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Dibutyl phthalate induces oxidative
stress and impairs spermatogenesis
in adult rat
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Abstract
Phthalates are abundantly produced plasticizers, and dibutyl phthalate (DBP) is the most widely used derivative
in various consumer products and medical devices. This study was conducted to further explore the potential
testicular toxicity of DBP in adult rats and to elucidate the underlying mechanisms. Adult male albino rats were
treated orally with DBP at doses of 0, 200, 400, or 600 mg/kg/day for 15 consecutive days. Testicular weight,
sperm count, and motility were significantly decreased. Treatment with DBP decreased serum follicle-
stimulating hormone and testosterone levels and testicular lactate dehydrogenase activity. DBP treatment also
decreased serum total antioxidant capacity and the activities of the testicular antioxidant enzymes, such as
superoxide dismutase, catalase, and glutathione reductase. Further, DBP treatment provoked degeneration
with absence of spermatogenesis and sperms and necrosis in some of seminiferous tubules. These results indi-
cated that oxidative stress and subsequent decrease in testosterone secretion were the potential underlying
mechanism of DBP-induced testicular toxicity.
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Introduction

Recent studies have linked the declining reproductive

health and fertility in men with toxicants found in the

environment, in particular endocrine-disrupting che-

micals such as phthalates (Nordkap et al., 2012; Wong

and Cheng, 2011). One of phthalates, dibutyl phtha-

late (DBP), has attracted special attention from the

scientific community and the general public due to its

high production volume in millions of tons annually

(Guerra et al., 2010). DBP is a ubiquitous plasticizer

utilized in the production of flexible polyvinyl chlor-

ide (PVC) materials. As phthalates are noncovalently

bound within PVC, they leach out, becoming avail-

able for biological exposure (Heudorf et al., 2007;

Swan, 2008). Human exposure occurs primarily

through contaminated food and water, especially

high-fat foods, which may be in contact with plastic,

adhesives, or other packing materials that contain

DBP. Pharmaceutical formulations also result in sig-

nificant human exposure because various plasticizers
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are used to coat medicines such as antibiotics, antihis-

tamines, and laxatives (Schettler, 2006).

The majority of studies concerning DBP focused

mainly on investigating in utero and lactational

effects on the reproductive tract in experimental

rodents (Scarano et al., 2010). DBP were shown in

rats to interfere with normal development of the testis

and reproductive tract when exposure occurs during

gestation (Barlow et al., 2003; Scott et al., 2008),

resulting in postnatal downstream disorders that are

similar to those reported in human testicular dysgen-

esis syndrome, including cryptorchidism, hypospa-

dias, impaired spermatogenesis, and reduced male

fertility. On the testicular toxicity of DBP, previous

studies have shown that sexually immature (prepuber-

tal) rats are more sensitive to DBP than adults (Gray

and Gangolli, 1986). Reported reproductive effects

of DBP include alteration in activities of steroido-

genic enzymes, alteration in testosterone metabolism,

and decreased levels of plasma testosterone; they are

suspected of acting as endocrine disruptors that have

the potential to modify normal endocrine function

(Hirosawa et al., 2006; Xiaofeng et al., 2009). The

mechanism by which DBP exerts its toxic effect in

reproductive system is not yet fully elucidated. Some

of the effects of phthalate are related to its antiandro-

genic potential (Ge et al., 2007; Noriega et al., 2009).

This study was conducted to further explore the

potential testicular toxicity of DBP in adult rats and

to elucidate the underlying mechanisms.

Materials and methods

Chemicals

DBP was purchased from Sigma-Aldrich Chemical

Company (St Louis, Missouri, USA). The follicle-

stimulating hormone (FSH) and testosterone immu-

noassay kits were purchased from American

Laboratory Products Co. Diagnostics (Salem, New

Hampshire, USA) and BioVendor-Laboratorni medi-

cina a.s. (Karasek, Czech Republic), respectively. The

total antioxidant kit was purchased from Randox

Laboratories Ltd. (County Antrim, UK). All other

chemicals used are of analytical grade.

