
Micro-grid State Estimation Using Belief
Propagation on Factor Graphs

Ying Hu, Anthony Kuh, Aleksandar Kavcic
Dept. of Electrical Engineering
University of Hawaii at Manoa

Honolulu, HI 96822
Email: (huying,kuh,kavcic)@hawaii.edu

Dora Nakafuji
Hawaiian Electric Company, Inc.

PO Box 2750
Honolulu, HI 96840

Email: dora.nakafuji@heco.com

Abstract—Smart grid envisions the potential to manage diverse
energy resources and enable a future self-dispatch and self-
healing grid. This would first require the micro-grid visibility
of node behavior (i.e. electrical parameters). In this paper
we propose a novel approach to construct a stochastic model
that makes global inference on every node at the micro-grid
level. The micro-grid system can be modeled as a factor graph
addressing proper correlation functions including distributed re-
newable generation correlation. We conduct statistical inference
on the factor graph using Belief Propagation (BP) algorithm.
The purpose is that given incomplete measurements, marginal
probability distribution for unmetered node behavior can be
derived. Simulation of the BP algorithm is performed on a
simplified micro-grid model with linear local correlations. The
results demonstrate that loopy BP can converge to optimal state
estimates efficiently.

I. INTRODUCTION

The existing power grid has been serving the public for
several decades without significant technical improvements.
The power grid will undergo transformations in the next
several years as demands for electricity increase, renewable
energy generation become more prevalent (with intermittent
sources such as wind and solar) due to environmental and
energy sustainability concerns, variable pricing, sophisticated
communication and sensing of parameters of the power grid,
and security concerns (privacy, anomaly detection, and en-
cryption). The future smarter and greener power grid is often
labeled “smart grid”—the so called “grid of the future” and has
drawn increasing attention worldwide. The smart grid should
have the potential to manage diverse energy resources, enable
failure prediction and assessment, distributed decision-making
and control as well as end user participation.

A micro-grid is defined as a subsystem of the power
grid that incorporates both associated loads and distributed
generation in order to realize the emerging potential of dis-
tributed renewable generation [1]. Current utilities have limited
monitoring and control over the micro-grid, especially the
distribution feeders. The reliability of the micro-grid can be
achieved with widely deployed system monitoring and pre-
dictable condition-based maintenance. In addition, with better
visibility of the grid, supply and demand can be balanced more
efficiently through intelligent control and dispatch algorithm
with the lowest possible intervention by utility workers. The

ability to monitor and control every node at the micro-grid
level will become a big challenge since wide deployment of
smart metering devices such as Advanced Metering Infras-
tructure (AMI) and Phase Measurement Unit (PMU) requires
huge investment. In addition, distribution system automation
and optimization involve with extensive data processing. The
utility needs the validation of the effectiveness of this data-
driven approach so that further investments can be made with
deploying sensing and metering devices.

In order to bridge the gap, stochastic formulation can be
used to estimate key parameters of all the nodes in the micro-
grid. There are two reasons for the stochastic approach. Firstly,
for large distribution feeders the pattern of demand tends to
become stable and daily load curve can be derived using
statistical data. These patterns are used for regulating the
generation of power plants. The closer it gets to individual
customer, the more randomness the load behavior will be.
Secondly, the integration of distributed renewable generation
would increase the randomness of load behavior at the micro-
grid since renewable energy generation is subject to weather
conditions (solar and wind). For example, in Hawaii the cloud
movements have significant effects on the stability of solar
generation.

Currently utility companies have limited real-time visibility
of distributed renewable generation. Even now some sites
are equipped with sensing devices such as pyranometers,
anemometers and sodars [2], the extensive resource data is
seldom processed and utilized by state estimators or distri-
bution system automation software. Conversely, the renew-
able generation at customer side is often viewed as negative
load. However, the increasing penetration of renewable energy
generation brings reliability issues to the existing grid and
calls for the real-time estimation of both the intermittent
renewable generation and circuit load variability. This would
provide insights on the influence of renewable generation on
circuit load behavior and enable further intelligent control and
optimization.

