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a b s t r a c t

Projection to latent structures or partial least squares (PLS) produces output-supervised decomposition
on inputX, while principal component analysis (PCA) produces unsupervised decomposition of inputX. In
this paper, the effect of outputYon theX-space decomposition in PLS is analyzed andgeometric properties
of the PLS structure are revealed. Several PLS algorithms are compared in a geometric way for the purpose
of process monitoring. A numerical example and a case study are given to illustrate the analysis results.
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1. Introduction

Multivariate statistical process monitoring (SPM) has been suc-
cessfully used in the monitoring of different industrial processes
over the past two decades, including chemicals, polymers, and mi-
croelectronics manufacturing. Multivariate statistical process con-
trol charts based onprincipal component analysis (PCA), projection
to latent structures (PLS), and other data-based structures have
received great success in practice (Kresta, MacGregor & Marlin,
1991; Qin, 2003; Wise & Gallagher, 1996; Xia, Howell & Thorn-
hill, 2005). Besides, fault reconstruction and estimation can be per-
formed based on the latent space of PCA (Dunia & Qin, 1998; Qin,
2003), which enhances the application of SPM significantly.
To monitor all the variations and abnormal situations of input

measurements (X), one can perform a PCA decomposition on the
X-space. However, amore important objective of processmonitor-
ing is to provide assurance of good product quality that is impacted
by the process conditions. Quality variables (Y) are affected by the
processing conditions reflected in the measured X-data and pos-
sibly additional unmeasured factors. The quality data Y are often
difficult to measure, and often come very infrequently with sig-
nificant measurement delays. To monitor variations in the process
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variables that are most relevant to quality variables (Y), one can
perform PLS decomposition on X-space.
The basic concepts and algorithms of PLS can be found in the

chemometrics literature (Di Ruscio, 2000; Hóskuldsson, 1988; Ter
Braak & De Jong, 1998). PLS has been used in multivariate moni-
toring of process operating performance, which is almost exactly
in the same way as PCA-based monitoring (Kresta et al., 1991).
Several variants of PLS have been proposed for monitoring, such
as multi-block PLS (MacGregor, Jaeckle, Kiparissides & Koutoudi,
1994), dynamic PLS (Lee, Han & Yoon, 2004), recursive PLS (Qin,
1998) and multi-phase PLS (Lu, Gao & Wang, 2004).
Although PLS-based monitoring has been used for a long time,

the property of the latent space induced by PLS has not been ana-
lyzed for process monitoring. While PCA-based monitoring meth-
ods arewell understood (e.g., Alcala &Qin, 2009), it is not clear how
Y affects the decomposition ofX-space and the outcome of process
monitoring. Westerhuis, Gurden and Smilde (2000) proposed gen-
eralized T 2 andQ statistics formany latent variablemodels (includ-
ing PLS). The structure they used can be regarded as the structure
of simplified PLS (SIMPLS) (De Jong, 1993). However, it is still an
open question as to which PLS algorithm is the most appropriate
for process monitoring.
In this paper, we show geometrically the X-space decomposi-

tion supervised by Y using PLS relative to PCA. Then, we reveal
the geometric property of the decomposition induced by PLS. It is
made clearwhy andhowPLS should be used in processmonitoring.
Three PLS algorithms are analyzed in detail and themost appropri-
ate structure for monitoring is pointed out.
The remainder of this paper is organized as follows. Section 2

reviews the standard PLS algorithm and its properties. Then, we
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Table 1
X-deflated NIPALS algorithm (Dayal & MacGregor, 1997).

Center the columns of X, Y to zero mean and scale them to unit variance. Set
i = 1 and X1 = X.
1. Set ui equal to any column of Y.
2. wi = XTi ui/‖X

T
i ui‖.

3. ti = Xiwi .
4. qi = YTti/tTi ti .
5. ui = Yqi .
If ti converges, go to Step 6, else return to Step 2.
6. pi = XTi ti/t

T
i ti .

