
Automating Security Mediation Placement

Dave King1, Susmit Jha2, Divya Muthukumaran1,
Trent Jaeger1, Somesh Jha3, and Sanjit A. Seshia2

1 Pennsylvania State University?

2 University of California, Berkeley??

3 University of Wisconsin

Abstract. We present a framework that automatically produces sugges-
tions to resolve type errors in security-typed programs, enabling legacy
code to be retrofit with comprehensive security policy mediation. Re-
solving such type errors requires selecting a placement of mediation
statements that implement runtime security decisions, such as declas-
sifiers and authorization checks. Manually placing mediation statements
in legacy code can be difficult, as there may be several, interacting type
errors. In this paper, we solve this problem by constructing a graph that
has the property that a vertex cut is equivalent to the points at which
mediation statements can be inserted to allow the program to satisfy the
type system. We build a framework that produces suggestions that are
minimum cuts of this graph, and the framework can be customized to
find suggestions that satisfy programmer requirements. Our framework
implementation for Java programs computes suggestions for 20,000 line
programs in less than 100 seconds, reduces the number of locations a
programmer must consider by 90%, and selects suggestions similar to
those proposed by expert programmers 80% of the time.

1 Introduction

Security-typed languages [20, 22] use type systems that augment the types
of data with security labels to statically verify that a program satisfies a
security property based on a relationship among those labels. However,
many programs exhibit behavior that is not compatible with a static type
system. For example, we do not know whether a user accessing patient
data in a medical data system is assigned a doctor label or another label
until runtime, requiring a runtime authorization check.

To resolve these conflicts within the type system, programmers insert
mediation statements, such as declassifiers or authorization checks, that
ensure that the runtime behavior of the program remains consistent with
the security labels expressed by the type system. Currently, the addition
of mediation statements is a manual task that requires examining a large

? Research was supported by NSF grant CNS-0905343
?? Research was supported in part by NSF grants CNS-0627734 and CNS-0644436, and

an Alfred P. Sloan Research Fellowship

amount of code and careful consideration to avoid errors. Automatic tools
can identify missing mediation statements [8, 20, 32], but even after the
errors have been identified, reaching a consensus on manual placement
often takes a long time (e.g., for Jif programs [12] and the X Window
Server [28]). Given a set of candidate mediation statements, they may
not actually resolve all labeling conflicts, they may contain redundant
statements, may significantly degrade performance, and they may violate
the program’s coding style.

In this paper, we present a method for automatic identification of
mediation points in legacy programs that is based on a graph cut ap-
proach. A mediation point is a location where a mediation statement can
be placed. We were inspired to investigate mediation point placement
as a cut problem due to recent work assigning a quantitative measure
of leaked information in a program by solving a maximum-flow graph
problem [17]. By solving a cut problem, the dual of the maximum-flow
problem, we present the programmer with options to insert mediation
statements into the program. Our method outputs a set of suggestions:
each suggestion is a set of locations for placing mediation statements
that resolve a program’s type system conflicts. We outline the proper-
ties required of the type system such that a cut of any information flow
graph generated from a program using that type system is equivalent to a
placement of mediation statements in the program. We use existing graph
algorithms to output each equivalent cut of the graph, thereby providing
the user with a set of legal placement suggestions to assess, reducing their
effort significantly. We make the following contributions in this paper:

• We define a transformation from a set of information-flow constraints
for a program into an information-flow graph, such that the correspond-
ing information-flow graph has the property that every source-sink cut
of the graph corresponds to a set of mediation points that completely
resolve the program’s illegal information flows.
• We develop a framework that computes suggestions for mediation

points based on finding cuts of the information-flow graph. We describe
how we modified the security-typed language Jif to output label con-
straints that could be converted into such an information-flow graph.
We also describe how to cluster expressions to prevent many redundant
suggestions from being output to the programmer.
• Our framework implementation computes suggestions for Java pro-

grams of more than 20K SLOC in less than 100 seconds. In addition,
our results show that our suggestions reduce the number of locations
that would be required for a programmer to examine given current

tools for finding security-typed language errors by approximately 90%,
and in programs originally written in a security-typed language, more
than 80% of the selected mediation points were classified as similar to
those placed by human programmers.

The graph-cut approach presented in this paper provides a framework for
programmers to solve practical placement concerns, ensure that solutions
resolve all conflicts, contain no redundant mediators, and can account for
performance and style considerations.

Related Work: McCamant and Ernst [17] dynamically measure the
quantitative information flow that a program leaks by solving a maximum
flow problem. However, the corresponding minimum cut of the program’s
flow may not be the only suitable location to use as a mediation state-
ment. Our work is aimed at providing a static mechanism for determining
the mediation points that resolve the type system conflicts for a program.
Programmers are currently using security-typed languages to build secure
systems [2, 13], but these systems have not been used to retrofit existing
programs for security. There has also been a recent line of work in man-
ually adding authorization checks to code in applications, such as Linux
Security Modules [31], X Windows server [28] and dbus [29]. A variety of
research aims to enforce type safety guarantees for C code [3, 21], but we
aim to resolve type errors. Program slicing [26] and type-based analyses [5]
have been used to find information-flow errors. The principal advantage
of our framework is that viewing the problem as graph cut enables us to
find placements that achieve complete mediation that accounts for all of
the errors in a single computation. However, the scope of work presented
here applies to security types. Generalization is future work.

The remainder of the paper is structured as follows: In Section 2, we
survey some problems related to placing mediation statements in code.
We provide background about security type-checking in Section 3. In Sec-
tion 4, we describe how to transform information-flow constraints into a
graph that has the property that a cut of the graph is equivalent to a
set of statements that mediate the corresponding program’s illegal flows.
In Section 5, we outline the design of our framework, which outputs me-
diation suggestions from this graph. In Section 6, we give the results of
experiments, where we apply our tool to place mediators in eight different
programs.