Our purpose is to assess the first and second order statistics
of node behavior through observations from partially deployed
smart metering devices. For a micro-grid which has scattered
observations, we propose an approach to construct a proba-
blistic model for the system and use a statistical inference



approach to estimate the node behavior for all the nodes. The
probability estimates are derived for those nodes that do not
have metering devices. The first step for our approach is to
model the micro-grid as a factor graph. Then we use the
Belief Propagation algorithm to conduct statistical inference
and derive posterior estimates for state variables.

This paper is organized as follows. Section II introduces
the factor graph and discusses how to model the micro-grid
as a factor graph. The BP algorithm and its computation rules
are presented in Section III. In Section IV different scheduling
schemes for the BP algorithm are discussed. After comparison
with conventional state estimation approach, we apply the
parallel BP algorithm on the micro-grid state estimation and
address its ability to work on many loopy graphs. Section
VI discusses our simulation of the loopy BP algorithm on a
simplified micro-grid system. The results show that optimal
marginals can be approximated with the loopy BP algorithm
very efficiently.

II. MODEL MICRO-GRID AS A FACTOR GRAPH

The micro-grid system is the portion of the power grid
extending from the last substation to buildings and individual
residences. It represents the distribution system downstream
from the last substation including distribution feeders. The
major micro-grid components may include substation trans-
former, feeder transformer, voltage regulator, shunt capacitor
banks, distribution line, customer load, etc. As we model only
key electrical parameters of the grid at the steady-state, such
as bus voltage, line current and power flow, the simplified
approach is to model several key components such as feeder
transformer, distribution line and customer load. We assume
that voltage and active power are specified at the load side of
substation transformer as given parameters.

The system map at the physical level needs to be first trans-
formed to a bus/branch model with proper numeric labeling of
every line segment between two connected buses or between
the bus and the load. The network topology, circuit breaker
status and the switching-device status are stored in Network
Topology Processor (NTP) [3]. The next step is to map the
bus/branch model to a factor graph.

A factor graph is a graphical representation of probabil-
ities, aimed at capturing factorizations. The factor graph is
constructed of both variable nodes and factor nodes. One
or more variable nodes are connected with the factor node
which represents the correlation among neighboring variables
[4]. Factor graph representation constructs the framework for
the statistical inference approach since the local correlations
represented by factor functions enable the distributed message
passing algorithm.

In a regular factor graph, variable nodes and factor nodes
are represented by circles and squares respectively and they
constitute a bipartite graph. In the context of electrical engi-
neering, a Forney-style factor graph, also known as “Normal
factor graph” [5], is discussed more often since it captures
two-way flow of information. In a Forney-style factor graph,
a variable node is represented by an edge or half edge while a

factor node is still represented by a square. It has the following
properties:

1) The node representing certain factor f is connected with
the edge or half-edge representing variable x if and only
if f is a function of x;

2) The variable has maximum degree of two, which means
no variable appears in more than two factors [4].

As a comparison, in a bipartite factor graph a variable node
can be connected to any number of factor nodes. However
it can be easily transformed to a Forney-style factor graph
by adding the factor that represents equality equation. In this
paper we mainly discuss the Forney-style factor graph.

A variable node in the factor graph may represent a con-
ductor in the micro-grid, that is a branch in the bus/branch
model. The state of the variable is defined by a vector
constructed of several different measurements. As a full range
of measurements, the following could be included in the
vector: voltage, current, frequency, phase, mechanical power,
solar power, wind power, etc. For different nodes in a micro-
grid, different kinds of measurements need to be involved. For
example, the component of solar power is only useful when the
node is associated with solar generation unit. When distributed
renewable generation is integrated in the grid, it is essential to
explicitly model the power flow at every generation unit. For
this consideration, we view every distributed generation unit
as a separate power injection connected directly to the bus. If
in reality the distributed generation is connected to the grid
through a customer load, it would be straightforward to derive
the combined behavior at the customer branch to the bus.

