Hospital of Warsaw Medical Academy.
The electrodes were placed according to the interna-
tional 10-20 system (Rechtschaffen and Kales 1968).

Fig. 10. Patterns of causal influences during stage 2 sleep

The sampling rate was 102.4 Hz. An MVAR model of
order 5 was estimated for the 21 channels using the
Akaike criterion (Akaike 1974). A more detailed
description of the experiment is provided in Kamisnki
et al. (1997). Figure 10 shows arrows connecting
different recordings channels based on the 15 highest
normalized DTF functions, integrated over the 7-—
15 Hz frequency range. These values are depicted by
the gray levels of the arrows.

The DTF pattern in Fig. 10 reveals that the main
sources of causal influence are located in the anterior
region around the F3 and F4 electrodes, and in the
posterior region around the P3 electrode. Influences
from these sources are exerted on neighboring and more
distant areas within each hemisphere. The paths of
causal influence from anterior areas are consistent with
prefrontal cortex projection anatomic pathways (Leu-
chter et al. 1992). In fact, in the transition from wake-
fulness through stages 1, 2, 3, and 4, we could observe a
diminishing role of the posterior sources and an in-
creasing effect of the anterior areas.

Another important issue in this example is the prob-
lem of the reference electrode. There are several ways to
define a reference electrode in scalp EEG recordings, but
not every type is suitable for this analysis. Particularly
the “common average” reference which involves all the
channels as reference, and mixes signals from all of
them, cannot be used. In general, all operations where
part of the signal from one channel appears in another
channel will lead to spurious connections. In our case
the “linked ears” reference was used.

4.2 Analysis of visuomotor integration in macaque
monkeys

For sleep studies we often have long and relatively
stationary time series available for analysis, and the



application of the MVAR technique is quite straight-
forward. During a cognitive task, however, the brain
undergoes rapid changes in state, often on a sub-second
time scale. These rapid state changes are accompanied
by nonstationary time series, requiring that we analyze
the data in short windows within which approximate
stationarity can be assumed. Studies by Ding et al.
(2000) show that by incorporating LFP data from
multiple trials performed under the same experimental
conditions, one can reliably estimate MVAR models
from windows as short as 50 ms. Then, by sliding the
analysis window through the entire experimental time
course, one obtains a finely resolved picture of cortical
dynamics during cognitive processing.

Below, using LFP data recorded from macaque
monkeys performing a visuomotor pattern discrimina-
tion task, we show that this short window approach
combined with causality analysis provides a powerful
tool for studying important questions in visual percep-
tion. LFP data were recorded by Dr. Richard Nakamura
at the National Institutes of Mental Health, Washington,
D.C. Transcortical bipolar electrodes were chronically
implanted at 15 distributed sites in multiple cortical areas
of one hemisphere as the monkey performed a visuo-
motor pattern discrimination task (Bressler et al. 1993).
The prestimulus stage began when the monkey depressed
a hand lever. This was followed 0.5-1.25 s later by the
appearance of a visual stimulus (a four-dot pattern) on a
computer screen. The monkey made a GO (releasing the
lever) or NO-GO (maintaining lever position) response
depending on the stimulus category and the session
contingency. The entire trial lasted about 500 ms, during
which the LFPs were recorded at a sampling rate of
200 Hz. The specific data set considered here consisted of
888 trials from one monkey with the GO response.

For the purpose of data analysis, each of the 15
electrode recording sites was considered to be a separate
data channel. As the first step of preprocessing, we
detrended the single-trial LFP time series of each
channel, subtracted the temporal mean of the entire trial
and divided by the temporal standard deviation. The
result was that the data from each channel and each trial
were given equal weight in model estimation. For the
next step of preprocessing, we subtract the ensemble
mean from each channel, and normalize the data by
dividing by the ensemble standard deviation. The
meaning of these steps is explained in Ding et al. (2000).
After data preprocessing, a 12-point data window
(60 ms) was used for the sliding window analysis, and
MVAR models of order 5 were fit to the data from each
successive window.