7. Xi+1 = Xi − tipTi .
Set i = i+ 1 and return to step 1. Terminate if i > A.

discuss the effect of Y on the X-space decomposition in Section 3.
The geometric properties of PLS on X-space decomposition are
discussed in Section 4. Other PLS variants are analyzed in a similar
way. Following that, we discuss the monitoring problem using PLS
and its variants in Section 5. Section 6 uses a numerical example
and a case study to illustrate the analysis results. Finally, we
present conclusions in the last section.

2. Projection to latent spaces (PLS)

Given an input matrix X ∈ Rn×m consisting of n samples with
m process variables per sample, and an output matrix Y ∈ Rn×p
with p quality variables per sample, PLS projects (X, Y) to a low-
dimensional space defined by a small number of latent variables
(t1, . . . , tA) (A is the PLS component number) as follows:{
X = TPT + E
Y = TQT + F (1)

where T = [t1, . . . , tA] is the score matrix, P = [p1, . . . , pA] is the
loadingmatrix forX andQ = [q1, . . . , qA] is the loadingmatrix for
Y. E and F are the modeling residual of X and Y. The data matrices
X, Y are usually scaled to unit variance and zeromean. A nonlinear
iterative partial least-squares algorithm (NIPALS) to perform PLS is
described in Table 1. The objective of PLS embedded in this algo-
rithm is to find the solution of the following problem:

max wTi X
T
i Yiqi

s.t. ‖wi‖ = 1, ‖qi‖ = 1

wherewi, qi are weight vectors that yield ti = Xiwi and ui = Yiqi,
respectively. DenotingW = [w1, . . . ,wA], T cannot be calculated
from X directly usingW. Let

r1 = w1, ri =
i−1∏
j=1

(Im −wjpTj )wi, i > 1 (2)

and R = [r1, . . . , rA]. Then, the score matrix T can be computed
from the original X as follows:

T = XR (3)

P, R and W have the following relationship (Dayal & MacGregor,
1997; De Jong, 1993):

R = W(PTW)−1 (4)

PTR = RTP = WTW = IA. (5)

In the PLS literature, the case of a single output is referred to as
PLS1 and that for multiple outputs is referred to as PLS2. When
there are several output variables, performing PLS1 of each out-
put separately does not give the same results as PLS2 of multiple
outputs jointly. Since outputs from one process are usually interre-
lated, it is appropriate to use PLS2 to capture the interrelationship
among the output variables.
3. The effect of Y on the X-space decomposition

Many researchers use the PCA-basedmonitoring techniques for
PLS decomposition of the X-space. However, the PLS decomposi-
tion can be radically different from the PCA decomposition, which
makes one wonder whether the PLS-based monitoring should be
different from the PCA-based monitoring techniques. In this sec-
tion, we demonstrate the impact of Y on the decomposition of X-
space in general, and then visualize the result geometrically.
Suppose X has the following PCA decomposition:

X = t1vT1 + · · · + tlvTl (6)

where vi (1 ≤ i ≤ l) are the orthonormal eigenvectors related to
nonzero eigenvalues ofXTX, λ1 ≥ · · · ≥ λl > 0 and l = rank(X) ≤
m. In PCA vi (1 ≤ i ≤ l) alone define the decomposition of the input
space. In PLS however, the input space decomposition is defined
by two matrices, P and R. Therefore, the angle between ri and pi,
unless it is zero, reflects the impact of Y on the decomposition of
X-space in PLS. For the ease of presentation, we drop the subscript
i for the moment.
The PLS weight vector r is in Span{v1, . . . , vl} according to the

properties of PLS. Therefore,

r = r
l∑
i=1

αivi (7)

where r = ‖r‖ and

l∑
i=1

α2i = 1. (8)

Then,

p = XTt/tTt =
XTXr
tTt
=

l∑
i=1
λiαivi

r
l∑
i=1
λiα

2
i

. (9)

From (5), we have rTp = 1 for each dimension. Therefore,

cos 6 (r, p) =
1
r‖p‖

=

l∑
i=1
λiα

2
i√

l∑
i=1
λ2i α

2
i

(10)

and

max 6 (r, p) = arccos
2
√
λ1λl

λ1 + λl
. (11)

Result (11) is obtained by minimizing (10) subject to (8). The
solution process is omitted due to page limitation.
Several points can be summarized about the effect of Y on PLS

decomposition of the X-space.
(i) Generally, r and p in PLS have a nonzero angle.
(ii) 6 (r, p) has an upper bound determined by (11). This upper
bound increases with the difference among λi.