The definition of state variables varies at different ap-
proaches. We define the state vector as follows:

1) Regular variable node
• voltage magnitude Vk
• voltage angle θk
• current magnitude Ik
• current angle ϕk

2) Variable node representing distributed renewable gener-
ation:
• voltage magnitude Vk
• voltage angle θk
• injected real power Pk

Note that for regular variable node power flow can be cal-
culated from the complex voltage and current. For variable
node associated with renewable generation, line current can
be derived from the above state variables too.

Factor nodes should be able to represent local electrical rela-
tionships, such as Kirchhoff’s current law (KCL), Kirchhoff’s
voltage law (KVL), Ohm’s law, and the conservation of power
law. For example, the voltage drop on distribution line can
be simply modeled using Ohm’s law because the distribution
line is commonly within a short (i.e., 5 miles) distance. In
comparison, a proper model for long distance transmission
line would be a π model [6]. The feeder transformer usually
comes with specification in forms of turns ratio magnitude and



phase shift angle. The factor function can then be represented
by a linear equation with these two parameters.

In addition, since the smart grid may include distributed
renewable generation such as solar and wind resource, the
corresponding factor nodes may represent the solar/wind cor-
relation due to the geographic proximity of neighboring nodes
[7]. The correlation functions should be both time-correlated
and location-sensitive. Cloud movements need to be taken
into consideration as we derive the sequential and spatial
correlation for solar generation. Some interesting research on
wind power variability and wind correlation among different
sites is presented in [8].

In a linear factor graph where factor functions involve only
linear equations, we can use three factors as building blocks:
addition, equality and multiplication. Fig. 1 presents the three
factors in the Forney-style factor graph. Impulse functions are
used to represent local relationships among variable X, Y and
Z. One example of the application of sub-figure (b) on micro-
grid local correlation is KCL at a power system bus. Sub-figure
(c) can be used to model a simple resistive load function or
the feeder transformer.

(a) δ(X − Y )δ(X − Z) (b) δ(X + Y − Z)

(c) δ(Y −AX)

Fig. 1. Three factors representing linear building blocks

III. COMPUTATION RULES OF BP ALGORITHM

The BP algorithm is a distributed message passing algorithm
to achieve global inference, i.e., marginalization over all global
variables in graphical models. It is also known as sum-product
algorithm and has applications in communications, signal and
image processing, especially for communication tasks such as
equalization and decoding [9]–[12]. There has been very little
research in applying the BP algorithm to energy systems and
power grids. Reference [13] presents research on optimizing
the power grid with the message passing algorithm through
adding interconnections to the distribution system.

The marginal distributions for unobserved nodes are poste-
rior probabilities conditioned on measurements from observed
nodes. Because of the scale and complexity of a micro-grid
system, the computation could be high to derive the marginal
probability of one particular node by summing/integrating the
probabilities of all the other nodes. Consider a factor graph
including n variable nodes with binary values. To get the
marginal distribution, one needs to sum over 2n−1 values.

The BP algorithm captures the factor graph factorization and
performs summation/integration locally. The computational

complexity can be greatly reduced compared with the brute
force integration. As the number of variable nodes grows
larger, this efficiency becomes more prominent. In the fol-
lowing discussion we elaborate on the local computation rules
of the algorithm.

A. Sum-product algorithm

Here we use messages to refer to the probability density
functions passed along edges, which should meet specific
computation rules defined by factor nodes. Evidence potential
ψi(xi) is defined as the conditional probability to capture
conditioning information given observations [14]. It reflects
the local belief of variable i’s current state.

Since every variable is involved in at most two factors,
the message mis, flowing from variable i to factor s, is the
product of its own evidence potential ψi(xi) with the message
that variable i receives from its other neighbor, if it exists.
Otherwise, when variable i is a half edge, the message mis is
simply ψi(xi).

The message flowing from factor s to variable j is computed
as follows, also shown in Fig. 2:

msj(xj) = α
∑

xN(s)\j

(
fs(xN(s))

∏
i∈N(s)\j

mis(xi)

)
(1)

α is a normalization factor for probability representation. From
(1) it is clear that the product is taken over all incoming
messages m to factor s, except for the message from variable
j that is the recipient of the message m. Then the product
of function representing factor s and

∏
i∈N(s)\j mis(xi) is

summed up over all neighboring variables of factor s except
for variable j.