2 Overview
In this section, we introduce some of the challenges in placing mediation
statements in program code. In security-typed languages, programmers
specify security properties in code by annotating various security-relevant

sources and sinks in the program with security labels from a lattice L.
These languages enforce noninterference [9]: a program satisfies nonin-
terference if, at runtime, the computation of data with security label l is
independent of data with security label l′ if l 6≤ l′ in L. Noninterference
can be used to model both secrecy and integrity requirements, depending
on the semantics of the labels in L. A program satisfying noninterference
is also said to satisfy information-flow security. Statically checking nonin-
terference has two problems: (1) without a notion of declassification [24],
programs can never violate L, even when properly releasing data (e.g.,
releasing patient records to new doctors), and (2) without runtime autho-
rization checks, we have no way to enforce L over labels whose security
values may be instantiated at runtime, causing the program to unnec-
essarily violate noninterference. Mediation statements allow programs to
execute flows between label l and incomparable labels l′.

To investigate issues in placing mediation statements in code, we in-
troduce the example of logrotate, a program that rotates system logs
into backup files. logrotate is trusted to maintain the security properties
of the operating system: if the user configuring logrotate is not allowed
to perform an action, then logrotate should not be allowed to perform
that same action. In recent work [13], a version of logrotate has been
written in the security-typed language Jif [20], a variant of Java. The
Jif version of logrotate guarantees that the program satisfies informa-
tion flow security. However, it also requires that the programmer insert
mediation statements to allow information to flow from the logrotate
configuration files to the logs being rotated. Without a mediation check,
it is not clear whether or not logrotate violates the secrecy and integrity
guarantees of the system: it is possible that it reveals configuration data
through viewing the results of log rotation or that it compromises log data
by allowing a user of logrotate to modify log file data that she does not
have access to. We highlight three individual flows from the configuration
file to the rotated logs in Figure 1. Each flow requires mediation.

• The number of logs to rotate before deleting the final log (rotateCount)
is equal to the number of file rename operations performed.
• The filename specified by the configuration file is used to get a handle to

the system file that logrotate renames through oldName. If an attacker
can control this variable, then she can rotate logs containing evidence
of attacks on the system.
• The filename specified by the configuration file is used to create the new

name that a log file is renamed to, newName. If an attacker can control
this variable, then she could cause a file to be overwritten.

1 label config, log_lbl, LogInfo[{config}]{config} log;
2 String{config} filename = log.getFilename(logNum);
3 int{config} rotateCount = log.getRotateCount();
4 File[{log_lbl}]{log_lbl} disposeFile =
5 Runtime.getFile(filename+"."+(rotateCount+1),log_lbl);
6 File[{log_lbl}]{log_lbl} newlogfile, oldlogfile = null;
7 // rename messages.n to messages.n + 1

8 for (int i = mediate(rotateCount,log lbl) ; i >= 0; i−−) {
9 String newName = filename + "." + i;

10 String oldName = filename + "." + (i−1);

11 newlogfile = Runtime.getFile(mediate(newName,log lbl) ,

12 log_lbl);

13 oldlogfile = Runtime.getFile(mediate(oldName,log lbl) ,

14 log_lbl);
15 if (oldlogfile != null)
16 oldlogfile.renameTo(newlogfile);
17 }
Fig. 1. Example from logrotate that performs rotation of log files shown with medi-
ation statements inserted.

The code in Figure 1 shows the logrotate code with mediation state-
ments inserted. Each of the above flows has been mediated by adding a
mediate(e,lbl) expression: if the label on the expression e is allowed to
flow to lbl, then the expression has the value of e with the security label of
lbl. Otherwise, the program throws a security exception and terminates.
The placement given in the figure is not the only possible placement:
for example, it would have also been possible to mediate the loop guard
i >= 0, which would have disconnected the number of times the loop was
executed from data labeled as {config}.

To place mediation statements that resolve these information flows,
a programmer must first annotate the sources and sinks in the program
with their security labels. Next, the programmer must examine each line
of code contributing to errors that result. She can use automated meth-
ods to identify possible causes of information-flow errors [15]. Resolving
these errors is currently a manual process and requires the error expla-
nation analysis to be run multiple times to resolve each of the possible
causes of an information-flow error. An automated solution would free
the programmer from having to examine all the error explanations, re-
quiring them only to determine whether the selected mediation points
were suitable or not. Our method uses the results of a whole-program
information-flow analysis to suggest a set of mediation points, locations
in code where mediation statements can be inserted to resolve a pro-
gram’s labeling conflicts. The particular mediation mechanism required
is application-specific, and so ultimately the programmer must decide for

each selected mediation point what type of mediation statement should
be inserted.

Often programmers have certain placement constraints with regards
to where mediation statements should not be placed [24]. For example,
class A is used for string formatting, while class B implements crypto-
graphic operations on the contents of a string. Programmers might there-
fore prefer to perform a mediation statement in class B rather than class
A so that security operations are performed in classes already used for
security. Any automated system should be customizable, as requirements
of this type for declassifier placement differ across applications and pro-
grammers.

3 Background on Information-Flow Checking

Security-typed languages [20, 22] augment traditional compilers to allow
programmers to specify the security properties of program data. Gener-
ally, these languages enforce noninterference in code by augmenting the
type system with security types. There are two different categories of ille-
gal information flow that noninterference disallows. Explicit information
flows occur when high security data is written to a low output, such as
writing a secret key to a socket. Implicit information flows occur when
high security data otherwise affects a low observable result. For example,
a password check that compares the hash of a guess against the hash of a
password and reveals that information is an implicit flow of information.
If h and l are high and low variables respectively, then the assignment
l := h is an explicit flow of information, while the conditional if h then l := 1

is an implicit flow of information.
To prevent the programs from releasing secure information through

an explicit information flow, types τ are annotated with labels l, and
the type system forbids subtyping of the form τ{l} � τ{l′} if l 6� l′. To
prevent information from leaking through implicit flows, the type system
maintains a label containing the security level of the program counter.
This security label is equal to the join of all of the security labels that
the execution of the current expression depends on. When an assignment
is performed, the type system verifies that the variable being assigned to
is greater than or equal to the program counter.