Previous work using power and coherence analysis on
the same data set has established the formation of a
strong interdependency pattern involving all 15 sites
after stimulus presentation, based on highly significant
spectral coherence peaks near 12 Hz (Bressler et al.
1999). Since spectral coherence is a symmetric measure,
though, it does not provide information on the direction
of influence. We calculated the normalized DTF func-
tion as a function of time and shown in Fig. 11 the result
at the peak frequency of 12 Hz for two channels, one in
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Fig. 11. Normalized DTF functions at 12 Hz plotted as functions of
time (ms) using the sliding window technique. The broken line
represents causal influence from a striate (strc) to a prestriate (pstc)
channel and the solid line in the opposite direction. Time zero is the
stimulus onset

the striate area and the other in the prestriate area. The
broken line represents causal influence from the striate
channel to the prestriate channel, and the solid line
represents the feedback influence. We see clearly that the
stimulus-triggered causal influence from the striate site
to the prestriate site begins at about 50 ms poststimulus,
while the feedback influence from the prestriate site to
the striate site arises at a later time, around 100 ms (here
stimulus onset occurs at time zero). Theoretically it is
expected that higher visual areas would begin to influ-
ence lower areas after first receiving stimulus informa-
tion from the lower areas. Our result is not only
consistent with this theoretical hypothesis, but also
provides concrete timing information concerning the
onset of feedforward and feedback influences. A more
detailed study of causal relations involving more re-
cording sites during visual processing has been presented
elsewhere (Liang et al. 2000).

5 Conclusions

In this paper we studied the question of how to evaluate
causal relations in neural systems. We showed that the
DTF functions and the DC measure are useful and
complementary statistical quantities for this purpose that
are easy to implement and can be interpreted in the
framework of Granger causality. The behavior of these
measures was examined both for simulated data and for
actual neurophysiological recordings. We emphasized
that, for cognitive experiments where the brain changes
states on a sub-second time scale, combining causality
measures with the short window AMVAR method (Ding
et al. 2000) is an important approach for obtaining a finely
resolved spatial-temporal picture of cortical dynamics.
Despite their promise, the techniques considered in
this paper also have some limitations. First, given that
one can only measure from a small number of variables,
the interpretation of causal influence is limited to these
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measured variables. It is thus crucial that the placement
of recording sites be carefully chosen to maximize the
power of subsequent causality analysis. Second,
although useful in its present form, the DC measure has
no frequency dependence. Sameshima and Baccala
(1999) introduced a Fourier-transformed version of the
DC measure used here, called the partial directed
coherence. However, our examination of this quantity
indicates that its frequency characteristics are not con-
sistent with that of the signal, making it hard to interpret
within the overall frequency structure of the data. Third,
our attempt at developing a technique for testing sta-
tistical significance remains rudimentary. The surrogate
data method destroys both interdependency among time
series as well as the temporal structure within a time
series. More advanced surrogate data methods, such as
those that randomize the sequential order while pre-
serving the correlation structure (Theiler et al. 1992),
need to be developed and studied. These questions will
be the topics of future investigations.
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Appendix A

It suffices to consider a three-channel MVAR model.
From (18) it is clear that Hy;(f) will be zero if

A (f)433(f) = 431 (/)42 (f)

Letting z = e 2™/ this equation can be rewritten as:

(— zp:Azl(j)Z]) (1 — ZP:AB(]')Zj)

(o))

For p =

Ay (1) =0
A3 (1)A(1) =0

meaning that, for a first-order MVAR model, a zero
value of DTF implies no direct or indirect causal

influence.
For p =2, we obtain a set of conditions:

— A4 (1)=0

— A21(2) = A31(1)A423(1)

A21(2)A433(1) = A31(1)A423(2) + A431(2)A423(1)
A21(2)433(2) = 431(2)423(2)

this leads to:

Consider the simplest case where A33(1)
Ax(2)

= A3(2) = 0 and assume that the second condi-

tion holds. The corresponding time-domain MVAR
model equations are:

Xi(t) = E (1)

Xz(l) = Ay (2)X1 (l — 2) —|—A23(1)X3(I — 1) —|—E2(l)

X3(t) = A31(1)X](Z — 1) —|—E3(t)
The equation for X>(¢) can be rewritten as:
Xz(l) = A21(2)X1 (Z — 2) —|—A23(1)A31(1)X1 (t - 2)
+ A (1)E3(t — 1) + Ex(2)

= [A21(2) + Ans(D A ()}X3 (£ = 2) + E5(1)
We see that when —A45(2) = 431(1)A423(1), the coefficient
for X;(z — 2) vanishes. This means that even though we
have a direct causal influence from channel 1 to 2 and an
indirect influence from channel 1 to 2 through channel 3,

they cancel each other, and the overall DTF function
from channel 1 to 2 is zero.