Fig. 2. Message update rules on a simplified graph

It is easily verified that the marginal probability distribution
f(xi) of variable xi is the product of all the incoming
messages flowing into xi with ψi(xi). Thus in order to derive
the marginal probabilities of all the variables, we need to
compute all the messages flowing along every edge/half edge
in both directions.

B. Gaussian Belief Propagation

Gaussian Belief Propagation is the BP algorithm where
all probability distributions are Gaussian. Since the mean
and covariance of a Gaussian random vector characterize its
probability density function, the message only needs to include
the mean vector m, covariance matrix V or weight matrix
W = V −1. We are considering two-way flow of information
on the edge, which makes it necessary to further divide
the messages flowing along edges into forward message and
backward message. This differentiation also prepares for the



discussion of Kalman filtering and smoothing algorithm which
include both forward message passing and backward message
passing. Fig. 3 shows the parameters for Gaussian Belief
Propagation. The computation rules for these parameters in
Gaussian BP algorithm are derived in [4].

Fig. 3. Parameters for Gaussian Belief Propagation

IV. BELIEF PROPAGATION SCHEDULING

The order of passing messages is referred to as the schedule.
Under the computation rules, local beliefs are propagated to
the entire factor graph according to several different sched-
ules. Reference [14] discusses in detail the message passing
algorithm with a specific schedule, which is a variation of
the Elimination algorithm. Exact inference can be performed
by repeated elimination of variables on a radial graph. The
graph should be a tree-like structure so that bounded length
of elimination order can be derived.

Another way to derive marginal probabilities is the BP
algorithm with flooding schedule, which means all the mes-
sages are updated simultaneously instead of passing messages
according to some specific order [15]. It is widely applied
since it can often work on general graphs that may contain
loops. There is both a serial and a parallel approach for
the flooding Belief Propagation. We derive the serial Belief
Propagation from the Kalman Filter algorithm and then move
forward to the discussion of parallel Belief Propagation which
is more computationally efficient.

A. Kalman Filter and Serial BP

In a micro-grid, observations are provided by measurement
units, such as AMI, PMU or relay units. We want to derive the
posterior probability of every variable given these observations
taking into account the uncertainty caused by noise. The
purpose of Kalman filter is to use noisy observations to
estimate the true states. The Kalman filter is defined by a set
of mathematical equations that provides an efficient recursive
mean to estimate the state of a process, in a way that minimizes
mean squared error [16]–[18]. In a factor graph representing a
micro-grid, every variable is viewed as a hidden state. Given
the initial probability distribution, we can perform the Kalman
filter algorithm to estimate the distribution of node behavior
based on noisy observations from the grid.

With a broad definition, the Kalman filter algorithm includes
Kalman filtering and Kalman smoothing. Kalman filtering
is the forward belief propagation recursion which provides
posterior probability distribution of the state X[t] given the
observation sequence Y up to time t. By computing also
the backward messages, Kalman smoothing calculates the
posterior probability of all the variables given the whole

observation sequence Y . Here we apply the Kalman filter on a
linear State-Space Model (SSM), which assumes that the true
state at time t + 1 evolves from the state at time t according
to

xt+1 = Axt +Gwt (2)

where A is the state transition model and wt is the process
noise, wt ∼ N(0, Q). N(0, Q) is a Gaussian random variable
with mean zero and variance Q. This corresponds to the time
update.

At time t an observation yt of the true state xt is made
according to

yt = Cxt + zt (3)

where C is the observation model which maps the true state
space to the observed space. zt is the observation noise, zt ∼
N(0, R). This corresponds to the measurement update.

Fig. 4 is the factor graph of linear State-Space Model
representing the above state equations. This model can be
extended in a time/spatial manner.