Animals and treatments

Twenty-four adult male Wistar rats (90 days; 180 +
10 g) were housed in clean polypropylene cages

(six/cage/group) and maintained on a 12-h light:12-h

dark cycle at a temperature of 20–25�C with ad

libitum access to food and water. For 7 days before

beginning the experiment, the rats were handled daily

for 5 min to acclimatize them to human contact and

minimize their physiological responses to handling

for subsequent protocols (Ma and Lightman, 1998;

Vaithinathan et al., 2010). DBP was dissolved in corn

oil and given to rats by gavage at doses 0, 200, 400, or

600 mg/kg/day for 15 consecutive days. Control

group was given corn oil alone. Gavage volume was

adjusted according to the weight of each rat. The

doses and duration were selected as per previous pub-

lications (Gray et al., 2006; Nair et al., 2008; Scarano

et al., 2010; Zhou et al., 2010, 2011). The control

group of animals was maintained and gavaged corn

oil vehicle alone.

Necropsy

Twenty-four hours after the last dose, blood samples

were collected from the retro-orbital sinus under ether

anesthesia. Samples were centrifuged, and the super-

natant serum was separated from the clot as soon as

possible and stored at �80�C until FSH, testosterone,

and total antioxidant capacity (T-AOC) assay. Ani-

mals were euthanized and the testes were excised

immediately, cleaned from adhering fat and connec-

tive tissues, and the weights were recorded in grams.

The cauda epididymides from each animal were used

for sperm count and motility assay. The testes were

homogenized in ice-cold phosphate buffer (pH 7.0)

using a glass–Teflon homogenizer. The homogenate

was centrifuged at 10,000 g for 30 min at 4�C, and the

supernatant was used for other biochemical assay and

enzymes estimation as enzyme source. One testis

from each group was used for histopathological

examination. Protein content of the testicular homo-

genate was measured using crystalline bovine serum

albumin as standard (Bradford, 1976).

Sperm count and motility

Cauda epididymides were dissected out, immediately

minced in 5 ml of physiological saline, and then incu-

bated at 37�C for 30 min to allow spermatozoa to

leave the epididymal tubules. Total sperm number

was determined by a Neubauer hemocytometer as

described previously (Yokoi et al., 2003). To deter-

mine sperm motility, 100 sperms each were observed

in three different fields, classified into motile and

nonmotile sperms, and the motility was expressed as

percentage incidence. The percentage of motile sperms
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was recorded using a phase-contrast microscope at a

magnification of 400� (Aly and Azhar, 2013).

Serum FSH and testosterone

Determination of serum FSH (ng/ml) and testosterone

(ng/ml) was carried using enzyme-linked immunosor-

bent assay diagnostic kits.

Testicular LDH enzyme

The testicular homogenate was used to estimate testi-

cular lactate dehydrogenase (LDH) enzyme (U/mg

protein) spectrophotometrically using diagnostic kit.

Serum T-AOC

Twenty microliters of serum were incubated, in a cuv-

ette, with 1 ml of chromogen composed of 610 mmol/l

of 2,20-azino-di-(ethylbenzthiazoline sulfonate) and

6.1 mmol/l of metmyoglobin. The reactants were

mixed well, and the initial absorbance (A1) was

recorded. Then the substrate was added (200 �l of

mmol/l hydrogen peroxide (H2O2)). The contents

were mixed well, and the absorbance was recorded

after 3 min (A2). The �A was calculated for each of

the sample and blank (Miller et al., 1993). The

T-AOC (mmol/l) was calculated using the following

equation:

T�AOC ¼ Factor � �Ablank ��Asample

� �
ð1Þ

Factor ¼ Concentration of standard

�Ablank ��Astandardð Þ ð2Þ

Oxidative stress markers in the testis

Lipid peroxidation. Malondialdehyde (MDA), formed

as an end product of the peroxidation of lipids, served

as an index of the intensity of oxidative stress. MDA

reacts with thiobarbituric acid to generate a colored

product that can be measured optically at 532 nm. A

break down product of lipid peroxidation (LPO), thio-

barbituric acid reactive substance, was measured by

the method described by Buege and Aust (1976).

Briefly, the stock solution contained equal volumes

of trichloroacetic acid 15% (w/v) in 0.25 N hydro-

chloric acid (HCl) and 2-thiobarbituricacid 0.37%
(w/v) in 0.25 N HCl. One volume of the test sample

(sperm suspension) and two volumes of stock reagent

were mixed in a screw-capped centrifuge tube, vor-

texed, and heated for 15 min on a boiling water bath.

After cooling on ice, the precipitate was removed by

centrifugation at 1000g for 15 min, and absorbance

of the supernatant was measured at 532 nm against

blank containing all the reagents except test sample.

The value is expressed as micromoles of MDA equiv-

alent formed per minute per milligram of protein.