To enforce these security guarantees, type systems generate
information-flow constraints from the program. Information-flow con-
straints contain both security labels l from the lattice L as well as label
variables α representing the security level of program elements that have
not been explicitly labeled. A security type system generates a set C of

information-flow constraints corresponding to the information flows that
a program permits [19]. If there exists a mapping ρ from label variables to
security labels such that for each constraint ξ ∈ C, the substituted ρ(ξ)
holds, then C is satisfiable. A program with a satisfiable information-flow
constraint set satisfies noninterference.

4 Constraint Methodology

In this section, we show how to generate information-flow constraints so
that finding a set of mediation statements can be solved as a graph-cut
problem. We introduce sIMP, a constraint-based type system for IMP,
a simple imperative language [30]. The IMP language contains condi-
tionals, variable assignment, and while loops, and is presented as a sim-
ple foundational language. The main technical distinction between the
constraint-based type system presented here and standard type systems
for information-flow security, such as the one presented by Volpano et
al. [27], is that sIMP does not assume a total mapping from each vari-
able to its security level. In the case where every variable is assigned a
security level, there is no ambiguity as to where to place a mediation
statement. In legacy code, it is unreasonable for the programmer to as-
sign security semantics to each variable, meaning that the security level
of an expression e is equal to the security level of every expression affect-
ing e. A constraint-based type system models language expressions that
have an undetermined security semantics: in sIMP, the security label of
an expression e is associated with a unique label variable αe.

In sIMP, a command c is information-flow secure if the set of
information-flow constraints C that the type system assigns to c is satisfi-
able. Using a standard technique from the literature [6, 7, 11, 25], we view
the information-flow constraints C as a directed graph GC , which we refer
to as information-flow graph. If C contains the constraint τ ≤ a (where
a is an atom: either a label variable or lattice element and τ is a join of
atoms, see the formal definitions in the next section), then there is an edge
from each atom in τ to a. The information-flow graph therefore contains
a path between two nodes n1, n2 ∈ GC if the value of the program element
associated with n1 can affect the value of the program element associated
with n2. We first show that for a two-point lattice consisting of > and
⊥, the constraints generated by sIMP have the cut-mediation equivalence
property, meaning that a set of mediation statements that resolve the
illegal (>,⊥) flows in a sIMP program is equivalent to a (>,⊥) cut of
the information-flow graph. We show how to generalize this approach for
arbitrary lattices in Section 4.4.

4.1 A Constraint-Based Type System For Information Flow
We now introduce sIMP, a constraint-based type system for enforcing se-
cure information flow in IMP. We begin by introducing the IMP language.
IMP contains two distinct syntactic elements: commands and expressions.
A command c can modify a global program state σ, while an expression e
evaluates to an integer value n using variable bindings from σ. An exam-
ple of an IMP command is x := x + 1: this updates the variable x to be
equal to the current value of x added to 1. Commands c and expressions
e in IMP have the following grammar4:

Integers n ::= 0, 1, . . .
Variables v ::= x, y, . . .
Expressions e ::= n | v | e1 + e2
Commands c ::= skip | c1 ; c2 | v := e |

if e then c1 else c2 | while e do c

Let σ be a memory, mapping variables to integer values. Evaluation in
IMP has the judgment 〈σ, c〉 → σ′: under memory σ, command c produces
memory σ′. Evaluating the above command under a memory that maps
x to the integer 4 returns a memory mapping x to the integer 5. This is
written 〈{x 7→ 4}, x := x + 1〉 → {x 7→ 5}. The evaluation semantics for
IMP are standard big-step semantics: as our focus is on static checking
of the security properties of IMP commands, we omit its presentation.

Label Constraints: To enforce information-flow security on IMP, we
define a constraint-based type system that determines label constraints
from a command c and describes the flows that c enables in a security
lattice L. If a command c has a set of label constraints that is satisfiable,
then for all flows that c enables from l1 to l2, l1 ≤ l2 in the lattice L. If
l1 6≤ l2, then this flow will require mediation before the program can be
used as a component of a secure system. We now give the syntax of label
expressions and constraints.

Label Variables α ::= α, β, . . . ∈ V Security Labels l ::= l ∈ L
Atoms a ::= α | l Label Joins τ ::= a | a t τ
Constraints ξ ::= τ ≤ a

An atom ai is a label expression that is either a label variable α or a
label l ∈ L. Label joins have the form a1 t · · · t an ≤ a0. A label variable
α states that an expression has not been explicitly been labeled by the
programmer. A label l represents an expression that has a predefined
security semantics defined by the lattice L: for example, a key used for
encryption that has been read from a file would be given a Secret security
label that would prevent it from being leaked to security labels in the
lattice that it dominates, including Secret.

4 For simplicity, we omit presenting the semantics for handling Boolean values. This
modification does not affect the security properties of sIMP.