(iii) If r is an eigenvector ofXTX, all but oneαi is zero, whichmakes
(10) equal to one and 6 (r, p) = 0.

(iv) If λi are equal, 6 (r, p) = 0.

To visualize the results geometrically, consider the special case
of two inputs and one output. Suppose X = [x1, x2] = t1vT1 +
t2vT2 ∈ Rn×2, y = c1t1 + c2t2 ∈ Rn×1.Then, (11) reduces to

max 6 (r, p) = arccos
2
√
λ1λ2

λ1 + λ2
. (12)
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Fig. 1. Effect on X-space decomposition by y.

From (12), it can be observed that max 6 (r, p) is close to 0 when
λ2 is close to λ1.
Fig. 1 describes different cases in a geometric way. In PCA, the

X-space is decomposed by v1 and v2. In PLS, it depends on X and
y jointly. If c2 = 0, then r coincide with v1, which forms the same
decomposition as PCA. r1 and p1 in Fig. 1 denote this case. If y is
more related to t2 and less to t1, then r is chosen to be farther from
v1 and closer to v2,which causes 6 (r, p) to increase. The case is
described by r2, p2 in Fig. 1. The largest angle between vectors r
and p are represented by r∗, p∗. If c1 = 0, y is only related to t2,
then r and p overlap again (r = p = v2), which are denoted by r4
and p4, respectively.
Therefore, the impact of Y on the decomposition of the X-space

depends on how ellipsoidal the covariance of X is (i.e. unequal
λi) and how much Y is correlated to the leading PCA scores of X.
In typical engineering applications, X data are highly correlated.
Therefore, the covariance of X is usually very ellipsoidal. As a
consequence, the upper bound of 6 (p, r) can be significant. If
Y is mostly correlated to the leading PCA scores of X, the PLS
decomposition of the X-space is similar to the PCA decomposition
of the X-space. In this case, the PCA monitoring techniques can be
directly applied to the PLS model and residuals. If, on the other
hand, Y is highly correlated to the non-leading PCA scores of X, the
PLS decomposition of the X-space in (1) can be very different from
the PCA decompositions of the X-space. The variance left in the X-
residual (E) can be large and the direct application of Q statistic
monitoring on the X-residual is questionable.

4. Geometric properties of PLS

4.1. Space decomposition of PCA

In PCA the input vector x is decomposed as follows (Qin, 2003):

x = x̂+ x̃
x̂ = PPTx ∈ Sp ≡ Span{P}
x̃ = (I− PPT)x ∈ Sr ≡ Span{P}⊥

(13)

where P is the loading matrix of PCA, and Span{P}⊥ is the orthog-
onal complement of Span{P}. PPT and I− PPT are both orthogonal
projectors. Thus, (13) is an orthogonal decomposition.

4.2. Space decomposition of PLS

From (5), we can easily obtain

(PRT)2 = PRT. (14)

Thus, PRT is an idempotent matrix. Generally speaking, PRT is not
symmetric. Therefore, PRT is an oblique projector (Zhang, 2004).
Lemma 1. LetΠP|R⊥ denote the projector onto the subspace Span{P},
along the subspace Span{R}⊥.

ΠP|R⊥ = PRT

ΠR⊥|P = I− PRT. (15)

The proof is given in Appendix A.
From Lemma 1, we have the following theorem on the PLS

decomposition:

Theorem 1. PLS induces an oblique decomposition on input variable
space:

x = x̂+ x̃
x̂ = PRTx ∈ Sp ≡ Span{P}
x̃ = (I− PRT)x ∈ Sr ≡ Span{R}⊥.