Antioxidant enzymes. The xanthine oxidase method

was used to measure superoxide dismutase (SOD)

activity in the testicular homogenate using purified

bovine erythrocyte SOD (5000 U/mg solid) as a stan-

dard. The reaction between 50 mM xanthine, 50 mM

xanthine oxidase 1000 U, and 0.1 mM ethylenediami-

netetraacetic acid was used to generate superoxide

radicals and uric acid at pH 7.8. The superoxide radi-

cals produced reacted with 50 mM nitro blue tetrazo-

lium (NBT) to produce a red formazan dye that was

measured spectrophotometrically at 250 nm. The

SOD present in the sample (0.1 ml enzyme source)

competes with the NBT for superoxide radicals and

so inhibits the production of formazan dye. The SOD

activity was expressed as units per milligram of pro-

tein (Oynagui, 1984). Catalase (CAT) activity was

determined using reaction mixture (2 ml) consisting

of 1.95 ml of 10 mM H2O2 in 60 mM phosphate buffer

(pH 7.0). The reaction was started by adding 0.5 ml of

enzyme source and the absorbance was recorded at

240 nm after 3 min. One CAT unit is defined as the

amount of H2O2 converted into water (H2O) and ½

oxygen (O2) in 1 min under standard conditions and

the specific activity is reported as micromoles of

H2O2 consumed per minute per milligram of protein

(Aebi, 1984). Glutathione reductase (GR) activity was

measured by mixing 0.1 ml enzyme source with 1 ml

of 0.2 M sodium phosphate buffer, 1 mM glutathione

disulfide (GSSG), and 0.1 mM nicotinamide adenine

dinucleotide phosphate (NADPH). The absorbance

was recorded at 340 nm. The enzyme activity was cal-

culated as nanomoles of NADPH oxidized per minute

per milligram of protein (McFarland et al., 1999).

Histopathological examination of the testes

Autopsy samples were taken from the testes of killed

rats, fixed in 10% formalin solution for 10 h at least,

and then washed in tap water for 12 h. Serial alcohols

(methyl, ethyl, and absolute) were used for dehydra-

tion of the tissue samples. Tissue specimens were

cleared in xylene and embedded in paraffin. The par-

affin blocks were sectioned at 3-mm thickness by

sledge microtome. The obtained tissue sections were

collected on the glass slides and stained by

Aly et al. 3

 at PENNSYLVANIA STATE UNIV on September 12, 2016tih.sagepub.comDownloaded from 

http://tih.sagepub.com/


hematoxylin and eosin stain (Banchroft et al., 1996)

for histopathological examination by the light

microscope.

Statistical analysis

Differences between obtained values (mean + SD,

n ¼ 6) were compared by one-way analysis of var-

iance, followed by the Tukey–Kramer multiple com-

parison test. A p value less than 0.05 was taken as a

criterion for a statistically significant difference.

Results

The weight of testes in animals treated with DBP

(200, 400, or 600 mg/kg) revealed significant

decrease (p < 0.05, p < 0.01, and p < 0.01, respec-

tively) as compared to the control group (Table 1).

Both sperm count and motility were significantly

decreased (p < 0.05, p < 0.01, and p < 0.001), in a

dose-related manner, in response to DBP (200, 400,

or 600 mg/kg, respectively) as compared to the corre-

sponding control (Table 1).

Serum FSH and testosterone levels were signifi-

cantly decreased (p < 0.001) in response to DBP

(200, 400, or 600 mg/kg) treatment as compared to the

corresponding control (Figure 1(a) and (b), respec-

tively). The testicular activity of LDH revealed a sig-

nificant (p < 0.001) decrease in animals treated with

200, 400, or 600 mg/kg of DBP as compared to the

control group (Figure 2). Treatment of animals with

DBP (200, 400, or 600 mg/kg) significantly decreased

(p < 0.001) the serum T-AOC as compared to the

related control (Figure 3). In DBP-treated animals, the

testicular LPO was significantly increased (p <

0.001), while the enzymatic activities of SOD, CAT,

and GR were significantly decreased (p < 0.001) as

compared to the related control (Table 2).

Histopathological observation of testes of control

group showed normal architecture with an orderly

arrangement of germinal cells and Sertoli cells (Fig-

ure 4(a)). Testes of DBP (200 mg/kg) treated animals

showed degeneration with absence of spermatogenic

series in the lumen of some seminiferous tubules

(ds; Figure 4(b)). Animals treated with 400 mg/kg

of DBP revealed degeneration with absence of sper-

matogenesis and sperms from most of the seminifer-

ous tubules (ds; Figure 4(c)). Treatment of animals

with 600 mg/kg of DBP revealed necrosis in some

of seminiferous tubules (ns; Figure 4(d)).