Fig. 4. Factor graph of linear State-Space model

For a system with known state transition matrix A, we
can directly use the Kalman filter algorithm to obtain state
estimates. However, as the system grows larger and more com-
plex, the dimension of A grows and so does the computational
complexity of this approach. Thus we turn to the discussion of
serial Belief Propagation, which applies the idea of the Kalman
filter while avoiding the computation of transition matrix A.

Serial BP algorithm is derived directly from the Kalman
filter. For a Kalman filter system the transition between sub-
sequent states takes place when a new observation is available
for the later state. When BP is used for state estimation in the
grid, spatially connected nodes are viewed as different state
variables. The propagation process includes several iterations
of measurement updates and time updates. Observations are
taken in a sequential manner to perform measurement update
in subsequent iterations. At every time update, all the messages
are passed and updated according to the computation rules
discussed in Section III. This process corresponds to the
Kalman filtering and smoothing. After all the observations are
processed, global inference for all variables can be derived.



B. Parallel Belief Propagation

We refer to the BP with parallel computation as parallel
BP. It has applications in many different areas, e.g. LDPC de-
coding. Parallel BP improves the efficiency of state estimation
since it involves less iterations of message passing.

Instead of fetching one observation at each time step as in
serial BP, parallel BP does the measurement update for all
the variables at one time once a new set of observations is
available. The frequency of data collection can be determined
according to the distributed control and dispatch ability of the
grid. For example, if the grid requires five minutes ahead of
time control, the sampling period of metering data should
be less than that to allow for data processing and control
actions. The new iteration of measurement update can take
place only after the convergence of the previous iterations
of the time update. The accuracy of state estimation can
be affected by the concurrency of measurement collection
because the BP algorithm captures a snapshot of system states.
Thus the metering devices equipped with GPS that provides
time-stamped data would be preferable for this data-driven
application.

Once all the variables have their local beliefs based on the
given set of observations, their beliefs are propagated in the
graph for certain time units until every variable receives beliefs
from all the other variables. This process corresponds to a time
update in the Kalman filter. The time update process involves
simultaneous update of all the messages from variables to
factors, followed by the update of messages from factors to
variables. The above two steps together make one iteration.
Section III discusses the computation rules for these two kinds
of messages.

Suppose E is the set of all the variables and F is the set
of all the factors. We summarize the parallel BP algorithm in
the following steps:

1) For every variable i, initialize the evidence potential
ψi(xi) given possible observation.

2) While the stop criteria is not met,

• For every i ∈ E, update messages mt+1
is flowing

from variable i to all of its neighboring factors s at
time t+ 1 according to mt

ki.
• For every s ∈ F , update messages mt+1

sj flowing
from factor s to all of its neighboring variables j at
time t+ 1 according to mt+1

is .

3) Compute marginals P (xi) according to the steady state
messages msi.

The stop criteria used can be either when all the posterior
estimates converge or when a maximum number of iterations
are reached. If the factor graph has a cycle-free structure,
we can envision that the iteration time would be R/2 where
R is the diameter of the tree. After R/2 iterations BP will
necessarily converge to the true marginals because every local
belief is propagated to the entire graph and the global inference
for every variable node can be derived based on all the
observations.

V. STATE ESTIMATION

A. Conventional State Estimation

Conventional state estimation techniques have been applied
in the power grid, mostly in the bulk transmission system, to
estimate the true states of the overdetermined system. State
estimation algorithm estimates the voltages (magnitude and
angle) at all the system buses given both network impedance
and measurements received from the substations [6]. In most
practical cases the number of measurements is more than the
number of states. That is to say, more data is available than
it is utilized for state estimation [19]. The purpose of the
traditional state estimation approach is to eliminate incorrect
measurements and determine the power flow in the unmetered
parts of the grid given enough redundancy.

The algorithm is based on several assumptions:
• All the loads can be modeled as constant variables and

are known to the system.
• System topology is correct and analog bad data can be

identified whenever redundancy allows it [3].
Most state estimation programs formulate the system as

nonlinear equations and use recursive algorithm, i.e, Weighted
Least Square (WLS) algorithm, to solve for the true system
states [20]. This approach can not be directly applied on
the distribution system because there are not as many real-
time measurements [21]. Reference [22] resolves this problem
by using the load modeling approach to generate pseudo-
measurements from historical load data.