(16)

The theorem can be proven by noting from Lemma 1 that

Span{I− PRT} = Span{R}⊥. (17)

Different from PCA, x̂ is not orthogonal to x̃ in PLS. Therefore,
we conclude that in the PLS model, x̂ is the projection of x onto
Span{P} along Span{R}⊥ and x̃ is the projection of x onto Span{R}⊥
along Span{P}.

4.3. Variants of PLS

The weight-deflated PLS (W-PLS) is a variant of PLS proposed
by Helland (1988), which has the same prediction ability as the
standard PLS. The relationships between W-PLS and PLS are as
follows (Helland, 1988).

1. W in W-PLS is identical toW in the standard PLS.
2. Span{T} in W-PLS is the same as Span{T} in the standard PLS.

From (4), we know thatW and R share the same column space,
which means

Span{W} = Span{R}. (18)

W-PLS induces the following input space decomposition,

x = x̂w + x̃w
x̂w = WWTx ∈ Span{R}
x̃w = (I−WWT)x ∈ Span{R}⊥

(19)

which is an orthogonal decomposition.
De Jong (1993) proposed SIMPLS as an alternative approach of

PLS. SIMPLS is proven to be identical to PLS1 for one output, and
different from PLS2 with multiple outputs (Ter Braak & De Jong,
1998).
A difference between PLS and SIMPLS is in which subspace

to search for wi and how to obtain ri. In PLS, wi is found in
Span{Ri−1}⊥, and ri is obtained by projecting wi to Span{Pi−1}⊥
along span{Ri−1}. In SIMPLS, wi is found in Span{Pi−1}⊥ directly
and ri = wi, becausewi ∈ Span{Pi−1}⊥.
SIMPLS provides another decomposition of X-space as follows:

x = x̂s + x̃s
x̂s = PP+x ∈ Span{P}
x̃s = (I− PP+)x ∈ Span{P}⊥

(20)

where P+ = (PTP)−1PT is the generalized inverse of P. PP+ is the
orthogonal projector on Span{P}, while I − PP+ is the orthogonal
projector on Span{P}⊥. Therefore, (20) is an orthogonal decompo-
sition of the X-space.
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Fig. 2. Decompositions of PLS, W-PLS and SIMPLS.

4.4. Comparison of PLS, W-PLS, and SIMPLS

From (16), (19) and (20), it can be observed that W-PLS, SIMPLS
and PLS are different in the decomposition of the X-space. We
depict the decomposition results of PLS, W-PLS and SIMPLS in
Fig. 2, where x̂ and x̃ are from the standard PLS, while x̂w and x̃w
are fromW-PLS, and x̂s, x̃s are from SIMPLS.
In PCA, both of the following relations hold:

TTX̃ = 0 (21)

x̂Tx̃ = 0. (22)
Relation (21) describes the orthogonality in the sample space,
which guarantees that the scores extracted from X are uncorre-
lated to the residuals. Relation (22) describes the orthogonal de-
composition in the variable space, which guarantees that x̂ and
x̃ are mutually exclusive. However, in the above PLS algorithms,
only one of relations can be guaranteed at the same time. With an
oblique projection, the scores are uncorrelated to the residuals but
x̂ and x̃ in the variable space are not orthogonal. With an orthogo-
nal projection, x̂ and x̃ are orthogonal, but the scores are correlated
to residuals. In the next section, we reveal which PLS projection is
the most appropriate for process monitoring.