Table 1. Effect of DBP on testes weights and sperm characteristics.a

Doses of DBP (mg/kg b.w./day)

Parameter Control 200 mg 400 mg 600 mg

Absolute testes weights (g) 2.93 + 0.12 2.48 + 0.17b 2.45 + 0.29c 2.38 + 0.31c

Cauda sperm count (�106/rat) 53.5 + 3.21 47 + 3.35b 45.17 + 2.86c 42.67 + 3.33d

Sperm motility (%) 86.33 + 4.46 76.83 + 5.08b 72.67 + 5.57c 70 + 5.83d

DBP: dibutyl phthalate; ANOVA: analysis of variance; b.w.: body weight.
aData are expressed as mean + SD (n ¼ 6).
bp < 0.05: statistical analysis (ANOVA) for differences from corresponding control.
cp < 0.01: statistical analysis (ANOVA) for differences from corresponding control.
dp < 0.001: statistical analysis (ANOVA) for differences from corresponding control.

Figure 1. Effect of DBP on serum FSH and testosterone.
Data are expressed as mean + SD (n ¼ 6). ***p < 0.001:
statistical analysis (ANOVA) for differences from corre-
sponding control. DBP: dibutyl phthalate; FSH: follicle-
stimulating hormone; ANOVA: analysis of variance.

4 Toxicology and Industrial Health

 at PENNSYLVANIA STATE UNIV on September 12, 2016tih.sagepub.comDownloaded from 

http://tih.sagepub.com/


Discussion

The decline in fertility of animals and humans over

the last few decades potentially linked to environ-

mental exposures has drawn global attention (Swan

and Elkin, 1999). The results presented in this study

clearly demonstrate that DBP induced testicular

toxicity in rats. The evaluation of testicular weight

is an integral component in the assessment of repro-

ductive toxicity. The weight of the testis is largely

depending on the mass of the differentiated sperma-

togenic cells (Ihsan et al., 2011). DBP caused a sig-

nificant decrease in the absolute weight of the testes

which could be attributed to the significant decrease

in the sperm production in the testes or due to

decreased gonadotropins release. Gonadotropins are

prime regulators of testis weight (Goldman et al.,

1989). The testicular sperm count is an important

indicator of spermatogenesis (Wang et al., 2004).

Sperm count in the epididymis decreased perhaps

due to low level of sperm production in the testes.

Such reduction in sperm count may be resulted from

the direct effect of the DBP on testicular Leydig and

Sertoli cells causing a decrease in testosterone pro-

duction (Al-Thani et al., 2003), which is a prime reg-

ulator for sperm production (Steinberger, 1975).

This could also be attributed to the reduced level

of serum FSH, a hormone directly involved in main-

taining spermatogenesis in conjunction with testos-

terone (Plant and Marshall, 2001). A decrease in

sperm count and sperm motility is associated with

decreased fertility (Narayana et al., 2002; Wyrobek

et al., 1983). The decrease in sperm motility may

be attributed to the reduction in serum testosterone

level (Dirican and Kalender, 2012) or may be due

to rapid loss of intracellular adenosine triphosphate

(ATP) and damage of the sperm membrane caused

by LPO (De Lamirande and Gagnon, 1992; Dok-

meci, 2005). It is thus likely that the reduction of

sperm number in the cauda epididymis in the DBP-

treated rats reflects a state of inhibited and/or

decreased spermatogenesis (Adesiyan et al., 2011).