The distributed state estimation (DSE) models the distri-
bution system by viewing the entire distribution feeder as a
load without modeling the individual customer in the feeder
circuit. However, the smartness of the future grid requires
the modeling and control ability at the customer level. Thus
an efficient distributed algorithm is needed to perform state
estimation at the micro-grid level, rather than the centralized
recursive algorithm utilized in current state estimators. Parallel
BP is such a distributed algorithm that iteratively propagates
belief and converges at global inference.

B. Micro-grid State Estimation

In the micro-grid state estimation, we assume certain
amount of smart metering devices are deployed that provide
real-time measurements. However, currently there are very
limited real-time load data provided downstream of the dis-
tribution feeders. We can generate pseudo-measurements, as
in the DSE approach, from a proper prior distribution of the
loads. The proper model for the prior distribution is crucial for
the Bayesian approach and affect the estimation performance.
The load modeling algorithm for nodes in the micro-grid is
different from the common approach for a state estimator that
models the load as constant power, impedance or current [23].

As discussed in Section I, the load behavior at micro-
grid level is stochastic and should be modeled as a random
distribution. The loads are commonly modeled as Gaussian
distributions, which is not justified because the statistical
distribution of load variation may not follow any specific



probability distribution function [24]. Reference [24] further
presents the approach of representing the load pdf as a Gaus-
sian mixture model. The mixture components can be reduced
to form a single Gaussian approximation. In our model, the
pdf for both electrical parameters and renewable generation
power flow is modeled as Gaussian distribution.

In the micro-grid state estimation, we use Gaussian BP
to derive global inference. BP is only applicable when the
variables are discrete-valued or follow multivariate Gaussian
distribution. If the factor function is nonlinear, the variable
distribution will not remain Gaussian after message passing.
When injected power flow from renewable generation is
considered as a state variable, its corresponding correlation
function is nonlinear. In order to still utilize the Gaussian BP
approach, linear approximation can be performed around the
most recent voltage and current values.

The BP algorithm will always work on a tree-like structure.
Inference on loopy graphs is known to be NP-hard. However,
for general graphs which may contain loops, BP can often
converge to the optimal state estimates when a proper stop
condition is specified. This approach has shown experimental
success in many applications. It is also called loopy Belief
Propagation to address the fact that it can often work on a
general graph which might include loops.

Reference [25] derives the analytical relationship between
the approximate marginals computed with loopy BP and the
true marginals on a graph with single loop. Graphs exist where
loopy BP fails to converge. Reference [26] describes three
techniques for analyzing the behavior of loopy BP.

The structure of the existing power grid is mostly radial.
There are two cases that may result in loopy graphs repre-
senting the grid.

1) Possible loops may be needed to address ancillary
backup power lines.

2) Time and spatial correlations of solar/wind generation
would result in loops in the micro-grid model.

For the first case, we can adopt the assumption that the
distribution systems are built with pre-installed on/off switches
and known status of circuit breakers to construct a particular
configuration. This configuration includes tree-like subgraphs
of the full loopy distribution graph. For a given time it allows
for currents flowing over trees. As for the second case, the
exact behavior of the loopy BP algorithm on a micro-grid
with high renewable penetration is still under research. Despite
of this, the BP scheme provides heuristic tools for graphic
models on finite sparse graphs and can be used for algorithmic
optimization and control of the distribution system [13].

VI. SIMULATION

The actual micro-grid structure can be quite large and com-
plex while the number of nodes involved may vary from tens
to thousands. The study on the many details of the distribution
system is quite complex and requires simplifications. The
simulation of the statistical inference approach is conducted on
a simplified micro-grid system which incorporates distributed
renewable energy generation. The assumption is made that all

the local relationships are linear including the electrical rela-
tionship and correlation among renewable generation. In this
case the optimum linear minimum mean squared error estimate
is the optimum minimum mean squared error estimate.