5. Process monitoring with PLS

5.1. Monitoring with PLS

When a fault occurs, one or more measurement variables are
affected, which breaks the normal relationship among these vari-
ables. PLS decomposes the measured data X into Sr and Sp sub-
spaces, and fault detection is done by monitoring these subspaces.
If an abnormal situation affects qualityY, it is thought to happen

in the Sp subspace (MacGregor et al., 1994). Otherwise, if a fault has
no impact on quality Y, it is thought to happen in the Sr subspace.
T 2 statistic is used to monitor faults in Sp, while Q statistic is used
tomonitor faults in Sr . Therefore, PLS-based fault detection can tell
whether a fault is related to the quality Y.
Given a new sample xnew , the PLS score and residual can be

calculated from (3) and (16):

tnew = RTxnew
x̃new = (I− PRT)xnew.

(23)

Then, two statistics T 2 and Q are defined as follows:

T 2 = tTnewΛ
−1tnew

Q = ‖x̃new‖2
(24)

where Λ = 1
n−1T

TT is the sample covariance matrix of t, A is the
number of PLS components, n is the number of training samples.
The control limits for these statistics are given in, for example,
MacGregor et al. (1994) and Choi and Lee (2005). If T 2 and Q are
within the control limits, the process is normal. If T 2 exceeds the
control limit, it is thought that there is a fault related to Y in the
process. If Q exceeds the control limit, it is thought that the fault is
unrelated to Y.
5.2. Monitoring with SIMPLS

SIMPLS calculates the scores and residuals as follows:

ts,new = P+xnew
x̃s,new = (I− PP+)xnew,

(25)

which has been used by Westerhuis et al. (2000). Statistics T 2s and
Qs are defined similar to (24).

5.2.1. Relation between t and ts
In order to describe the relation between them, the following

lemma is introduced.

Lemma 2. Let Dx̂ = x̂TΓ+x̂ x̂,where Γ
+

x̂ is the generalized inverse of
1
n−1 X̂

T
X̂, then

Dx̂ = T 2 (26)

where T 2 is defined in (24). Lemma 2 is proven in Appendix B.With
this lemma, we can compare x̂ and x̂s in the variable space instead
of comparing t and ts. According to (16) and (20), x̂ and x̂s are pro-
jections of x onto the same subspace, Span{P}, along Span{R}⊥ and
Span{P}⊥, respectively. Score t reflects the variations correlated to
Y, while ts reflects only parts of variations correlated to Y.

5.2.2. Relation between x̃ and x̃s
From (16) and (20) we know that x̃s and x̃ are projections of

x onto Span{P}⊥ and Span{R}⊥, respectively, along the same sub-
space Span{P}. Thus,

x̃s = Π⊥P x̃ (27)

where Π⊥P is the orthogonal projection onto Span{P}
⊥. If we use

Q = ‖x̃‖2 ≤ δ2α as in PLS based monitoring (δ
2
α is the con-

trol limit of Q ), the control region is a hyper-sphere in Span{R}⊥.
When projected onto Span{P}⊥, it becomes a hyper-ellipsoid in the
Span{P}⊥. If we use Qs = ‖x̃s‖2 ≤ δ2s,α (δ

2
s,α is the control limit

of Qs) in SIMPLS based monitoring, the control region is a hyper-
sphere in the Span{P}⊥. The above differences can affect the mon-
itoring results.

5.3. Monitoring with W-PLS

W-PLS calculates the scores and residuals as follows:

tw,new = WTxnew
x̃w,new = (I−WWT)xnew.

(28)

Statistics T 2w and Qw are defined similar to (24).

5.3.1. Relation between t and tw
From (4),

W = RG (29)

where G = PTW is nonsingular. Substituting (29) into (28) and
(24), and considering (23), we have

Λw =
1
n− 1

TTwTw = GT
1
n− 1

TTTG = GTΛG (30)

and

T 2w = tTwΛ
−1
w tw = tTGΛ−1w GTt = tTΛ−1t = T 2. (31)

Therefore, the monitoring results using t and tw are the same.
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Fig. 3. Monitoring with T 2w,Qw together.

Table 2
Properties of different monitoring policies.