Testicular activity is governed by gonadotrophic

hormones, FSH and LH (Multinger et al., 1996). In

this study, serum FSH and testosterone levels were

significantly decreased in rats treated with DBP. Tes-

tosterone is produced in the Leydig cells of testis

under the influence of LH secreted from the pituitary

gland (Nilsson, 2000; Tahka, 1989). Alteration of

Leydig cell function can adversely affect spermato-

genesis (Senger, 1999). Decrease in serum testoster-

one might also contribute to the reduction of

spermatogenesis (Nair and Shaha, 2003). FSH not

only regulates spermatogenesis via Sertoli cell func-

tion but also exerts a steroidogenic function on

Leydig cells (De Gendt et al., 2004; O’Shaughnessy

et al., 2010; Willems et al., 2010). Alterations in this

gonadotropin by DBP more likely lead to reproduc-

tive failure. The findings of this study suggest that

DBP affects testicular function by affecting the func-

tions of Sertoli and Leydig cells. Sertoli cells act as

the so-called nurse cells, providing the structural and

the metabolic support for developing germ cells (Bian

et al., 2006). Since many factors essential for germ

cell development are synthesized by Sertoli cells

(Meehan et al., 2000), and since the number of sper-

matozoa produced per day is governed by the number

of Sertoli cells in the seminiferous tubules (Amann,

1970), any agent that impairs the viability and the

function of Sertoli cells may have profound effects

on spermatogenesis (Bian et al., 2006).

Figure 2. Effect of DBP on testicular LDH activity. Data
are expressed as mean + SD (n ¼ 6). ***p < 0.001: Statis-
tical analysis (ANOVA) for differences from corresponding
control. LDH: lactate dehydrogenase; DBP: dibutyl phtha-
late; ANOVA: analysis of variance.

Figure 3. Effect of DBP on serum T-AOC. Data are
expressed as mean + SD (n ¼ 6). ***p < 0.001: statistical
analysis (ANOVA) for differences from corresponding con-
trol. T-AOC: total antioxidant capacity; DBP: dibutyl phtha-
late; ANOVA: analysis of variance.
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Table 2. Effect of DBP on oxidative stress markers in the testis.a

Doses of DBP (mg/kg b.w./day)

Parameter Control 200 400 600

LPO 3.2 + 0.2 6.1 + 0.42b 9.11 + 0.48b 12 + 0.71b

SOD 15.2 + 1.89 9.52 + 1.65b 7.32 + 1.45b 5.92 + 1.12b

CAT 0.82 + 0.13 0.42 + 0.05b 0.27 + 0.01b 0.13 + 0.002b

GR 32.7 + 1.91 20.5 + 1.95b 15.3 + 1.45b 11.4 + 1.15b

LPO: lipid peroxidation; SOD: superoxide dismutase; CAT: catalase; GR: glutathione reductase; ANOVA: analysis of variance; b.w.:
body weight.
aLPO are expressed as micromoles of MDA equivalent formed per minute per milligram protein; SOD are expressed as units per milli-
gram protein; CAT activity is expressed as micromoles of hydrogen peroxide consumed per minute per milligram protein; and GR as
nanomoles of nicotinamide adenine dinucleotide phosphate oxidized per minute per milligram protein. Data are expressed as mean +
SD (n ¼ 6).
bp < 0.001: statistical analysis (ANOVA) for differences from corresponding control.

Figure 4. Representative illustrations of histological morphology of rat testes. (a) Testicular cross sections from control
rats showing normal seminiferous tubules and spermatogenesis (H&E �40). (b) Testicular cross sections from DBP (200
mg/kg/day) challenged rats showing degeneration with absence of spermatogenic series in the lumen of some seminiferous
tubules (ds) (H&E �40). (c) Testicular cross sections from DBP (400 mg/kg/day)-treated rats showing degeneration with
absence of spermatogenesis and sperms from most of the seminiferous tubules (ds; H&E �160). (d) Testicular cross sec-
tions from DBP (600 mg/kg/day)-challenged rats showing necrosis in some of seminiferous tubules (ns; H&E �80). H&E:
hematoxylin and eosin; DBP: dibutyl phthalate.
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This study also exhibited decrease in testicular

LDH activity in DBP-treated animals. LDH, a testicu-

lar germ cell marker enzyme, is the most active form

of enzyme present in the mature sperm (Kumar et al.,

2013). The spermatozoa require LDH for necessary

metabolic activity during passage from testis to the

site of fertilization in the oviduct (Mahi-Brown

et al., 1990). Lactate is one of the compounds pro-

duced by the Sertoli cells and utilized primarily by the

germ cells for ATP production in the mitochondrial

oxidative phosphorylation (Riera et al., 2001). It is

considered that testicular organs need great energy

to continuously maintain spermatogenesis. Lactate

deficiency induced apoptosis of testicular germ cells

(Erkkila et al., 2002). The reduction in the LDH activ-

ity observed in the testis may contribute to low sper-

matozoa motility due to insufficient ATP generation

(Adedara and Farombi, 2012). The alteration of lac-

tate content in the testes has been attributed to pertur-

bation in the hormonal control and supply (Yamamato

et al., 2007). Further, the decreased activity of LDH

enzyme in DBP-administered animals represents inhi-

bition of spermatogenesis (Abarikwu et al., 2012).