We now give a security type system for IMP (sIMP) that enforces
noninterference of high and low security data. Let Γ be a context assigning
a security level to seed variables, which is a subset of the set of all program
variables, and ∆ be a context assigning to each program variable x a
unique security variable αx. To track implicit flows, the type system also
keeps track of the current label of the program counter with the pc label.
The constraint generation rules are as follows:

Expressions

αn,p fresh

Γ ;∆ ` (n)p : αn,p, ∅
x ∈ dom(Γ) αx,p fresh

Γ ;∆ ` (x)p : αx,p, { αx,p ≤ ∆(x),∆(x) ≤ αx,p,
Γ (x) ≤ ∆(x),∆(x) ≤ Γ (x) }

x 6∈ dom(Γ) αx,p fresh

Γ ;∆ ` (x)p : αx,p, {αx,p ≤ ∆(x),∆(x) ≤ αx,p}

Γ ;∆ ` e1 : α1, C1 Γ ;∆ ` e2 : α2, C2 α3,p fresh

Γ ;∆ ` (e1 + e2)p : α3,p, C1 ∪ C2 ∪ {α1 t α2 ≤ α3,p}

Γ ;∆ ` e : α0, C α1,p fresh

Γ ;∆ ` (mediate(e))p : α1,p, C

Commands

Γ ;∆; pc ` skip : ∅
Γ ;∆; pc ` c1 : C1 Γ ;∆; pc ` c2 : C2

Γ ;∆; pc ` c1 ; c2 : C1 ∪ C2

Γ ;∆; pc ` v : α0, C0 Γ ;∆ ` e : α1, C1

Γ ;∆; pc ` v := e : C0 ∪ C1 ∪ {α1 t pc ≤ ∆(v)}

Γ ;∆ ` e : α0, C0

αpc fresh
Γ ;∆;αpc ` c1 : C1

Γ ;αpc ` c2 : C2

Γ ;∆; pc ` if e then c1 else c2 :
C0 ∪ C1 ∪ C2 ∪
{pc t α0 ≤ αpc}

Γ ;∆ ` e : α0, C0 Γ ;∆;αpc ` c1 : C1 αpc fresh

Γ ;∆; pc ` while e do c : C0 ∪ C1 ∪ {pc t α0 ≤ αpc}

If the generated constraint set C for a command c is satisfiable, then
when run, c will not cause any high-security data to affect low-security
data. The type judgments presented in this figure are for both expressions
e and commands c. An expression is assigned information-flow constraints
C and a security variable α with the judgment Γ ;∆; pc ` e : α,C, while a
command c is assigned information-flow constraints C with the judgment
Γ ;∆; pc ` c : C. We associate expressions e with a unique security
variable αe so that the vertices corresponding to a cut of the graph are

uniquely identified with mediation points. In the type checking rules,
we add a unique position tag p to refer to expressions e, allowing us to
uniquely refer to subexpressions. We write (e)p to indicate that expression
e has the position p (assumed to be taken from a unique set of positions).
This is similar to converting a program to SSA form [4]. We refer to the
label variable αe,p as the expression variable for the expression-position
pair (e, p). In the case where there is no loss of ambiguity, we refer to αe

as the expression variable for e.

Constraint Example: We now investigate the information-flow con-
straints associated with the main loop in Figure 1 by building the
information-flow constraint set C. The constraints generated by this pro-
gram represent the information flows through the program. Later in the
section, we will show how these constraints induce an information-flow
graph on the label variables and lattice elements.

Let αrc, αfn, αnn, αon, αi, αnlf , αolf be the expression variables asso-
ciated with the variables rotateCount, filename, newName, oldName, i, newlogfile,
and oldlogfile, respectively. For a variable x, the label variable αx,n repre-
sents the occurrence of x on line n. For all n such that x appears on line
n, the constraint set contains the constraints αx ≤ αx,n and αx,n ≤ αx

(the expression x on line n has the same security level as the variable αx).
From the definitions at the beginning of the code, the constraint

set C contains the constraints config ≤ αrc and config ≤ αfn. The for

loop introduces a new program counter variable αpc1 and the constraints
αrc,8 ≤ αi (from int i = rotateCount), αi,8 ≤ αi (from the i−− statement),
and αi ≤ αpc1 (from the loop being executed until a condition on i is satis-
fied). The next two statements generate the constraints αi,9tαfn,9 ≤ αnn
and αi,10 t αfn,10 ≤ αon. The call to Runtime.getFile requires that both the
first argument passed and the value returned have the label of the sec-
ond argument passed in. Therefore, the two calls to getFile generate the
constraint set

{ αnn,11 ≤ log_lbl, log_lbl ≤ αnlf ,
αon,13 ≤ log_lbl, log_lbl ≤ αolf }

The if statement comparing oldlogfile to null creates a new program
counter variable αpc2, the constraint αpc1 t αolf ≤ αpc2. Finally, the call
to renameTo generates the constraints αolf ≤ αnlf , as the old log file must
be able to flow to the new log file, and αpc2 ≤ αolf , αpc2 ≤ αnlf , as
observing if one file has been renamed to another is an observable action
that reveals information about the program counter.

4.2 Constraints as an Information-Flow Graph

We now define the information-flow graph as an alternative representa-
tion of an information-flow constraint set and show that a cut of the

information-flow graph formed from a set of sIMP constraints C corre-
sponds to a set of mediation points that make C satisfiable.

For the rest of this section, we assume that the lattice L has only two
labels: > and ⊥ with ⊥ ≤ >. We describe how to extend the cut-based
approach to place declassifiers in a general security lattice in Section 4.4.

We now define a translation of an information-flow constraint set C
into an information flow constraint graph GC , which contains dependency
information for the label variables and labels that are described by C.
Every label variable and lattice element that occurs in C is a vertex in
GC . There is an edge between two vertices in G if the program permits
a flow of information between the program elements that those vertices
represent in the graph. For example, if α ≤ β ∈ C, there are vertices for
α and β in GC and an edge between them, as the security level of α is
constrained to be less than or equal to that of β.

Definition 1 (Information Flow Graph). Let C be an information-
flow constraint set. Let GC be the graph with vertex set V (GC) = V ∪ L
and, for atoms a, a′, (a, a′) ∈ E(GC) if τ0 t · · · t a t · · · τn ≤ a′ ∈ C.