Monitoring policy T ⊥ X̃ x̂ ⊥ x̃ t is Y-related

PLS Yes No Yes
W-PLS No Yes Yes
SIMPLS No Yes No

5.3.2. Relation between x̃ and x̃w
From (16) and (19), x̃ and x̃w are projections of x onto Span{R}⊥

along Span{P} and Span{R}, respectively. Therefore, Q and Qw
monitor variabilities projected along different subspaces. The
effect of these projections are studied later in this paper via
simulation.

5.4. Comparison of three PLS monitoring policies

Table 2 shows properties of the PLS monitoring policies. The
first and second properties are explained in (21) and (22). The third
property describes whether T 2 explains Y-related variations.
For monitoring using W-PLS, there are two shortcomings as x̃w

is correlated to tw . First, Qw will be affected by abnormal varia-
tions in Sp. Thus, it may cause reductant alarms in Qw , even though
the fault is in Sp only, which makes it difficult to perform further
fault diagnosis. Secondly, if wemonitor process withQw and T 2w to-
gether, the chance of failing to alarmwill increase, which is shown
in Fig. 3. Since T 2w and Qw are correlated, the normal condition
should be located inside the ellipse, but the normal region defined
by T 2w and Qw is rectangle. Therefore, if a faulty sample is located in
the shaded area in Fig. 3, the W-PLS policy fails to alarm.
Similarly,monitoring using SIMPLS suffers from the samedraw-

backs. In addition, since ts is not completely Y-related, SIMPLS
based monitoring loses the original purpose of PLS monitoring.
For monitoring using PLS, although x̂ is not orthogonal to x̃, we

can replace x̂with x̂w according to Lemma 2 and (31) without any
change of themonitoring results. From (16) and (20), it can be seen
that x̂w ⊥ x̃. Thus, the standard PLS is the most appropriate for
process monitoring among various algorithms.

6. Case study on simulation examples

6.1. A numerical example

Consider the following numerical example first:{
xk = Azk + ek
yk = Cxk + vk

(32)

where A =
(
1 4 4
2 0 1

)T
, zk ∼ N(0, 0.52I2), ek ∼ N(0, 0.052I3), vk

∼ N(0, 0.052), C =
(
2 2 1

)
. The fault is added in the following

form:

xk = x∗k + Ξf (33)
Table 3
Fault occurs only in Sp .

f Fault detection rates (%)
T 2 T 2w T 2s Q Qw Qs

0 1.1 1.1 1.1 1.4 1.6 1.4
5 25.0 25.0 25.0 1.5 2.1 1.5
std 0.6 0.6 0.6 0.18 0.18 0.18
10 85.0 85.0 85.0 1.7 3.4 1.7
std 0.5 0.5 0.5 0.16 0.22 0.16
15 99.5 99.5 99.5 1.4 4.4 1.4
std 0.07 0.07 0.07 0.18 0.29 0.18
20 100 100 100 1.6 6.6 1.6
std 0.003 0.003 0.003 0.15 0.37 0.15
25 100 100 100 1.6 10.3 1.6
std 0 0 0 0.16 0.48 0.16

Table 4
Fault occurs only in Sr .

f Fault detection rates (%)
T 2 T 2w T 2s Q Qw Qs

0 1.2 1.2 1.2 1.5 1.5 1.5
2 1.3 1.3 1.3 32.5 31.4 32.5
std 0.17 0.17 0.16 0.76 0.71 0.76
4 1.0 1.0 0.9 96.4 95.9 96.4
std 0.17 0.17 0.17 0.27 0.27 0.27
6 1.0 1.0 1.0 100 100 100
std 0.17 0.17 0.16 0 0 0
8 1.0 1.0 1.0 100 100 100
std 0.17 0.17 0.16 0 0 0
100 1.2 1.2 7.9 100 100 100
std 0.15 0.15 0.40 0 0 0

where x∗ is the normal value produced by (32), Ξ is the fault
direction vector, and f is the fault magnitude.
We use 100 samples under normal operation condition to per-

form a PLS model with one component. Given a fault direction and
magnitude, 50 faulty samples per batch are produced according
to (33) for fault detection. One hundred Monte Carlo simulations
are performed to obtain the fault detection rates for PLS,WPLS and
SIMPLS. The confidence of control limits is set to 99%. In order to
show the efficiency of the comparison, we repeat the above pro-
cedure for 100 times and calculate the standard deviations of the
detection rates, denoted by ‘std’ in the results.