We simulate the loopy BP algorithm on a factor graph with
210 variables, which represents a micro-grid incorporating
distributed renewable generation. The micro-grid is comprised
of 10 clusters which are interconnected at the boundary,
i.e. variable x16 has a connection with variable x1 of the
neighboring cluster. Every local graph has the same structure
as shown in Fig. 5 [7]. The micro-grid has certain percentage
of scattered smart metering devices being deployed such as
AMIs and relay units. The power supply comes both from the
substation and renewable generation. The system on the graph
should enable two-way flow of information. Please refer to [7]
for detailed explanation of this micro-grid model.

The corresponding factor graph for the cluster is shown as
Fig. 6 [7]. Note that in the factor graph within every cluster five
more variable nodes are added to address generation and load
variables corresponding to the factor function g and fL. fE
represents the electrical relationship on the system bus, which
includes KVL, KCL and conservation of power law. gS and
gW represent solar and wind correlation among neighboring
generation units corresponding to the dotted lines in Fig. 5.

Fig. 5. One cluster of the smart micro-grid model

As a proof-of-concept study we make several assumptions
in the simulation listed as follows. In the realistic power grid,
these assumptions would not be necessarily true, but they
provide basics for future study. The future improvements on
the modeling will be discussed in the last section.

1) All the factors involve only linear operations, i.e., corre-
lations among variables are linear and can be expressed
with the three linear building blocks, as described in Fig.
1.

2) The initial probability distributions of all the variables
are assumed to be multivariate Gaussian distributions.

3) The sampling period of new observations is longer than
the convergence speed of BP algorithm.

The parameters in this simulation are set as follows:
• The state of every variable is defined by four components,

i.e. active power, reactive power, voltage magnitude and
angle. They take on real analog values.

• We use equality factor, as shown in Fig. 1(a) to represent
correlation function g, addition factor, as shown in Fig.
1(b) to represent fE and multiplication factor as shown



Fig. 6. Factor graph representation of Fig. 5

in Fig. 1(c) to represent fL, gS , gW . Note that for load
function and solar/wind correlation function we assume
A is a diagonal matrix 0.5I .

• The maximum iteration times are set to be 1000.
• The error distance for convergence δ is chosen to be

0.001. This means when total squared error of mean
estimates is smaller than δ, we consider steady state has
been reached.

Fig. 7 shows the estimate error versus iteration times. From
the figure we can see that the loopy BP algorithm converges
after 10 iterations in this simulation. The first and second
order statistics of node behavior reach the steady state which
is considered to be the optimal state estimate. The precision
of state estimation will rely on both the prior model of node
behavior and number of observations provided.

Fig. 7. Convergence of state estimations

VII. CONCLUSION AND FUTURE RESEARCH

This paper presents a novel approach to estimate the node
behavior in a smart micro-grid. The first step is to model the
micro-grid as a factor graph through defining the correlations
among correlated nodes as factor functions. Then we conduct
statistical inference by using the loopy BP algorithm. The algo-
rithm derives true marginals on radial graph and approximates
marginals well on loopy graphs.

Before utilities and industries make large investments on
deploying smart metering devices, it is essential to conduct
the studies in determining how accurate statistical inference
procedures are when only a few of these metering devices
are deployed. There are many issues to be considered from

where to place the metering devices to how many of the
devices to deploy. This paper proposes a statistical model
where we can begin to answer these questions. In formulating
simulation models we must be careful that we use realistic
random models that fit real micro-grid systems. By conducting
extensive simulation studies we can easily vary the number of
metering devices used and their locations. By understanding
the models and observing simulation results we can then
develop strategies for placement of AMIs and PMUs in future
micro-grids.

Future work should also include the following directions:
1) Deal with nonlinear message passing using the approach

of Extended Kalman Filter (EKF) [27].
2) Conduct statistical inference for variables with non-

Gaussian continuous distribution.
3) Derive proper model for solar and wind correlations. Be-

fore we could derive the model that accounts for general
situation, the first step should be to gather massive en-
vironmental information and renewable generation data
from different sites which are geographically related.

4) Properly model generation function as well as load
function which can be demand-responsive.
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