4.3 Correspondence of Graph Cuts and Mediation Points
We now show that a vertex cut of the information-flow graph containing
only expression variables corresponds to a set of expressions that needs to
be mediated. We will show that sIMP constraints have the property that a
(>,⊥) cut of the information-flow graph GC corresponds to a placement
of mediation statements that fully resolves errors caused by the flows
in the command c. We use the Rehof-Mogensen constraint solver [23],
introduced in Section 3, in proving these claims.

The following lemma connects paths in the information-flow graph to
the unsatisfiability of the constraints set C.

Lemma 2. Let Γ ;∆ ` c : C. The set C is satisfiable if and only if there
is no (>,⊥)-path in GC .
Proof. Please refer to the tech report [16] for the proof.

We define an expression cut as a (>,⊥) vertex cut of the information
flow graph that only includes label variables of the form αe,p.

Definition 3. Suppose Γ ; pc ` c : C. An expression cut of (c, Γ) is a
set of expression-position pairs T = {(e0, p0), . . . , (en, pn)} such that the
set {αe0,p0 , . . . , αen,pn} is a vertex (>,⊥) cut set of the graph GC .

We now define the command T (c), which is the command c with each
expression e in the expression cut T replaced by mediate(e).

Definition 4. Let T be a set of expression-position pairs (ei, pi). Let
T (c) represent the command with each ei at position pi replaced with
mediate(ei) at position pi.

We now show that expression cuts are exactly those sets of expressions
which, when mediated, make the generated set of information-flow con-
straints C satisfiable.

Theorem 5 (Cut-Mediation Equivalence). Let T be a set of
expression-position pairs, Γ ` c : C, and Γ ` T (c) : C ′. Suppose also
that C is unsatisfiable. Then T is an expression cut of (c, Γ) if and only
if C ′ is satisfiable.

Proof. Please refer to the tech report [16] for the proof.

Cut Example: The logrotate program permits several flows between
lattice labels config and log_lbl. To determine a set of mediation points
from a cut of the graph, we allow vertices that correspond to the security
values of expressions to be part of the cut. Every vertex cut of the graph
that separates config from log_lbl and contains only vertices that corre-
spond to expressions induces a set of mediation points placed in the code.
For example, the vertices corresponding to rotateCount in line 8, oldName in
line 13, and newName line 11 separates config from log_lbl, and corresponds to
placing mediation statements mediating those expression in those lines.

4.4 Finding Mediation Points For General Lattices
We now describe the more general problem of finding a set of mediation
points for an arbitrary lattice. We call this problem, general lattice cut-
mediation (GLC). We will show that the GLC problem is an instance of
the graph problem of cut-conjunction for directed graphs (DCC), which
currently has unknown complexity [14]. Thus, we adopt an approxima-
tion strategy to solve GLC that employs the hitting set problem, which
is known to be an NP-complete problem, but for which several good ap-
proximation algorithms exist.
Comparison to the cut-conjunction Problem: We first introduce
the DCC problem. Let G = (V,E) be a directed graph on vertex set
V and edge set E. Let P ⊆ V × V be an arbitrary family of pairs of
vertices in G. A set of edges E′ ⊆ E is called a P-cut if and only if none
of the pairs of vertices in P are connected in G′ = (V,E \ E′). The cut-
conjunction (CC) problem is the following: given a graph G = (V,E) and
P ⊆ V ×V find a subset of edges E′ ⊆ E that is a minimal P-cut. The cut-
conjunction enumeration problem is to enumerate all minimal P-cuts in
a graph G = (V,E). The weighted cut-conjunction (WCC) problem is the

cut-conjunction problem, except that a function f : E → N specifies edge
weights, and the enumerated P-cuts in G are required to have minimum
weight.

Given an 0 security lattice L for a GLC problem, let PL be the set of
all pairs of labels (l1, l2) such that l1 6≤ l2. The following lemma generalizes
Lemma 2 to PL-cuts.
Lemma 6. Let C be an unsatisfiable constraint set over a lattice L and
GC = (V,E) be the information-flow graph for C. Let E′ ⊆ E be a PL-cut
for GC and CE′ be the constraint set generated by the program where the
expressions corresponding to the edges in E′ have been mediated to ⊥.
The constraint set CE′ is satisfiable.

The solution to the cut-conjunction problem for our constructed
information-flow graph for a GLC problem then corresponds to the ex-
pressions that mediate all illegal flows through the program associated
with the information-flow graph. However, the complexity of DCC is un-
known [14], so we use an approximation in order to solve GLC.

Placement Algorithm for General Lattices: The algorithm we use
to solve GLC consists of two steps: first, we solve the min-cut problem on
a per-source basis, and then we use an algorithm that solves the hitting set
problem to combine the results. This is an approximation of an optimal
solution for the GLC problem, as the per-source cuts are local minima
solutions. The hitting set problem is NP-complete, but there are known
approximations [1, 10].

An instance of the hitting set (HS) problem consists of a collection
{S1, S2, . . . , Sn}, where each Si is a subset of T , and a positive integer
k ≤ |T |. The problem is to determine whether there is some subset H of
T such that |H| ≤ k ∧ ∀i (H∩Si) 6= ∅. We consider a generalized version
of this problem where each of the elements in Si is in turn a subset of
T , i.e., Si is a collection of sets. An instance of the generalized hitting set
(GHS) problem consists of a set of collections {C1, · · · , Cn} where each
Ci is a collection of subsets of T (i.e., each Ci = {Si,1, · · · , Si,ki

} where
Si,j is a subset of T) and a positive integer k ≤ |T |. The problem is to
determine whether there is a subset H of T such that |H| ≤ k and for all
i such that 1 ≤ i ≤ n there exists a j such that Si,j ⊆ H (a set in the
collection Ci is a subset of H. Let MinGHS(C1, . . . , Cn) be a procedure
that solves the hitting set problem. Figure 2 contains an algorithm for
placing security mediators for a general lattice that relies on an external
procedure for MinGHS to solve the hitting set problem. It is easy to see
that if MediationPoints(GC ,PL) = X , for all (l, l′) ∈ PL, there is no
path from l to l′ in GC \ X . Assume there is such a path from l to l′: by