Appendix B

Our simulation model is composed of N coupled cortical
columns where each column is made up of an excitatory
and an inhibitory neuronal population. The equations
for the nth column read (Freeman 1992):

d’x,
dr?

+ (a + b)%"‘ abx, = —ke;O( n(t)a Qm)

N

+ Y kO (£ + Tap), On)
P

+ &, (1)

d? dy,
o+ a+b) T ke Qr(t), On) + &, (1)
Here x and y represent LFPs of the excitatory and
inhibitory populations, respectively, k. > 0 gives the
coupling gain from the excitatory (x) to the inhibitory
(v) population, and k. >0 is the strength of the
reciprocal coupling. Neuronal populations are coupled
through a sigmoidal function, Q(x,(Q,,), representing
pulse densities converted from x with 0, a modulatory
parameter:

+ abyn -

O(x,0m) = {Qm(l — e @D if x > —ug
= -1 if x < —ug

m :—ln(l +ln<1 —|—i>>

The coupling strength k,, is the gain from the excitatory
population of column p to the excitatory population of
column n, with k,, = 0 for n = p. The term t,,, is the time
delay in the transmission. The terms containing &(¢)
represent independent Gaussian white noise inputs given
to each neuronal population. The LFPs from all the
excitatory populations constitute the multichannel mea-
surement set.



The following parameter values were employed for all
the examples presented from Figs. 1-7: a = 0.22 /ms,
b=0.72 /ms, k;, = 0.1, k,; = 0.4, Q,, = 5, and the noise
was zero mean with variance a? = 0.04. The time delays
were all set to t = 15 ms unless mentioned otherwise.
The coupling strengths between columns used for dif-
ferent examples are as follows. For Figs. 1-3: k1, =0
and ky; = 0.1; for Fig. 4: the coupling strengths used are
ki = 0and ky; =0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14,
0.16,0.18,0.5,0.7, 1, 2, 5, 10; for Fig. 5: ki = kp; = 0.1;
for Fig. 6: ki3 = k3 = 0.6 are the nonzero couplings,
T13 = 15ms, 153 =25ms; and for Fig. 7: ki3 =ky; =
k31 = 0.1, T13 = 15 ms, 73 = 25 ms, and T31 = 10 ms.

The equations were integrated using the following
procedure. At each integration step: (A) the determin-
istic part of the equations were solved by using a fourth-
order Runge-Kutta method with linear interpolation for
the delays; (B) the noise term was integrated using the
Euler method; and (C) the results from (A) and (B) were
added to give the final value. The integration step size
was 0.1 ms. We sampled the data at 200 Hz. All simu-
lations were implemented in the C programming lan-
guage on a PC computer.

Appendix C

Excitatory neurons were modeled as single-compart-
ment integrate-and-fire neurons using known cellular
parameters (Lumer et al. 1997). The instantaneous
change of the membrane potential V; of each neuron
model i was given by:

dv(r)
RCP

where 7,, is the membrane time constant and Ej is the
resting membrane potential. When V; reached the spike
threshold a spike was recorded and the membrane
potential was reset. The spike was relayed to the target
synapses with a transmission delay of 5 ms. The
synapses were modeled as AMPA conductance changes
g(t) according to a dual exponential response with
characteristic rise and decay times. The term E corre-
sponded to the reversal potential of the channel. All the
synapses had the same conductance peak. The refractory
period was set to 5 ms. Each neuron had a spontaneous
activity obtained with additive lowpass Gaussian noise
waveforms independent for each neuron. The equations
were integrated using the Euler method with an
integration step of 1 ms.

=-—Vi+Ey—g(t)(Vi - E)
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