Reactive oxygen species (ROS) is now well estab-

lished to regulate normal sperm function; however,

overproduction of ROS may result in oxidative stress

causing significant adverse impact on semen quality

and male fertility (Prakash et al., 2001; Shukla

et al., 2009). The decreased activity of testicular anti-

oxidants caused by DBP, together with increased LPO

may explain the decreased T-AOC. This finding indi-

cates that DBP induced oxidative stress in rat testes

with remarkably increased MDA concentration,

which may be due to ROS overproduction (Aitken

and Baker, 2002). Plasma membranes of the sperms

have a high content of polyunsaturated fatty acid;

hence, they are highly sensitive to oxidative stress and

LPO (Lenzi et al., 2000). LPO has been shown to be

associated with reduction in sperm mobility, viability,

and count (Kao et al., 2008). High levels of ROS are

associated with poor sperm quality because ROS

induce excessive apoptosis of spermatogenic cells and

sperm by disrupting the inner and outer mitochondrial

membranes or affecting the balance between pro- and

antiapoptosis systems (Agarwal et al., 2003). The risk

of oxidative damage from LPO is especially high for

steroid-synthesizing tissues because these tissues, in

addition to oxidative phosphorylation, use molecular

oxygen for steroid biosynthesis (Murugesan et al.,

2008). In this study, the declined serum testosterone

level was accompanied by oxidative stress as evident

by increased LPO. ROS can damage critical compo-

nents of the steroidogenic pathway in Leydig cells,

including steroidogenic acute regulatory protein (Die-

mer et al., 2003) and cytochrome P450 enzymes

(Georgiou et al., 1987).

To prevent peroxidation of membrane lipids during

conditions of elevated ROS, the rat testis has several

antioxidant enzymes that scavenge and metabolize

these free radicals (Peltola et al., 1992; Sikka,

2004). Among the antioxidant defense of testis, SOD,

CAT, and GR are the first and most important lines of

defense (Ourique et al., 2013). The increase in LPO

was accompanied by concomitant decrease in the

activities of antioxidant enzymes SOD, CAT, and

GR. In mammalian testis, SOD plays a major role in

male germ cell protection as well as differentiation

(Bauche et al., 1994; Peltola et al., 1992). SOD cata-

lyzed the dismutation of O2
�� into H2O2, which is

then degraded to water by the activity of CAT

(Schmatz et al., 2012). A decrease in the activities

of CAT may lead to an excess availability of H2O2,

which in turn generates OH�, resulting in the initiation

and propagation of LPO (Schmatz et al., 2012). GR

mediates the reduction of oxidized GSSG to GSH,

which utilizes NADPH (Bray and Taylor, 1993). The

decreased activity of this enzyme in the testis may be

an important factor for the depletion of GSH contents.

Further, these results were well substantiated by

marked alteration in the histopathological examina-

tion of testis. DBP treatment provoked degeneration

with absence of spermatogenic series in the lumen

of some seminiferous tubules, degeneration with

absence of spermatogenesis and sperms from most

of the seminiferous tubules, and necrosis in some of

seminiferous tubules. We have observed in our study

in parallel with the study by many researchers that the

main target of phthalate esters is seminiferous tubules

in rat testis (National Toxicology Program, 2003).

Moreover, there was a dysfunction of Leydig cells,

a significant decrease in the levels of testosterone,

falling of gametes, and atrophy of the seminiferous

tubules in rats treated with DBP (Mylchreest et al.,

2002). Further, Güllen Ünal et al. (2013) reported

apparent atrophy and deformity in the seminiferous

tubules of DBP-treated rats. It has been found that the

first targets of DBP are Leydig and Sertoli cells (Shir-

ota et al., 2005), which may explain the degeneration

and necrosis in some of seminiferous tubules

observed in DBP-treated rats. These histopathological

changes in the testis may be due to ROS generated in

the testis and thus affect gonadal functions. The
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decreased serum testosterone may have caused sperm

and histopathological anomalies.

In summary, DBP induced decrease in testes

weight, impairment of spermatogenesis, reduced

serum FSH and testosterone level, altered testicular

LDH, increased LPO, and decreased the levels

of enzymatic antioxidants with histopathological

anomalies. These results indicated that oxidative

stress and subsequent decrease in testosterone secre-

tion were the potential underlying mechanism of

DBP-induced testicular toxicity.
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