MediationPoints(GC ,PL)

1 Labels← {l | (l, l′) ∈ PL}, X ← ∅
2 for each l ∈ Labels
3 Tl ← {l′ | (l, l′) ∈ PL}
4 Xl ← AllMinimumCuts(GC , l, Tl)
5 S ←MinGHS(Xl0 , . . . ,Xl|Labels|)

6 return ExpressionsFromEdgeCut(S)

Fig. 2. An algorithm for choosing a set of mediation points for a general lattice based
on the generalized hitting set problem.

the definition of a minimum vertex cut, this path intersects at least one
vertex in Sl chosen from Xl. This path cannot exist as each vertex in Sl

was removed from GC . By Lemma 6, mediating the expressions specified
in a PL-cut results in a satisfiable constraint set.

The running time of this algorithm is primarily dependent on the
size of the problem given to MinGHS. The number of cuts generated by
AllMinimumCuts depends on the size of the lattice, and the size of the
cuts depends on the complexity of the program.

5 Suggestion Framework
The information-flow graph construction in Section 4 constructs, from
program code, a graph for which a cut is equivalent to a placement of
mediation points. In this section, we discuss how to deploy this method
in a framework that outputs sets of mediation points (i.e., placement
suggestions) for Java programs.

Our tool outputs a set of suggestions, each of which is a set of points
in the code that completely mediates the illegal information flows from
a program. We built a framework that uses minimum graph cuts to se-
lect mediation points. The minimum cut of a graph corresponds to the
minimum number of mediation points that need to be inserted into the
program. While a minimum sized set of mediation points may not neces-
sarily agree with programmer intent, we believe that a set of minimum
size provides a good starting point for understanding how best to me-
diate the illegal flows in a program. If the programmer wishes to give
incentive or decentive to select certain mediation points, then this can be
accomplished by modifying the graph cut model.

The framework can be applied to any Java program whose language
features are supported by the Jif compiler. The main feature of sIMP
constraints is that mediating an expression e at position p removes any
of the security information affecting the expression label variable αe,p.
However, the unmodified constraints generated by the Jif compiler do
not satisfy cut-mediation equivalence because the security labels that the

compiler associates with an expression e are affected by both explicit
and implicit security information. To make the Jif constraints satisfy cut-
mediation equivalence, we modified the constraint generation procedure
for every class of expression that could have a visible side effect, so that
extra constraints to check implicit flows were included. These additional
constraints ensure that information associated with an implicit flow is
maintained if αe is selected as part of a graph cut.

There may be many suggestions of minimum size that resolve the
information flows for a given program, as a graph might have several
minimum cuts. Therefore, most applications admit an infeasibly large
number of minimum sets of mediation points, most of which are very
similar. For example, let h be a high security integer variable. For the
expression if h == 0 then l := 0, the expressions h and h == 0 are both part of
the minimum set of mediation points. If our framework considers multiple
expressions with equivalent security semantics as valid mediation points,
the number of minimum cuts quickly becomes exponential in the number
of vertices of the information-flow graph GC . To avoid enumerating an
exponential number of mediation points to the programmer, we consider
an expression e redundant if its value only flows to another expression
e′ in the information-flow graph. Suppose αe, α

′
e ∈ GC and let l be a

lattice label. If αe′ postdominates5 αe at exit node Tl = {l′ | l 6≤ l′}, do
not consider αe as a mediation point for l [18]. Because the definition
of postdomination relies on the exit node, this must be done for each
l ∈ L. The process of removing postdominated expressions from the set
of possible declassifiers is done before computing the maximum network
flow between l and its associated super-sink Tl (Figure 2).

6 Experimental Results

In this section, we present the results of running our mediation point
placement tool on program code on a variety of Java and Jif applications.

Experimental Setup: Our mediation placement algorithm is written
in 1,001 lines of C++ code6, and our experiments were run on a machine
with a 2.3 GHz AMD Operton processor with 3 GB of memory. We used
the Lemon graph libraries developed for scientific computing to calculate
the minimum cut of a graph, but implemented our own dominator com-
putation. We ran our analysis on eight separate applications as shown in
5 Given a graph G = (V,E), let n,m ∈ V , then m postdominates n if m is different

from n and m is on every path from n to the end node.
6 Our constraint-generation and mincut tools are available for download at http:

//siis.cse.psu.edu/jlift/jlift.html

Application
Code
Lines

of Con-
straints

Min Cut
Probs.

Avg. Graph
Vertices

Avg. Vertices
per Min Cut

Cluster
Time (s)

Cut
Time (s)

Total
Time (s)

JES 2,407 22,151 1 6,021.00 3.00 0.57 1.06 4.30
Java Card Purse 13,981 48,728 1 8,312.00 8.00 0.64 0.50 6.46
tinySQL 12,632 60,909 1 20,683.00 10.00 1.50 2.16 11.83
weirdx 22,308 239,521 2 92,802.00 88.00 15.54 21.61 83.74

logrotate 911 6,063 2 1,654.00 3.50 0.11 0.006 1.34
JPMail (reader) 3,934 8,438 59 3,151.29 3.31 3.88 0.46 13.37
JPMail (sender) 3,932 14,495 32 3,844.69 4.28 4.95 0.12 14.84
Mental Poker 1,578 13,344 1 3,553.00 4.00 0.25 0.24 2.21
Civitas (voter) 13,828 67,135 5 17,658.00 1.4 7.11 0.62 28.71

Table 1. Runtime performance of our mediation placement algorithm. We separate
Java programs (top) from Jif programs (bottom). Per application, we report the lines
of code in the files analyzed, give the number of constraints solved, the number of mini-
mum cut problems that our tool needed to solve, the average size of the information-flow
graph for each label l, and the average number of mediation points from the minimum
cut. We give the performance of our algorithm by reporting the two factors that had the
most effect on running time: total time required to cluster the graphs before performing
a minimum cut, and total time required to solve minimum cut problems. Finally, we
give the total running time of the analysis.