6.1.1. Fault occurs in Sp only
LetΞ1 = [0.2500, 0.6641, 0.7046]T ∈ Span(P), where ‖Ξ1‖ =

1. Thus, the fault occurs in Sp only. Table 3 shows the detection rates
with fault magnitudes from 0 to 25.
From Table 3, it is observed that as the fault magnitude grows,

the detection rates by T 2, T 2s , T
2
w increase, up to 100%. Q and Qs are

not affected by this fault, while Qw alarms redundantly. Qs has the
same result as Q , which indicates the overlapped part monitored
by T 2s and Qs is not affected by this fault. ‘std’ is the standard
deviation of the estimated fault detection rate. From Table 3, it is
observed that the differences among detection rates are significant
compared to the corresponding standard deviations.

6.1.2. Fault occurs in Sr only
Let Ξ2 = [0.9582,−0.1931,−0.2111]T ∈ Span(R)⊥, where

‖Ξ2‖ = 1. Thus, the fault occurs in Sr only. Table 4 shows the fault
detection rates of this fault with fault magnitudes from 0 to 8 and
100.
From Table 4, we observe that T 2 and T 2w are not affected by

this fault. When fault magnitude is very large, T 2s is affected. This is
because ts is correlated to x̃s. However, T 2w is identical to T

2 in the
monitoring as analyzed above, which indicates that the overlapped
part monitored by T 2w and Qw is normal under this fault. It is also
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Table 5
TEP case study.

IDV Fault detection rates (%)
T 2 T 2w T 2s Q Qw Qs T 2 +

Q
T 2w +
Qw

T 2s + Qs

0 3.0 3.0 1.9 2.9 2.6 2.5 5.6 5.5 4.4
2 97.6 97.6 96.6 98.3 98.3 98.3 98.5 98.5 98.3
6 99.5 99.5 99.3 100 100 100 100 100 100
8 95.5 95.5 93.0 96.8 96.8 96.8 97.6 97.6 97.5
12 97.6 97.6 96.7 98.3 97.8 98.3 99.1 99.1 98.8
3 2.3 2.3 1.8 2.8 1.5 2.3 4.6 3.8 3.8
9 5.4 5.4 3.9 6.4 5.5 6.3 11.3 10.5 9.8
11 29.0 29.0 16.6 64.6 61.1 64.5 68.1 64.8 66.3
15 4.1 4.1 3.3 2.0 1.2 1.7 6.1 5.3 5.1

observed that as the fault magnitude grows, the detection rates by
Q ,Qs,Qw increase, and Qw has a lower detection rate than Q and
Qs. The difference among detection rates is significant considering
their standard deviations from Table 4.

6.1.3. Summary on the numerical example
The comparison of detection rates for faults in both Sy and Sr is

not included due to page limitation, which has a similar result to
the case study in the next subsection.
For all nonzero fault magnitudes, fault detection rates also re-

flect missing alarm rates. Further, the detection rates for zero fault
magnitude correspond to the false alarm rates. From Tables 3 and
4, it can be observed that the false alarm rates for three policies are
nearly the same.