Table 1: four Java applications for which mediation is added from scratch
and four Jif applications in which the manually placed mediators are
removed. The labeling and policy were determined per application. To
generate the information-flow constraints, we used a context-insensitive,
interprocedural label analysis. The mediation placement technique de-
scribed in this paper is independent of the specific kind of label analysis,
so long as that analysis has the cut-mediation equivalence in Theorem 5.
An issue with every static analysis is the presence of false positives but
our current analysis was sufficient for our examples; while we encountered
some false positives, these were easily detected and removed. However, an
improved analysis will be necessary in general.

Performance: Table 1 contains metrics about the performance of our
system. We allow a programmer to specify a function as the starting point
of the analysis. For example, the analysis of Civitas focused on six vote
tallying methods. Since code contains whitespace and comments, total
number of constraints generated by the analysis (column 3) is a more
accurate metric for the difficulty of the graph problem than file sizes (col-
umn 2). Two major factors affected the running time of our tool: Number
of minimum-cut problems to be solved per program (column 4) and the
number of mediation points returned as a solution to each minimum cut
problem (column 6). The number of minimum cut problems is a mul-
tiplicative factor: because domination is a source-sink computation and
different minimum-cut problems have different sources and sinks, clus-
tering is performed once for each minimum-cut. Also, it took a longer
time for the minimum cut algorithm to run for programs whose cuts

Application
Mediation Points

Candidate Error Trace Min-Cut

JES 5,492 89 3
Java Card Purse 11,540 62 8
tinySQL 14,735 553 10
weirdx 133,356 1868 176

Table 2. Comparison of selected mediation points to information-flow errors for each
Java application. The second column gives the total number of candidate mediation
points after clustering. The third column gives the number of mediation points high-
lighted by error traces in a prior work [15], while the fourth column gives the number
of mediation points selected by our tool in all suggestions. Only tinySQL has multiple
suggested min-cuts of the same size (48 of them).

Application
Candidate Total Mediation Similarity Suggestions

Mediation Points Points Suggested Exact Block Data Not (# of Sets)

logrotate 1,540 9 1 7 1 0 3
Mental Poker 3,569 7 3 0 1 3 4
JPMail (reader) 2,434 37 1 15 14 7 25
JPMail (sender) 3,976 74 2 52 19 1 23
Civitas (voter) 19,977 9 6 0 2 1 6

Table 3. Similarity Results. For each application, we give the number of mediation
points that occur in at least one suggestion and the classification of these mediation
points into one of four similarity categories. Additionally, we report the number of
suggestion sets returned.

had a higher number of vertices, as the Ford-Fulkerson method depends
on finding augmenting paths to an existing cut. Our largest code exam-
ple was an X Server written in Java that contained over 22,000 lines of
code, corresponding to over 230,000 information flow constraints. It took
83 seconds for our suggestion method to complete when run on these
constraints, returning 176 mediation points. A pattern in all of our ex-
periments was the small size of the minimum cut relative to the size of
the overall graph indicating that our suggestion algorithm should scale
well on even larger programs.

Comparison To Previous Work: To evaluate how well our approach
reduces the space of placement options, we compared our mediation
placement algorithm to an existing mechanism for resolving information-
flow errors for previously unmediated Java programs (JES, Java Card
Purse, tinySQL and an X Server implementation called WeirdX). Recent
work [15] proposed a tool to display complete and minimal error traces
that show how an information-flow constraint becomes unsatisfiable, en-
abling a programmer to find suitable mediation sites. While this approach
narrows down the points in the program that need to be examined, it only
reports one error trace per failed information-flow constraint, requiring
the programmer to run the analysis multiple times to resolve all of the er-

rors per constraint. The results of comparing our tool to such error traces
are given in Table 2. These results show that our tool reduces the number
of locations by 90% or more for all but one case (Java Card Purse), which
is nearly 90%.
Quality of Placed Mediators: To investigate the quality of placed
mediation points, we ran our tool on a number of applications (logrotate,
JPMail, Mental Poker and Civitas) originally written in the security-
typed language Jif. We define a similarity metric to compare automat-
ically placed mediation points with the mediation points placed by the
original application programmers. We classified each selected mediation
point as either being similar or not similar and those classified as similar
belonged to one of three categories: Mediation point that mediates the
exact same data in the exact same location as the original (Exact), is in
the same block of code as the original mediation point (SameBlock) and
mediates the exact same value as the original (SameData). Our results
in Table 3 show that in all the Jif applications, over 80% of the selected
mediation points were placed in locations that matched one of our simi-
larity metrics. The remaining 20% of mediation points that were placed
by our tool generally were selected in a way to reduce the total number
of mediation points, whereas the programmer had chose to insert more
expressive mediation statements. This means that there are other fac-
tors used by expert programmers that need to be assessed in placement.
Our framework supports programmer control through the adjustment of
weights on the graph edges. We currently use this to enable program-
mers to prohibit locations (e.g., increase edge weights to ∞) or select
locations (i.e., require them in every cut). A key issue appears to be if
a programmer has a specific mediator in mind. Ensuring that a location
is chosen only if it satisfies the functional requirements of a mediator or
other programmer requirements are future work.

7 Conclusion

In this paper we have presented a framework to assist programmers in
placing security mediation points. Our framework implements a method
that constructs a graph G such that a minimum cut of G corresponds to
a minimum placement of mediation points in the program. This frame-
work reduced the number of expressions that need to be examined to re-
solve information-flow errors in four Java programs and placed mediation
statements in locations similar to those placed by the original application
programmers for four Jif programs. In the future, we plan to provide sup-
port for extracting functional requirements from programs that influence
placements to improve accuracy.

References

1. Bar-Yehuda, R., and Even, S. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms 2, 2 (1981), 198–203.

2. Clarkson, M. R., Chong, S., and Myers, A. C. Civitas: Toward a secure voting
system. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (May
2008), pp. 354–368.

3. Criswell, J., Lenharth, A., Dhurjati, D., and Adve, V. Secure virtual archi-
tecture: a safe execution environment for commodity operating systems. SIGOPS
Oper. Syst. Rev. 41, 6 (2007), 351–366.

4. Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems 13, 4
(October 1991), 451–490.

5. Deng, Z., and Smith, G. Type inference and informative error reporting for
secure information flow. In ACM-SE 44: Proceedings of the 44th annual Southeast
regional conference (2006), ACM, pp. 543–548.

6. Fahndrich, M., Foster, J. S., Su, Z., and Aiken, A. Partial online cycle
elimination in inclusion constraint graphs. In Proceedings of PLDI ’98 (1998),
pp. 85–96.

7. Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., and Felleisen,
M. Catching bugs in the web of program invariants. SIGPLAN Not. 31, 5 (1996),
23–32.

8. Fraser, T., Petroni, Jr., N. L., and Arbaugh, W. A. Applying flow-sensitive
CQUAL to verify minix authorization check placement. In Proceedings of PLAS
’06 (June 2006), ACM, pp. 3–6.

9. Goguen, J. A., and Meseguer, J. Security policies and security models. In
Proceedings of the 1982 IEEE Symposium on Security and Privacy (April 1982),
pp. 11–20.

10. Halperin, E. Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. In SODA ’00: Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms (January 2000), Society for Industrial
and Applied Mathematics, pp. 329–337.

11. Heintze, N., and Tardieu, O. Ultra-fast aliasing analysis using CLA: A million
lines of C code in a second. In Proceedings of PLDI ’01 (June 2001), pp. 254–263.

12. Hicks, B., Ahmadizadeh, K., and McDaniel, P. From languages to systems:
Understanding practical application development in security-typed languages. In
ACSAC ’06: Proceedings of the 22nd Annual Computer Security Applications Con-
ference (December 2006), IEEE Computer Society, pp. 153–164.

13. Hicks, B., Rueda, S., Jaeger, T., and McDaniel, P. From trusted to secure:
Building and executing applications that enforce system security. In Proceedings
of the USENIX Annual Technical Conference (June 2007), pp. 1–14.

14. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., and Makino, K.
Enumerating disjunctions and conjunctions of paths and cuts in reliability theory.
Discrete Appl. Math. 155, 2 (2007), 137–149.

15. King, D., Jaeger, T., Jha, S., and Seshia, S. A. Effective blame for
information-flow violations. In SIGSOFT ’08/FSE-16: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (November 2008), ACM, pp. 250–260.

16. King, D., Jha, S., Muthukumaran, D., Jaeger, T., Jha, S., and Seshia,
S. Automating Security Mediation Placement. Tech. Rep. NAS-TR-0123-2010,
Network and Security Research Center, Department of Computer Science and En-
gineering, Pennsylvania State University, University Park, PA, USA, Jan. 2010.

17. McCamant, S., and Ernst, M. D. Quantitative information flow as network
flow capacity. In Proceedings of PLDI ’08 (June 2008), ACM, pp. 193–205.

18. Muchnick, S. S. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

19. Myers, A., and Liskov, B. Complete, safe information flow with decentralized
labels. In Proceedings of the IEEE Symposium on Security & Privacy (May 1998),
pp. 186–197.

20. Myers, A. C. JFlow: Practical mostly-static information flow control. In Pro-
ceedings of POPL ’99 (January 1999), pp. 228–241.

21. Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W.
CCured: type-safe retrofitting of legacy software. ACM Transactions on Program-
ming Languages and Systems 27, 3 (2005), 477–526.

22. Pottier, F., and Simonet, V. Information flow inference for ML. In Proceedings
of POPL ’02 (January 2002), ACM Press, pp. 319–330.

23. Rehof, J., and Mogensen, T. A. Tractable constraints in finite semilattices.
Science of Computer Programming 35, 2–3 (1999), 191–221.

24. Sabelfeld, A., and Sands, D. Dimensions and principles of declassification.
In CSFW ’05: Proceedings of the 18th IEEE Workshop on Computer Security
Foundations (June 2005), IEEE Computer Society, pp. 255–269.

25. Shapiro, M., and Horwitz, S. Fast and accurate flow-insensitive points-to anal-
ysis. In Proceedings of POPL ’97 (1997), ACM, pp. 1–14.

26. Tip, F., and Dinesh, T. B. A slicing-based approach for locating type errors.
ACM Trans. Softw. Eng. Methodol. 10, 1 (2001), 5–55.

27. Volpano, D., Smith, G., and Irvine, C. A sound type system for secure flow
analysis. Journal of Computer Security 4, 3 (1996), 167–187.

28. Walsh, E. Integrating X.Org with Security-Enhanced Linux. In Proceedings of
the Third Annual Security Enhanced Linux Symposium (March 2007), pp. 33–40.

29. Wheeler, D. A. Software/dbus. http://www.freedesktop.org/wiki/Software/
dbus.

30. Winskel, G. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993.

31. Wright, C., Cowan, C., Morris, J., Smalley, S., and Kroah-Hartman,
G. Linux security modules: General security support for the linux kernel. In
Proceedings of the 11th USENIX Security Symposium (August 2002), pp. 17–31.

32. Zhang, X., Edwards, A., and Jaeger, T. Using CQUAL for static analysis
of authorization hook placement. In Proceedings of the 11th USENIX Security
Symposium (August 2002), pp. 33–48.