6.2. Case study on TEP

In order to illustrate our point of view further, we use the Ten-
nessee Eastman Process (TEP) as a case study (Downs & Vogel,
1993). The process is operated under closed-loop control. TEP has
been widely used as a benchmark process for evaluating the pro-
cess diagnosis methods such as PCA, multi-way PCA, and Fisher
discriminant analysis (FDA) (Chiang, Russell & Braatz, 2001). PLS-
based method has also been applied to the TEP (Lee et al., 2004).
The TEP contains two blocks of variables: 12 manipulated vari-
ables and 41 measured variables (Chiang et al., 2001; Lee et al.,
2004). Manipulated variables and process measurements are sam-
pled with interval of 3 min. 19 composition measurements are
sampled with time delays that vary from 6 min to 15 min. This
time delay has a potentially critical impact on product quality con-
trol within the plant, which implies that the fault effect on product
quality cannot be detected until the next sample of Y is available.
In this study, the composition of G in Stream 9 is chosen as the

quality variable ywith a time delay of 6 min. 22 process measure-
ments and 11 manipulated variables are chosen as X. There are 15
types of known faults in TEP, which are represented as IDV1-15.
The detailed definition of X, y variables and all the faults can be
found in Chiang et al. (2001). First, 480 normal samples are cen-
tered to zero mean and scaled to unit variance to built a PLS with
A = 6. Then, 800 faulty samples for each fault are used for fault de-
tection based on three policies. The fault detection rates for several
typical faults are listed in Table 5.
In Table 5, IDV 0 is normal data and the corresponding detection

rate is the false alarm rate. IDV 2,6,8,12 are the faults related to
quality data y, and IDV 3,9,11,15 are the faults unrelated to quality
data y (Zhou, Li & Qin, 2009). ‘+’ means logical connection ‘or’.
From Table 5, we can find that PLS is more sensitive to detect the
faults related to quality data y, which is the purpose of monitoring
with PLS. It is also observed that standard PLS has higher detection
rates than W-PLS and SIMPLS in these simulated cases.
7. Conclusions

PLS has been widely used for monitoring complex industrial
processes when quality variables are taken into account. There is,
however, a lack of understanding of PLS geometry for the purpose
of process monitoring. In this paper, the effect of Y on the decom-
position of the X-space is clearly shown and the geometric inter-
pretation of the PLS decomposition structure is given. Based on this
interpretation, two alternative algorithms of PLS, W-PLS and SIM-
PLS, are compared with the standard PLS in terms of the latent
space decomposition and process monitoring. It is demonstrated
that orthogonal sample space decomposition achieved by PLS is
critical for process monitoring. It is concluded from analysis and
simulation that monitoring using W-PLS and SIMPLS will cause
ambiguous alarms and more missed alarms than the standard PLS.
The standard PLS is the most appropriate for process monitoring
among these alternative algorithms.
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Appendix A. Proof of Lemma 1

According to Zhang (2004), the oblique projector onto Span(H)
along Span(S) can be obtained by the following equation generally:

ΠH|S = H(HTΠ⊥S H)
−1HTΠ⊥S (A.1)

where Π⊥S is the orthogonal projector onto the Span(S)
⊥. Noting

that

Π⊥R⊥ = ΠR = R(RTR)−1RT. (A.2)

Substituting (A.2) into (A.1) and considering (5), R is full-column-
ranked, we can obtain

ΠP|R⊥ = PRT. (A.3)

Similarly, we have

ΠR⊥|P = I− PRT. (A.4)

Lemma 1 is proven. �

Appendix B. Proof of Lemma 2

For a new sample xnew , expanding T 2 and Dx̂, we have

T 2 = xTnewRΛ
−1RTxnew (B.1)

Dx̂ = xTnewRP
T(PΛPT)−PRTxnew. (B.2)

As P is a full-column-ranked matrix, there exist two orthonor-
mal matrix U ∈ Rm×m,V ∈ RA×A, so that

PT = V[Σ,O]UT (B.3)

where Σ is a nonsingular diagonal matrix, and O is a zero matrix.
Then, we have

PT(PΛPT)−P
= V[Σ,O]UT(PΛPT)−U[Σ,O]TVT

= V[Σ,O]([Σ,O]TVTΛV[Σ,O])−[Σ,O]TVT

= V[Σ,O]
[
(ΣVTΛVΣ)−1 O

O O

]
[Σ,O]TVT

= VΣ(ΣVTΛVΣ)−1ΣVT = Λ−1. (B.4)

Lemma 2 is proven. �
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